N

N

Kriging with Partial Differential Equations in
Hydrogeology

Pierre Le Cointe

» To cite this version:

Pierre Le Cointe. Kriging with Partial Differential Equations in Hydrogeology. Applied geology.
Université Pierre et Marie Curie (Paris VI); Ecole des Mines de Paris; ENGREF, 2006. English.
NNT: . tel-02749811

HAL Id: tel-02749811
https://brgm.hal.science/tel-02749811
Submitted on 3 Jun 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://brgm.hal.science/tel-02749811
https://hal.archives-ouvertes.fr

Université Pierre et Marie Curie, Ecole des Mines de Paris
& Ecole Nationale du Génie Rural des Eaux et des Foréts

Master 2 Sciences de I’Univers, Environnement, Ecologie

Parcours Hydrologie-Hydrogéologie

Kriging with Partial Differential
Equations in Hydrogeology

Pierre LE COINTE

Directeur de recherche : Jean-Pierre DELHOMME

_ Schlumberger Water Services
SChlumherger Waterloo Hydrogeologic Inc.
WATER SERVIGES Waterloo, Ontario, Canada

January 23, 2007

= % fj ‘fl
| UNIVERSITE r
Qlkly}{awum CURIE t'\'JJJ

FCOLE DES MINES
DE PARIS ENGREF

Abstract

Drawing hydraulic head contour maps is one of the first requested results in hydrogeology.
This goal can be achieved in several manners : solving the partial differential equation within
discretized models calibrated so as to fit the head data, or more simply using spatial data
interpolation techniques. One of these techniques is kriging, a stochastic approach that
estimates the value of a natural phenomenon in unsampled sites, using an unbiased linear
combination of neighboring measures of the phenomenon, with a minimum variance. The
first part of this thesis explains the basics of the kriging theory.

However, the main goal of this work is to combine this geostatistical method with some
features of the partial differential equations problem to provide a mapping tool that has the
kriging simplicity of use but provides scientifically better results. Two different improvements
are described in this thesis. The first one introduces the use of boundary conditions in the
kriging algorithm, and the second one focuses on covariance models that take into account
the transmissivity values, both for kriging and cokriging estimation. For both features, the
theoretical explanation is followed by application examples that highlight the improvements
in the estimated results. Finally, the use of the improved cross-covariance models to solve the
inverse problem (determining the transmissivity knowing the hydraulic head) is detailed. All
the examples were made using GSLIB kriging and cokriging algorithms that were modified
for that purpose.

The results presented in this thesis show that Kriging under Boundary Conditions is
an efficient way of improving the interpolated contour maps without involving discretized
modeling. Cokriging between the hydraulic head and the transmissivity with a structural
analysis focused on ensuring that the two variables verify the partial differential equation
allows to take into account the variations of the transmissivity while assuming a regionally
monodirectional flow of constant hydraulic gradient J and a discharge () = 0. It can be used
to solve both the direct and the inverse problem. The first results are promising, but there is
still some work to be done to have a tool as robust as Kriging under Boundary Conditions.

Keywords :

Geostatistics, kriging, cokriging, covariance, variogram, hydrogeology, hydraulic head, trans-
missivity, boundary conditions, prescribed head, prescribed flux, gradient information, inter-
polation, contour mapping, modeling, inverse problem.

Acknowledgements

I would like to thank here all the people that contributed more or less to this work. First
of all, I am grateful to my tutor, Dr. Jean-Pierre Delhomme, SWS Scientific Advisor, who
offered me this opportunity to combine hydrogeology with geostatistics and programming. I
had some (little) experience in all these fields, but never had the opportunity to work on the
three of them altogether. Jean-Pierre Delhomme obviously provided some invaluable help
for this work, especically on the purely geostatistical part, as the guiding ideas were his.

I also owe special thanks to Dr. Benny Bian, Software Department Manager in Waterloo,
and Dr. Serguei Chmakov, Software Chief Architect. Benny Bian was my manager during
my stay in Canada and always showed great interest in my work. Serguei Chmakov was
always very helpful whenever it came down to programming or hydrogeology issues. His fast
understanding and scientific knowledge never left me in trouble for a long time.

Finally, T would like to thank Dominique Pajot, Marketing and Technique Manager of
Schlumberger Water Services, for hiring me, Sandra Jenni of SWS Paris, for the last minute
help, as well as all the other employees of SWS from Waterloo, Paris or Calgary that helped
me with technical or administrative issues before and during my stay in Canada. My last
word will be for my schoolmates Lionel, Mathilde and Thomas that convinced me to switch
to WTEX to write this report. Their advice probably made the result much more readable !

Contents

[Abstract]

[Acknowledgements|

Contentsl

[List of Figures|

(1.1 Prerequisites|.

(1.1.4 Stationarity Hypothesis|
.15 A Usetul Resultl

(1.2 Structural Analysis| L

(1.2.1 Experimental Variogram|o

[1.2.2 Variogram Characteristics|

[1.2.3 Variogram Eixamples|o 0oL

(1.3 Kriging Basics|.

(1.4 Universal Kriging or Kriging with a Trend Model|

(1.4.5 Optimality Constraint|

(1.4.6 Solving the Kriging Equations|

(1.5 Multivarate Geostatistics : Cokriging|.

viii CONTENTS

2 Kriging under Boundary Conditions| 17
[2.1 Boundary Conditions in Hydrogeology| 17
2.1.1 Prescribed Headl.o oo oo 18
212 Prescribed Flux|o oo 18

2.2 'The Kriging under Boundary Conditions System|. 20
[2.2.1 Linearity Constraint| 20
2.2.2 Authorization Constraintl. L. 20
2.2.3 Unbiasedness Constraintsl 21
[2.2.4 Optimality Constraint| 21

2.3 Code Implementation|. 24
[2.3.1 Kriging Neighborhood| 24
[2.3.2 Adding the Boundary Conditions Datal 25
2.3.3 Discretization Parameters 0. 26
[2.3.4 Singularity Conditions| 27
2.3.5 Constant Flux Conditions 27
[2.3.6 Cubic Variogram| oo 29
[2.3.7 Filling the Kriging under Boundary Conditions Matrix| 29

2.4 Application of Kriging under Boundary Conditions| 30
[2.4.1 Comparison between Universal Kriging and Kriging under Boundary |

[Conditionsl oL 30
2.4.2 Undefined boundariesl. 33
.43 Constant Flux Boundaries| 33
2.44 River and Inside Constant Fluxl 35
.45 “Screen BEffect”lo o 36

2.5 Conclusionl. e 40
[3 (Co-)Kriging with Multivariate Structural Analysis| 41
B.1 Further Geostatistical Defimitionsl 41
3.1.1 Intrinsic Random Function of order & (IRF-E)| 41
B.1.2 Generalized Covariancel 0. 42

[3.2 Kriging the Head using Transmissivity Knowledgel 43
[3.2.1 Hydrogeologic Context| 43
[3.2.2 The Stochastic Equation AZ =Y. 43
B.23 Covariance Modell Lo 44
[3.2.4 Covariance Choice and Code Implementation|. 45

[3.2.50 Application| 45

CONTENTS ix
[3.3 Cokriging Head and Log Transmissivity|. 46
[3.3.1 Cross-covariancell o oo e e e 46

[3.3.2 The Cokriging System|, 47

[3.3.3 The Cokriging under Boundary Conditions System| 49

3.4 Inverse Probleml.o 50
[3.4.1 The Inverse Problem Kriging System| 50

[3.4.2 The Bias in Lognormal Krigingl 51

[3.0 Application| 51
[3.5.1 Code Implementation|. 51

B52 Resultsl. o 52

B.53 Conclusionl. 56
Conclusion 57
(Bibliography| 59
APPENDIXES 62
[A GSLIB Code : Main Algorithm) 63
B _GSLIB Code : Other subroutines| 93
B.1 Include file COKTBCand.o o000 oo 93
[B.2 Subroutine bdarrl o 94
[(B.3 Subroutine bdpts| 95
B.4 Subroutine CCWI| 96
B.5 Subroutine CHKNAMI o000 97
B.6 Subroutine COVAZ| 98
[B.7 _Subroutine ficcoordlo 101
[B.8 Subroutine fluxcoorl L 102
3.9 Subroutine GETINDXIo oo oo 103
[B.10 Subroutine getopenfilename|o o000 104
[B.11 Subroutine getopenfilesurtl o000 Lo 105
B.12 Subroutine intersectl.o oo 106
B.13 Subroutine KTSOLI oo oo oo 107
[B.14 Subroutine PICKSUPRI. oo oo oo 110
[B.15 Subroutine remdup|o 112
B.16 Subroutine scrardl 113

X CONTENTS

[B.17 Subroutine screensl 113
B.18 Subroutine SETROT0 00 00 0o 114
[B.19 Subroutine setsupr|o 115
B.20 Subroutine SORTEM| o oo 117
[B.21 Subroutine SQDIST| oo 121
[B.22 Subroutine srchsupr{.o 122
[B.23 Subroutine srchsupr2| 125
B.24 Subroutine SRCHSUPRS|. 126
[C GSLIB Code : Input Files| 127
[C.1 Example of a parameter file| oL 127

[C.2 Exampleofadatafilef 0. 128

List of Figures

[I.1 A variogram and a nested structure example.|. 9
(1.2 Variogram models with unit sill and scale parameters, from|Chiles and Delfinen] |

(1999).] 10
2.1 From gradient to a pair of dummy points.| 19
[2.2 Example of selecting a subset of points with a search radius R.f. 25
2.3 Visual ModHlow modeled map. First example.| 30
[2.4 Diagram outlining the boundary conditions and the 12 data points selected. |

First example.|. oo oo 31
2.5 Universal Kriging contour map.| 32
2.6 Kriging with the prescribed head condition map.|. 32
[2.7 Kriging under Boundary Conditions map. First example.| 32
[2.8 Diagram outlining the boundary conditions and the 12 data points selected. |

Second example.| 33
2.9 Visual ModHlow modeled map. Second example.| 34
[2.10 Kriging under Boundary Conditions map. Second example.|. 34
[2.11 Kriging under Boundary Conditions map. Constant Flux example.|. 34
[2.12 River conditioning the flow.| 0o 0L 35
2.13 Tnside constant flux conditionl]o oL 35
[2.14 No flow boundary inside the study area. 36
[2.15 Visual ModHlow modeled map. Screen effect.| 37
[2.16 Representation of the screen eftect.| 37
[2.17 Screen effect with added data points.| 38
[2.18 Visual Modflow modeled map. Wall package.|. 38
[2.19 No flow boundary inside the study area, with added data points but without |

the screen effect) 39
[2.20 No flow “box” inside the study area.|. 39
13.1 Kriging under Boundary Conditions with v of h computed from v of Log(T). . 46

xii LIST OF FIGURES

13.2 Exponential covariance Cy of Y = Log(T), variogram 7, of head perturbation
| ¢ and cross-covariance of Y (x) and ¢(x + h) — ¢(x) in the two-dimensional
[case, for an unidirectional flow in an infinite aquiter, from |Chiles and Delfiner| |

| {999, D620 - - .« o o oo 52
3.3 2D representation of C'(Log(T)) centered on the point (25;25)[. 53
13.4 2D representation of y(h) centered on the point (25;25). 53
13.5 2D representation of the cross-covariance between Log(7') and h centered at |

| point (25;25).f 53
[3.6 Summary of the influence of the cross-covariance anti-symmetry on h and |

| Log(T') estimates, by Jean-Pierre Delhomme.|. 54

[3.7 Cokriging with one low transmissivity point in the middle of the study area.| . 55

13.8 Inverse problem : Logio(7") map cokriged from h and Log(7) data. 55

[3.9 Difterence between the hydraulic head maps with and without the low-trans- |
[missivity data point.|o Lo 55

Introduction

One of the main parameters hydrogeologists need to know for their studies is the hydraulic
head. Thus, drawing adequate head contour maps is a common issue in hydrogeology. Two
very different methodologies can be used to achieve this goal :

e Solving the partial differential equation within discretized models :

This method requires the input of the needed parameters to solve the diffusivity equa-
tion so that the computed head surface knows the head data points. In most cases, the
problem is too complex to find an analytical solution and a numerical simulation has
to be computed, often based on either the finite difference or finite element methods,
as explained by |de Marsily (1981). This approach provides the best results, but it cer-
tainly requires some knowledge in hydrogeologic modeling, sufficient parameters data,
and, obviously, the adequate code.

e Using a spatial interpolation technique :
Spatial interpolation is a mathematical processing that allows the reconstruction of a
phenomenon over a domain based on a limited number of data samples of this phe-
nomenon. Basically, one only has to enter his data and choose an interpolation method
to build his contour map. However, if the estimate produced is correct, it does not
verifiy the same partial differential equation that the real data does. In hydrogeology,
that means that the flow equation will not be verified.

Knowing this, the goal of this thesis is to suggest some elements to combine both of these
very different methods to produce hydraulic head maps that are scientifically better than
the ones obtained with classic interpolation, but still easier to create than the ones made
by solving the partial differential equations. The chosen interpolator is kriging, because
it already takes into account the spatial dependency of the data, and the programming
work has been centered on Geostatistical Software Library (GSLIB) kriging and cokriging
algorithms. GSLIB is available in the public domain, distributed by Stanford University and
documented in |Deutsch and Journel| (1998)). Their algorithms are widely used in research or
commercial codes. In particular, they are present in several Waterloo Hydrogeologic software
programs, including GW Contour, an easy-to-use data interpolation and contouring program
that also provides techniques for mapping velocity vectors and particle tracksﬂ The aim of
my internship was to improve the kriging algorithm for this software, in order to have better
head maps, and thus better velocity vectors and particle tracking.

The first chapter of this thesis presents the kriging theory, which was the interpolation
method chosen to implement the new features. The second chapter explains how kriging

!More information available on |http://www.waterloohydrogeologic.com/software/gw contour/gw con\
discretionary{-}{}{ }tour ov.htm

http://www.waterloohydrogeologic.com/software/gw_contour/gw_condiscretionary {-}{}{}tour_ov.htm
http://www.waterloohydrogeologic.com/software/gw_contour/gw_condiscretionary {-}{}{}tour_ov.htm

2 0. Introduction

can take care of the boundary conditions when mapping the hydraulic head, and presents
some examples that show the improvements resulting from this addition. The third chapter
suggests another way of improving the head kriging while using some transmissivity data and
the partial differential equation background to improve the covariance computation. It also
details the cokriging process between head and transmissivity, while also taking into account
the diffusivity equation results to compute the cross-covariance. This method can actually
be used for both estimating the hydraulic head and the transmissivity, thus in theory, it can
be used to solve the inverse problem. Finally, the conclusion rounds up the results of these
various researches, explains how they will be implemented in GW Contour, and what the
further developments could be.

Chapter 1
Kriging

The word kriging and the method itself have been created by G. Matheron in 1963, after
the name of D.G. Krige, a South-African mining engineer whose work initiated Matheron’s.
This chapter presents some elements of the theory of regionalized variables needed to under-
stand the kriging method. The mathematic process is then described for Universal Kriging,
also called Kriging with a Trend model, which is the most “generalized” version of kriging.
Finally, some characteristics useful for the following chapters are detailed. All the theory
presented in this chapter comes from the work of |Matheron| (1962, 1963, 1965} 1969, {1970,
1971al (1973, 1974). The following references have also been helpful : Geostatistics : Modeling
Spatial Uncertainty by |Chilés and Delfiner| (1999)), GSLIB : Geostatistical Software Library
and User’s Guide by |Deutsch and Journel| (1998), the various lecture notes on Geostatistics
from the Ecole Nationale Supérieure des Mines de Paris by |Chauvet| (1993); |Rivoirard| (1995,
2003); Wackernagel| (1993)) and Le krigeage : revue de la théorie et application & l'interpolation
spatiale de données de précipitation, a well done Master’s Thesis by |Baillargeon| (2005).

1.1 Prerequisites

1.1.1 Random Variable

The basic paradigm of predictive statistics is to characterize any unknown value z as a
random variable (RV) Z, the probability distribution of which models the uncertainty about
z. A random variable is a variable that can take a variety of outcome values according to some
probability distribution. The RV model Z, and more specifically its probability distribution,
is usually location-dependent ; hence the notation Z(z), with z being the location coordinates
vector of a point. In the continuation of this thesis, we will work in R2, thus a point z will
be defined by its two coordinates x and y. The RV Z(x) is also information-dependent in
the sense that its probability distribution changes as more data about the unsampled value
z(x) become available.

The cumulative distribution function (cdf) of a continuous RV Z(z) is denoted :
F(x;2z) = Prob {Z(x) < z} (1.1)

When the cdf is made specific to a particular information set, for example (n) consisting of n
neighboring data values Z(z,) = z(x,),« = 1,...,n, the notation “conditional to n” is used,

4 1. Kriging

defining the conditional cumulative distribution function (ccdf) :

F(x; 2|(n)) = Prob {Z(z) < z|(n)} (1.2)

Expression (1.1)) models the uncertainty about the unsampled value z(z) prior to using
the information set (n) while expression ([1.2) models the posterior uncertainty once the
information set (n) has been accounted for. The goal of any predictive algorithm is to
update prior models of uncertainty such as into posterior models such as . The
cedf F(z;2|(n)) is a function of the location z, the sample size and geometric configuration
(i.e. the data locations x,,a = 1,...,n), and the sample values z(z,),a =1,...,n.

From the cedf (1.2)) one can derive different optimal estimates for the unsampled value
z(z) in addition to the ccdf mean, which is the least-squares error estimate. One can also
derive various probability intervals.

In geostatistics, most of the information related to an unsampled value z(x) comes
from sample values at neighboring locations 2/, whether defined on the same attribute z
or on some related attribute y. Thus it is important to model the degree of correlation
or dependence between any number of RVs Z(x), Z(z,),c« = 1,...,n and more generally
Z(v), Z(2a), 0 = 1,...,n,Y(x5),8 =1,...,n". The concept of a random function (RF)
allows such modeling and updating of prior cdfs into posterior ccdfs.

1.1.2 Random Function

A random function (RF) is a set of RVs defined over some field of interest, such as
{Z(x),x € study area} also denoted simply as Z(z). Usually the RF definition is restricted
to RVs related to the same attribute, say z, hence another RF would be defined to model the
spatial variability of a second attribute, say {Y (x),z € study area}.

Just as an RV Z(z) is characterized by its cdf (1.1)), an RF Z(x) is characterized by the set
of all its K-variate cdfs for any number K and any choice of the K locations z, k=1,..., K :

F(zy,...,25;21,...,25) = Prob {Z(z1) < z1,..., Z(2k) < 2K} (1.3)

Just as the univariate cdf of RV Z(x) is used to model uncertainty about the value z(x), the
multivariate cdf (1.3)) is used to model joint uncertainty about the K values z(x1),. .., 2(zk).

Of particular interest is the bivariate (K = 2) cdf of any two RVs Z(z), Z(2'), or more
generally Z(z), Y(2') :

F(x,2';2,2") = Prob {Z(x) < 2,Y(2') < 2} (1.4)

1.1.3 Other Definitions

1.1.3.1 Regionalized Variable

G. Matheron defined a regionalized phenomenon as a phenomenon that spreads in space
and exhibits a certain spatial structure. If z(x) denotes the value at the point z € D of a
characteristic z of this phenomenon, we shall say that {z(z) : © € D C R"} is a regionalized
variable.

1.1 Prerequisites 5

The key, in geostatistics, is that we act as though the regionalized variable under study
z(x) is a realization of a parent random function {Z(z) : x € R"}. In particular, |Delhomme
(1976, 1978) demonstrated that a number of fields of hydrogeologic variables (head, transmis-
sivity, thickness of aquifer layers...) possess a spatial structure and are therefore amenable
to geostatistical techniques.

1.1.3.2 Spatial Distribution

A random function is described by its finite-dimensional distributions, namely the set of
all multidimensional distributions of K-tuples (Z(x1),...,Z(zk)) for all finite values of K
and all configurations of the points x1, ..., xg. That is what we call the spatial distribution.

1.1.3.3 Distance between two points

The distance between two points in R?, A(z4,y4) and B(zp,yg), is defined by the Eu-
clidean norm of the vector determined by these two points :

dap = /(x5 —24)2+ (y5 — ya)?

1.1.3.4 Moments

The mean of the RF is the expected value m(x) = E[Z(x)] of the RV Z(z) at point z.
It is also called the drift of Z, especially when m(x) varies with location. The (centered)
covariance C'ov(z,y) is the covariance of the RV Z(z) and Z(y) :

Cov(r,y) = B|(Z(x) = m(2)) (Z(y) = m(y)] (1:5)

In general, this function depends on both z and y. When = =y, Cov(x,x) = Var[Z(x)] is
the variance of Z(x). Higher-order moments can be defined similarly.

Naturally, in theory, these moments may not exist. As usual in probability theory the
mean is defined only if £ |Z(x)| < co. If E[Z(z)]? is finite at every point, Z(x) is said to be
a second-order RF : it has a finite variance, and the covariance exists everywhere.

1.1.4 Stationarity Hypothesis

1.1.4.1 Strict Stationarity

A RF is called stationary when the finite-dimensional distributions are invariant under
an arbitrary translation of the points by a vector h :

Prob {Z(z1) < z1,...,Z(vk) < zx} = Prob {Z(x1 + h) < z1,..., Z(xx + h) < zx} (1.6)

Physically, this means that the phenomenon is homogeneous in space and repeats itself in
the whole space.

6 1. Kriging

1.1.4.2 Second-Order Stationarity

When the random function is stationary, its moments, if they exist, are obviously invariant
under translations. The second-order stationarity hypothesis consider that the first two
moments (mean and covariance) are stationary. We have then for points z and x4+ h of R" :

E[Z(z)] =m

(1.7)
E[(Z(:c) —m)(Z(z+h) - m)} = E|Z(x)Z(x + h)] —m?* = C(h)

The mean is constant and the covariance function C' has the following properties :

e [t only depends on the separation h,

e [t is bounded and doesn’t exceed the constant variance :

C(h)] < C(0) = Var(Z(x))
e It is an even function : C'(—h) = C(h).

By definition, an RF satisfying the above conditions is second-order stationary and will
be further called Stationary Random Function or SRF. An SRF is isotropic if its covariance
function only depends on the length || of the vector h, and not on its orientation.

1.1.4.3 Intrinsic Hypothesis

A milder hypothesis is to assume that for every vector h the increment Y, (z) = Z(x + h)—
Z(x) is an SRF in z. Then Z(z) is called an intrinsic random function (IRF) and is charac-
terized by the following relationships :

E[Z(x +h) — Z(x)] = (a, h) (1.8)

E[(Z(a: +h) - Z(x))g] = Var[Z(z +h) — Z(z)] =27(h)

(a, h) is the linear drift of the IRF (drift of the increment) and ~(h) is its variogram function.

If the linear drift is zero, that is, if the mean is constant, we have the usual form of the
intrinsic model :

E[Z(x+h) — Z(x)] = 0 (1.9)
Var|Z(z + h) — Z(z)] = '
This gives us a definition of the usual form of the theoretical variogram :
1 2
+(h) = 53[(2(55 +h) — Z(x))] (1.10)

The variogram has the following properties :

e [t only depends on the separation h,

e It is an even function : y(—h) = y(h),

1.1 Prerequisites 7

e It is nonnegative : y(h) > 0, and v(h = 0) = 0.

Existence of the expectation of the increments of an IRF does not imply the existence of
the expectation of the IRF itself. An IRF can have an infinite variance while its increments
do have a finite variance for each vector h. In particular, that means that, whereas we can
infer the variogram from the covariance function with the following formula :

+(h) = C(0) — C(h), Vh (1.11)

the opposite is not true : you can’t define a covariance function from every variogram.

1.1.5 A Useful Result

The following calculation provides another result that links the covariance and the vari-
ogram. It will be used further to establish the kriging system. When E[Z(z;) — Z(zo)] =
E|Z(x;) — Z(x0)] =0,

Cov[Z(x;) — Z(xo), Z(x;) — Z(x0)] =

~ B[(2(w) - 2@)(Z(x)) Z(a0)]
)

+(5E20") - Bl26)Z(w0)] + 3B [2(0))
+ (5Bl2@)] - B[26)2(0)] + 3E (2007
= 5 B[Zw) - 2(5))) + SE[2(w) ~ 2]’ + 5B [2(x;) ~ Z(xo))’

This result :
Cov[Z(w;) = Z(x0) , Z(x5) — Z(x0)] = —y(2i — 25) + (2 — w9) + (2 —x) (1.12)
combined with equation provides, if the covariance function is defined :
Cov [Z(%) — Z(wo) , Z(x;) — Z(xo)} = C(x; —) — C(x; — x9) — C(x; —) + C(0) (1.13)
More precisely, the result that will be further used to solve the kriging system is :

E {(Z(m — Z(x0)) (Z(x;) - Z(xo))} = C(a; — x) — Clwi — m0) — Cla; — w0) + C(0) (1.14)

8 1. Kriging

1.2 Structural Analysis

1.2.1 Experimental Variogram

In practice, the spatial variability of a regionalized variable z(x) can be measured at
various scales by computing the difference between two data values z; and 2, located in two
points x; and x5 of the spatial distribution. This difference v* is defined by :

x _ (2 — 21)°
2
~v* depends on the distance and the orientation of the pair of points, described by the
vector h = x5 — x1, whatever the position of the points in the spatial distribution is :

() = 5 (2on + 1) = 2(@))

Taking the mean of the v* differences for all the n;, couples of data points linked by a
given vector h for a given mesh, we can build the experimental variogram :

1) = 5 3 (ala + 1) — 2(e)’ (1.15)

a=1

1.2.2 Variogram Characteristics

1.2.2.1 Nugget Effect

The behavior of the variogram near its origin (i.e. for small values of h) is key, as it
shows the degree of continuity of the regionalized variable : differentiable, continuous but
not differentiable, or not continuous. If this last case is true, i.e. if limy, o+ y(h) = Cy > 0,
then Cj is called the nugget effect (see figure . A steep nugget effect denotes a weak
correlation between two very close data values. This can be explained by some undetected
variations at a very small scale. The name “nugget effect” has been given after the fact that
such big variations at a small scale can be observed in gold deposits, where there are gold
nuggets.

1.2.2.2 Sill and Range

Usually, we tend to notice that v*(h) increases with |h| and it frequently reaches a variation
plateau for big distances. When this plateau is reached, that means that there is no further
spatial dependency between data. This distance is called “range”, and the word “sill” describes
the variance for which this plateau appears (see figure . Sometimes, the sill is only reached
asymptotically. In that case, the real range in infinite, but a practical range is defined by the
distance at which the variogram reaches 95% of the value of its sill.

If a variogram is not bounded, it does not have any range nor sill. The variance of the
RF is then undefined, and such an RF is not an SRF, but only an IRF. Another possibility
is to notice that the variogram slope changes steeply. One can then imagine that there is an
intermediate sill. That in fact means that the variogram has several nested structures, each
one being defined by its own range and sill (see figure .

1.2 Structural Analysis 9

4 -I,'| h] __I_Il.h.l

Q]| [reeemeeesennneesa

Nested

Structure
Nugget

Effect

Y

0 Range h h

Figure 1.1: A variogram and a nested structure example.

1.2.3 Variogram Examples
The goal of this thesis is not to explain how one can determine the variogram of a region-

alized variable through a data set. However, here are some examples of the most common
models of isotropic variograms, with r = |h|, @ being the range and ¢ being the sill :

e Spherical model :

a
c if r>a

() = 0[1.52—0.5 (f)g] if r<a (116

Cubic model :

. {7 <£>2—8.75 (2)3+3.5 (2)5—0.75 (2)7} it r<a

c if r>a

Exponential model :

v(h) =¢ [1 —exp <—g)} (1.18)

Gaussian model :

v(h) = ¢ [1 — exp (—2—2)] (1.19)

Power model, with a power 0 < a < 2 and a positive slope ¢ :

v(h)=c.r® (1.20)

The representation of these variogram functions can be seen in Figure [I.2]

10 1. Kriging

¥ ¥
14 1
¥ =32
sphetical cubic =1
0 v 0 1 r : w=172
¥ 4
1 1 power
0 I
expanential Gaussian
2 2 3 4 5 » 4 i 2 »

Figure 1.2: Variogram models with unit sill and scale parameters, from |Chilés and Delfiner
(1999).

1.3 Kriging Basics

Kriging is an interpolation method, thus its goal is to estimate the value of the studied
regionalized variable Z(z) (considered an RF) at a point zo where its value is unknown, using
a linear combination of the N neighboring data :

Z*(x0) =Y Xi(zo) Z(;) + Xo(z0) (1.21)

=1

The weights \; associated to the regionalized variable data are chosen to make an unbiased es-
timate, whose variance is minimum. These weights depend on the location of the data points
and their distance to the estimated point, and on the structure of the spatial dependency. In
fact, kriging is the name given to the Best Linear Unbiased Estimator (BLUE).

Kriging is also the first interpolation method to take into account the spatial dependency
structure of data. In fact, from a physical point of view, the RF Z(x) can be described as
the following decomposition :

Z(x) =m(x) + R(x) (1.22)

In this equation, m(x) is a smooth deterministic function that describes the systematic aspect
of the phenomenon and is usually called the mean (it is indeed the mean of the RF Z(x))
when m(x) is constant and the drift otherwise. R(x) is a zero-mean RF, called the residual,

whose spatial variation structure is known, and which captures the erratic fluctuations of the
RE Z(x).

The structure of the function m(z) determines the type of kriging processed :

e Simple Kriging (SK) : m(z) = m is a known constant, Z(z) is supposed an SRF.

e Ordinary Kriging (OK) : m(xz) = m is an unknown constant, Z(z) is supposed an IRF.

1.4 Universal Kriging or Kriging with a Trend Model 11

e Universal Kriging (UK) :
L
mia) = 3 a (@) (129

=0

In which the f!(x) functions are known basis functions and a; are fixed but unknown
coefficients.

Four constraints sum up the kriging process :

1. Linearity constraint
The estimate has to be a linear combination of the data, and thus has to be written as
in equation (|1.21]).

2. Authorization constraint
The expectation and the variance of the estimate error Z*(x¢) — Z(xo) have to exist.
This constraint is used only when the residual R(x) is considered an IRF.

3. Unbiasedness constraint
The kriging estimate must be unbiased. That means that E[Z*(x¢) — Z(x)] = 0. A
direct consequence of this constraint is that kriging is an exact interpolator.

4. Optimality constraint
The weights \; are determined in order to minimize Var[Z*(xy) — Z(zo)] while following
the other constraints. This makes kriging a smoothing interpolator, as that implies
Var(Z*(z;)] < Var|Z(x;)].

These constraints lead to the linear system of equations that will be solved to determine
the kriging weights and find the estimate. In the next section, is explained how to solve the
Universal Kriging system.

1.4 Universal Kriging or Kriging with a Trend Model

Universal Kriging doesn’t require the validity of some stationarity hypothesis, as opposed
to Simple or Ordinary Kriging. In particular, it takes into account any possible drift of the
regionalized variable. Applied to the hydraulic head, that means Universal Kriging is able to
take into account the existence of a hydraulic gradient, which is more often than not different
from nil due to the flow conditions. That explains why this kriging method is used in the
further developments of this thesis and why its basics are detailed below.

1.4.1 Drift Terms

As explained in section in the Universal Kriging method, the RF Z(z) can be de-
scribed as in equations (1.22)) and (1.23)) :

Z(x)=m(z)+ R) with m(z)=> a f(z)

=0

12 1. Kriging

In order to solve the kriging system, one has to determine the f'(z) functions that define
the trend. Ideally, they should be specified by the physics of the problem. Though, in the
absence of any information about the shape of the trend, the dichotomization of the Z data
into trend and residual components is somewhat arbitrary : what is regarded as stochastic
fluctuations R(z) at large scale may later be modeled as a trend if additional data allow
focusing on the smaller-scale variability. In the absence of a physical interpretation, the
trend is usually modeled as a low-order (< 2) polynomial of the coordinates of z, i.e. x and
y in our 2D case.

In GSLIB’s algorithm, nine drift terms can be included in the kriging system on top of
the constant term :

e linear terms in x, y or z,

e quadratic terms in x?, y? or z?,

e cross quadratic terms in xy, xz or yz.

As we are kriging the hydraulic head in 2D, we obviously won’t use the terms in z. So, an
example of a possible trend model in our case would be a linear 2D one :

m(z) = po + X+ 2y

1.4.2 Linearity Constraint
As previously mentioned in equation (1.21)), Z(x) has to be a linear combination of the
Z(x;) data and thus it is written :

N

Z*(x0) =Y Xi(wo) Z(x;) + Xo(0)

=1

1.4.3 Authorization Constraint

In the Universal Kriging method, the residual function R(x) only follows the intrinsic
hypothesis. That means only linear combinations of increments (R(x—i— h) —R(x)) have second
order moments necessarily defined. Then the estimate error has to be a linear combination
of increments of the residual function R(x) to be sure it has a variance.

The following can be written for the estimate error :
N
Z*(x0) — Z(z0) = Xo(z0) + Y _ Nilwo) Z(x:) — Z(xo)
i=1

= No(xo) + Z Ai(zo) [m(z;) + R(z;)] — m(zo) — R(wo)

N

= No(zo) + Z Ni(zo) m(x;) — m(zg) + Z Ni(zo) R(x;) — R(z)

vV
non random terms

1.4 Universal Kriging or Kriging with a Trend Model 13

Z*(xo) — Z(wo) is a linear combination of increments of the residual function R(z) if and
only if :

Xo(zo) + Z Ai(zo) m(z;) — m(z) =0 (1.24)

1.4.4 Unbiasedness Constraints

To have an unbiased estimate, the following condition has to be true, with the simplified
notation \; = \;(zo) :

E[Z*(x0) — Z(xg)] = 0

E X+ > NZ(wi)— Z(xg)| = 0

Ao + Z Xim(z;) —m(zg) = 0

)\04‘2)\1 Zal fl(xz) —Zal fl(l’g> =0
=1 1=0 1=0

L N
o+ a [Aifl(xi)—fl(xo)] =0
1=0 i—1
This is true if :

N
A=0 and VI=0,...,L Y X\ fl(x:)— fl(xo) =0 (1.25)
=1

One can see that, under such conditions, the above-said authorization constraint is de

facto met. Unbiasedness and authorization constraints actually coincide. Since f°(x) has to
N

be set equal to 1, Vz, since the mean is unknown, for [= 0, Z Ni fL(z:) = f(z0) becomes :
i=1

d =1 (1.26)

So we have to work with a sum of kriging weights equal to 1.

The estimate then becomes :

N

N
Z(xo) =Y N Z(x;) with Y A fl(x) = fl(x) VI=0,...,L
=1

=1

14 1. Kriging

1.4.5 Optimality Constraint

The optimality constraint goal is to minimize the estimation variance. Using the unbi-
asedness constraints ((1.25)) and the result (1.14), and assuming that the covariance function
C'is defined for the RF Z[1:

Var|Z*(xo) — Z(xg)] =

= Var Z/\i Z(x;) — Z (o)
= Var Z by (Z(xl) — Z(x0)>

= E -[i)\i (Z(:z:i)—Z(xo)>
= FE ZZA A (Z(x o)) (Z(Ij)—z(fo)>]

Li=1 j5=1

= SN ANE|(Z(w) - Z(w0)) (Z(x5) - Z(wo)) |

i=1 j=1

= 33 N [C(xi — 2;) — Cla; — w0) — C(xj — o) + O(oﬂ

i=1 j=1

= 3 S NN O - -—2ZAC z; — x0) + C(0)

i=1 j=1

Under the unbiasedness constraint, the problem is now to find N weights \; minimizing
Var|Z*(xg) — Z(xo)]. This is classically solved by the method of Lagrange multipliers. We
consider the function :

Q =Var[Z*(xy) — Z(xy)] + Z [Z i fHz) — fi(xo)]

=0

where 2 py = 2 py(z0), L =0,..., L, are L+ 1 additional unknowns, the Lagrange multipliers,
and determine the unconstrained minimum of) by equating the partial derivatives of) to
Zero.

N L
Z — ;) +22mfl(:pi)—20(a:i—xo):0 Vi=1,...,N

=0
N
=0 Vi=0,1,..., L
o~ [E - i)

The fact the extremum is indeed a minimum is guaranteed by the convexity of Var[Z*(xy) —
Z(xo)] as a function of the \;. This leads to the following set of N + L + 1 linear equations

! This is not a prerequisite in Universal Kriging, but GSLIB works with covariance models, that is why we
use them instead of the variograms here.

1.4 Universal Kriging or Kriging with a Trend Model 15

with N + L + 1 unknowns :

N L
=1 =0 (1.27)

N
}:Mﬂmgzﬁ@@ Vi=0,...,L

In matrix notations, the Universal Kriging system (1.27)) is of the form AX=B with the
following structure :

Cij I\ (M G

fi 0] \w 15
———— N N —
A X B
With the simplified notations detailed below :

Clry—z1) ... C(z1—2zn) 1 fYz) ... fYzw)
Cyj = : : fi=1: : fi="
C(ZL’N—Zl‘l) C(JZN—J,’N) 1 fL(ZEl) fL<CCN)
A i C(z1 — o) L
1 0 1— Zo 1
A= =\ : Cio = : fo= g (:%)
)\N ML C(.%’N —.Clﬁo) fL(..I'o)

The kriging variance is obtained by premultiplying the first N equations of ((1.27)) by \;,
summing over ¢, and then using the last (L+1) equations. The result is the Universal Kriging
variance :

N L

otk = BlZ*(x0) = Z(wo)* = C(0) = Y N Clas — x0) = > pu (o) (1.28)

=1 =0

1.4.6 Solving the Kriging Equations

1.4.6.1 Conditions for Nonsingularity

The linear system ([1.27) has a unique solution if and only if its matrix A is nonsingular.
This holds under the following set of sufficient conditions :

1. That the submatrix (C;;) is strictly positive definite,

2. That the submatrix (f}) is of full rank L + 1 (equal to the number of columns).

The proof follows from straightforward matrix algebra.

Strict positive definiteness of (C;;) is ensured by the use of a strictly positive definite

covariance function and the elimination of duplicate data points. The condition on (f})

16 1. Kriging

expresses that the L + 1 basis functions f!(z) are linearly independent on the spatial distri-
bution S :

L
chfl(:c) Ve e S = a=0: 1=0,...,L
1=0

This is a standard condition of “sampling design”. For one thing there must be at least as
many data points as there are basis functions (thus N > L + 1). Moreover the arrangement
of the points must provide enough constraints to allow the determination of the coefficients
@ in the linear model (1.23). A counterexample in 2D is when m(z) is a plane and all
sample points are aligned : obviously the plane is not constrained by a single line. Likewise,
when m(z) is a quadratic function, the system is singular if all data points lie along two
lines, a circle, an ellipse, a parabola, or a hyperbola. In view of these remarks, one must be
careful, particularly when using moving neighborhoods, not to create singular systems by a
bad selection of the data points.

1.4.6.2 Computing the Solution

In GSLIB, the kriging system of linear equations (1.27) is solved by the classic Gaussian
elimination algorithm, with a use of partial pivoting to take into account that the matrix A
is not positive definite in Universal Kriging.

1.5 Multivariate Geostatistics : Cokriging

The goal of multivariate geostatistics is to improve the estimate using the correlation
between several regionalized variables. In particular, this can improve the results when
the studied regionalized variable is undersampled and when there is data of one or several
correlated variable(s) available.

For example, the cokriging estimate for the regionalized variable z at a point x(, with
some correlated data of the regionalized variable y is a linear combination :

N S

2*(x0) = Ao(wo) + Z Ai(wo) 2(2;) + Zes(x(]) y(zs) (1.29)

i=1 s=1

The weights of this linear combination are chosen to minimize the estimate variance under
an unbiasedness constraint, as in kriging. In order to do this, all the regionalized variables are
considered as random functions, even the secondary variables. That means that the spatial
dependency of all the considered variables is taken into account. The cokriging equations
won’t be detailed here, as cokriging applied to hydrogeology is discussed further.

Chapter 2

Kriging under Boundary Conditions

Kriging as described in Chapter 1, when used to draw contour maps of the hydraulic
head, is strictly an interpolation tool. Its main advantage on other interpolation methods
is its ability to take into account the spatial variability of the data. Besides this, kriging is
only using the data and their location to make an estimate. This chapter describes how we
can introduce in the kriging data a key component, used to solve the diffusivity equation in
hydrogeology, the boundary conditions.

2.1 Boundary Conditions in Hydrogeology

As explained in |[de Marsily| (1981), the diffusivity equation that dictates the flow in
hydrogeology is often written as following, with the usual simplifications(cf. |de Marsily
(1981), chapter 5) :

oh
div (T'gradh) = S s +Q (2.1)
with :
e T, the tensor of order 2 of transmissivity [L2.T71],

h, the hydraulic head [L],

S, the storage coefficient [.],

Q, the total discharge [L2.T7!].

In the following, we will assume a 2D steady state flow (% = 0), that @ is nil and that

T is isotropic and, for the time being, constant. A simplified equation can thus be derived

from ((2.1)) : .
= _9 =0 (2.2)

2
h=2l 4 C 0
v 8x2+8y2 T

In order to solve this partial differential equation for a concrete case, one needs to de-
termine the boundary conditions on the integration domain. There are three usual types of
boundary conditions :

e the Dirichlet conditions, on the variable itself : prescribed h,

18 2. Kriging under Boundary Conditions

e the Neumann conditions, on the first derivative of the variable : prescribed —

on’

e the Fourier conditions, on both A and — : prescribed h + « %
on on

A fourth type of boundary condition can be added : it concerns specific double conditions (a
head condition and a distinct gradient one) such as the phreatic surface or a seepage surface.
But this type of boundary is only encountered in 3D flow. Therefore they won’t be detailed
below. The Fourier conditions would normally fall into the same category as Dirichlet and
Neumann conditions, but their introduction into the kriging equations is slightly trickier. So
they won’t be detailed below either.

2.1.1 Prescribed Head

Dirichlet conditions are required on boundaries where the hydraulic head on the boundary
doesn’t depend on the flow conditions in the aquifer. It will generally be where the aquifer is
in direct contact with free water, such as a river, a lake or a sea. Along this contact between
the aquifer and the river(or lake, sea...), the hydraulic head is constant and prescribed by
the water elevation in the river. The river can either feed or drain the aquifer. Of course, the
water level in the river can change along its course, but the river still prescribes the hydraulic
head along the boundary.

It is pretty obvious to imagine how we can take into account this type of boundary
condition in the kriging system : by discretizing the continuous boundary into a finite number
of data points which will be assigned the prescribed head value(s). We will simply add these
points to the data points provided by water table measurements.

2.1.2 Prescribed Flux

This is the Neumann condition in hydrogeology. According to the Darcy law, prescribing

the head gradient normal to the boundary, —, is indeed the same as prescribing the flux

on

oh
=T n on this boundary, provided T is known. There are two distinct conditions of prescribed
n

flux

e The no flow boundaries : — = 0. For example, in a 2D flow, the contact between an

aquifer and neighboring impervious formations.

e The prescribed flux with a value different than 0. For example, runoff water entering
an aquifer along a boundary.

Introducing data that specifies the gradient component normal to the prescribed flux
boundary is not something as obvious as adding head data points. It necessitates cokriging
with head gradient data, i.e. adding the flux (or head gradient) as a secondary variable.

In principle, since the prescribed flux contour is continuous, one should consider a con-
tinuous cokriging estimator. But in the same way as for prescribed head conditions, the
head gradient will only be specified at discrete points along the prescribed flux contour. The

2.1 Boundary Conditions in Hydrogeology 19

(co-)kriging estimate would then be, with the simplified notation \; = \;(zo) and 05 = 0,(xo),
and h represented as the RF 7 :

N S
Z¥(x0) = Mo+ > NiZ(x) + Y 0,7 (x,) (2.3)

A further simplification can be introduced, replacing gradients by finite differences. In prac-
tice, it suffices to discretize the problem and replace the orthogonal gradient component by
the differences between pairs of dummy points : one of the dummy points is on one side of
the boundary while the other is on the other side, the two points drawing a segment perpen-
dicular to the boundary, as depicted in Figure [2.1}

;- 4
n / Xz
L L.
F - s
/X / %1
/ /
d s

Figure 2.1: From gradient to a pair of dummy points.

Z being the variable estimated (the hydraulic head h), this figure is in fact the graphic
representation of the mathematical approximation :
0z Z -7
x) R~ (z1) (z) (2.4)

8_n<) |ZE1—J]2|

The kriging estimate can then be written :

N S
Z*(xo) = Mo+ Y N Z(w:) + Y 0, [Z (2,) = Z (24,)] (2.5)

i=1 s=1

In the no flow boundary case, one notices that the differences Z (z,) — Z (z,) are zeros.
Why then consider these differences at all since their contribution to the estimator is nil 7
Because, and that is key, the weights \; are different from kriging weights based on the Z(z;)
alone.

This was first presented by [Delhomme| (1979)) at a conference but never published. We
worked together to bring this one time application into a widespread robust algorithm.

20 2. Kriging under Boundary Conditions

2.2 The Kriging under Boundary Conditions System

The same workflow as for Universal Kriging is applied.

2.2.1 Linearity Constraint

As previously mentioned in equation (2.5), Z(z) has to be a linear combination of the
Z(x;) and Z (xg,) — Z (xs,) data. Thus it is written :

Z*(wo) =X+ D N Z(x)+ Y 0, [Z(2s,) — Z (2,)]

=1

2.2.2 Authorization Constraint

Similarly to the Universal Kriging method, we can write for the estimate error :

Z*(xo) — Z(xz0) = Ao+ Z N Z() + > 0, [Z (20,) = Z (2,)] = Z(20)

non random terms

+Z/\i R(Io + Ze stl - (ISQ)]

=1

As in Universal Kriging, Z*(xy) — Z(x¢) is a linear combination of increments of the
residual function R(x) if and only if :

N S
Ao + Z Avm(;) +) 0, [m () —m (24,)] — m(ag) =0 (2.6)

2.2 The Kriging under Boundary Conditions System 21

2.2.3 Unbiasedness Constraints

To have an unbiased estimate, the following condition has to be true :

E[Z*(ZL‘()) —Z(Io)] = 0
N S
E A0+in Z(x)+ > 0,12 (xy,) — Z (2,)] — Z(z0)| = 0
N S
)\0+Z)\im(xi)+26’s [m (25,) —m (25,)] — m(zg) = 0
N L S L L
o+ D N D e fi@) + 3 0, ar [f (@) = fH@n)] = Y afi@) = 0

This is true if A\g = 0 and :
N S
VI=0,....L, Y Nifia)+ > 0, [f (2a) = f(2,)] = fl(a0) =0 (2.7)
=1

s=1

Under such conditions, the authorization constraint is de facto met. Similarly to Universal
Kriging, we have to set f°(z) = 1, Vx and equation ({2.7)) is written for [=0 :

N S N
DN+D 0(1-1)—1=0 or > N=1 (2.8)
=1 s=1 =1

The estimate becomes :

N S
Z"(wo) = Z N Z(x:) + > 0s (7 (2s,) = Z (2,)]
N S
with ZA Fla) +) 0, [f (w0,) = fH(2e,)] = flw) VI=0,...,L

2.2.4 Optimality Constraint

The optimality constraint minimizes the estimation variance, using the covariance of
increments instead of the covariance for the prescribed flux data points. The calculation still
uses the unbiasedness constraints and the result (1.14). The derivation of the equations
is not as detailed as for the Universal Kriging, as the method is the same.

22 2. Kriging under Boundary Conditions

Var|Z*(xo) — Z(xo)] =

~ Var jv;A Z(z;) + ges (2(20) = Z(2,)) = Z(w0)

~ Var ijy (Z@) - Z(0)) + i 0, [(2(0) — 2w0)) — (2(2) zm))}]
> [iA (2w - 2(0)) + ze (Z(@a) - 2(@0)) = (2(x.) Z(m))}]]
_ ii A B[(200) - 20) (202) - Z(aw)]

—E|(Z(xs) = Z(20)) (Z(w1,) = Z(x0))
—B|(Z(xs,) = Z(w0)) (Z(21,) = Z(0))
+E|(Z(xs,) = Z(0)) (Z(21,) = Z(w0)))

= 3D ANC(r) +23 Y N[O~) — O (i —)]

We now have to find the N weights \; and S weights 0; minimizing Var[Z*(zo) — Z(x0)],
still with the method of Lagrange multipliers. Thus we consider the same function :

Q = Var[Z*(wo) = Z(xo)] +2)_ m [Z i f' (i) = fl(iﬁo)]

in which 2 iy = 2 (), L =0, ..., L, are L+1 additional unknowns, the Lagrange multipliers,
and determine the unconstrained minimum of) by equating the partial derivatives of Q) to

2.2 The Kriging under Boundary Conditions System 23
zero. The simplified notations C;; = C(z; — x;) and f! = f!(x;) are used, Vi, j.
20 N s L
o =2> NGy +2Zes [Cis, — Cias) +2mef ~2C) =0 Vi=1,...,N
% 1
00 o
86 =2 Z)\’L [Cisl - 182 + 2 Z Ht s1t1 — Sth - Csztl + ngtg]
+2Zm = fL] = 2[Ca0 — Cipol = 0 Vs=1,...,8
! A _
8m_2;)\f+229 Ll =21 =0 Vi=0,1,...,L

This leads to the following set of N +S+ L+1 linear equations with N +S5+ L+ 1 unknowns :

=1

In matrix notations, the kriging system (2.9)) is of the following structure :

Cij Cit, — Cit, le Aj Cio
stl C(81151 - CS1t2 él 0310
_ _ 0, _ _
CjSQ _CSQtl + CSQtQ ég 0520
f; fi. = 1, 0 tu £

L
Z)‘ C'”—I—ZQ 131_Cisz]+z,ulfilzcio Vi=1,...,N
1=0
Z)\ 281 - C’iSQ] + Z et [Csltl - CS1t2 - CSQtl + CSQtQ]
. t=1
+Zﬂl [fsll _f;Q] = [Csy0 — Csy0) Vs=1,...,8
=0
fowze L= Vi=0,...L

With the same simplified notations as in Universal Kriging and the ones added below. The
“oradient points” have their own two-digit notation : the first one indicates the number of
the “gradient point” while the second indicates the dummy point, and thus can only take the

24 2. Kriging under Boundary Conditions

value 1 or 2.

C(CL’l —Zlfll) —C(l‘l —ZL’lg) C(xN—xn) —C(IEN—Zl'lQ)

Cj81 - Cj82 =
C(ry —xs1) —C(x1 —252) ... Cloy —xs1) — C(zNn — X52)

Citl - Citg = ¢ (stl - Cj52)

Cs1t1 - Osltg - 082t1 + CSQtQ -

C(l‘n - 1‘11) - C(xn - $12) . C($51 - $11) - C($51 - $12)
—C(r12 —211) + C(T12 — 212) ... —C(xs0 —211) + C(T8580 — T12)
C($11 - $S1) - C($11 - $52) e C($s1 - 51051) - 0(9051 - $S2)
—C(z12 —251) + C(r12 —252) ... —C(x30 —x51) + C(T92 — X32)

fha—=Fs o fa— fs

o= Jn= : : fio = fl,="(fs, = £3,)
fi—fe - fa— T
61 C(l’n — lL'()) — C(Ilg — 1'0)
Ht = 0810 - CSQO =
95 C(l’gl - J,’O> - C(ISQ - .To)
The Kriging under Boundary Conditions variance is :
oxpe = ElZ*(w0) — Z(xo)]® (2.10)

= (C(0) — Z)\iC(:ci —z9) — ZGS [C(z5, — 39) — Clzs, — 20)] — Zul JHED)

Finally, it has to be noticed that the matrix becomes singular in the following case :
3,7 and s, Z(x;) = Z(xs,) and Z(z;) = Z(xs,) (2.11)

As a result, we have to be careful that the dummy points don’t overlap some data points.

2.3 Code Implementation

To implement this new type of kriging, I used the GSLIB open source code, developed in
Stanford University, and documented in |Deutsch and Journel (1998). This code is popular
both among researchers and professionals, and it is particularly used in Waterloo Hydrogeo-
logic softwares. The code implementation can be divided in several units. The algorithms
won’t be detailed in this section, but they are provided in the appendixes. This section starts
with a common kriging issue before presenting the main algorithms introduced.

2.3.1 Kiriging Neighborhood

The kriging theory is always derived as if all the N data points were used in the estimation ;
this is the so-called global neighborhood case. In practice, N may be too large to allow

2.3 Code Implementation 25

computation and a “moving neighborhood” has to be used, including only a subset of the
data for the estimation of each grid node (see figure . Formally, this does not change
anything for a grid node taken in isolation : the content of the sampled set of points is just
different. However, it may alter the relationships between estimates at different grid nodes
and introduce spurious discontinuities.

Figure 2.2: Example of selecting a subset of points with a search radius R.

In the case of the GSLIB algorithm, the kriging system not only uses the moving neigh-
borhood method but also limits the number of points allowed in the kriging system. This was
done to decrease the computational cost (this algorithm was written in the 80’s and released
in 1992, when computers were a lot less efficient) while selecting the closest points for each
estimation. Though, the combination of these two limits proved to introduce discontinuities
in the contour maps, or even to create singular matrices if the number of prescribed flux
points was too important. Worse, it can strongly decrease the influence of the boundary
conditions by a significant margin. To get rid of this issue, the algorithm has been modified
to allow global neighborhood. All the examples presented in section have been thus made
in the global neighborhood case.

2.3.2 Adding the Boundary Conditions Data

There are two input files in GSLIB : the first one describes all the parameters the main
algorithm needs and the second one provides the coordinates of the data points and the values
of the studied regionalized variable, the hydraulic head in our case. The method chosen to
introduce the boundary conditions data is to discretize the boundary lines into points. The
user will input the coordinates and the head value for each point that is a boundary segment
end. However, the program has to know if a point is a boundary segment end or not. And in
the former case, it also has to know if it is a prescribed head or a prescribed flux condition.
In order to solve this issue, a new input parameter has been created, named “kod”. This kod
is set :

e to 0 for the measured data points,

26 2. Kriging under Boundary Conditions

e to a positive integer value for a prescribed head segment end,

e to a negative integer value for a prescribed flux segment end.

Points that are both ends of the same segment have the same kod. More generally, if a
boundary is represented by a broken line, a point will be placed at each direction shift, and
all these “shift” points should have the same kod, as they are part of the same boundary.
Otherwise, two points representing two different boundary lines should have a different kod.

With these added points, we now have all the needed data for the Kriging under Boundary
Conditions process, but we still don’t have really our discretized boundaries. In order to
provide these, a simple algorithm will read the input data, detect the boundary points (the
ones whose kod is not 0) and create several points between the two ends of the segment by
linearly interpolating the coordinates (and the head value for a prescribed head segment).
We have to notice here that, for this subroutine to work properly, the two ends of a boundary
segment, or two consecutive shift points of a broken line, have to follow one another in the
list of input data points. The data set now consists of both the real data points and the
points representing the discretized boundary lines.

Finally, another algorithm scans the data set again, selects the prescribed flux points,
and adds the “dummy points” in order for them to make a segment perpendicular to the
boundary line they are representing. For a defined boundary, this is done using the previous
and the following boundary points to compute the local slope of the boundary and setting
the slope of the dummy points segment to make it perpendicular to the boundary (cf. Fig.
2.1)). For the segment ends, the local slope is computed using the end point itself and its
closest neighbor in the segment.

To be honest, this subroutine doesn’t really add dummy points. Otherwise we would have
to delete the point used to create its dummies and be careful that both dummy points are
always selected when choosing the data points included in the kriging neighborhood. It’s
easier to just add two parameters ddx and ddy for each point of the data array. ddxr and ddy
will be set to 0 for each non prescribed flux data point, and to verify for a point A and its
dummies A; and A, :

x(Ay) = x(A) — ddz(A) z(Ag) = x(A) + ddz(A)
y(Ar) = y(A) — ddy(A) y(As) = y(A) + ddy(A)

Dummy points are actually computed “on the fly” when filling the kriging matrices.

2.3.3 Discretization Parameters

The two algorithms mentioned in the previous subsection both require a key parameter
that has still not been defined : the spacing between two points of a discretized boundary line
for one, and the spacing between the dummy points for the other. Nothing in the Kriging
under Boundary Conditions theory indicates which values these parameters should be set to.
However, we can easily deduce the following conditions for the first parameter :

e The more boundary points, the more precisely the boundaries will be defined and the
better they will be honored.

2.3 Code Implementation 27

e The more boundary points, the less real data points relatively taken into account.
This is a problem if our measured data can be trusted more than the position of our
boundaries.

e The more boundary points, the more computing time !

In fact, the number of data points taken into account in a kriging neighborhood is bounded
(by a user defined value though) to limit the computing time. And we need L + 1 (L being
the number of drift terms) real head values to solve the kriging system. This issue was
addressed by allowing kriging with a global neighborhood, but it shows that we can’t add
as many boundary points as we want if we choose to use a moving neighborhood. Thus, we
need to find a good compromise to have enough boundary points to reproduce faithfully the
boundary conditions, while still having sufficient real data points to solve the kriging system.
The following solution has finally been chosen :

dist

o if dist <2csiz, spacin = %,
dist
o if dist > 20csiz, spacin = —228 ,

e else spacin = csiz.

With dist being the boudary segment length, csiz the distance between 2 consecutive nodes
of tke kriging grid, and spacin the distance between two consecutive points of a discretized
boundary segment. So we have chosen to base our discretization on the kriging grid, with a
lower limit of 3 points and an upper limit of 21 points to represent a discretized segment.

The spacing between two dummy points is even harder to set. One could imagine that
it represents the extension of the prescribed flux influence as, the longer the distance be-
tween the dummy points, the further the boundary condition is honored. However, practice
can hardly check if this assumption is true, as no major difference has been detected when
changing this parameter. It has finally been set to 2 ciz, thus it is also based on the kriging
grid.

2.3.4 Singularity Conditions

It was already mentioned that we have to avoid dummy points overlapping some data
points (cf. equation (2.11)). More precisely, the matrix becomes singular if both points of
a dummy couple overlap head data points. A subroutine that scans the data array to check

this has been created. If such a case occurs, we have chosen to remove the dummy points
couple to protect the measured data.

2.3.5 Constant Flux Conditions

2.3.5.1 Expression of the Constant Flux

The variable data input for prescribed flux boundary points is not the hydraulic head of
the point ; it is the difference between the hydraulic heads of the dummy points. When there

28 2. Kriging under Boundary Conditions

is no flow, the input value is pretty obvious, we have to set it to 0 : no difference in the
hydraulic head between two points implies no flow between these points ! However, when
the prescribed flux is a non nil constant, the input data is indeed the difference Ah between
the hydraulic heads of the dummy points, i.e. a length value [L]. And yet we usually input
a flux as a volumic flow rate [L3.T~1]. To provide a simple tool that any hydrogeologist can
use, we have to transform this length value into a flow rate. We have from the diffusivity
equation , assuming a flow along the x axis, a boundary perpendicular to the flow and
subsequently the dummy points segment along the z axis too (that case will be generalized
in subsubsection below)

d?h _Qr

dz2 T
Where Q;, is the flow rate per unit length [L?.T~!] and T the transmissivity. We can twice
integrate this equation between the two dummy points separated by the distance [:

//%dx ://Qde

h(x = h(x =0) = T [1—0p
QLl’
Ah R

We can also compute the volumic flow rate)y by integrating the flow rate per unit length
Qrony:

Qv = /OLQLd?/

With L being the length of the boundary and e the thickness of the aquifer. We then have
for Ah :
Qv

TL

So, in order to be able to input his constant flux data as a global volumic flow rate)y for all
the boundary segment, the user also has to input a mean value for the transmissivity 7". The
length of the boundary L and the distance between the dummy points [are already known
by the algorithm.

Ah =

(2.12)

2.3.5.2 Constant Flux and Orthogonality

The subsubsection above explained how to prescribe a constant flux boundary
condition if the flow is orthogonal to the boundary. In fact, the segment of dummy points
being perpendicular to the boundary, we will always input the flux component orthogonal to
the boundary. Fortunately, that is also what hydrogeologists usually do. However, if the flow
crossing the boundary is indeed not perpendicular to the boundary, there exists a colinear
flux that would be nil for a flow perpendicular to the boundary. Unfortunately, the Kriging
under Boundary Conditions system knows nothing about the colinear flux. So, we have to
also specify this condition. This will be done by adding a second couple of dummy points,
colinear to the boundary this time. And, as we have just explained, we want this colinear

2.3 Code Implementation 29

flux to be nil for a flow perpendicular to the boundary. So the variable data associated to
this couple of dummy points will in such a case be set to 0, as for any other no flow boundary
point. However, constant flux boundary lines are now represented by twice as many points
as they were before this correction.

2.3.5.3 Flux Sign

Finally, there is one issue left : the sign of the constant flux. As we can put some constant
flux boundaries inside the study area, it was not possible to set the sign as usual, i.e. positive
for an outflow, and negative for an inflow. Instead, the sign of the flow will be linked to the
x and y axes :

1. If the boundary isn’t colinear to the x axis :

e A positive sign will induce a flow going towards the increasing x.

e A negative sign will induce a flow going towards the decreasing x.
2. If the boundary is colinear to the x axis :

e A positive sign will induce a flow going towards the increasing y.

e A negative sign will induce a flow going towards the decreasing y.

That last issue on constant flux conditions also brings one final comment : these conditions
cannot be used to represent a well. They do not allow water to be put in or out the aquifer
except along external boundaries. Within the aquifer, they can only force an hydraulic head
difference, which can be used to represent a known local gradient trend, whose origin can be
a local change of the transmissivity for example.

2.3.6 Cubic Variogram

The GSLIB algorithm allows to choose a variogram model between all the usual models
described in section but one : the cubic variogram. This variogram is defined as
following :

vy ={ ° l7 (2)2 —8.75 (2)3+3.5 (2)5 —0.75 (2)7] if r<a

c if r>a

The cubic variogram is traditionally used for differentiable variables because of its nil deriva-
tive at the origin. That explains why it is commonly used for the hydraulic head variogram,
its steeper slope than the Gaussian variogram also representing better the head spatial vari-
ability. Consequently, it has been added to the variogram choice in the GSLIB program.

2.3.7 Filling the Kriging under Boundary Conditions Matrix

To conclude this section, I have to mention that the main task of implementing the Kriging
under Boundary Conditions process in the GSLIB algorithm was arguably to properly fill
the new kriging matrix. There is no special difficulty in this task but to fully understand the
structure of the GSLIB subroutine. The final algorithm is provided in Appendix A.

30 2. Kriging under Boundary Conditions

2.4 Application of Kriging under Boundary Conditions

This section illustrates the different improvements in the contour maps provided by the
Kriging under Boundary Conditions method. The examples are pictured by a square map.
By convention, as these examples are fictive, we will assume that the top of the map is the
north. The graphical user interface (GUI) to implement Kriging under Boundary Conditions
in GW Contour wasn’t done yet when this thesis was written. So the contour maps have been
produced with Surfer, using the output kriged grid and the Nearest Neighbor interpolation
method to compute the kriging map from the kriged grid.

2.4.1 Comparison between Universal Kriging and Kriging under
Boundary Conditions

The example detailed below consists of a study area of 500 m x 500m, whose boundary
conditions are :

e Prescribed head h = 0m on the southern border,
e Prescribed head h = 50 m on the northwestern corner,
e No flow boundary on both the eastern and northern border.

This system has been modeled with Visual Modflow 4.1} The output hydraulic head map
is presented in figure (2.3). 12 data points have been selected on this modeled map. These

Figure 2.3: Visual Modflow modeled map. First example.

12 head values and the prescribed head in the top left corner will be the basis of our kriging
example. They are identified in figure (2.4)).

!More information available on http://www.waterloohydrogeologic.com /software/visual modflow /visual
modflow ov.htm

http://www.waterloohydrogeologic.com/software/visual_modflow/visual_modflow_ov.htm
http://www.waterloohydrogeologic.com/software/visual_modflow/visual_modflow_ov.htm

2.4 Application of Kriging under Boundary Conditions 31

50
®
®28.4 ° Legend :
®16.2 ®
LI e Data point (head value)
. o131
19.3 = (Constant Head BC
L]
13.1 . = No Flow BC
o5 10.4
*85
65® 2.1
L]
0 0

Figure 2.4: Diagram outlining the boundary conditions and the 12 data points selected. First
example.

First, Universal Kriging has been applied to the set of 13 points (the northwestern pre-
scribed head h = 50 m has been added as it is not strictly a “boundary”). The following
parameters have been applied :

e Distance between 2 grid nodes = 10 m,
e Constant neighborhood,
e Linear drift in x and y only considered,

e Cubic variogram, with a sill of 1, a range of 710 m and a nugget effect of 0.01.

Figure shows that the boundary conditions are not honored with the Universal Kriging,
be it the prescribed head or the no flow limits.

A first step is to introduce the southern prescribed head boundary. The output result is
presented in figure It shows that the head values are indeed set to 0 on the southern
border of the area. It already improves the map when we compare this one with both the
Universal Kriging and the Visual Modflow ones.

The next step is to introduce the full boundary conditions, i.e. adding the no flow limits.
The new contour map is shown in figure 2.7] It is almost identical to the Modflow model
map (figure , unlike the Universal Kriging map (figure . The improvement is really
noteworthy. Still, one could argue that the contour lines are not exactly perpendicular to the
no flow limits, especially in the northeastern zone. This is explained by the fact that there
is a boundary point in the top right corner, a point whose dummy segment slope is defined
by its two neighbors. However, it happens that one of these neighbors belongs to the eastern
boundary while the other belongs to the northern boundary. Obviously, the dummy segment
won’t be perpendicular to any of the lines, but will be the bisector of the angle between the
two boundary segments. The resulting condition can explain why the contour lines are less
perpendicular in this zone.

32 2. Kriging under Boundary Conditions

5007 — | -
800777777 77 — ‘ ! — //«j///,/é/ "/ // s _— _—
/) / — y / / >
T~ = s =
7))/ / / / / p - S/ 450-Y/ /// e KS o e
w8 s A /b /) s / / w
Wy - / / -
P / e) / / yd
7 //// a4 // / / / w0/ /) /// / / / L
S - / SSS S S S / /
awol /))) ~ / S/ yas S S S / /
ey / / / S S / / y
JSS S S S / ’ A/ S / / L
S S / 350 / /
wol/ /)) / / / r S / e / /
/) s - / / v/ S e [/ /
/ /// / / /// / T 48 / / / // a00. // Yy //,/ W // L
/ / / yd / N
-/ /S / L / ~
300 / s o /// y / / // - // y
Ay T~ / Yo a0l P e /
/) - _—
250 / / // / / s // e — Q,/
/S T - / // s — N
/ Yoy — 12 , Y 200-| — _—
w0l /) a4 — —
/ / T - a4 7 0 ya
/) g - _ <L
A P / 150 P -~
e VA / /,/ Y - S
Y T —— —— P
/o o S 100 R
o [/ - > Sk D U
/ - yaws
/ / / _ y / -
[/ / //’M e / p 50-—— - L
50 / /o / &S . -
// / / 7/_// — s /
/ / / —— // S / / 0 T T T T T T T T T =
o : A T : : S & : 0 50 100 150 200 250 300 380 400 450 500
0 50 100 150 200 250 300 360 400 450 500

Figure 2.6: Kriging with the prescribed head

Figure 2.5: Universal Kriging contour map. condition map

500
i \
450-| 7 / ////// / / // / \\\ L
/// i R N\
/ / / / \,
7/,’////// / } 1
w1 S S S S / N
/ s 4 y N
S S / 7 / e
|/ / S L
350 / gy /// // P P
/ 7
o o
300 P // L
/S P / /‘\A/ ///
P - -
250/ an - L
/// ///
o
200-| ,// — 10—}
e - -
" w0
104 qo—— — I
P
-
100] I 6—
so4— |
0 T T T T T T T T
0 50 100 150 200 250 300 350 400 450 500

Figure 2.7: Kriging under Boundary Conditions map. First example.

2.4 Application of Kriging under Boundary Conditions 33

2.4.2 Undefined boundaries

Another feature that has to be mentioned is that Kriging under Boundary Conditions
doesn’t require all the boundaries of the study area to be defined. Both Finite Difference
and Finite Element Modeling programs assume that all the undefined boundaries are no flow
limits. Kriging under Boundary Conditions provides a “degree of freedom” here, compared to
the discretized solving of the partial differential equation. The following example illustrates
this.

e Figure |2.§| presents another set of boundary conditions applied to the same study area
and the new set of hydraulic head values modeled with Visual Modflow.

e Figure 2.9 presents the output map computed with Visual Modflow.

e Figure presents the Kriging under Boundary Conditions map.

50
451 ®16.3 . Legend :
15 19.1
39 . Data point (head value)
. o173
25.5 = (Constant Head BC
*17.2 . = No Flow BC
*16.5 7
®11.1
8.4 2.1
[]
0 0

Figure 2.8: Diagram outlining the boundary conditions and the 12 data points selected.
Second example.

The difference between the two maps is obvious in the northern zone : while Visual Modflow
makes the contour lines perpendicular to the upper limit, Kriging under Boundary Conditions
doesn’t. The only boundary conditions honored are the ones defined by the user. This can
be useful when the area to be studied has an arbitrary limit (e.g. a country border, here, the
norhern limit), for which no hydrogeological conditions could be set.

2.4.3 Constant Flux Boundaries

The goal of this subsection is to highlight the issue presented in subsection [2.3.5.2] i.e.
the fact that the kriging system doesn’t know anything about the colinear component of the
flux, if not directly specified. To illustrate this, the same example as described in figure [2.4]
has been used, except that the northern no flow boundary has been replaced by a constant
flux boundary. The hydraulic head difference between the two dummy points has been

respectively set to Ah = 5m (c.f. figure left map) and Ah = —5m (c.f. figure [2.11]

34 2. Kriging under Boundary Conditions

500 L L | 1 1 1 J
/ .

4 // / y / V. / / // o
///// / / /// // // // / / // / s //‘/
ay / / / L
o)y /s /&) hid Vs
S / /
4 / / / / / o L

4004~ / /
. / /o / Vi / -
ey / / / / p
— 7 /! / /
e rd S V4 /
3B/0- e /,
- 2

300+ —— - e e _ -

e ~
250 _— - _— L
200+ — " L
150 o

100 — P

50 [I

")) via s i 2in o PR o ,

T T T T T T T
o] 50 100 150 200 250 300 350 400 450 500

Figure 2.9: Visual Modflow modeled map.

Second example. Figure 2.10: Kriging under Boundary Con-

ditions map. Second example.

500 T —

1. Il Il Il Il Il 500
- S — — —
T —
~ > ~ - — - — —
|) |) \\ \\\ \\\\\ \\\\\ \\\\\\\\ T — //////////// —]
. - . _ _ S
450/)) N N e e M— — = —n W
UIVIE TE- 2 R - o
S)))) /] } \\ —_ ——— T P
- P > ~
2007))) 7)™ T
| / | — - ~ e |
400777 / 4 Y4 / / 400 S e /]
S S S S / » / / N
S | a /
S — y
o o ——_ F 350/ / F
_ -
/;/ /'///'/‘ // '\E //// \\ ~ '! \ \
//,/ e ‘/// ///// o T J/ \\
3004~ _— " — r 300+ S/ \ -
e // T AL — ~~ 14 _ \
ey 7 - — - / \
- o JE— J \
250 A 7 ~ - 2501 %) -
p A > —~ /
- - ~ | -)
e " —
L ,// / _ K
200 —— _— -10 - 200+ e -
— 7 —
L - P
P 40—
150—— " /,///—/* 150 r
////
—_— I P S
100 e = 100-| =
——6—_ 5
1 6" — 86
— [
S
50 = 50 S L
- R —
0 T T T T T T T T T 0 T T T T T T T T T
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500

Figure 2.11: Kriging under Boundary Conditions map. Constant Flux example.

2.4 Application of Kriging under Boundary Conditions 35

right map). The left map thus illustrates an outflow (flow going towards the increasing y, cf.
2.3.5.3)), and the right map an inflow (flow going towards the decreasing y).

2.4.4 River and Inside Constant Flux

A frequently asked question during my work was to know if Kriging under Boundary
Conditions allows to put some boundaries inside the study area. The answer to this question
is provided in this subsection, and in subsection 2.4.5] To illustrate the river and the inside
constant flux cases, a very simple example has been created. Its boundary conditions are :

Prescribed head h = 50 m on the northern boundary, h = 0m on the southern one,

No flow boundary on the eastern and western limits,

“River”, i.e. prescribed head between the points (250;250) and (250;0), with a head
decrasing from h = 15m to h = 0m or,

Constant flux on a line between the points (200;200) and (300;200), with a local head
gradient of Ah = —20m

500 500 L ! - - L

4504 - 450

4004 — 38 — = 400"

350 350

300 300 .

250 250~

g’y DO
200—J,i ////// ///A\\\\ N \\\\:\\\18 200
N
15— M /// - g S~ \\\ T - 1501
o—"_ [
100 6 T 8 100-4—
e . T
50| - TTre— = 50—
0 T T T T T T T T 0 T — T T T T T T T
0 50 100 150 200 250 300 360 400 450 500 0 50 100 150 200 250 300 360 400 450 500
Figure 2.12: River conditioning the flow. Figure 2.13: Inside constant flux condition.

The results are presented in figures and and are as expected :

e The hydraulic head is set to the river level along its stream, thus radically changing
the shape of the whole contour map.

e The high gradient zone due to the constant flux could be interpreted as a low transmis-
sivity zone. The head difference Ah was purposedly set to a high value, and we can see
that it forces the kriging system to consider that there is a very high head hill north of
the flux constraint, in order to honor both the prescribed flux and the prescribed head
conditions.

36 2. Kriging under Boundary Conditions

2.4.5 “Screen Effect”

One case of inside boundary condition has not been mentioned yet : the no low boundary
one. To illustrate it, the same example as the one used for an inside constant flux has been
created (see subsection . The only difference is obviously that the hydraulic head
difference Ah is set to 0. The output map is presented in figure

500

450 o —— 44—
. —
— 3 |
4004 gg— e — |
f—— 3 .
L8 — R
w4 o 28— T " / \
s B] 20—

— e T A8 ///\ 18
[_— —— — |
250 — T H

200+ -

F _ - , — 14 -— 14—
150 — — F

100 — I

50 I -

T T T T T T T
0 50 100 150 200 250 300 350 400 450 500

Figure 2.14: No flow boundary inside the study area.

The result is not at all what was expected and doesn’t seem to follow the no flow condition
as the contour lines don’t look perpendicular to the inside boundary. The result surprisingly
looks as if we have a higher transmissivity zone at the boundary location, as the hydraulic
gradient is low there. However, further examination of this location shows that the “no flow”
condition is indeed respected : if we draw the appropriate contour lines, we can see that
they briefly become perpendicular to the boundary at its location. The perturbation of the
hydraulic head map is minimal though.

This result makes us question the true “nature” of such a no flow condition in the middle of
the study area. Thus, this example was modeled in Visual Modfiow. The result is presented
in figure It clearly shows that the water doesn’t cross the no flow boundary, and is
forced to by-pass it, thus creating a discontinuity in the hydraulic head at the location of the
boundary. This is what we can call the “screen effect”, something that kriging cannot reflect,
as it assumes that the hydraulic head is a continuous variable.

However, this issue can be solved by considering the boundary as a screen indeed, when
kriging. That means that for every estimation node, the kriging neighborhood will be limited
to the data points that are not “behind” the screen. An algorithm was implemented to select
only the data points that are on the same side of the screen as the estimation point. Basically,
it’s a classic convex hull problem, and we just have to check if the segment between the data
point and the estimation node crosses the screen segment or not. This is well explained by

Erickson| (2002) P| The kriged map with the screen effect is presented in figure

2http://compgeom.cs.uiuc.edu/ ~jeffe/teaching/373/notes /x05-convexhull.pdf and . ..x06-sweepline.pdf

http://compgeom.cs.uiuc.edu/~jeffe/teaching/373/notes/x05-convexhull.pdf
x06-sweepline.pdf

2.4 Application of Kriging under Boundary Conditions

37

Figure 2.15: Visual Modflow modeled map. Screen effect.

500

450
400
350
300+
250
200

150
100

50+ — =

T T T T T T T
0 50 100 150 200 250 300 350 400 450 500

Figure 2.16: Representation of the screen effect.

38 2. Kriging under Boundary Conditions

It does reflect the screen effect as expected. However, the result is still quite different
from the one computed with Visual Modflow (see figure [2.15). In fact, the cones on each side
of the screen illustrate the lack of data for these points : the only head values selected in the
kriging system here are the ones from the constant heads that are on the same side of the
screen. And these constant head boundaries have one single value along the boundary. Thus
the estimation in these cones can only take the value of these constant heads : 0 m below the
screen, and 50 m above it.

To have a proper map of this study area, four head data points taken from the Visual
Modfiow modeling were therefore added on each side of the screen. The result is shown in
figure It still doesn’t look exactly like the Visual Modflow map of figure The
result does look similar to the one computed for a low-transmissivity zone with the “Wall”
package of Visual Modflow, that can create a thin low-transmissivity zone between two grid

cells (see figure [2.18]).

500
450 46 — 46 L
400 Q- T 2
_— -
e : F— 38
350 _— L
e
I VI 34
- i
00— ——— I
—_— I
0 — 3
w0 T T
26— %
— = D
2004— — -
22— " L 22
— i = —
— N T
_— — — — 18
1504 \71,,/// T 18 =
—— I —— — 14—
 E— - T
1004 — o e
1 T ————10
50— 6 - I 6 i
0

T T T T T T T T
o] 50 100 150 200 250 300 350 400 450 500

Figure 2.18: Visual Modflow modeled map.

Figure 2.17: Screen effect with added data Wall package.

points.

In order to prove that the added data points did not entirely solve the problem, the map
presented in figure shows the results with the added data points but without the screen
effect.

And finally, the oblong no flow zone between z = 200 and x = 300, y = 200 and y = 210
modeled with Visual Modflow in figure was introduced in Kriging under Boundary
Conditions, with four no flow segments. The result is presented in figure 2.20l The result
looks similar to figure The only issue here is that the contouring algorithm preserves the
continuity of the head, and thus the contour lines drawn cross the no flow zone. We would
have to make them invisible in the no flow “box” to actually see the real result of Kriging
under Boundary Conditions.

2.4 Application of Kriging under Boundary Conditions 39

500

450— -_—

T e

350-|
- N
300 — L 28— 000000

2504 28

L - -
S —

00— [] L

—] -—

150

100 S H

T T T T T T T
50 100 150 200 250 300 350 400 450 500

Figure 2.19: No flow boundary inside the study area, with added data points but without
the screen effect.

500
450 b————— 48 %
R
Q2 42
400 42— =
-_—]
38— 33—
350 T 3 L
— R
R
e I
| —
300 _— 34]
o [
— 30—
250- — s P L
—%— . 12
— =
200-} 2 N2 -
| _/J//r) — L\\\ S—]
— ~—
150 " — T e
- P -
- //14\\\\
B o —14
oo t—— e
10— 10 10
50— 66— 6 6 .
0

T T T T T T T
0 50 100 150 200 250 300 350 400 450 500

Figure 2.20: No flow “box” inside the study area.

40 2. Kriging under Boundary Conditions

2.5 Conclusion

Kriging under Boundary Conditions proved to be an efficient tool to take into account
Dirichlet and Neumann conditions, without adding more requirements to compute the kriging
system but adding the boundaries themselves. However, one has to be aware that it does
not solve other types of boundary conditions than the Dirichlet and the Neumann ones. In
particular, a well cannot be taken into account with this method.

Chapter 3

(Co-)Kriging with Multivariate
Structural Analysis

Chapter 2 showed that kriging can take into account some usual boundary conditions
used to solve the diffusivity equation . However, can we consider that all our estimates
are verifying the same partial differential equation as the data ? Obviously not. The diffu-
sivity equation depends on several variables (transmissivity 7', total discharge) and storage
coefficient S), and our Kriging under Boundary Conditions only uses the head data to com-
pute its estimates. This chapter explains how a multivariate structural analysis can help the
estimate to try and better verify the same partial differential equation as the data, both for
kriging and cokriging. The guiding idea and some of the results used are based on a Ph.D.
thesis by |Dong| (1990)). However, the chapter starts with some “generalized” definitions of
what was explained in subsection [I.I.4] These definitions are needed to explain the theory
in this chapter.

3.1 Further Geostatistical Definitions

3.1.1 Intrinsic Random Function of order k (IRF-k)

A random function Z(z) is intrinsic of order k if for any allowable measure A\ € Ay the
random function :

Zy(x) =Y N Z(x; +) (3.1)

is second-order stationary in z € R” and has a zero mean. This is equivalent to :

{ E[Z\(x)] =0 52)
E|Zx\(z) Zx(y)] = Kx(y —) Ve,y e R", A€ Ay

An TRF-£ is simply a random function with stationary increments of order k. The usual
intrinsic model described in subsection [1.1.4.3| corresponds to k& = 0. Clearly, an IRF-k is
also an IRF-(k + 1) and of any higher order, since Ag; C Ay.

The condition that increments of order k£ have a zero mean is introduced for a simpler
presentation and does not restrict generality. If these increments are stationary, their mean is

42 3. (Co-)Kriging with Multivariate Structural Analysis

necessarily a polynomial of degree k + 1 at most (c.f. |Matheron| (1973)), which is eliminated
by regarding Z(x) as an IRF-(k + 1).

As usual with random functions, it will be assumed that Z(z) is continuous in the mean
square sense, to extend the theory from the space Ay of discrete measures to the space M,
of measures with compact supports.

3.1.2 Generalized Covariance

Subsection explained that the correlation structure of an SRF (or IRF-(—1)) is
defined by its ordinary covariance function C(h) and the correlation structure of an IRF
(or IRF-0) is defined by its variogram ~(h). In the same manner, when the stationarity
assumptions are limited to generalized increments of order k (IRF-k)), what characterizes
the correlation structure of z(x) is a function called generalized covariance, denoted by K (h).

For an IRF-k Z and any pair of measures A\, u € Ay, the generalized covariance function
K(h) of Z, defined on R™ is defined by :

E[Z()\) Z(M)} = Z Z Ai b K (y; — ;) (3.3)

7

If A = p, we then have :

E[Z()\)?] = Z Z NN Ky —x) (AEAR) (3.4)

K(h) is a symmetric function and is used just as an ordinary covariance function C'(h) and
we also have the following property :

Theorem 1. Any continuous IRF-k has a continuous generalized covariance K(h). K(h) is
unique as an equivalence class, in the sense that any other generalized covariance is of the
form K(h) 4+ Q(h), where Q(h) is an even polynomial of degree 2k or less.

A useful result is the relation between the ordinary covariance o of Z and its generalized
covariance K (see |Dong| (1990) and |Chiles and Delfiner| (1999)) :

olzy) =Ky—z)+ > al) f@)+) al)fy) (3.5)
With :

e f!' a monomial of degree < 1,
e p the number of monomials,

e ; some continuous functions.

3.2 Kriging the Head using Transmissivity Knowledge 43

3.2 Kriging the Head using Transmissivity Knowledge

3.2.1 Hydrogeologic Context

In Chapter 2, we have considered the diffusivity equation (2.1) in the case) was nil and
T was constant over the study area. We will now consider that the transmissivity 7" and the
head h depend on the 1D flow direction z, while the discharge is still assumed nil. We can
then write :

div(T gradh) = 0 (3.6)
2(2) -
2
LU L
Z—ZL — _% g—f % with % — J = hydraulic gradient

The strong restriction of the result (3.7) has to be remembered : this equation assumes that
the flow is unidimensional and that the hydraulic gradient is a constant on the study area.

3.2.2 The Stochastic Equation AZ =Y

Equation (3.7) can be more generally written AZ = Y, and not only applied to hy-
drogeology. This equation is named the Poisson equation and represents the dependency
between the studied variable Z — the hydraulic head & in our case — and a given source

0(LogT)
term Y — J ———=

5 , i.e the constant hydraulic gradient multiplied by the derivative on x
x
of Log(T).

We can notice that we could have also considered solving equation 1) Ah = %, which
is also a Poisson equation. In that case, the Y source term would have been — and we could

have solved the Poisson equation Ah = %, with the assumption that 7' is constant in the

study area. Thus, we would have had the variogram of the total discharge @) defining the
variogram of h. However, in this thesis, the emphasis has been put on linking h with the
transmissivity variations.

To consider solving this equation with a geostatistical method, we have first to assume
that Y and Z are random functions of R", with n = 2 in our case, and that AZ =Y is
therefore considered as a “stochastic equation”. The first question that then arises is that
of the existence of a stochastic model compatible with this equation. |Matheron| (1971a) has
stated the following theroem :

Theorem 2. If Y is a continuous IRF-k of R™, there exists a unique twice differentiable
IRF-(k + 2p) Z satisfying the differential equation APZ =Y, which implies that :
If Y is a continuous SRF (i.e. IRF-(—1)) of R"™, there exists a unique twice differentiable

44 3. (Co-)Kriging with Multivariate Structural Analysis

IRF-1 Z satisfying the differential equation AZ =Y and :
If Y is a continuous IRF(—2) of R", there exists a unique twice differentiable IRF-0 Z
satisfying the differential equation AZ =Y.

3.2.3 Covariance Model

From this, we can derive the relationship between the generalized covariances of Z and
of Y. To keep things simple, let us consider only the case where Y is a zero-mean SRF (it
is still possible to come down to this case and add a polynomial of degree 1 with constant
coefficients to the usual solution of Z). Let x = (z1,...,2,) and y = (y1,...,Yn) be two
points of R™. Denoting by C'(h) the stationary covariance of Y, we get :

Cly —2) = E[Y(2)Y(y)] = E[AZ(x) AZ(y)] = E Z Z 381; 7) aazygy)

i=1 j=1 i

With Z being twice differentiable, its nonstationary covariance o(z,y) is differentiable four
times, and therefore :

Z Z aaxg aﬁy Z(x) Z(y)] = A Ayo(z,y) (3.8)

where A, is the Laplacian operator applied with respect to x. Combining equations (3.5))

and , we get :
A, Ayo(z,y) =AM, AyK(y—2) =A*K(h) withh=y—2x

The covariance C' of Y and the generalized covariance K of Z, with Z and Y linked by the
equation AZ =Y are thus related by the equation :

A* K(h) = C(h) (3.9)
Theorem [2| then tells us that, Y being an SRF, Z will be an IRF-1.

However, the equation 1} we want to solve is more of the form AZ = — with Z being
x
the hydraulic head and Y being Log(T'). To study this equation knowing the result (3.9)) of
AZ =Y, we will use a variable X defined by Z = Em (there is no real physical explanation
x

for this variable).

We then have A (e B which implies that g (AX) = e This is the derivative

on z of the equation AX =Y, in which Y is an SRF (or IRF-(—1)) with a covariance Cy (h)
and X is an IRF-1 with a generalized covariance K so that we have, as in equation (3.9) :

A? K(h) = Cy(h) (3.10)

0X))% 0 oy

Z, the derivative of X on z, is then an IRF-0 and the relation between K and the
variogram 7y of the hydraulic head Z is :

0?°K
h) = J? h 3.11
() = G (1) (3.11)
With h, being the first coordinate of the vector h(h,, h,). We can notice that the variogram

of the variable Z is not isotropic and depends on the angle between the vector h and the flow
direction.

3.2 Kriging the Head using Transmissivity Knowledge 45

3.2.4 Covariance Choice and Code Implementation

Dong| (1990) computed the variograms vy of the hydraulic head h integrated from «ypq4(7)
of Log(T) for several usual variogram models in R, R? and R3.

The calculations were made using several common variogram models for Log(T"). We have
chosen to restrict ourselves to the spherical model as it is usually the one chosen for Log(T).
The corresponding model for H is thereford]] :

ca? 8 8 8 8
DR Zhd) da? (2 She + — B it by <1
16 K 15" " 175)er(5" T 35 “)} b=

W= e 3 4 46
— = —Log(h do’ | — — if hy>1
16 {(75+35h§+5 o9 “))+ ‘T“(5hg 35h3>} o=

(3.12)
With :

e ¢ being the sill of the variogram of Log(T),

e ¢ being its range,

e dzx, being the first coordinate of h, in the Cartesian coordinate system in which the x
axis is defined by the direction of the hydraulic gradient.

In the GSLIB algorithm, the covariance model associated to the variogram defined in
(3.12) has been coded. To simplify the input for the user, instead of asking the sill of the

variogram, the program asks to input the ratio ——

, and the sill ¢ of the head variogram is
then computed assuming : "

T,
Log(maz) = 4+/Var(LogT)

Tmin
Var(LogT) = - [1og (Tree\|
ar(Lo = — |Log | =
J 16 |7\ T /|
c = J*Var(LogT)
Pl (Twa\]
¢ = 15 _Log (Tmm)_ (3.13)

3.2.5 Application

The same example as the one used in subsection has been computed, taking into
account the full boundary conditions. The output map is presented in figure 3.1

'If one manages to get his hand on Anne Dong’s Ph.D thesis, p239, he might be surprised to find that
there is no h> behind the term %;5. This is indeed a typo in Dong’s thesis, as a constant term in a spherical
based variogram is not correct and the h term is needed to ensure the continuity of the first derivative of

v(h).

46 3. (Co-)Kriging with Multivariate Structural Analysis

500 ’ J‘ } - ‘ —1 \

|
i J J LN

450 /,////;’ i > — L
)1 &) | 3 RN
//// ,/ i ™~
/1///]]]] \

e \ A
vy
oy

200-0/////)))) - S
) S S - ~ _
/// S K j J -~
S S %) e

S — S~

350 oya / e

Yy
S — / d
"/ // // yd /// \\\\ /// ,/

300—/ 4 T 7 -
/ / / T T 7]
A / T — "

/S ~ -
Yo / 7
250-/ /) / - H
/ // o
/) -
200/ /]
/ /_///_/
Vi P I

50| — L

pd _— 8
— P S

w004 8
-

s 0O ——t
o T T T T T T T T
0 50 100 150 200 250 300 350 400 450 500

Figure 3.1: Kriging under Boundary Conditions with v of h computed from ~ of Log(T).

There are no real improvements yet over the map presented in figure except that the
no flow boundary conditions are a bit better honored in the northeastern corner. However,
using the Log(T) integrated variogram was not supposed to drastically improve the Kriging
under Boundary Conditions. It is more a step towards full cokriging between h and Log(T).

3.3 Cokriging Head and Log Transmissivity

3.3.1 Cross-covariance

Before describing the cokriging system, let us complete the multivariate structural analysis
of our study area. Thanks to section we have linked the head variogram with the Log(T)
one. To compute the kriging system, we also have to know the cross-covariance between h
and Log(T) (see subsection [3.3.2).

First, we have to notice that E[Z(x)Y (y)] doesn’t necessarily exist. We have proved in
subsection that Z is an IRF-0 when Y is an SRF. The product Z(z)Y (y) then has
an hybrid status. We will make the hypothesis that we are in the “good” case and that
E|[Z(x)Y (y)] exists. This is a common assumption for the hydraulic head.

As for the covariance in subsection [3.2.3] we have for the cross-covariance :

0AK
E[Z(2)Y(y)] = J = (@) (3.14)
For the spherical model in R, we havef]:
1 1 1 :

8AK C(Qll—yl) |:§—§ha+1—0h2:| if ha§1
(z,y) = _ (3.15)

@X C(ml yl) lf h > 1

10 h2 ‘=

2See |Dong| (1990), p243

3.3 Cokriging Head and Log Transmissivity 47

With the same notations as for equation (3.12) and xy, y; being the first coordinates of the
points x and y in the Cartesian coordinate system in which the first axis x is defined by the
direction of the hydraulic gradient.

3.3.2 The Cokriging System

As the kriging process has already been detailed twice in previous chapters, the demon-
stration is shortened as much as possible here. Basically, the process is almost identical to the
one used for Kriging under Boundary Conditions, except that we have here a “true” secondary
variable with cross-covariance terms and its own covariance terms, instead of the differences
between head covariances we had in Kriging under Boundary Conditions. The system de-
scribed is the Cokriging with a Trend (or Universal Cokriging) system, and it estimates the
hydraulic head based on head and transmissivity data.

Z stands for the hydraulic head h and Y represents Log(T') where T is the transmissivity.
Z is defined as in previous chapters (see equations and), this time using the
anistropic variogram vy (h), and Y (y) = my + Ry (y) where the mean my is a constant and
the covariance o of Y is isotropic.

3.3.2.1 Linearity Constraint

N S
Z*(xo) = Mo+ Y N Z(x) + > 0,Y(x,)

=1

3.3.2.2 Authorization Constraint

Z*(x0) — Z(zo) = Ao+ Z A m(z;) — m(xo) + Z X R(z;) — R(xo)

TV
non random terms

S
+ Z 95 Ry(ZL’S>
s=1

Thus the authorization constraint is once again :

Mo+ Y Aim(w:) — m(ag) =0 (3.16)

48 3. (Co-)Kriging with Multivariate Structural Analysis

3.3.2.3 Unbiasedness Constraint

E[Z*(z0) — Z(z)] = 0
N S

E)\0+Z)\Z-Zi+ZHSYS — 7
i=1 s=1

Ao + Z Aim(z;) —m(xg) = 0

i=1
S
+Zl95my = 0
s=1

L N
o+ S0 lzw;—fé
=0 =1

This is true if A\ = 0 and :

N S
Vi=0,...,L, Y Nfl=fy and Vmy, > 6,=0 (3.17)
i=1 s=1

The authorization constraint is de facto met. Once again, we have f(z) = 1, and the weights
A; add up to 1 whereas the weights 6, add up to zero.

3.3.2.4 Optimality Constraint

As for Universal Kriging, we have to minimize Var[Z*(xy) — Z(zo)]. However, in this
case, the covariance of the hydraulic head represented here by Z is not strictly defined. We
have to use its anisotropic variogram. The result presented in subsection [I.1.5]can be written
in variogram terms :

E[(Z(%) — Z(w0)) (Z(x;) — Z(xo))} = —%ij + %o+ o with vy = y(z; —)

N N s S N S OANK
VCL?"[Z*(SE()) — Z(l’o)] = — Z Z)\z)\] Yij + Z 2959,5 Ost + 2 Z Z)\195 J W(£i>$s)

i=1 j=1 s=1 t=1 i=1 s=1

N S
OAK
+2 § i Yio — 2 g QsJ—ax (w0, z5)
i=1 s=1

As for Kriging under Boundary Conditions, we obtain the derivatives respectively on \;, 6,
and g to compute the kriging system of N + .5 + L + 1 linear equations with N + S+ L+ 1
unknowns :

—ZAJ%J%—ZQJ xx +me Vi=1,...,N

OAK
Z)\J :zc,,xs +Z¢9t05t+,uo J o (xo,) Vs=1,...,8

(

(3.18)

ZA fl= Vi=0,... L
\ 25 0, =0

3.3 Cokriging Head and Log Transmissivity

49

In matrix notations, the kriging system (3.18) is of the following structure, with the usual

notations :
—Vij Jag—x}((%’?l‘t) fll 0 Aj
J ang (z),x5) Tst 011 0,
f! 0 010 || m
0 1 010 o

The Universal Cokriging variance will then be :

N s
TtCor = Z)\z‘%‘o - 295 J
=1 s=1

OAK

ox

—7i0

L
(o, 5) — Y pu f4
=0

(3.19)

3.3.3 The Cokriging under Boundary Conditions System

The Cokriging under Boundary Conditions system can easily be obtained by combining
the Kriging under Boundary Conditions system (12.9) and the Cokriging system (3.18)). Only
its matrix is represented there.

—Yij —Yip1 T ViBs J —6§XK (zi,) | f1 |0 Aj —i0
Yo Y181 T Ve Be J 8?}{[((xal’ It) éq o0
+ — - 10 65 +
Viao TYasp — Vasps | J ang (xO‘Q’ It) tiz Taz0
Jang(xﬁhzs) -
J agK (xja -TS) - Ot 0 1 9,5 J 63AXK (ZC(), $S)
J OQXK (Iﬁ% ZL“S>
1! i — 7 0 0|0 fi
J B1 B2 i 0
0 0 1 010 Lo 0

The Cokriging under Boundary Conditions variance will then be :

N A
OfcorBC = Z Ai Yo + Z € (Va0 = Yao]

=1 a=1

S

s=1

~) 6,7

OAK
ox

L
('I07 :I"S) - Z;ul fé
=0

(3.20)

50 3. (Co-)Kriging with Multivariate Structural Analysis

3.4 Inverse Problem

Solving the partial differential equation div(T gradh) = 0 is called solving the direct
problem, as the estimated variable is h, the main variable of the partial differential equation.
Consequently, the inverse problem is estimating 7', knowing h under zero discharge conditions
(“virgin state” of the aquifer). In practice, it is a very common problem in hydrogeology that
often has to be solved before modeling with different discharge conditions (e.g. wells).

To create a groundwater model, one has to enter the parameters of the partial differential
equation, including the transmissivity. However, transmissivity data are scarce, while the
hydraulic head is usually better known, because it only requires piezometer logging while
estimating the transmissivity requires a heavier pumping test. Therefore solving the inverse
problem gives us a better knowledge of T" before modeling. This is critical as the better the
transmissivity input, the easier it will be to obtain a good calibration when modeling, since
it is easier to optimize parameters if they are closer from their real value since the beginning.
A geostatistical approach makes it possible to take account of the joint spatial variability of
h and T', thereby to restrict the space of possible equations and, in the end, to express the
set of solutions as a family of conditional simulations. However, no one has really applied
so far Anne Dong’s results to use cokriging with a multivariate structural analysis based on
Log(T) for a practical problem.

3.4.1 The Inverse Problem Kriging System

The cokriging system for estimating the transmissivity is almost the same as the one used
to compute the head (cf. equation (3.18))). In fact, the kriging matrix is identical to the one
used for the direct problem. The variables, the data sets and the variographic parameters
are the same. Only the estimated variable changes and so only the second term is indeed
different. Thus the right-hand side matrices for Cokriging and Cokriging under Boundary
Conditions will respectively be :

J aOA—XK(xi,xo)
J%(l’hﬁo) J dng (fL’al,ZL‘())
050 Jang(xawxo)
0
1 050
0
1

3.5 Application 51

And the cokriging variances without and with boundary conditions will respectively be :
Y OAK
U%COKIM, = U(O) - ;)\’L J —— Ox xz; m() Ze 050 — o (321)
N
0AK 0AK 0AK
O%COKBCIM - U(O> - Z)\zJ 8X xm*TO Zga |: A xalaxO) - JW('ICQ?J:O)
i=1

S
=D 00w — Ho (3.22)
s=1

3.4.2 The Bias in Lognormal Kriging

In this chapter, we have studied two hydrogeologic variables considered as RFs : the
hydraulic head h and the logarithm of the transmissivity Log(T"), but we never questioned
the idea of applying kriging to the logarithm of a parameter. In fact, the variations of 7" are
highly nonlinear. So it would not be wise to use the linear estimators of kriging on T itself.
On the other hand, the logarithm of 7" can be considered as a Gaussian RF and thus be a
good candidate for kriging. That had to be cleared.

However, when we solve the inverse problem, we want an estimate of 7', not Log(T). Is it
possible to just compute the exponential of the Log(T') estimate to obtain the T estimate ?
In fact not, there is a correction factor to apply when computing the transmissivity esti-
mate. Matheron already mentioned this when he first described kriging (Matheron| (1963)),
and revisited the concepts of so-called lognormal kriging (Matheron| (1974)). For Ordinary
Cokriging?] the estimate will be for a RF Z = Log(Y) :

Z*(xg) = exp | Y*(xo) + 012/(;0) — Ilo (3.23)

1o being the Lagrange multiplier for Ypresent in the kriging system.

However, |Roth| (1998)) believes that this estimator is still biased, and that we can’t really
get rid of the bias as long as we don’t perform Simple Cokriging. In this thesis, we will
present a map of Log(T'), thus avoiding this biasedness issue.

3.5 Application

This section details the application of solving either the direct, either the inverse problem,
using the results and the system described in sections [3.3] and [3.4 -
3.5.1 Code Implementation

GSLIB has a cokriging program, but it only does Simple or Ordinary Cokriging. The
first task was to add the drift terms to compute the Universal Kriging system, using the

3The previously described system is called Universal Cokriging, but, in fact, we only take into account
the drift for h, not for Log(T"), whose mean is unknown but assumed constant.

52 3. (Co-)Kriging with Multivariate Structural Analysis

kriging algorithm. Then, the boundary conditions were added as in the matrix presented in
subsection [3.3.3] and the cross-covariance model introduced in subsection was coded.
Finally, the right-hand term of the kriging system used to solve the inverse proble has been
implemented, and a new input parameter allows to choose which variable the user wants to
estimate.

3.5.2 Results

What differentiates our study from “classic” cokriging is the fact that we take account of
9°h 7 d(LogT)
) N R : : .
So the improvement will lie in the covariance and cross-covariance functions computed in
sections [3.2.4] and [3.3.1] Let us have a closer look on these functions. Figure [3.2] shows their
representation for an exponential covariance of Log(T).

in our multivariate structural analysis.

the partial differential equation

- _cross-covariance

g
/I flow = -

‘- - 5a 7l 0 5a Liow 4

flow direction
—_—
1 -05

Figure 3.2: Exponential covariance Cy of Y = Log(T'), variogram 7, of head perturbation
¢ and cross-covariance of Y (x) and ¢(x + h) — ¢(x) in the two-dimensional case, for an
unidirectional flow in an infinite aquifer, from |Chilés and Delfiner| (1999)), p.620.

In fact, the kriged estimate is a linear combination of weights that are functions of these
covariances, translated to be centered at the estimated points. We have written that the
product of the hydraulic gradient J and the range a of the Log(T) variogram is involved
linearly in the cross-covariance (3.14) and as a square in the head variogram . This
means that in a cokriging approach for estimating the hydraulic head, the weights on Log(T)
data will be proportional to Ja, while when estimating the transmissivity, the weights on head
data will be inversely proportional to Ja. Knowledge of this parameter is therefore essential,
as it will determine by how much the head map will be distorted. a alone represents the
range of the distortion.

Figures and present the representations of the covariance of Log(T') and both,
the variogram of h and the cross-covariance between Log(T) and h computed from this
covariance. The flow is assumed parallel to the North-South axis.

3.5 Application 53

Figure 3.3: 2D representation of C'(Log(T)) Figure 3.4: 2D representation of y(h) cen-
centered on the point (25;25). tered on the point (25;25).

50

45 10

35
30
25

20

Figure 3.5: 2D representation of the cross-covariance between Log(T') and h centered at point
(25;25).

The antisymmetry of the cross-covariance (3.14)) when computing the function around the
central point has to be denoted. We can use it to make the following statements, assuming
there is a low transmissivity zone :

e There is necessarily a point downstream that will be below this hydraulic head plane
defined by the regional gradient J,

e And there is a point upstream that will be above this plane.

This leads to the conclusion that there is a higher hydraulic gradient at the location of the
low transmissivity point.

54 3. (Co-)Kriging with Multivariate Structural Analysis

The opposite statement can also be made if we assume there is a high transmissivity zone.
We would then have a smaller hydraulic gradient at the location of the high transmissivity
point.

Similarly, for the inverse problem, if we have, for example, a point whose head value is
below the plane representing the regional hydraulic gradient, we can then conclude that the
transmissivity values will be below the mean value upstram, and above it downstream. The
opposite statement can be made for a head value below the regional plane. Figure sums
up these statements.

. - . FoLm
COKRIGiNG FORTHE A
INVERSE PROBLEM |

Figure 3.6: Summary of the influence of the cross-covariance anti-symmetry on h and Log(T")
estimates, by Jean-Pierre Delhomme.

A first example, with the same study area as usual, a constant head h = 50m on the
northern boundary and h = 0m on the southern one and a low transmissivity point in the
middle of the area is mapped in figure 3.7 A parameter that has to be noticed here is
the range of the covariance of Log(T). It is set to 70m in this example, as the boundary
conditions must be “beyond the range” of Log(T') data points.

The second example displayed in figure presents an inverse problem. The study area
and the parameters are the same as for the first example, except that instead of a low-
transmissivity data point, we have two head data points in the middle of the area : one
above the regional hydraulic gradient plane (z = 250, y = 251, h = 26), and the other below
it (x =250, y =249, h = 24).

3.5 Application 55

500 500
450, 450

400 — 54 400 -
46 350 -
42 -3
38
300 -
30
26 250 - 5
22
200 B
14
10 7
150 6 150 -

2
-2 100 =
6

50 -

Figure 3.7: Cokriging with one low transmis- Figure 3.8: Inverse problem : Logo(7") map
sivity point in the middle of the study area. cokriged from h and Log(T') data.

Finally, another interesting figure is figure It presents the difference between the
hydraulic head cokriged in figure [3.7] and the hydraulic head of the case in which there is
no low-transmissivity data point and thus only the regional hydraulic gradient of 0.1m/m
applies. This figure has some interesting similarities with figure This emphasizes the
fact that it is the cross-covariance function which disrupts the hydraulic head map when we
insert a low-tansmissivity point.

500 1 1 1 1 1 1 | |

=1

O — M W ke M o®m ~ oW

m B0 R —

0 a0 100 150 200 250 300 380 400 450 500

Figure 3.9: Difference between the hydraulic head maps with and without the low-transmis-
sivity data point.

4Note that the hydraulic gradient is from East to West in figure and from North to South in figure

B3

56 3. (Co-)Kriging with Multivariate Structural Analysis

3.5.3 Conclusion

There is still some testing to be done in order to have a stable cokriging algorithm using
this multivariate spatial analysis, but one can easily understand the potential that lies there,

as shown in the very first example. This method could be used to solve both the direct and

2 LogT
the inverse problem of the partial differential equation 0"h =J d(Log)

0x? ox

Conclusion

The goal of this thesis was to make kriging respect some conditions of the partial differ-
ential equations that dictate the groundwater flow in hydrogeology. We have concluded in
Chapter 2 that Kriging under Boundary Conditions allows us to take into account the Dirich-
let and the Neumann boundary conditions. Kriging under Boundary Conditions proved to be
robust enough to be easily used by a hydrogeologist. Consequently, it should be implemented
soon in GW Contour. It seems a perfect tool to improve the results computed by this program
that basically interpolates the hydraulic head, the hydraulic conductivity and the porosity
and then uses these data to solve the Darcy equation on each node of the interpolation grid,
in order to produce a velocity vector map and particle tracking.

2

Chapter 3 focused on making use of the partial differential equation % = M,
in a multivariate spatial analysis cokriging approach, to take into account txhe transmissxivity
data and the fact that its structure is deeply linked to the hydraulic head structure. This
is a more generalized problem than Kriging under Boundary Conditions, as the important
hydrogeologic parameter that transmissivity is, is not considered constant anymore and is
indeed used to evaluate the hydraulic head surface. This promising last minute research
needs further work and testing, but the first results look very promising and the fact that it
can also solve the inverse problem makes it even more interesting.

Bibliography

Surfer 8 User’s Guide, Golden Software Inc., 2002.
GW Contour 1.0 - User’s Manual, Waterloo Hydrogeologic Inc., 2005.
Intel Visual Fortran Compiler 9.0 Documentation, Intel Corporation, 2005a.

Visual MODFLOW .1 Professional Edition - User’s Manual, Waterloo Hydrogeologic Inc.,
2005b.

Arnaud, M., and X. Emery, Estimation et interpolation spatiale, Hermes Science Publications,
Paris, 2000.

Baillargeon, S., Le krigeage : revue de la théorie et application a l'interpolation spatiale de
données de précipitation, Master’s thesis, Faculté des sciences et de génie, Université Laval,
Québec, 2005.

Chauvet, P., Processing data with a spatial support : Geostatistics and its methods, Cahiers
de Géostatistique, Fascicule 4, Ecole des Mines de Paris, 1993.

Chilés, J.-P., and P. Delfiner, Geostatistics : Modeling Spatial Uncertainty, Wiley series in
probability and statistics, John Wiley & Sons, Inc., 1999.

Chiles, J.-P., and G. Matheron, Interpolation optimale et cartographie, Annales des Mines,
pp. 1-7, 1975.

Cressie, N. A. C., Statistics for spatial data, Wiley series in probability and statistics, John
Wiley & Sons, Inc., 1993.

Dagan, G., A note on the higher-order corrections of the head covariances in steady aquifer
flow, Water Resources Research, 21, 573-578, 1985.

Dagan, G., Flow and Transport in Porous Formations, Springer, Berlin Heidelberg, 1989.
de Marsily, G., Hydrogéologie quantitative, Masson, Paris, 1981.
de Marsily, G., Quantitative Hydrogeology, Academic Press Inc., 1986.

de Marsily, G., J.-P. Delhomme, A. Coudrain-Ribstein, and A. M. LaVenue, Four decades of
inverse problems in hydrogeology, Special Paper 348: Theory, modeling, and field investi-

gation in hydrogeology: a special volume in honor of Shlomo P. Neumans 60th birthday,
348, 1-17, 2000.

Delhomme, J.-P., Applications de la théorie des variables régionalisées dans les sciences de
I’eau, Ph.D. thesis, Université Pierre et Marie Curie - Paris VI, 1976.

60 BIBLIOGRAPHY

Delhomme, J.-P., Kriging in the hydrosciences, Advances in Water Resources, 1, 251-266,
1978.

Delhomme, J.-P.; Kriging under boundary conditions, Presented at the American Geophysical
Union Fall Meeting, San Francisco, 1979.

Deutsch, C. V., and A. G. Journel, GSLIB : Geostatistical Software Library and User’s Guide,
Applied Geostatistics Series, 2nd ed., Oxford University Press, 1998.

Dong, A., Estimation géostatistique des phénomeénes régis par des équations aux dérivées
partielles, Ph.D. thesis, Centre de Géostatistique, Ecole Nationale Supérieure des Mines
de Paris, 1990.

Erickson, J., Computational geometry : Convex hull and plane sweep algorithms, Lecture
notes, University of Illinois at Urbana-Champaign, 2002.

Gratton, Y., Le krigeage : la méthode optimale d’interpolation spatiale, Les Articles de
UInstitut d’Analyse Géographique, pp. 1-4, 2002.

Hoekesma, R. J., and P. K. Kitanidis, An application of the geostatistical approach to the
inverse problem in two-dimensional groundwater modeling, Water Resources Research, 20,
1003-1020, 1984.

Jaquet, O., and S. Vomvoris, De I'apport de la géostatistique & la résolution du probléme
inverse : 'expérience de macro-perméabilité effectuée au laboratoire de Grimsel, Suisse,
Cahiers de Géostatistique, Fascicule 1, Ecole des Mines de Paris, pp. 3850, 1991.

Kitanidis, P. K., Introduction to Geostatistics : Applications in Hydrogeology, Cambridge
University Press, 1997a.

Kitanidis, P. K., Comment on "A reassessment of the groundwater inverse problem" by D.
McLaughlin and L. R. Townley, Water Resources Research, 33, 2199-2202, 1997b.

Kitanidis, P. K., The minimum structure solution to the inverse problem, Water Resources
Research, 33, 22632272, 1997c.

Kitanidis, P. K., and E. G. Vomvoris, A geostatistical approach to the inverse problem in

groundwater modeling (steady state) and one-dimensional simulations, Water Resources
Research, 19, 677690, 1983.

LaVenue, A. M., B. S. RamaRao, G. de Marsily, and M. G. Marietta, Pilot point methodology
for automated calibration of an ensemble of conditionally simulated transmissivity fields -
2. Application, Water Resources Research, 31, 495516, 1995.

Lent, T. V., and P. K. Kitanidis, Effects of first-order approximations on head and specific
discharge covariances in high-contrast log conductivity, Water Resources Research, 32,
1197-1207, 1996.

Mardyanto, M. A., and E. Evgin, A stochastic approach for the identification of hydraulic
conductivity of a region, Environmental Informatics Archives, 1, 99-113, 2003.

Matheron, G., Traité de Géostatistique appliquée - Tome I, Mémoires du Bureau de
Recherches Géologiques et Miniéres, No. 14, Paris, 1962.

BIBLIOGRAPHY 61

Matheron, G., Traité de Géostatistique appliquée - Tome II : Le krigeage, Mémoires du
Bureau de Recherches Géologiques et Miniéres, No. 24, Paris, 1963.

Matheron, G., Les variables régionalisées et leur estimation. Une application de la théorie
des fonctions aléatoires aux Sciences de la Nature, Masson, Paris, 1965.

Matheron, G., Le krigeage universel, Cahiers du Centre de Morphologie Mathématique de
Fontainebleau, Fascicule 1, Ecole des Mines de Paris, 1969.

Matheron, G., La théorie des variables régionalisées et ses applications, Cahiers du Centre
de Morphologie Mathématique de Fontainebleau, Fascicule 5, Ecole des Mines de Paris,
1970.

Matheron, G., La théorie des fonctions aléatoires intrinséques généralisées, Tech. Rep. N-252,
Centre de Géostatistique, Fontainebleau, France, 1971a.

Matheron, G., The theory of regionalized variables and its applications, Cahiers du Centre
de Morphologie Mathématique de Fontainebleau, Fascicule 5, Ecole des Mines de Paris,
1971b.

Matheron, G., The intrinsic random functions and their applications, Advances in Applied
Probability, 5, 439-468, 1973.

Matheron, G., Effet proportionnel et lognormalité ou : Le retour du serpent de mer, Tech.
Rep. N-374, Centre de Géostatistique, Fontainebleau, France, 1974.

Matheron, G., C. Roth, and C. de Fouquet, Modélisation et cokrigeage de la charge et de
la transmissivité avec conditions aux limites & distance finie, Cahiers de Géostatistique,
Fascicule 3, Ecole des Mines de Paris, pp. 61-76, 1993.

Page, C. G., Professional Programmer’s Guide to Fortran77, Hyperion Books, 1988.

RamaRao, B. S., A. M. LaVenue, G. de Marsily, and M. G. Marietta, Pilot point methodology
for automated calibration of an ensemble of conditionally simulated transmissivity fields -
1. Theory and computanional experiments, Water Resources Research, 31, 475-493, 1995.

Rivoirard, J., Concepts et méthodes de la géostatistique, Lecture notes, Centre de Géostatis-
tique, Ecole Nationale Supérieure des Mines de Paris, 1995.

Rivoirard, J., Cours de géostatistique multivariable, Lecture notes, Centre de Géostatistique,
Ecole Nationale Supérieure des Mines de Paris, 2003.

Roth, C., Contribution de la géostatistique a la résolution du probléme inverse en hydrogéolo-
gie, Ph.D. thesis, Centre de Géostatistique, Ecole Nationale Supérieure des Mines de Paris,
1995.

Roth, C., Is lognormal kriging suitable for local estimation?, Mathematical Geology, 30,
999-1009, 1998.

Roth, C., J.-P. Chilés, and C. de Fouquet, Combining geostatistics and flow simulators to
identify transmissivity, Advances in Water Resources, 21, 555565, 1998.

Rubin, Y., and G. Dagan, Stochastic identification of transmissivity and effective recharge
in steady groundwater flow. 1. Theory, Water Resources Research, 23, 1185-1192, 1987a.

62 BIBLIOGRAPHY

Rubin, Y., and G. Dagan, Stochastic identification of transmissivity and effective recharge in
steady groundwater flow. 2. Case study, Water Resources Research, 23, 1193-1200, 1987hb.

Wackernagel, H., Cours de géostatistique multivariable, Lecture notes, Centre de Géostatis-
tique, Ecole Nationale Supérieure des Mines de Paris, 1993.

Appendix A

GSLIB Code : Main Algorithm

program main

e e e e e e 6 e e e e 6 e e Ve e e 6 e e e 666066060606 0606

aaoaoaoaoaoaaaaaaaa

Copyright (C) 1996, The Board of Trustees of the Leland Stanford
Junior University. All rights reserved.

The programs in GSLIB are distributed in the hope that they will be
useful , but WITHOUT ANY WARRANTY. No author or distributor accepts
responsibility to anyone for the consequences of wusing them or for
whether they serve any particular purpose or work at all, unless he
says so im writing. FEveryone is granted permission to copy, modify

and redistribute the programs in GSLIB, but only under the condition

that this notice and the above copyright notice remain intact.

NN X NNN NN KK

G I I I I e e 6 VG V6 V6 6 Ve 6 6 Ve 6 Ve 6 Ve 6 Ve e 6060660606

[I o T o T o B o T e I T e T - T T)

CoKriging of a 83—D Rectangular Grid

>k 3k ok >k 3kosk ok ok ok sk ok skok ok sk sk sk ok ok sk ok sk ok ok ok sk ok skook ok ok ko ok

This program estimates the wvalue of a "primary” variable with primary
and secondary data. The program could be modified to jointly predict

primary and secondary data.

[I e T [I e B

SO0

USE DFLIB

use dfwin
include ’coktbc.inc
CHARACTER(1) key / A’ /

)

Read the Parameter File and the Data:
call readparm

Call coktbc to krige the grid:
call coktbc

Finished :

64 A. GSLIB Code : Main Algorithm

write (%,9998) VERSION

9998 format(/’ COKIBC Version: ’,f5.3, ’ Finished’/)
stop
end

subroutine readparm

c
c
c Initialization and Read Parameters
c stk ok ok ok R oKk Sk KK R KK KK KKK KKK KK K KK K K K Kk
c
¢ The input parameters and data are read, some quick error checking 1is
¢ performed, and the statistics of all the variables being considered
¢ are written to standard output.
c
c
c
c
USE DFLIB

include ’coktbc.inc’

parameter (MV=20)

real var (MV) ,av (MV) , ss (MV)

integer ivrl (MV) ,nn(MV) , whatest

character datafl*500,0utfl*500,dbgfl*500,secfl*500,str 500
logical testfl ,linmod , posdef

integerx4 surflong ,npars,stat

double precision surfdbl

CHARACIER(1) key / A’ /

¢ SURFER output file
c
c
¢ I/0 units:
c
lin =1
lout = 2
ldbg = 3
c
¢ Note VERSION number:
c

write (%,9999) VERSION
9999 format(/’ COKIBC Version: ’,f5.3/)

Get the name of the parameter file — try the default name if no input:

write (x,%x) 'Which parameter file do you want to use?’
read (x,’(a40)’) str
npars=iargc ()
if (npars.ge.l) then
call getarg(1l,str)

[I e T e T e N

else
call fileopen (str)
endif
write (x ,x) 'FILE OPENED ’ str
if(str(1:1).eq.’ ’)str='coktbc.par ’

inquire (file=str ,exist=testfl)
if (.not.testfl) then

65

write (x,%) '’ERROR — the parameter file does not
write (% ,x) ’
write (x,x)
if (str(1:20).eq.’ coktbc.par ’) then
write (x ,x) ~’
call makepar
write (%)

end if
stop
endif
open(lin , file=str ,status="OLD’)
¢
¢ Find Start of Parameters:
c

1 read(lin ,’(a4)’ ,end=98) str (1:4)
if(str(1:4).ne.’STAR’) go to 1

c
¢ Read Input Parameters:
c
read (lin ,’(a)’,err=98) datafl
c call chknam(datafl ,40)

write(*x,x) ’ data file = ’ datafl

read(lin ,*,err=98) nvr
write (% ,%) ’ number of variables = ’ nvr

if (nvr.gt .MAXVAR) stop ’'nvr is too big — modify .inc file
can not use more than 1 secondary variable’

?

if(nvr.gt.2) stop

read (lin ,*,err=98) whatest
write (x ,x) ’
+ whatest

estimated variable: O=head, l=transmissivity °’

exist ,’

check for the file and try again

creating a blank parameter file’

7

)

if (whatest.lt .0.or.whatest.gt.1) stop ’ Est. variable = 0 ou 1.’

read(lin ,*,err=98) ixl iyl izl ,ikod ,(ivrl(i),i=1,nvr)
write (x ,x) ’

read (lin ,* ,err=98) tmin ,tmax
write (*,%) ’ trimming limits = ’, tmin ,tmax

read (lin ,*,err=98) icolloc
write (x,%x) ’ co—located cokriging flag = ’,icolloc
if(icolloc.eq.1) then

write (x ,x

columns = ’,ix] iyl ,izl ,ikod ,(ivrl(i),i=1,nvr)

located .’

)

is not used’

)
write (x ,x)’ The co—located cokriging flag does not work.’
write (x,+)’ Modify the search and ndmaxs for co—
write (x,+)’ The original intent was for the program to’
write (x,%)’ establish the variograms using a Markov model.’
write (x,+)’ You can do that outside the program.
write (x %)
write (% ,%)’ Note: the collocated cokriging file
write (x,x)

end if

read(lin ,’(a)’,err=98) secfl
c call chknam(secfl ,40)
write (x,%x) ’ collocated cokriging file = ’,secfl

A. GSLIB Code : Main Algorithm

read (lin ,* ,err=98) iclcol
write (x,%x) ’ column for covariate — ’,iclcol

read(lin ,*,err=98) idbg
write (*,x) ’ debug level = ’ idbg

read(lin ,’(a)’,err=98) dbgfl
call chknam(dbgfl ,40)

write (x,%) ’ debug file = ’, dbgfl
write (x %)
write(*,%x) ’ Some input parameters are now echoed to debug file’

write (x %)

open(ldbg, file=dbgfl, status—="UNKNOWN’)

read(lin ,’(a)’,err=98) outfl
call chknam(outfl ,40)
write (*,x) 7 output file = ’ outfl

read(lin ,*,err=98) nx,xmn, xsiz

write (*,%) ’ nx, xmn, xsiz = ’,nx,xmn,xsiz

read(lin ,*,err=98) ny,ymn, ysiz

write(*,%) ’ ny, ymn, ysiz = ', ny,ymn,ysiz

read(lin ,*,err=98) nz,zmn, zsiz

write (x,%x) ’ nz

, zmn, zsiz = ’ nz,zmn, zsiz

read(lin ,*,err=98) nxdis ,nydis,nzdis

write (x,%) ’ nxdis,nydis,nzdis = ’,nxdis,nydis,nzdis

if ((nxdis*xnydis*nzdis). gt .MAXDIS) then
write (x,%x) ’ERROR COKIBC: Too many discretization points ’
write (x ,%) ’ Increase MAXDIS or lower n[xy]dis’
stop

endif

read (lin ,*,err=98) nborhood
write(*,%x) ’ constant or moving neighborhood: ’,nborhood
if (nborhood .1t .0.or.nborhood.gt.1) stop ’ Neighborhood = 0 ou 1. ’

read(lin ,*,err=98) ndmin ,,ndmaxp,ndmaxg,ndmaxs
write (*,%) ’ ndmin,ndmaxp,ndmaxg,ndmaxs = ’,ndmin,ndmaxp,ndmaxg,
+ ndmaxs

read(lin ,*,err=98) radiusp ,radiusl ,radius2

write (*,%) ’ primary search radii = ’,radiusp ,radiusl , radius2
if (radiusp .1t .EPSLON) stop ’radius must be greater than zero’
radsqdp = radiusp * radiusp

sanispl = radiusl / radiusp

sanisp2 = radius2 / radiusp

read(lin ,*,err=98) radiuss ,radiusl ,radius2

write (*,%) ’ secondary search radii = ’,radiuss ,radiusl ,radius2
if(radiuss.1t .EPSLON) stop ’radius must be greater than zero’
radsqds = radiuss * radiuss

sanissl = radiusl / radiuss

saniss2 = radius2 / radiuss

read(lin ,*,err=98) sangl ,sang2,sang3

write(* ,%x) ’ search anisotropy angles = ’,sangl,sang2,sang3
read(lin ,*,err=98) ktype

write (x,%x) ’ kriging type = ’,ktype

if (ktype.lt .0.or.ktype.gt.2) stop > ERROR: invalid kriging type’

read (lin ,* ,err=98) (idrif (i)

write (x ,x) ’

i=1,9)
drift terms = ’,(idrif(i),i=1,9)

read (lin ,*,err=98) (vmean(i),i=1,nvr)
write (x,%) ' variable means = ’,(vmean(i),i=1,nvr)

read(lin ,*,err—98) Tmean
write (x,%) ’ Tmean: ’,Tmean

read (lin ,* ,err=98) gradh ,angh
write (*,%) ’ gradh ,angh: ’ gradh angh

¢ Read Output File option
read (lin ,*) noutfile
str="’
read (lin , ’(A500)’ JEND=4) str
¢ Read whether user wants to interpolate log of wvalues for each variable
read(lin ,*) logoptl 6 logopt2
if (logoptl.lt.0.or.logoptl.gt.1l) stop ’ Log option = 0 ou 1.
if (logopt2.1t .0.0or.logopt2.gt.1) stop ’ Log option = 0 ou 1.
write (x %)
¢ Read whether user wants to bound results within a maxr and a min
read(lin ,*) nrestmin ,restmin
read(lin ,*) nrestmax,restmax
if (nrestmin.ne.0.and.nrestmax.ne.0.and.restmin.gt.restmax) stop

)

)

+ ’ Restmin < Restmax ! ’
c
¢ Now, initialize nst value to —1 to flag all missing variograms:
c
do i=1,nvr
do j=1,nvr
ind = i + (j—1)xMAXVAR
nst (ind) = -1
end do
end do
c
¢ Read as many variograms as are in the parameter file:
c

3 read (lin ,* ,end=4,err=98) i,]j

if (i.gt .MAXVAR.or.j.gt.MAXVAR) then
write (% ,%) > Variogram specified for variable beyond MAXVAR’
stop

end if

ind = i + (j—1)*xMAXVAR

read (lin ,*,err=98) nst(ind),c0(ind)

write (ldbg ,103) i,j,nst(ind),c0(ind)

istart = 1 + (ind —1)*MAXNST

do i=1,nst(ind)

index = istart + i — 1
read (lin ,*,err=98) it (index),cc(index),angl(index),
+ ang2(index),ang3(index)

read (lin ,*,err=98) aa(index),aal,aa2

68 A. GSLIB Code : Main Algorithm

anisl(index) = aal / max(aa(index),EPSLON)
anis2 (index) = aa2 / max(aa(index) ,EPSLON)
if (it (index).eq.4.and.ktype.eq.0)

+ stop 'No Power model with SK’
end do
write (ldbg ,104) (it (istart+i—1), i=1,nst(ind))
write (ldbg ,105) (aa(istart+i—1), i=1,nst(ind))
write (ldbg ,106) (cc(istart+i—1), i=1,nst(ind))
write (ldbg ,107) (angl(istart+i—1), i=1,nst(ind))
write (ldbg ,108) (ang2(istart+i—1), i=1,nst(ind))
write (ldbg ,109) (ang3(istart+i—1), i=1,nst(ind))
write (ldbg ,110) (anisl(istart+i—1),i=1,nst(ind))
write(ldbg ,111) (anis2(istart+i—1),i=1,nst(ind))
103 format(/,’ USER input variogram for variables ’,i2,’ and ’,i2,/,
+ ’ number of structures=',i2,’ nugget effect=",{12.4)
104 format (’ types of structures: ’,10i2)
105 format (’ aa values: ;10112 .4)
106 format ('’ cc values: 7,10112 .4)
107 format (’ angl values: 7,10112 .4)
108 format ('’ ang2 values: 7,10112 .4)
109 format (’ ang3 values: 710112 .4)
110 format (’ anisl values: ’,10112 .4)
111 format ('’ anis2 values: ;10112 .4)
go to 3
4 close(lin)
write (* ,%)
c
¢ Fill in cross wvariograms j=i if they have not been explicitly entered:
c

do i=1,nvr
do j=1,nvr

ind1 = 1 + (j—1)*MAXVAR
ind2 = j + (i—-1)«MAXVAR
if (nst(indl).eq.—1.and.nst(ind2).eq.—1) then
write (x,%) ' Need variogram between variables ’,i,j
stop
end if
if (nst(indl).eq.—1) then
nst (indl) = nst(ind2)
c0(indl) = c0(ind2)
istartl =1 4+ (indl—1)*MAXNST
istart2 =1 4+ (ind2—1)*MAXNST
do ist=1,nst(indl)
index2 = istart2 + ist — 1
index1 = istartl + ist — 1

it (index1)

it (index2)

cc(indexl) =

aa(index1)

angl(index1)
ang2(indexl)
ang3(indexl)
anisl (index1)
anis2 (index1)

cc(index?2)

aa(index2)

angl(index2)
ang?2(index2)
ang3(index2)
anisl(index2)
anis2 (index2)

end do

else if(nst(ind2).eq.—1) then
nst (ind2) = nst(indl)
c0(ind2) = c0(indl)
istartl =

1 + (ind1—1)+MAXNST

69

istart2 =1 4 (ind2—1)*MAXNST

do ist—=1,nst(ind2)
index2 = istart2 + ist — 1
index1 = istartl + ist — 1
it (index2) = it (index1)
cc(index2) = cc(index1)
aa(index2) = aa(index1)

angl (index2) = angl(indexl)
ang2(index2) = ang2(indexl)
))

ang3 (index2) = ang3(indexl
anisl (index2) = anisl (index1)
anis2 (index2) = anis2(index1)
end do
end if
end do
end do

c
¢ Rescale the "Tmax/Tmin" parameter to make it equal to the sill
c
if(nvr.eq.2.0r.it (1).eq.7) then
do i=1MXVARG«MAXNST
if(cc(i).gt.0) then
cc(i) = (0.25 % LOG(cc(i)))**2
else if(cc(i).lt.0) then

write (x,%) > Warning: nil or negative sill defined ’
endif
end do

end if
c
¢ Has the linear model of coregionalization been wused?
c

linmod = .true.

do i=1,nvr
do j=1,nvr
indl = 1 + (j—1)*MAXVAR

do i2=1,nvr

do j2=1,nvr
ind2 = i2 + (j2—1)*MAXVAR
if (nst(indl).ne.nst(ind2)) linmod = .false.

istartl = 1 4+ (ind1—1)*MAXNST
istart2 = 1 4+ (ind2—1)*MAXNST
do ist=1,nst(indl)
index2 = istart2 + ist — 1
indexl = istartl + ist — 1
if (it (index1).ne.it (index2).or.

+ abs(aa(indexl) — aa(index2)).gt .EPSLON.or.
+ abs(angl(indexl) — angl(index2)).gt.EPSLON.or.
+ abs(ang2(index1) — ang2(index2)).gt.EPSLON.or.
+ abs(ang3(indexl) — ang3(index2)).gt.EPSLON.or.
+ abs(anisl(index1) — anisl(index2)).gt.EPSLON.or.
+ abs(anis2(index1l) — anis2(index2)). gt .EPSLON)
+ linmod = .false.
end do
end do
end do
end do
end do

if (linmod) then

70 A. GSLIB Code : Main Algorithm

Yes, the linear model of coregionalization has been wused, now check
to ensure positive definiteness:

[I e T e T

posdef = .true.
do i=1,nvr
do j=1,nvr
if(i.ne.j) then
ii = i+(i—1)xMAXVAR
ji =3+
ij = i+(j—1)«MAXVAR
jio= g

istartjj =
istartij =
istartji =
c
¢ First check the nugget effects:
c
if(c0(ii).le.0.0.0r.c0(jj).le.0.0.0r.
+ (cO(ii)*cO0(jj))-1t.(cO(ij)*cO(ji))) then
posdef = .false.
write (ldbg ,120) i,]
endif
do ist=1,nst(ii)
indexii = istartii
indexjj = istartjj
indexij = istartij ist —
indexji = istartji ist —
if(cc(indexii).le.0.0.0or.cc(indexjj).le.0.0.0r.
+ (cc(indexii)*cc(indexjj)).1t.
+ (cc(indexij)xcc(indexji))) then
posdef = .false.
write (1ldbg ,121) ist ,i,]

ist —
ist —

++ 4+
A~

endif
end do
end if
end do
end do
120 format (’
+)
(

/,’ Positive definiteness violation on nugget effects
/,’ between ’,i2,’ and ’,i2)

121 format (/,’ Positive definiteness violation on structure ’,i2
/

Jr

,” between ’,i2,’ and ’,i2)

The model is not positive definite:

if (.not.posdef) then

write (*,%)

write (x,x) ' The linear model of coregionalization is NOT’
write (x,%) ’ positive definite! This could lead to singular
write (x,%) matrices and unestimated points.’

write (x,%)

write (x,%) 7 Do you want to proceed? (y/n)’

read (x,’(a)’) str

if(str(1:1).ne.’y’.and. str(1:1).ne.’Y’) stop

end if

7

7

else

[T o T o~ T o B o T S T T o R - T T e T T e T

71

[I o T o T o B o B o B o I S T S T

write (x,%)
write (x,%)
write (*,%)
write (*,%)
write (*x,%)
write (x,%)

No linear model of coregionalization :

A linear model of coregionalization has NOT’
" been wused!! This could lead to many singular’
" matrices and unestimated points.’

" Do you want to proceed? (y/n)’

read (x,’(a)’) str
if(str(1:1).ne.’y’.and.str (1:1).ne.’Y’) stop

endif

¢ Open Surfer files
if (str.ne.’’) then

else

endif

if (noutfile.eq.1) then
open (21, file=str ,status="unknown’)
write (21,7 (a4)’) "DSAA’
write (21 %)
write (21 ,x)
write (21 ,x)

nx,ny
xmn, xmn+(nx—1)*xsiz
ymn,ymn+(ny —1)*xysiz
endif
if (noutfile.eq.2) then
open (21, file=str ,form="binary ’ ,status="new’)
write (21) 'DSBB’
write(21) INT2(nx),INT2(ny)
write (21) dble(xmn),dble (xmn+(nx—1)*xsiz),dble (ymn),
dble (ymn+(ny—1)xysiz)
endif

if (noutfile.eq.1) then
call fopensurf(str)
open (21, file=str ,status="unknown’)
write (21,7 (a4)’) "DSAA’
write (21 %)
write (21 %)
write (21 ,x)

nx,ny
xmn, xmn+(nx—1)*xsiz
ymn,ymn+(ny —1)*xysiz
endif
if (noutfile.eq.2) then
call fopensurf(str)
open (21, file=str ,form="binary ’ ,status="new’)
write (21) 'DSBB’
write(21) INT2(nx),INT2(ny)
write (21) dble(xmn),dble (xmn+(nx—1)*xsiz),dble (ymn),
dble (ymn+(ny—1)xysiz)
endif
if (noutfile.eq.3) then
call fopensurf(str)

open (21, file=str ,form="binary ’,status="unknown’)
surflong = 1112691524

write (21)

surflong

surflong = 4

write(21) surflong
surflong =1
write(21) surflong

surflong — 1145655879

write (21)

surflong

surflong = 72

write (21)

surflong

72 A. GSLIB Code : Main Algorithm

surflong = ny

write(21) surflong

surflong = nx

write(21) surflong

write (21) dble(xmn),dble(ymn),dble(xsiz),dble(ysiz)

endif
c
¢ Perform some quick error checking:
c
f(ndmin .le.0) stop ’ NDMIN too small’
f (ndmaxp . gt .MAXSAM) stop ’ NDMAXP too large’
f (ndmaxg. gt .MAXSAM) stop ’ NDMAXG too large’
f (ndmaxs. gt .MAXSAM) stop ' NDMAXS too large’
f ((ndmaxs/2).le.nvr.and.ktype.eq.2) then
write (x,100) nvr,ndmaxs
100 format(’WARN]NG: with traditional ordinary cokriging the ’,
+ /,’sum of the weights applied to EACH secondary data’,
+ /,’is zero. With ndmaxs set low and nvr large the’,
+ /] secondary data will not contribute to the estimate’)
endif
c
¢ Check to make sure the data file exists, then either read in the
¢ data or write an error message and stop:
c
inquire (file=datafl ,exist=testfl)
if (.not.testfl) then
write (x ,x) 'ERROR data file ’,datafl ,’ does not exist!’
stop
endif
c
¢ The data file exists so open the file and read in the header
¢ information. Initialize the storage that will be used to summarize
¢ the data found in the file:
¢
open(lin , file=datafl ,status="0OLD’)
read(lln,’()’ ,err= 99) str
read (lin ,* ,err=99) nvari
do i=1,nvari
read(lin ,’ ()’ ,err=99)
end do
do i=1,nvr
nn(i) =0
av(i) = 0.0
ss(i) = 0.0
end do
c
¢ Some tests on column numbers:
c
if(ixl.gt.nvari.or.iyl.gt.nvari.or.izl.gt.nvari.or.
+ ikod.gt.nvari.or.ivrl(1).gt.nvari) then
write (x,x) ’There are only ’,nvari,’ columns in input data’
write (x,%x) > your specification is out of range’
stop
end if
¢
¢ Read all the data until the end of the file:
c

nd = 0

73

7 read (lin ,* ,end=9,err=99) (var(j),j=1,nvari)
nd = nd + 1
if (nd.gt . MAXDAT) then

write (x,%) ' ERROR: Exceeded available memory for data’

stop
end if
c
¢ Store data values (all secondary data must be transformed such that
¢ their mean is the same as the primary variable (if the first type of
¢ ordinary kriging is being wused)):
c
vr(nd) = var(ivrl (1))
if(vr(nd).ge.tmin.and.vr(nd). 1t .tmax) then
nn(l) = nn(l) + 1
av(l) = av(l) + vr(nd)
ss(1) = ss(1) + vr(nd)xvr(nd)
endif
if (logoptl.eq.1) then
if (vr(nd).gt.0.0) then
vr(nd) = log(vr(nd))
else
vr(nd) = —9999999
write (x ,x)’ Logarithmic Interpolation cannot be used for ’,
+ "values <=0: is this value a no—data flag?’
endif
end if
if(nvr.ge.2) then
secl(nd) = var(ivrl(2))
if (secl(nd).ge.tmin.and.secl(nd). 1t .tmax) then
nn(2) = nn(2) + 1
av(2) = av(2) + secl(nd)
ss(2) = ss(2) + secl(nd)xsecl(nd)
endif
if (logopt2.eq.1) then
if (secl(nd).gt.0.0) then
secl(nd) = log(secl(nd))
else
secl(nd) = —9999999
write (x,x)’ Logarithmic Interpolation cannot be used for
+ "values <=0: is this value a no—data flag?’
endif
end if
end if
c

¢ Assign the coordinate location of this data:
c
if(ixl.le.0) then

x(nd) = xmn
else
x(nd) = var(ixl)
endif
if(iyl.le.0) then
y(nd) = ymn
else

y(nd) = var(iyl)
endif
if(izl.le.0) then
z(nd) = zmn

)
7

74 A. GSLIB Code : Main Algorithm

else
z(nd) = var(izl)
endif
if (ikod.le.0) then
kod(nd) = 0
else
kod (nd) = var(ikod)
endif
go to 7
9 close(lin)

c
¢ Compute the averages and variances as an error check for the user:
c

do i=1,nvr

av(i) = av(i) / max(real(nn(i)),1.0)
ss(i) =(ss(i) / max(real(nn(i)),1.0)) — av(i) * av(i)
write (x,%x) ’'COKIBC Variable ’,i,’ in data file: ’,ivrl(i)
write (x,x) > Number — ’ nn(i)
write (x,%x) > Average = ’,av(i)
write (x,%) > Variance = ’,ss (i)
end do
c
¢ Create arrays for no flow screen segments
c
call scrarr(nd,x,y,kod,vr,nsc)
call screens(nd,x,y,kod,vr,nsc,xsl,ysl, xs2,ys2)
write (113 ,%x) ’Nb screen segments’, nsc
write (113 ,%) * i xs1 ysl xs2 ys2’
do i=1,nsc
write (113,7(i4,4f10.2) ") i,xs1(i),ys1(i),xs2(i),ys2(i)
enddo
c
¢ Add points along boundary lines
c
write (114 ,+%) ’Nb points’, nd
csiz = (xsiz + ysiz) / 2.
call bdarr(nd,x,y,kod, csiz ,newnd)
nd = newnd
write (114 ,%) ’New nb points’, nd
write (114 ,%) > i X y z i
+ ‘vr secl kod’
call bdpts(nd,x,y,z,vr,secl kod, csiz)
do i=1,nd
write (114,°(i4,5f10.2,i8)’) i,x(i),y(i),z(i),vr(i),secl(i),
+ kod (1)
enddo
c
¢ Apply the correction factor for the constant flux data : Q —> Delta h
c

call fluxcorr(nd,x,y,vr,kod, csiz ,Tmean)
c
¢ Add 2 fictive z & y coordinates along prescribed fluz boundary lines

call ficcoord(nd,x,y,kod, csiz ,ddx,ddy)

write (115 ,%) ’ i X y vr ,
+ "secl kod ddx ddy’

do i=1,nd

write (115,7(i4,4£10.2,i8 ,2£10.2)") i,x(i),y(i),vr(i),secl(i),

75

+ kod (1) ,ddx(i),ddy(i)
enddo
c
¢ Check For duplicate points
c
call remdup(nd,x,y,z,vr,secl kod,ddx,ddy,newnd)
write (x,*) nd,newnd
write (x,x) ’Duplicate X,Y Pairs removed =’,nd—newnd
if (newnd.lt.nd) nd = newnd
write (1151 ,%) * i X y vr ’,
+ "secl kod ddx ddy’
do i=1,nd
write (1151, (i4,4£10.2,i8,2f10.2) ") i,x(i),y(i),vr(i),secl (i
+ kod (i) ,ddx(i),ddy(i)
enddo
c
¢ Open output files and write headers:
c

open(lout , file=outfl ,status="UNKNOWN’)
write (lout ,101) str
101 format (’COKTBC with:’,a40,/,’2’,/, estimate ’,/,
+ "estimation variance ’)
write (ldbg ,102) str
102 format (/ , 'DEBUGGING COKIBC with:’,a40)

return
c
¢ Error in an Input File Somewhere:
c

98 stop 'ERROR in parameter file!’
99 stop '’ERROR in data file!’
end

subroutine coktbc

)

198/
2006

c
c
c CoKriging of a 3—D Rectangular Grid
c stk ok ok ok ok oKk ok KK K KK S KK K KK R KK R KK K KK K KK R K K
c
¢ This subroutine estimates point or block values of one wvariable by
¢ ordinary cokriging wusing up to MAXVAR wvariables.
c
c
c
¢ Original: A.J. Desbarats
¢ Head/Log(T) + BC Cokriging Add—On: J.P. Delhomme & P. Le Cointe
c
include ’coktbc.inc’
parameter (PMX=999.)
real distp (MAXSAM) , dists (MAXSAM)
realx8 cbb
real (4), allocatable :: krigout (:)
integer nump(MAXSAM) ,nums (MAXSAM) , vars (MAXSAM) , whatest
real x8 rottemp , blnkval
integerx4 dataid ,datalen
logical fircon

data fircon /.true./

76 A. GSLIB Code : Main Algorithm

integer (4) :: nalloc
nalloc = nxx*ny

allocate (krigout(nalloc))
datamax = 1.0e—39
datamin = 1.0e29

c
¢ Set up the search and covariance rotation matrices:
c
covmax = c0(1)
do is=1,nst (1)
call setrot(angl(is),ang2(is),ang3(is),anisl(is),anis2(is),
+ is ,MAXROT, rotmat)
if (it (is).eq.4) then
covmax = covmax + PMX
else if(it(is).eq.7) then
ct = cc(is) * (gradh % aa(is) / 4.)xx2
covmax = covmax + 20.xct
else if(it(is).eq.8) then
covmax = covmax + cc(is)xgradh
else
covmax = covmax + cc(is)
endif
end do
isrot = MAXNST + 1
if (whatest.eq.0) then
call setrot(sangl, sang2,sang3,sanispl ,sanisp2,isrot ,MAXROT,
+ rotmat)
else
call setrot (sangl,sang2,sang3 ,sanissl ,saniss2 ,isrot ,MAXROT,
+ rotmat)
endif
c

¢ Finish computing the rescaling factor and stop if unacceptable:

c
if (radsqdp.1t.1.0) then

resc = 2.0 * radiusp / max(covmax,0.0001)
else
resc =(4.0 % radsqdp)/ max(covmax,0.0001)
endif
if(resc.le.0.0) then
write (x,%) ’'ERROR KT3D: The rescaling value is wrong ’,resc
write (% ,x) ’ Maximum covariance: ’,covmax
write (% ,x) search radius: ’,radiusp
stop
endif
resc = 1.0 / resc
c
¢ Set up for super block searching:
c
nsec = nvr — 1

write (*,%) ’Setting up super block search strategy’
call setsupr (nx,xmn,xsiz ,ny,ymn, ysiz ,nz,zmn, zsiz ,nd,x,y,z,

+ vr ,ddx,ddy,tmp, nsec , secl ,MAXSBX,MAXSBY,MAXSBZ, nishb ,
+ nxsup ,Xmnsup, xsizsup ,nysup ,ymnsup, ysizsup ,nzsup ,
+ zmnsup , zsizsup)
write (116 ,«) > i X y z i
+ ‘vr secl ddx ddy”’

do i=1,(nd)

77

[I e T e T o

[I o T o T N

[I e I

[I e T e

write (116, (i4 ,7f10.2)’) i,x(i),y(i),z(i),vr(i),secl(i),

+ ddx(i),ddy(i)

enddo

call picksup (nxsup,xsizsup ,nysup,ysizsup ,nzsup,zsizsup ,
+ istot ,MAXROT, rotmat ,radsqdp ,nsbtosr ,ixsbtosr ,
+ iysbtosr ,izsbtosr)

Compute the number of drift terms, if SK is being considered

the

Set
are
the

n we will set all the drift terms off and mdt to 0):
mdt = 1
do i=1.9

if (ktype.eq.0.or.ktype.eq.1) idrif(i) = 0
if(idrif(i).1t.0.0r.idrif(i).gt.1) then
write (x,%) ’ERROR KT3D: invalid drift term’,idrif(i)
stop
endif
mdt = mdt + idrif (i)
end do
if (ktype.eq.0) mdt = 0
if (ktype.eq.1) mdt = 0

up the discretization points per block. Figure out how many
needed, the spacing, and fill the zdb, ydb and zdb arrays with

offsets relative to the block center (this only gets done once):
ndb = nxdis * nydis * nzdis
xdis = xsiz / max(real(nxdis),1.0)
ydis = ysiz / max(real(nydis),1.0)
zdis = zsiz / max(real(nzdis),1.0)
xloc = —0.5%(xsiz+xdis)
i =0
do ix =1,nxdis
xloc = xloc + xdis
yloc = —0.5%(ysiz+ydis)

do iy=1,nydis
yloc = yloc + ydis

zloc = —0.5%(zsiz+zdis)
do iz=1,nzdis
zloc = zloc + zdis
i =i+l

xdb (i) = xloc + 0.5 xsiz
ydb(i) = yloc + 0.5x%ysiz
zdb (i) = zloc + 0.5%zsiz
end do
end do
end do

Initialize accumulators:

uk
vk =
nk =

S oo

.0
.0

Calculate Block Covariance for head and eventually for transmissivity.
Check for point kriging.

call cova3(xdb(1),ydb(1),zdb(1),xdb(1),ydb(1),zdb(1),1,nst MAXNST,

78

A. GSLIB Code : Main Algorithm

Cc

Jr
unbias —

+
+

c0,it ,cc,aa,gradh ,angh ;1 MAXROT, rotmat ,cmax, cova)

dble(cova)
if (whatest.ne.0)

if(ndb.le.1) then
cbb = cova

else

cbb =

end do

0.0

do i=1,ndb
do j=1,ndb

if (whatest.eq.0) then

call cova3(xdb(i),ydb(i),zdb(i),xdb(j),ydb(j),

zdb(j),1,nst ,MAXNST, c0,it ,cc,aa,gradh,

angh ,1 ,MAXROT, rotmat ,cmax, cova)

else

call cova3(xdb(1),ydb(1),zdb(1),xdb(1),ydb(1),

zdb (1) ,4 ,nst ,MAXNST, c0, it ,cc,aa,gradh,
angh ,1 MAXROT, rotmat ,cmax, cova,)

call cova3(xdb(i),ydb(i),zdb(i),xdb(j),ydb(j),
zdb(j),4,nst ,MAXNST, c0,it ,cc,aa,gradh,
angh ,1 ,MAXROT, rotmat ,cmax, cova)

endif

if(i.eq.j) cova =

cbb = ¢cbb + cova

end do
cbb = cbb/real(ndbxndb)

endif
write (1dbg ,

*)

"Block average covariance

¢ Mean values of the drift functions:

Cc

C

¢ MAIN LOOP OVER ALL THE BLOCKS IN THE GRID:

Cc

do i=1,9
bv (i)

end do

xloc =

i =0

do i=1,ndb
bv (1)
bv(2)
bv (3)
bv (4)
bv (5)
bv (6)
bv (7)
bv (8)
bv (9)

end do

do i=1,9
bv (i)

end do

ncells = 0

do 4 iz=1,nz
zloc = zmn + (iz —1)xzsiz
do 4 iy=1,ny
yloc = ymn + (iy —1)xysiz
do 4 ix=1,nx

0.0

At

—0.5%(xsiz+xdis)

xdb (1)
ydb (i)
zdb (1)
xdb (i)*xdb (i)
vdb (i)#*ydb (i)
zdb (i)*zdb (1)
xdb (i)*ydb (i)
xdb (i)*zdb (i)
ydb(i)*zdb (i)

cova — c0(1)

’,cbb

(bv(i) / real(ndb)) x resc

79

xloc = xmn + (ix—1)xxsiz
c
¢ Find the nearest head data samples:
c
call srchsupr(xloc,yloc,zloc ,radsqdp,isrot ,MAXROT, rotmat ,nsbtosr ,
+ ixsbtosr ,iysbtosr ,izsbtosr ,noct ,nd,x,y,z,ddx,ddy,
+ tmp, nisb ,nxsup ,xmnsup, xsizsup ,nysup ,ymnsup, ysizsup ,
+ nzsup ,zmnsup, zsizsup ,nsc ,xsl,ysl ,xs2,ys2,nclose ,
+ close ,infoct)
c
¢ Load the nearest head data in za,ya,za,vra,ddza,ddya:
c
np =0
na =0

do i=1,nclose
if (np.eq.ndmaxp.and.nborhood.ne.0) go to 32
ind = int (close(i)+0.5)
if ((vr(ind).ge.tmin).and.(vr(ind). 1t .tmax).

+ and.(np.lt .ndmaxp.or.nborhood.eq.0)) then
np = np + 1
na = na + 1
xa(na) = x(ind) — xloc + 0.5xxsiz
ya(na) = y(ind) — yloc + 0.5xysiz
za(na) = z(ind) — zloc + 0.5xzsiz
vra(na) = vr(ind)
ddxa(na) = 0.0
ddya(na) = 0.0
iva(na) =1
end if
end do
c
¢ Test number of data samples found:
c
if(np.1t .ndmin) then
est = UNEST
estv = UNEST
go to 4
end if
c
¢ Test if there are enough data samples to estimate all drift terms:
c

if(np.ge.1l.and.np.le.mdt) then
if (fircon) then
write (1dbg ,999)
fircon = .false.
end if
est = UNEST
estv = UNEST
go to 4
end if
999 format(’ Encountered a location where there were too few data ’,/,
" to estimate all of the drift terms but there would be’,/,
’ enough data for OK or SK. KT3D currently leaves ’,/,
’ these locations unestimated.’,/,
This message is only written once — the first time.’,/)

+ o+ o+

)

c
¢ Find the nearest "gradient” samples:

80 A. GSLIB Code : Main Algorithm

SO0

o O O

SO0

call srchsupr2(xloc,yloc,zloc ,radsqdp,isrot ,MAXROT, rotmat ,
nsbtosr ,ixsbtosr ,iysbtosr ,izsbtosr ,noct ,nd,x,y,z,
ddx,ddy,tmp, nisb ,nxsup ,xmnsup, xsizsup ,nysup ,
ymnsup, ysizsup ,nzsup ,zmnsup, zsizsup ,nsc ,xsl,ysl,
xs2 ,ys2 ,nclose2 , close2 ,infoct2)

+ 4+ +

Load the mnearest "gradient” data in za,ya,za,vra,ddza,ddya:

ng = 0

do i=1,nclose?2
if (ng.eq.ndmaxg.and.nborhood.ne.0) go to 32
ind = int(close2(i)+0.5)
if ((vr(ind).ge.tmin).and.(vr(ind). 1t .tmax).

+ and.(ng. 1t .ndmaxg.or .nborhood.eq.0)) then
ng = ng + 1
na — na + 1
xa(na) = x(ind) — xloc + 0.5xxsiz
ya(na) = y(ind) — yloc + 0.5xysiz
za(na) = z(ind) — zloc + 0.5xzsiz
vra(na) = vr(ind)

ddxa(na) = ddx(ind)
ddya(na) = ddy(ind)

iva(na) =1

if(vr(ind).ne.0) then
ng = ng + 1
na — na + 1
xa(na) = x(ind) — xloc + 0.5%xsiz
ya(na) = y(ind) — yloc + 0.5%ysiz
za(na) = z(ind) — zloc + 0.5%zsiz
vra(na) =0

ddxa(na) = —ddy(ind)
ddya(na) = ddx(ind)
iva(na) 1
end if
end if
end do

Find the nearest samples:

call srchsupr3(xloc,yloc,zloc ,radsqdp,isrot ,MAXROT, rotmat ,nsbtosr
+ ixsbtosr ,iysbtosr ,izsbtosr ,noct ,nd,x,y,z,tmp,nisb ,
+ nxsup ,Xmnsup , Xxsizsup ,nysup ,ymnsup, ysizsup ,nzsup ,
+ zmnsup , zsizsup ,nclose3 ; closed ,infoct3)

Load secondary data until marimum is met:

ns = 0
do i=1,nclose3
if (ns.eq.ndmaxs.and.nborhood.ne.0) go to 32
ind = int (close3 (i)+0.5)
if ((secl(ind).ge.tmin).and.(secl(ind).1t .tmax).
+ and.(nvr.ge.2).and.(ns.1t .ndmaxs.or.nborhood.eq.0)) then
ns — ns + 1
na — na + 1
xa(na) = x(ind) — xloc + 0.5xxsiz
ya(na) = y(ind) — yloc + 0.5xysiz
za(na) = z(ind) — zloc + 0.5xzsiz

81

oS O O

o O O

32

vra(na) = secl(ind)
ivar = 2
if (ktype.ne.2)
+ vra(na) = vra(na) — vmean(ivar) + vmean(1l)
ddxa(na) = 0.0
ddya(na) = 0.0
iva(na) = 2
end if
end do
continue
write (119,%) * i X y zZ ,
+ ‘vr ddx ddy’
do i=1,na
write (119,°(i4,6f10.2)°) i,xa(i),ya(i),za(i),vra(i),
+ ddxa(i),ddya(1i)

enddo

Solve the Kriging System:

Set

if (ktype.eq.0) neq = na
if (ktype.eq.1) neq = na + 1
if (ktype.eq.2) neq = na + mdt + nvr — 1
if ((neq—ma).gt.na.or.na.lt .ndmin) then
write (lout ,100) UNEST,UNEST
go to 4
end if
up kriging matrices:
do i=1,neqx*neq
a(i) = 0.0
end do
do i=1,neq
r(i) = 0.0
end do
do j=1,na
do i=1,j
ind = iva(i) + (iva(j)—1)«MAXVAR
if((i.gt.np).and.(i.le.np+ng).and.(j.gt.np).
+ and.(j.le.np+ng)) then
xil = xa(i) — ddxa(i)
xi2 = xa(i) + ddxa(i)
yil = ya(i) — ddya(i)
yi2 = ya(i) + ddya(i)
xjl = xa(j) — ddxa(j)
xj2 = xa(]j) + ddxa(j)
yil = ya(j) — ddya(j)
vi2 = ya(j) + ddya(j)
call cova3(xil,yil,za(i),xjl,yjl,za(j),ind,
+ nst ,MAXNST, c0, it ,cc ,aa,gradh ,angh,1,
+ MAXROT, rotmat ,cmax, covl)
call cova3(xi2,yi2,za(i),xjl,yjl,za(j),ind,
+ nst ,MAXNST, c0, it ,cc,aa,gradh ,angh, 1,
+ MAXROT, rotmat ,cmax, cov2)
call cova3(xil,yil,za(i),xj2,yj2,za(j),ind,
+ nst ,MAXNST, c0, it ,cc ,aa,gradh ,angh, 1,
+ MAXROT, rotmat ,cmax, cov3)

call cova3(xi2,yi2,za(i),xj2,yj2,za(j),ind,

82

A. GSLIB Code : Main Algorithm

nst ,MAXNST, c0, it ,cc ,aa,gradh ,angh, 1,

MAXROT, rotmat ,cmax, cov4)

cova = (covl—cov2) — (cov3—cov4)

else if((i.le.np.and.j.gt.np.and.j.le.np+ng).or

else

end

(i.gt.np.and.i.le.nptng.and.j.gt.np+ng)) then

xjl = xa(j) — ddxa(j)
xj2 = xa(j) + ddxa(j)
yil = ya(j) — ddya(j)
yj2 = ya(j) + ddya(j)
call cova3(a(i),ya(i),za(i),xjl,yjl,za(j),

ind nst ,MAXNST, c0 , it ,cc ,aa,gradh ,

angh ,1 MAXROT, rotmat ,cmax, covl)
call cova3(xa(i),ya(i),za(i), X_]2 ,vi2,za(]),

ind , nst ,MAXNST, c0, it ,cc,aa,gradh,

angh ,1 MAXROT, rotmat ,cmax, cov2)
cova = covl — cov2

call cova3(xa(i),ya(i),za(i),xa(j),ya(j),
za(j),ind ,nst ,MAXNST, c0, it ,cc ,aa,

gradh ,angh ,1 ,MA)GROT, rotmat ,cmax, cova)

a(neqx(i—1)+j) = dble(cova)
a(neqx(j—1)+i) = dble(cova)

end do

xx = xa(]j)
yy = va(j)
77z = za(])

¢ Right hand side

covariance if est. variable = head:

if (whatest.eq.0) then

iv =

1

ind = iv + (iva(j)—1)*MAXVAR
f(ndb.le.1) then

else

if (]

else

.le.np).or.(j.gt.np+ng)) then

call cova3(xx,yy,zz,xdb(1),ydb(1),zdb(1),ind,

nst ,MAXNST, c0, it ,cc,aa,gradh ,angh, 1,

MAXROT, rotmat ,cmax, cova)

chb = cova

xil = xx — ddxa(j)
xi2 = xx + ddxa(j)
yil = yy — ddya(j)

+
yi2 = yy + ddya(j)
3

call cova3(xil,yil,zz,xdb(1),ydb(1),zdb(1),ind,
nst ,MAXNST, c0, it ,cc ,aa,gradh ,angh,1,

MAXROT, rotmat ,cmax, cbl)

call cova3(xi2,yi2,zz,xdb(1),ydb(1),zdb(1),ind,
nst ,MAXNST, c0, it ,cc,aa,gradh ,angh, 1,

MAXROT, rotmat ,cmax, ch2)
cb = ¢bl — c¢b2

end if
cb = 0.0
do j1=1,ndb

if((j.le.np).or.(j.gt.np+ng)) then
call cova3(xx,yy,zz,xdb(jl),ydb(j1),

zdb(j1),ind , nst ,MAXNST, c0, it ,cc,aa,

+ gradh ;angh ;1 MAXROT, rotmat ,cmax, cova)

else
xil = xx — ddxa(j)
xi2 = xx + ddxa(j)
yil = yy — ddya(j)
yi2 = yy + ddya(j)
call cova3(xil,yil, zz,xdb(1),ydb(1),
+ zdb (1) ,ind ,nst ,MAXNST, c0, it ,cc,aa,
+ gradh ;angh ;1 MAXROT, rotmat ,cmax, covl)
call cova3(xi2,yi2,zz,xdb(1),ydb(1),
+ zdb (1) ,ind ,nst ,MAXNST, c0, it ,cc,aa,
+ gradh ;angh ;1 MAXROT, rotmat ,cmax, cov2)
cova = covl — cov2
end if

dx = xx — xdb(j1)

dy = yy — ydb(j1)

dz = zz — zdb(j1)

if ((dx*xdxt+dy+dy+dz*dz). 1t .EPSLON) then
cb = ¢cb 4+ cova — c0(ind)

else
cb = ¢cb + cova
end if
end do
cb = ¢b / real(ndb)
endif
r(j) = dble(ch)
c
¢ Right hand side covariance if est. wvariable = transmittivity:
c
else
iv =2

ind = iv + (iva(j)—1)*MAXVAR
if(ndb.le.1) then
if ((j.le.np).or.(j.gt.np+ng)) then
call cova3(xdb(1),ydb(1),zdb(1),xx,yy,zz,ind,
+ nst ,MAXNST, c0, it ,cc ,aa,gradh ,angh,1,
+ MAXROT, rotmat ,cmax, cova)
cb = cova
else
xil = xx — ddxa(j)
xi2 = xx + ddxa(j)
yil = yy — ddya(j)
yi2 = yy + ddya(j)
call cova3(xdb(1),ydb(1),zdb(1),xil,yil,zz,ind,

+ nst ,MAXNST, c0, it ,cc ,aa,gradh ,angh, 1,
+ MAXROT, rotmat ,cmax,cbl)
call cova3(xdb(1),ydb(1),zdb(1),xi2,yi2,zz,ind,
+ nst ,MAXNST, c0, it ,cc,aa,gradh ,angh, 1,
+ MAXROT, rotmat ,cmax , cb2)
cb = cbl — cb2
end if
else
cb = 0.0
do j1=1,ndb

if ((j.le.np).or.(j.gt.np+ng)) then
call cova3(xdb(jl1),ydb(j1),zdb(j1),
+ Xx,yy,zz ,ind ,nst ,MAXNST, c0 , it ,cc,aa,
+ gradh ;angh ;1 MAXROT, rotmat ,cmax, cova)

84 A. GSLIB Code : Main Algorithm

else
xil = xx — ddxa(j)
xi2 = xx + ddxa(j)
yil = yy — ddya(j)
yi2 = yy + ddya(j)
call cova3(xdb(1),ydb(1),zdb(1),xil,
+ yil ,zz ,ind ,nst ,MAXNST, c0, it ,cc ,aa,
+ gradh ;angh ;1 MAXROT, rotmat ,cmax, covl)
call cova3(xdb(1),ydb(1),zdb(1),xi2,
+ yi2 ,zz ,ind ,nst ,MAXNST, c0, it ,cc ,aa,
+ gradh ;angh ;1 MAXROT, rotmat ,cmax, cov2)
cova = covl — cov2
end if

dx = xx — xdb(j1)

dy = yy — ydb(j1)

dz = zz — zdb(j1)

if ((dxxdx+dy*xdy+dz=*dz). 1t .EPSLON) then
cb = ¢b 4+ cova — c0(ind)

else
cb = cb + cova
end if
end do
cb = cb / real(ndb)
endif
r(j) = dble(cb)
end if
end do
c
¢ Set up for either simple or ordinary cokriging:
c
if (ktype.eq.1) then
do i=1,na
a(neq#*(i—1)+na+1) = dble(unbias)
a(neqxnati) = dble(unbias)
end do
else if(ktype.eq.2) then
do i=1,mdt
lim = na + i
do k=1,np
a(neqx(lim—1)+k) = dble(unbias)
a(neq#*(k—1)+1lim) = dble(unbias)
end do
if (whatest.eq.0) r(lim) = dble(unbias)
end do
do j=1,(nvr-1)
lim2 = na + mdt + j
do k=(np+ng) ,na
a(neq*(lim2—-1)+k) = dble(unbias)
a(neq*(k—1)+1lim2) = dble(unbias)
end do
if (whatest.ne.0) r(lim2) = dble(unbias)
end do
endif
c
¢ Add the additional unbiasedness constraints:
c

if (ktype.eq.2) then
im = na + 1

85

c
¢ First drift term (linear in "z"):
c
if(idrif(1).eq.1) then
im=im+1
do k=1,np
a(neq#*(im—1)+k) = dble(xa(k)*resc)
a(neqx(k—1)+im) = dble(xa(k)*resc)
end do
do k=(np+1),(nptng)
xkl = xa(k) — ddxa(k)
xk2 = xa(k) + ddxa(k)
a(neqx(im—1)+k) = dble ((xkl—xk2)*resc)
a(neqx(k—1)+im) = dble ((xkl—xk2)*resc)
end do
if (whatest.eq.0) r(im) = dble(bv (1))
endif
c
¢ Second drift term (linear in "y"):
c
if(idrif(2).eq.1) then
im=im+1
do k=1,np
a(neqx(im—1)+k) = dble(ya(k)*resc)
a(neqx(k—1)+im) = dble(ya(k)*resc)
end do
do k=(np+1),(nping)
vkl = ya(k) — ddya(k)
yk2 = ya(k) + ddya(k)
a(neqx(im—1)+k) = dble ((ykl—yk2)*resc)
a(neqx(k—1)+im) = dble ((ykl—yk2)*resc)
end do
if (whatest.eq.0) r(im) = dble(bv(2))
endif
c
¢ Third drift term (linear in "z"):
c
if(idrif (3).eq.1) then
im—=im+1
do k=1,np
a(neqx(im—1)+k) = dble(za(k)*resc)
a(neqx*(k—1)+im) = dble(za(k)*resc)
end do
if (whatest.eq.0) r(im) = dble(bv(3))
endif
c
¢ Fourth drift term (quadratic in "z"):
c
if(idrif(4).eq.1) then
im—im+1
do k=1,np

a(neqx*(im—1)+k) = dble(xa(k)*xa(k)*resc)
a(neq*(k—1)+im) = dble(xa(k)xxa(k)*resc)
end do
do k=(np+1),(nping)
xkl = xa(k) — ddxa(k)
xk2 = xa(k) + ddxa(k)
a(neq*(im—1)+k) = dble ((xkls*xkl—xk2+xk2)*resc)

86 A. GSLIB Code : Main Algorithm

a(neq*(k—1)+im) = dble ((xklxxkl—xk2+xk2)*resc)
end do
if (whatest.eq.0) r(im) = dble(bv(4))
endif
c
¢ Fifth drift term (quadratic in "y"):
c
if(idrif(5).eq.1) then
im=im+1
do k=1,np
a(neqx*(im—1)+k) dble (ya(k)*ya(k)*resc)
a(neq*(k—1)+im) = dble(ya(k)xya(k)*resc)
end do
do k=(np+1),(nping)
ykl = ya(k) — ddya(k)
yk2 = ya(k) + ddya(k)
a(neq#*(im—1)+k) = dble ((ykl*ykl—yk2xyk2)*resc)
a(neq*(k—1)+im) = dble ((ykl*xykl—yk2xyk2)*resc)

end do
if (whatest.eq.0) r(im) = dble(bv(5))
endif
c
¢ Sizth drift term (quadratic in "z"):
c
if(idrif (6).eq.1) then
im=im+1
do k=1,np
a(neqx*(im—1)+k) = dble(za(k)xza(k)*resc)
a(neqx(k—1)+im) = dble(za(k)xza(k)*resc)
end do
if (whatest.eq.0) r(im) = dble(bv(6))
endif
c
¢ Seventh drift term (quadratic in "zy"):
c
if(idrif(7).eq.1) then
im=im+1
do k=1,np

a(neqx*(im—1)+k) dble (xa(k)*ya(k)*resc)
a(neq*(k—1)+im) = dble(xa(k)xya(k)*resc)
end do
do k=(np+1),(nping)
xkl = xa(k) — ddxa(k)
xk2 = xa(k) + ddxa(k)
ykl = ya(k) — ddya(k)
vk2 = ya(k) + ddya(k)
a(neq*(im—1)+k) = dble ((xkl*ykl—xk2+yk2)*resc)
a(neq*(k—1)+im) = dble ((xklxykl—xk2xyk2)*resc)
end do
if (whatest.eq.0) r(im) = dble(bv(7))
endif

c
¢ Eighth drift term (quadratic in "zz"):
c
if(idrif (8).eq.1) then
im=im+1
do k=1,np
a(neqx*(im—1)+k) = dble(xa(k)*za(k)*resc)

a(neq*(k—1)+im) = dble(xa(k)*za(k)*resc)
end do
do k=(np+1),(nping)
xkl = xa(k) — ddxa(k)
xk2 = xa(k) + ddxa(k)
a(neqx*(im—1)+k) = dble ((xkl—xk2)*za(k)*resc)
a(neq*(k—1)+im) = dble ((xkl—xk2)xza(k)*resc)

end do
if (whatest.eq.0) r(im) = dble(bv(8))
endif
c
¢ Ninth drift term (quadratic in "yz"):
c
if(idrif(9).eq.1) then
im=im+1
do k=1,np
a(neqx*(im—1)+k) = dble(ya(k)*za(k)*resc)
a(neqx(k—1)+im) = dble(ya(k)xza(k)*resc)
end do
do k=(np+1),(nping)
ykl = ya(k) — ddya(k)
yk2 = ya(k) + ddya(k)
a(neqx*(im—1)+k) = dble((ykl—yk2)*za(k)*resc)
a(neq*(k—1)+im) = dble ((ykl—yk2)*za(k)*resc)
end do
if (whatest.eq.0) r(im) = dble(bv(9))
endif
end if
c
¢ Copy the right hand side to compute the kriging wvariance later:
c
do k=1,neq
rr (k) = r(k)
end do
c
¢ Write out the kriging Matriz if Seriously Debugging:
c
if (idbg.ge.3) then
write (ldbg ,%) ’ ’
Write (Ldbg) Tsostotoskoskoskoronkofok skokskokok ok sk skokskok ok Kk R sk sk kot ok R Rk ok ko R R
write (ldbg ,x) ’
write(ldbg ,*) ’Estimating node index : ’,ix,iy,iz
is = 1 — neq
do i=1,neq
is = 1 4+ (i—1)*neq
ie = is + neq — 1
write (ldbg ,103) i,r(i),(a(j),j=is,ie)
103 format (’ r(’,i3,7) =,f7.4,7 a= ’,9(10f7.4))
end do
endif
c
¢ Solve the kriging system:
c

call ktsol(neq,1,1,a,r,s,ising ,MAXEQ)

Write a warning if the matriz is singular:

S O 0

if(ising .ne.0) then

88 A. GSLIB Code : Main Algorithm
write (ldbg ,+) 'WARNING COKIBC: singular matrix’
write (ldbg ,x) ’ for block’,ix ,iy,iz
write (lout ,100) UNEST,UNEST
go to 4
endif
c
¢ Write the kriging weights and data if requested:
c
if (idbg.ge.2) then
write (ldbg ,x) ’ ’
write(ldbg ,*) BLOCK: ’,ix,iy,iz,’ at ’,xloc,yloc,zloc
write (117,7(2f12.2)’) xloc,yloc
write (ldbg ,x) ’ ’
if (ktype.eq.1) then
write (ldbg ,*) Lagrange multiplier: s (na+1)
else if(ktype.ge.2) then
write(ldbg ,*) ’> Lagrange multiplier: ’, s(na+1)
write (ldbg ,x) ’ Lagrange multiplier: ’,s(natmdt+1)
endif
write(ldbg ,*) ’ np, ng, ns and na : ’, np, ng, ns, na
write(ldbg ,*x) ’> BIOCK EST: x, y, z, vr, ddx, ddy, wt ’
do i=1,na
write(ldbg ,’(6f9.2,f12.3)’) xa(i),ya(i),za(i),vra(i),
+ ddxa(i),ddya(i),s(1i)
end do
endif
c
¢ Compute the estimate and the kriging variance:
c
sumw — 0.0
ook = 0.0
ookv = cbb
do i=1,neq
if(i.le.na) then
ookv = ookv — real(s(i))*rr(i)
sumw = sumw + real(s(i))
ook = ook + real(s(i))*xvra(i)
else
ookv = ookv — real(s(i))*rr(i)
endif
end do
¢
¢ Add mean if SK:
c
ook = ook + (1.0 —sumw)xvmean (1)
c
c Write results:
c
ncells = ncells + 1
¢ if ((whatest.eq.0).and.(logoptl.eq.1)) ook = exp(ook + 0.5%xo00kv —
c + s(na+1))
c if ((whatest.eq.1).and.(logopt2.eq.1)) ook = exp(ook + 0.5xo00kv —
c + s(na+mdt+1))
if ((whatest.eq.0).and.(logoptl.eq.1)) ook = ook / log(10.)
if ((whatest.eq.1).and.(logopt2.eq.1)) ook = ook / log(10.)
if (ook.gt.restmax.and.nrestmax.ne.0) ook = restmax
if (ook.lt.restmin.and.nrestmin.ne.0) ook = restmin
krigout (ncells) = ook

if (ook.gt.datamax) datamax = ook
if (ook.lt.datamin) datamin = ook
if (whatest.eq.0) then

write (lout ,100) ook ,ookv

else
write (lout ,1000) ook ,ookv
endif
100 format(f12.4,1x,f12.4)
1000 format(£21.13,1x,f12.4)

c
¢ Accumulate statistics of kriged blocks:
c
nk = nk + 1
uk = uk + ook
vk = vk + ook=xook
if (idbg.ge.3) write(ldbg,*) ’ estimate, variance ’,ook,ookv
c
¢ END OF MAIN LOOP OVER ALL THE BLOCKS:
c
4 continue
c
¢ I/O0 Files Format Issues
c

if(noutfile.eq.1) then
write(21,%) datamin ,datamax
if (datamin.lt.0.01) then
write (21,322)(krigout (iii),iii=1,ncells)
else
write (21,323) (krigout (iii),iii=1,ncells)
endif
else if(noutfile.eq.2) then
write(21) dble(datamin),dble(datamax)
write (21) (krigout (iii),iii=1,ncells)
else if(noutfile.eq.3) then
write(21) dble(datamin),dble(datamax)
rottemp = 0.0
blnkval = 1.70141e38
dataid = 1096040772
datalen = nxxny=8
write(21)rottemp ,blnkval ,dataid ,datalen
write (21)(dble(krigout (iii)),iii=1,ncells)
end if
322 format(<NX>el8.7)
323 format(<NX>f18.5)
deallocate (krigout)
c
¢ Write statistics of kriged wvalues:
c
if(nk.gt.0.and.idbg.gt.0) then
vk = (vk—ukxuk/real(nk))/real(nk)
uk = uk/real(nk)

write (ldbg ,*)

write (ldbg ,+*) ’'Estimated ’,nk,’ blocks ’
write(ldbg ,x) ’ average ’,uk

write(ldbg ,*) ’ wvariance ’,vk

write (x,x)

write (x,x) "Estimated ’,nk,’ blocks ~’
write (%) ’ average ,uk

90 A. GSLIB Code : Main Algorithm
write (x ,x) ’ variance ’,vk
endif
return
end
subroutine makepar
¢
c
c Write a Parameter File
c sk ok ok ok ok o 3 K KK KKK oK oK oK oK ok ok
c
c
c
¢
lun = 99
open(lun, file ="coktbc.par’,status—="UNKNOWN)
write (lun,10)
10 format (’ Parameters for COKIBC ,/,
+ ’ sk otk ok KKKk kK kKo R Rk okokokokok T /)
+ 'START OF PARAMETERS: *)
write (lun ,11)
11 format (’somedata . dat ’,
+ '—file with data’)
write (lun ,12)
12 format(’2 (o
+ T— number of variables primary+tother)
write (lun ,122)
122 format (’0 ,
+ T — estimated variable : O=head, l=transmittivity ’)
write (lun ,13)
13 format(’1 2 0 3 4 5 7,
+ T— columns for X,Y,Z and variables’)
write (lun ,14)
14 format(’—9e+6 le+29 !,
+ — trimming limits)
write (lun ,15)
15 format (’0 ’,
+ "—co—located cokriging? (0=no, l=yes)’)
write (lun ,16)
16 format (’somedata.dat 7,
+ — file with gridded covariate’)
write (lun ,17)
17 format (’4 ",
+ T— column for covariate’)
write (lun,18)
18 format(’3 ,
+ "—debugging level: 0,1,2,37)
write (lun,19)
19 format (’coktbc.dbg ’
+ "—file for debugging output’)
write (lun ,20)
20 format (’coktbc.out 7
+ '—file for output’)
write (lun,21)
21 format (’51 0.0 10.0 ’

+ ’—nx ,xmn, xsiz)
write (lun ,22)
22 format(’51 0.0 10.0 7,

+ ‘—ny ,ymn, ysiz ’)
write (lun ,23)

23 format(’1 0.5 1.0 7,
+ '—nz ,zmn, zsiz)
write (lun ,24)

24 format (’1 1 1 ,
+ '—x, y, and z block discretization ’)

write (lun ,241)
241 format (’0 7,
+ '—0=constant or l—=moving neighborhood ’)
write (lun ,25)
25 format(’1 50 50 50 7,
+ ’—min primary ,max primary ,max all sec’)
write (lun ,26)
26 format(’710.0 710.0 0.0 7,
+ ’—maximum search radii: primary’)
write (lun ,27)
27 format(’710.0 710.0 0.0 7,
+ ’—maximum search radii: all secondary’)
write (lun ,28)
28 format(’ 0.0 0.0 0.0 7,
+ "—angles for search ellipsoid ’)
write (lun,29)
29 format(’2 ,
+ "—kriging type (0=SK, 1=0OK, 2=OK-trad)’)
write (lun ,291)
291 format(’1 1 0 0 0 0 0 0O 7,
+ ‘—drift: x,y,z,xxX,yy,%4z,Xy,Xz,2y)
write (lun ,30)
30 format (’0.00 0.00 0.00 0.00 7,
+ "—mean(i),i=1,nvar’)
write (lun ,301)
301 format(’1 ,
+ "—mean of transmissivity ’)
write (lun ,302)
302 format(’0.1 270.0 7,
+ "—head gradient , gradient angle with X axis’)
write (lun ,303)
303 format(’1 ’,
-+ '—grid file type’)
write (lun ,304)
304 format(’0 1 7,
+ "—use_log interpolation flag’)
write (lun ,305)
305 format(’0 0 7,
+ "—Restrict _ Min_Value, Value Min’)
write (lun ,306)
306 format(’0 0 7,

+ "—Restrict Max Value, Value Max’)
write (lun ,31)
31 format (1 1 i
+ "—semivariogram for "i" and "j"’)

write (lun ,32)
32 format(’1 0.01 ’,
+ — nst, nugget effect ’)

92

A. GSLIB Code :

Main Algorithm

33

34

35

36

37

38

43

44

45

46

write (lun ,33)

format (’7 100.0 0.0 0.0 0.0 7,
+ — it ,cc,angl,ang2,ang3’)

write (lun ,34)

format (’ 710.0 710.0 1.0 7,
+ '— a_hmax, a_hmin, a_ vert’)

write (lun ,35)

format (1 2 ’,
+ "—semivariogram for "i" and "j"’)
write (lun ,36)

format (’1 0.0 7,
+ — nst, nugget effect ’)

write (lun ,37)

format (’8 1.0 0.0 0.0 0.0 7,
+ T— it ,cc,angl,ang2,ang3’)

write (lun ,38)

format (’ 710.0 710.0 1.0 !,
+ ’— a_hmax, a_hmin, a_ vert’)

write (lun ,43)

format (’2 2 ,
+ "—semivariogram for "i" and "j"’)
write (lun ,44)

format (’1 10.0 7,
+ T— nst, nugget effect ’)

write (lun ,45)

format (1 1.0 0.0 0.0 0.0 7,
+ T— it ,cc,angl,ang2 ang3’)

write (lun ,46)

format (’ 710.0 710.0 1.0 7,
+ ’— a_hmax, a_hmin, a_ vert’)

close (lun)
return
end

Appendix B

GSLIB Code : Other subroutines

B.1 Include file COKTBC.inc

I I I I I I I e e e e e IC Je6 eVe6 Ve 6 Ve 6 Ve 6 Ve 6 Ve e Ve 6 e e 6060660606

aaoaoaoaoaoaaaaaaaa

Copyright (C) 1996, The Board of Trustees of the Leland Stanford
Junior University. All rights reserved.

The programs in GSLIB are distributed in the hope that they will be
useful , but WITHOUT ANY WARRANTY. No author or distributor accepts
responsibility to anyone for the consequences of wusing them or for
whether they serve any particular purpose or work at all, unless he
says so in writing. FEveryone is granted permission to copy, modify

and redistribute the programs in GSLIB, but only under the condition

that this notice and the above copyright notice remain intact.

NN NN NN XN

I I e e e e e e 6 e e 6 e eV 6 e 6 e e e e 6660606060606 0606

Ordinary CoKriging of a 3—D Rectangular Grid

I
The following Parameters control static dimensioning within coktbc:

MAXSBX mazimum super block nodes in X

MAXSBY mazimum super block nodes in Y

MAXSBZ mazimum super block nodes in Z

MAXDAT mazimum number of data points

MAXVAR mazimum number of variables (including primary!)
MAXSAM mazimum number of data points

MAXCOK mazimum number of data points in kriging system
MAXDIS mazimum number of discretization points per block
MAXNST mazimum number of nested structures

O OO O OO O O O O O O O O O O O O O O O

User Adjustable Parameters:

parameter (MAXSBX = 21, MAXSBY = 21, MAXSBZ — 11
+ MAXDAT =250000, MAXVAR = 2, MAXSAM 1000,
+ MAXDIS = 64, MAXNST = 4, MAXDT = 9)

94 B. GSLIB Code : Other subroutines

¢
¢ Fixed Parameters:
c
parameter (UNEST=-999.0,EPSLON=0.000001 ,MXVARGMAXVARAMAXVAR,
+ MAXCOK=(MAXSAM+MAXVAR) ,MAXROT=MAXNST+1,
+ MAXSB-MAXSBX+MAXSBY*MAXSBZ,
+ MAXEQ= (MAXSAM:+MAXVARMAXVARMAXDT) , VERSION=1.000)
c
¢ Static Array Dimensioning:
c

integer nst (MXVARG) , it (MXVARG*MAXNST) ;iva (MAXCOK) ,nisb (MAXSB) ,
ixsbtosr (8*MAXSB) ,iysbtosr (8+*MAXSB) ,izsbtosr (8 «*MAXSB) ,
idrif (MAXDT) , kod (MAXDAT)

real x (MAXDAT) , y (MAXDAT) , z (MAXDAT) , vr (MAXDAT) , sec1 (MAXDAT) ,
ddx (MAXDAT) ,ddy (MAXDAT) , tmp (MAXDAT) , close (MAXDAT) ,
close2 (MAXDAT) , close3 (MAXDAT) ,bv (9) , xa (MAXCOK) ,
ya (MAXCOK) , za (MAXCOOK) , vra (MAXCOK) , ddxa (MAXCOOK) ,
ddya (MAXOOK) , xdb (MAXDIS) , ydb (MAXDIS) , zdb (MAXDIS) ,
vmean (MAXVAR) , c0 (MXVARG) , cc (MXVARG«MAXNST) ,
aa (MXVARG+MAXNST) , ang1 (MXVARG+«MAXNST') , ang2 (MXVARG+MAXNST) ,
ang3 (MXVARG+«MAXNST) , anis1 (MXVARG«MAXNST) ,
anis2 (MXVARG«MAXNST) , xs1 (MAXDAT) , ys1 (MAXDAT) , xs2 (MAXDAT) ,
ys2 (MAXDAT)

real«8 r(MAXEQ),rr (MAXEQ) ,s (MAXEQ) , a (MAXEQ+«MAXEQ) ,unbias ,
rotmat (MAXROT, 3 ,3)

e e T

Jr

¢ The data and other input variables:

common /datcom/ nd,x,y,z,vr,secl kod,ddx,ddy,ktype,nvr,whatest,
vmean , tmin ,tmax ,nx,ny,nz ,xmn,ymn,zmn, xsiz , ysiz ,
zsiz ,idbg ,1dbg ,lout ,newnd,nsc,xsl,ysl xs2,ys2,
csiz ,noutfile ,logoptl ,logopt2 ,nrestmin ,
nrestmax ,restmin ,restmax , Tmean

+ 4+ +

¢ Kriging parameters:

common /krigcm/ ndmin,ndmaxp,ndmaxg,ndmaxs,radiusp ,radiuss ,noct,
+ nxdis ,nydis ,nzdis ,idrif ,nborhood

Variogram Parameters:

common /vargdt/ nst,it ,c0,cc,aa,angl, ang2,ang3d, anisl , anis2,
+ gradh ,angh

¢ Search wvariables and data for kriging:
common /srccom/ sangl ,sang?2,sang3,sanispl ,sanisp2,isrot ,sanissl,

saniss2 ,radsqdp ,radsqds ,na,np,ng,ns,xa,ya,za,vra,

+
+ ddxa,ddya,iva ,xas,yas,zas,vras ,xdb,ydb,zdb ndb,bv

¢ Kriging systems (double precision arrays):

common /krgsys/ r,rr,s,a,unbias,rotmat
B.2 Subroutine bdarr

subroutine bdarr(n,x,y,kod,csiz ,newn)

B.3 Subroutine bdpts

! Computes the number of points to add to determine the size of the
! data array.
integer n, addpts, newn, i
integer kod(n)
real x(n),y(n)
real csiz, dist
addpts = 0
newn = n
do 111, i = 1,n-1
if ((kod(i) 0).and.(kod(i).eq.kod(i+1))) then
dist = sqrt(((1)=x(i+1))**2+(y(i)—y(i+1))*x2)
if (dist.lt.(2.xcsiz)) then
addpts = 1
else if (dist.gt.(20.%xcsiz)) then
addpts = 19
else if (mod(dist,csiz).ne.0) then
addpts = int (dist/csiz)

else
addpts = int (dist/csiz)—1
endif
newn — newn -+ addpts
endif
111 continue
return
end

B.3 Subroutine bdpts

subroutine bdpts(n,x,y,z,vr,ve,kod, csiz)
! Detects the boundary points and add other points along the boundary

! lines to smoother the interpolation. FEssential for Constraint Fluz.
! 2D subroutine.

integer n, addpts, i
integer kod(n)

real csiz, dist, slope, spacin, step, stepz, stepvr, stepve
real x(n),y(n),z(n),vr(n),ve(n)

) j) k

addpts = 0
i=1
112 if ((kod(i).ne.0).and.(kod(i).eq.kod(i+1))) then
dist = sqrt ((x(1)—x(i+1))**x2+(y(i)—y(i+1))*x2)
if (dist.lt.(2.%xcsiz)) then
addpts = 1

spacin = dist / 2.

else if (dist.gt.(20.xcsiz)) then
addpts = 19
spacin = dist / 20.

else if (mod(dist,csiz).ne.0) then
addpts = int (dist/csiz)

spacin = csiz
else

addpts = int (dist/csiz)—1

spacin = csiz
endif
stepz = spacin/dist*(z(i+1)—z(1i))
stepvr = spacin/dist*(vr(i+1)—vr(i))
stepve = spacin/distx(ve(i+1l)—ve(i))

if (x(i).ne.x(i+1)) then

96 B. GSLIB Code : Other subroutines

slope = (y(i+1)-y(i))/(x(i+1)-x(i))
step — spacin/sqrt(1+slopexx2)
else
step =0
endif
do 113, k = n,i+l+addpts,—1
x (k) = x(k—addpts)
y(k) = y(k-addpts)
z(k) = z(k—addpts)
vr(k) = vr(k—addpts)
ve(k) = ve(k—addpts)
kod (k) = kod(k—addpts)
113 continue

do 114, j = 1,addpts
if (x(i).l1t.x(i+l+addpts)) then
x(i+j) = x(i) + jxstep

else
x(i+j) = x(i) — j=step
endif
f (y(i).1t.y(i+1+addpts)) then
if (x(i).ne.x(i+l+addpts)) then
y(i+j) = y(i) + j*stepxslope
else
y(i+j) = y(i) + jxspacin
endif
else

if (x(i).ne.x(i+l+addpts)) then
y(i+j) = y(i) — jxstepx*slope

y(i+j) = y(i) — j#spacin

z(i) + j*stepz
vr(i) + j*stepvr
ve(i+j) = ve(i) + jxstepve
kod (i+j) = kod(i
114 continue
i =1+ 1+ addpts
else
i=1i+1
endif
if (i.ge.n) then
go to 115
endif
go to 112
115 continue
return
end

B.4 Subroutine CCW

integer function CCW(x1,yl,x2,y2,x3,y3)
! Check if the 8 points are in Counter Clock Wise order.
real x1,yl,x2,y2,x3,y3
if (((y3—yl)*(x2—=x1)).gt.((y2—yl)*(x3—x1))) then
AW =1
else if (((y3—yl)x(x2—x1)).eq.((y2—yl)*(x3—x1))) then

B.5 Subroutine CHKNAM

97

W = 0
else
W = —1
endif
return
end

B.5 Subroutine CHKNAM

subroutine chknam(str ,len)

c
c
c Check for a Valid File Name
c sk ok ok ok ok ok KOk ok ok ok KOk ok ok ok Kk ok ok ok K ok
c
¢ This subroutine takes the character string "str” of length "len” and
¢ removes all leading blanks and blanks out all characters after the
¢ first blank found in the string (leading blanks are removed first).
c
c
c
c
parameter (MAXLEN—132)
character str (MAXIEN)=x1
c
¢ Remove leading blanks:
c

do i=1,len—1
if(str(i).ne.’ ’) then
if(i.eq.1) go to 1
do j=1,len—i+1
k=j+i-1
str(j) = str(k)

end do

do j=len,len—i—+2,—1
str(j) =

end do

go to 1

end if
end do
1 continue

c
¢ Find first blank and blank out the remaining characters:
c
do i=1,len—1
if(str(i).eq.’ ’) then
do j=i-+1,len

str(j) = 7
end do
go to 2
end if
end do
2 continue
c
¢ Return with modified file name:
c

return

98 B. GSLIB Code : Other subroutines

end
B.6 Subroutine COVA3

subroutine cova3(x1,yl,z1,x2,y2,22,ivarg ,nst ,MAXNST, c0,it ,cc,aa,
+ gradh jangh ,irot ,MAXROT, rotmat ,cmax, cova)

Covariance Between Two Points
St sk sk sk sk sk sk sk sk ok sk sk s ok sk sk sk ok sk sk sk ok sk sk sk ok sk sk ok

This subroutine calculated the covariance associated with a variogram
model specified by a nugget effect and mnested varigoram structures.
The anisotropy definition can be different for each nested structure.

INPUT VARIABLES:

c

c

c

c

c

¢

c

c

c

c

c

c

c

c zl,yl,z1 coordinates of first point

c z2,y2,22 coordinates of second point

c nst(ivarg) number of mested structures (mazimum of 4)
c ivarg variogram number (set to 1 unless doing cokriging
c or indicator kriging)

¢ MAXNST size of wvariogram parameter arrays

c cO0(ivarg) isotropic mugget constant

c it(i) type of each nested structure:

c 1. spherical model of range a;

c 2. exponential model of parameter a;

c t.e. practical range is 3a

c 3. gaussian model of parameter a;

¢ i.e. practical range is axsqrt(3)

c 4. power model of power a (a must be gt. 0 and
c It. 2). if linear model, a=1,c=slope.

c 5. hole effect model

c ce(i) multiplicative factor of each nested structure.

c (sill—c0) for spherical, exponential ,and gaussian
c slope for linear model.

c aa (i) parameter "a" of each mnested structure.
c gradh value of the hydraulic head gradient (for it = 7)
c angh angle between the direction of the hydraulic head
c gradient and the X azis (for it = 7)

c irot index of the rotation matrix for the first nested
¢ structure (the second nested structure will use
c irot+1, the third irot+2, and so on)

¢ MAXROT size of rotation matriz arrays

c rotmat rotation matrices

c

¢

c

c

c

c

c

¢

c

c

OUTPUT VARIABLES:

cmazx mazrimum covariance
cova covariance between (zl,yl,z1) and (22,y2,22)

EXTERNAL REFERENCES: sqdist computes anisotropic squared distance

B.6 Subroutine COVA3 99

rotmat computes rTotation matrix for distance

parameter (PI1=3.14159265 PMX=999. ,EPSLON=1.e —10)

integer nst (%) ,1t (*)

real cO(*),cc(x),aa(*),gradh angh hr dxa,ct ,hl, hrl
real x8 rotmat (MAXROT, 3 ,3) ,hsqd , sqdist

Calculate the mazimum covariance value (used for zero distances and
for power model covariance):

[I e T e T o

istart = 1 + (ivarg —1)«MAXNST
cmax = cO(ivarg)
do is=1,nst(ivarg)
ist = istart + is — 1
if (it (ist).eq.4) then
cmax = cmax + PMX
else if(it(ist).eq.7) then
ct = cc(ist) * (gradh *x aa(ist) / 4.)*x2
cmax = cmax + 20.xct
else if(it(ist).eq.8) then
cmax = cc(ist)xgradhxaa(ist)x2
else
cmax = cmax + cc(ist)
endif
end do

¢ Check for "zero" distance, return with cmaz if so:

hsqd = sqdist (x1,yl,z1,x2,y2,22,irot ,MAXROT, rotmat)
if (real(hsqd).1t .EPSLON) then

cova = cmax

return

endif
¢ Loop over all the structures:

cova = 0.0
do is=1,nst(ivarg)
ist = istart + is — 1

¢ Compute the appropriate distance:

if(ist.ne.1l) then

ir = min((irot+is —1) MAXROT)

hsqd=sqdist (x1,yl,z1,x2,y2,22,ir ,MAXROT, rotmat)
end if
h = real(dsqrt(hsqd))

¢ Spherical Variogram Model?
if (it (ist).eq.1l) then
hr = h/aa(ist)
if(hr.1t.1.) cova=cova+tcc(ist)*(1l.—hr*(1.5—.5«xhrxhr))

¢ Ezponential Variogram Model?

else if(it(ist).eq.2) then
cova = cova + cc(ist)*exp(—3.0%h/aa(ist))

100 B. GSLIB Code :

Other subroutines

c

¢ Gaussian Variogram Model?

c

else if(it(ist).eq.3) then
cova = cova + cc(ist)xexp(—(3.0xh/aa(ist))
+ *(3.0xh/aa(ist)))

c

¢ Power Variogram Model?

c

else if(it(ist).eq.4) then
cova = cova + cmax — cc(ist)*(hxxaa(ist))

c
¢ Hole Effect Model?
c
else if(it(ist).eq.5) then
d = 10.0 % aa(ist)
cova = cova + cc(ist)xexp(—3.0xh/d)xcos(h/aa(ist)*PI)
cova — cova + cc(ist)*cos(h/aa(ist)*PI)
c
¢ Cubic Variogram Model?
c

else if(it(ist).eq.6) then
hr = h/aa(ist)
if (hr.1t.1.) then
cova = cova + cc(ist)*(1. — 7.xhrxx2

+ + 35./4.xhr*x3 — 7./2.xhrxx5 + 3./4.xhr*xT7)

endif
¢ Transmissivity Linked Spherical Variogram Model?

else if(it(ist).eq.7) then
hr = h/aa(ist)
hl = COS(2.xPI/360.xangh)*(x1—x2)
+ + SIN(2.%PI/360.xangh)*(yl—y2)
dxa = hl/aa(ist)
ct = cc(ist) * (gradh *x aa(ist) / 4.)*%2
if(hr.le.1.) then

cova = cova + cmax — ctx(hr*x2 —8./15.xhr*3

+ + 8./175.xhr**5 +(2. —8./5.xhr +8./35.%hr*%3)
+ x dxaxx2)
else
cova = cova + cmax — ct*(32./75. +3./(35.xhrxx2)
+ +4./5.%xLOG(hr) +(4./(5.xhrxx2) —6./(35.xhrxx4))
+ * dxax*2)
endif
¢
¢ Log(T)—h Cross—variogram Model?
c

else if(it(ist).eq.8) then
hl = COS(2.«PI/360.xangh)*(x1-x2)
+ + SIN(2.%PI/360.xangh)*(yl—y2)
hr =h / aa(ist)
if(hr.1t.1.) then

cova = cova + cmax — gradhxcc(ist)+xhlx*(0.

+ +0.1xhr*%3)
else

5 —0.5%hr

cova = cova + cmax — gradhscc(ist)xhl/(10. % hrxx2)

endif

B.7 Subroutine ficcoord 101

endif
end do
c
¢ Finished:
c
return

end
B.7 Subroutine ficcoord

subroutine ficcoord (n,x,y,kod, csiz ,ddx,ddy)
! Create 2 fictive z & y coordinates for each prescribed flux BC point
! to improve the interpolation 2D subroutine.
integer n, nx, ny, i, j
integer kod(n)
real xsiz, ysiz, xbig, ybig, perp, spacin, step
real x(n), y(n), ddx(n), ddy(n)

spacin = csiz
ddx = 0.0
ddy = 0.0
do 116, i = 2.,n 1
if ((d(i).1t.0).and.(kod(i—1).eq.kod(i)).and.
(kod(i).eq. kod(l+ﬂ))) then

then

D)/ (y(i+D)=y(i-1))

i—
(1+perp%2)

if (y(i+1).ne.y(i—1))
perp = —(x(i+1)—x(i
step = spacin/sqrt
ddx(i) = step
ddy (i) = step=*perp
else
ddy (i) = spacin
endif
else if ((kod(i).lt.0).and.(kod(i—1).ne.kod(i)).and.
(kod(i).eq.kod(i+1))) then
if (y(i+1).ne.y(i)) then
perp — —(x(i+1)-x(i))/(y(i+1)-y(i))
step = spacin/sqrt(l+perp*x*2)
ddx(i) = step
ddy (i) = stepx*perp
else
ddy (i) = spacin
endif
else if ((kod(i).lt.0).and.(kod(i—1).eq.kod(i)).and.
(kod(i).ne.kod(i+1))) then
if (y(i).ne.y(i—1)) then
perp — —(x(i)—x(i—1))/(y(1)=y(i—1))
step = spacin/sqrt(l+perp**2)
ddx(i) = step
ddy (i) = stepx*perp
else
ddy (i) = spacin
endif
endif
if ((kod(1).1t.0).and.(kod(2).eq.kod(1))) then
if (y(2).ne.y(1)) then
perp — —(x(2)—x (1)) /(v(2)—y (1))
step = spacin/sqrt(l+perp**2)
ddx (1) = step

102 B. GSLIB Code : Other subroutines

ddy (1) = step=perp
else
ddy (1) = spacin
endif
endif
if ((kod(n).1t.0).and.(kod(n—1).eq.kod(n))) then
if (y(n).ne.y(n—1)) then
perp = —(x(n)—x(n-1))/(v(n)=y(n-1))
step = spacin/sqrt(l+perp**2)
ddx(n) = step
ddy(n) = step=*perp
else
ddy(n) = spacin
endif
endif
116 continue
return
end

B.8 Subroutine fluxcoor

subroutine fluxcorr(n,x,y,vr,kod, csiz ,Tmean)
! Detects the constant flux points and apply the correction factor to
! convert the wvolumic flow rate to the hydraulic head difference>
integer n, i, j, k
integer kod(n)
real csiz, Tmean, dist
real x(n), y(n), vr(n)
do 117, i=1,n-1
do 118, j=2,n
if(i.ne.l.and.j.ne.n) then
if(kod(i).1t.0.and.kod (i —1).ne.kod(i).and.vr(i).ne.0.and.&
& kod(j).eq.kod(i).and.kod(j+1).ne.kod(j)) then
dist = sqrt ((x(1)—x(j))sx2+(y(1)—y(j))**2)
do 119, k=i,]j
vr(k) = vr(k)*(2xcsiz)*%2/(Tmeanxdist)
119 continue
endif
else if(i.eq.l.and.j.ne.n) then
if(kod(1).1t.0.and.vr(1).ne.0.and.kod(j).eq.kod(1).and.&
& kod(j+1).ne.kod(j)) then
dist = sqrt ((x(1)—x(j))se2+(y(1) =y (j))#+2)
do 120, k=1,j
vr(k) = vr(k)*(2*xcsiz)**2/(Tmeanxdist)
120 continue
endif
else if(i.ne.l.and.j.eq.n) then
if(kod(i).1t.0.and.kod(i—1).ne.kod(i).and.vr(i).ne.0.and.&
& kod(n).eq.kod(i)) then
dist = sqrt ((x(i)—x(n))**2+(y(i)—y(n))**2)
do 121, k=i ,n
vr(k) = vr(k)*(2xcsiz)*x2/(Tmeanxdist)
121 continue
endif
else
if(kod(1).1t.0.and.vr(1).ne.0.and.kod(n).eq.kod (1)) then
dist = sart ((x(1)—x(n))s2+(y(1)—y(n))*+2)

B.9 Subroutine GETINDX 103

do 122, k=1,n
vr(k) = vr(k)*(2*xcsiz)*x2/(Tmeanxdist)

122 continue
endif
end if
118 continue
117 continue
return
end

B.9 Subroutine GETINDX

subroutine getindx (n,min,siz ,loc ,index ,inflag)

c
¢
c Gets the coordinate index location of a point within a grid
c K ok ok K koK K koK K KK kK K K kK R KK R kK R ok K R R K ok K ok K ok K ok Kk ok Kk ok Kk ok Kk ok Kok
c
c
cn number of "nodes” or "cells" in this coordinate direction
¢ min origin at the center of the first cell
c siz size of the cells
c loc location of the point being considered
¢ index output index within [1,n]
¢ inflag true if the location is actually in the grid (false otherwise
c e.g., if the location is outside then index will be set to
c nearest boundary
c
c
c
c

integer n,index

real min, siz ,loc

logical inflag

¢ Compute the index of "loc”:

index = int((loc—min)/siz + 1.5)

c
¢ Check to see if in or out:
c
if (index.1t.1) then
index =1
inflag = .false.
else if(index.gt.n) then
index =n
inflag = .false.
else
inflag = .true.
end if
c
¢ Return to calling program:
¢
return

end

104 B. GSLIB Code : Other subroutines

B.10 Subroutine getopenfilename

Example of calling the Win82 API routine GetOpenFileName

This can be used from any application type, including Console
Make sure that comdlg32.1lib is included in the list of libraries
to be searched.

GetSaveFileName is very similar.

!
!
!
!
!
!
!
! NOTE! You must have DVF 5.0B or later to compile this example!
/

subroutine fileopen (fname)

use dfwin

implicit none

! Declare structure used to pass and receive attributes
/

type (T_OPENFILENAME) ofn

! Declare filter specification. This is a concatenation of

! pairs of null—terminated strings. The first string in each pair
! is the file type name, the second is a semicolon—separated list
I of file types for the given name. The list ends with a trailing
! null—terminated empty string.

/

character x(x) fname

character x(*) ,parameter :: filter spec = &
"Parameter_Files"C//"x.par"C// &
"Surfer_Files"C//"*.grd ;x.grd"C//""C

! Declare string variable to return the file specification.
I Inmitialize with an initial filespec, if any — null string
! otherwise

/

character=512 :: file spec = ""C
integer status,ilen
ofn%lStructSize = SIZEOF (ofn)
ofn%hwndOwner — NULL ! For non—console applications ,
! set this to the Hwnd of the
! Owner window. For QuickWin
! and Standard Graphics projects,
! use GETHWNDQQ(QWINSFRAMEWINDOW)
/
ofn%hInstance = NULL ! For Win32 applications , you
! can set this to the appropriate
! hlnstance
!
ofn%lpstrFilter = loc(filter spec)
ofn%lpstrCustomFilter = NULL
ofn%nMaxCustFilter = 0
ofn%nFilterIndex = 1 ! Specifies initial filter value
ofn%lpstrFile = loc(file_spec)
ofn%nMaxFile = sizeof (file spec)
ofn%nMaxFileTitle = 0
ofn%lpstrinitialDir = NULL ! Use Windows default directory
ofn%lpstrTitle = loc(""C)
ofn%Flags = OFN_PATHMUSTEXIST

B.11 Subroutine getopenfilesurf 105

ofn%lpstrDefExt = loc("par"C)
ofn%lpfnHook = NULL
ofn%lpTemplateName = NULL

! Call GetOpenFileName and check status
/
status = GetOpenFileName (ofn)
if (status .eq. 0) then
type *,’No file name specified’
else
! Get length of file spec by looking for trailing NUL
ilen = INDEX(file spec ,CHAR(O))
type x,’Filespec is ’,file spec(l:ilen —1)
! Example of how to see if wuser said "Read Only"
!
if (IAND(ofn%flags ,OFN_READONLY) /= 0) &
type *,’Readonly was requested’
end if
fname (1:ilen —1) = file spec(1l:ilen —1)
end subroutine fileopen

B.11 Subroutine getopenfilesurf

Example of calling the Win82 API routine GetOpenFileName

This can be used from any application type, including Console
Make sure that comdlg32.1lib is included in the list of libraries
to be searched.

GetSaveFileName is very similar.

!
!
!
!
!
!
!
! NOTE! You must have DVF 5.0B or later to compile this example!
/

subroutine fopensurf (fname)

use dfwin

implicit none

! Declare structure used to pass and receive attributes
/

type (T _OPENFILENAME) ofn

! Declare filter specification. This is a concatenation of

! pairs of null—terminated strings. The first string in each pair
! is the file type name, the second is a semicolon—separated list
! of file types for the given name. The list ends with a trailing
! null—terminated empty string.

/

character (%) fname

character x(*) ,parameter :: filter spec = &
"Surfer_Files"C//"x.grd"C// &
"Surfer_Files"C//"x.grd ;x.grd"C//""C

! Declare string variable to return the file specification.
I Inmitialize with an initial filespec, if any — null string
! otherwise

/

character=512 :: file spec = ""C
integer status,ilen

106 B. GSLIB Code : Other subroutines

ofn%lStructSize = SIZEOF (ofn)

ofn%hwndOwner = NULL For non—console applications
set this to the Hwnd of the
Owner window. For QuickWin
and Standard Graphics projects,
use GETHWNDQQ(QWINSFRAMEWINDOW)
ofn%hInstance — NULL For Win32 applications, you
can set this to the appropriate
hlnstance

~ '— "= ' ' '— ' ' '~ '

ofn%lpstrFilter = loc(filter spec)
ofn%lpstrCustomFilter = NULL

ofn%nMaxCustFilter = 0

ofn%nFilterIndex = 1 ! Specifies initial filter value
ofn%lpstrFile = loc(file spec)

ofn%nMaxFile = sizeof (file spec)

ofn%nMaxFileTitle = 0

ofn%lpstrinitialDir = NULL ! Use Windows default directory
ofn%lpstrTitle = loc(""C)

ofn%Flags = OFN_PATHMUSTEXIST

ofn%lpstrDefExt = loc("grd"C)

ofn%lpfnHook — NULL

ofn%lpTemplateName = NULL

! Call GetOpenFileName and check status

/

status = GetOpenFileName (ofn)

if (status .eq. 0) then
type *,’No file name specified’

else
! Get length of file spec by looking for trailing NUL
ilen = INDEX(file spec ,CHAR(O))
type *,’Filespec is ’,file spec(l:ilen —1)
! Example of how to see if wuser said "Read Only"
!

if (IAND(ofn%flags ,OFN_READONLY) /= 0) &
type *,’Readonly was requested’
end if
fname (1:ilen —1) = file spec(1:ilen —1)
end subroutine fopensurf

B.12 Subroutine intersect

logical function intersect (x11,y11,x12,y12,x21,y21,x22,y22)
! Check if the 2 segments defined by their endpoints intersect.

real x11,y11,x12,y12,x21,y21,x22,y22
integer (CW
if (OCW(x11,y11,x12,y12,x21,y21).eq.0) then
intersect= .false.

else if (CCW(x11,yl11,x12,y12,x22,y22).eq.0) then
intersect= .false.

else if (CCW(x11,y11,x21,y21,x22,y22).eq.0) then
intersect= .false.

else if (CCW(x12,y12,x21,y21,x22,y22).eq.0) then
intersect= .false.

else if (CCW(x11,yl11,x21,y21,x22,y22).eq.CCW(x12,y12,x21,y21, &

B.13 Subroutine KTSOL

107

&

intersect

x22,y22)) then

= .false.

else if (CCW(x11,yl11,x12,y12,x21,y21).eq.CCW(x11,y11,x12,y12, &
x22,y22)) then
intersect = .false.

&

else

intersect

end if

return

end

= .true.

B.13 Subroutine KTSOL

subroutine ktsol(n,ns,nv,a,b,x,ktilt ,maxeq)

{9~ T o T o~ T o N o T o o T T o T T o S o O T o T T o T S T T o T T o T o T T o T o T T S T

Solution of a system of linear equations by gaussian elimination with

partial pivoting.

Several right hand side matrices and several

variables are allowed.

NOTE: All

input matrices must be in double precision

INPUT/OUTPUT VARIABLES:

n

ns

no
a(nxnxnv)
b(nxnsxnv)
z(nxnstnv)
ktilt

tol

Number of equations
Number of right hand side matrices
Number of wvariables.
left hand side matrices versus columnwise.
input right hand side matrices.
solution matrices.
indicator of singularity
= 0 everything is ok.
=—1n.le.!

= k a null pivot appeared at the kth iteration.

used in test for null pivot. depends on machine
precision and can also be set for the tolerance
of an ill—defined kriging system.

SO0

[I e B

implicit real*8 (a—h,o—z)
real*8 x(maxeq) ,a(maxeqxmaxeq),b(maxeq)

Make sure there are equations to solve:
if(n.le.1) then
ktilt = —1
return
endif
Initialization :
tol = 0.1e—-10
ktilt = 0
ntn = n*n

108 B. GSLIB Code : Other subroutines

nml = n—1
Triangulation is done wvariable by wvariable:
do iv=1,nv
¢ Indices of location in wvectors a and b:

nva = ntnx(iv—1)
nvb = nxnsx(iv—1)

Gaussian elimination with partial pivoting:

do k=1,nml
kpl = k+1

¢ Indice of the diagonal element in the kth row:
kdiag = nva+(k—1)*n+k
¢ Find the pivot — interchange diagonal element/pivot:

npiv = kdiag

ipiv = k
il = kdiag
do i=kpl,n
il = il1+1
if (abs(a(il)).gt.abs(a(npiv))) then
npiv = il
ipiv = i
endif
end do
t = a(npiv)
a(npiv) = a(kdiag)
a(kdiag) = t
c
¢ Test for singularity:
c
if (abs(a(kdiag)).1t.tol) then
ktilt=k
write (x,%) ’Singular Value,kdiag, ktilt =",
+ a(kdiag) ,kdiag, ktilt
return
endif
c
¢ Compute multipliers:
c
il = kdiag
do i=kpl.,n
il = il+41
a(il) = —a(il)/a(kdiag)
end do
c
¢ Interchange and eliminate column per column:
c
jl1 = kdiag
j2 = npiv

do j=kpl.,n

B.13 Subroutine KTSOL

109

jl = jl4n

j2 = j2+4n

t = a(j2)

a(j2) = a(j1)

a(jl1) =t

il = jl1

i2 = kdiag

do i=kpl,n
il = il+1
i2 = i2+1
a(il) = a(il)+a(i2)=a(j1)

end do

end do

c
¢ Interchange and modify the ns
c

il = nvb+ipiv

right hand matrices:

i2 = nvb+k
do i=1,ns
t = b(il)
b(il) = b(i2)
b(i2) =t
jl = i2
i2 = kdiag
do j=kpl,n
jl = jl1+1
j2 = j2+1
b(j1) = b(j1)+b(i2)+a(j2)
end do
il = il4n
i2 = i24n
end do

end do
¢
¢ Test for singularity for the 1
c

kdiag = ntnxiv

¢ End of triangulation. Now, solve back variable per wvariable:

if (abs(a(kdiag)).1t.
ktilt = n
return
endif
end do
c
c
do iv=1,nv
c

¢ Indices of location in wvectors
c

nva = ntnxiv
nvbl = nxnsx(iv—1)+1
nvb2 — nxnsxiv

c
¢ Back substitution with the ns
c
do il=1,ns
do k=1,nml

ast pivot:

tol) then

a and b:

right hand matrices:

nmk — n—k

110 B. GSLIB Code : Other subroutines

c
¢ Indice of the diagonal element of the (n—k+1)th row and of
¢ the (n—k+1)th element of the left hand side.
c
kdiag = nva—(n+1)*(k—1)
kb = nvb2—(il —1)*n—k+1
b(kb) = b(kb)/a(kdiag)
t = —b(kb)
il = kb
i2 = kdiag
do i=1,nmk
il =il-1
i2 = i2-1
b(il) = b(il)+a(i2)xt
end do
end do
kdiag = kdiag—n-—1
kb = kb-1
b(kb) = b(kb)/a(kdiag)
end do
c
¢ End of back substitution :
c
end do
c
¢ Restitution of the solution:
c
itot = n*xns*nv
do i=1,itot
x(1) = b(i)
end do
c
¢ Finished:
c
return
end

B.14 Subroutine PICKSUPR

subroutine picksup (nxsup,xsizsup ,nysup, ysizsup ,nzsup,zsizsup ,
+ irot ,MAXROT, rotmat ,radsqd ,nsbtosr ,ixsbtosr ,
+ iysbtosr ,izsbtosr)

Establish Which Super Blocks to Search

stk ok ok ok ok Kk ok ok ok ok ok ok ok Ok sk ok ok ok ok ok ok Ok ok ok ok ok ok ok ok
This subroutine establishes which super blocks must be searched given

that a point being estimated/simulated falls within a super block
centered at 0,0,0.

INPUT VARIABLES:

NTSUP , LSLZSUP Definition of the X super block grid
nYsup , Ystzsup Definition of the Y super block grid

o T o T o T o I o T o T o I T o I T o S S T o T S T)

B.14 Subroutine PICKSUPR 111

NzZSUpP , 2S12SUpP Definition of the Z super block grid

irot index of the rotation matriz for searching
MAXROT size of rotation matriz arrays

rotmat rotation matrices

radsqd squared search radius

OUTPUT VARIABLES:

nsbtosr Number of super blocks to search

izsbtosr X offsets for super blocks to search
iysbtosr Y offsets for super blocks to search
izsbtosr Z offsets for super blocks to search

EXTERNAL REFERENCES:

sqdist Computes anisotropic squared distance

o~ I o T o T o T o T o T S T o T S I T o T S T T o T o T o T S T T T - T T e I e T)

real«8 rotmat (MAXROT,3,3) ,hsqd,sqdist ,shortest
integer ixsbtosr (x),iysbtosr(x),izsbtosr (%)

c
¢ MAIN Loop over all possible super blocks:

nsbtosr = 0
do i=—(nxsup —1),(nxsup—1)
do j=—(nysup —1),(nysup—1)
do k=—(nzsup —1),(nzsup —1)
i
J
k

xo = real(i)xxsizsup
yo = real(j)xysizsup
zo = real(k)*zsizsup
c
¢ Find the closest distance between the corners of the super blocks:
c
shortest = 1.0e21
do il=—1,1
do jl1=—1,1
do ki——1,1
do i2--1,1
do j2——1,1
do k2——1,1
if (il .ne.0.and.jl.ne.0.and.kl.ne.0.and.

+ i2.ne.0.and.j2.ne.0.and.k2.ne.0) then
xdis = real(i1—i2)x0.5xxsizsup + xo
ydis = real(j1—j2)%0.5%ysizsup + yo
zdis = real(k1-k2)%0.5%zsizsup + zo
hsqd = sqdist (0.0,0.0,0.0,xdis ,ydis,zdis,

+ irot ,MAXROT, rotmat)
if (hsqd.1t.shortest) shortest = hsqd

end if
end do
end do

end do

112 B. GSLIB Code : Other subroutines

end do
end do
end do
c
¢ Keep this super block if it is close enoutgh:
c
if (real(shortest).le.radsqd) then
nsbtosr = nsbtosr + 1
ixsbtosr (nsbtosr) = i
iysbtosr (nsbtosr) = j
izsbtosr (nsbtosr) = k
end if
end do
end do
end do
c
¢ Finished:
c
return
end

B.15 Subroutine remdup

subroutine remdup(n,x,y,z,vr,ve,kod,ddx,ddy,npts)

! Removes duplicate x,y pairs
real x(n),y(n),z(n),vr(n),ve(n),kod(n),ddx(n),ddy(n)
! write (x,%) 'n =’,n
npts = n
do 200 i = 1,n—
do 300 j = i+1,n
if (x(j).eq.x(i).and.y(j).eq.y(i)) then
if ((kod(i).ge.0.and.kod(j).ge.0).or.
(kod(i).le.0.and.kod(j).le.0)) then
do 500 k = j,n—1
x(k) = x(k+1)
y(k) = y (k1)
z(k) = z(k+1)
vr(k) = vr(k+1)
ve(k) = ve(k+1)
kod (k) = kod(k+1)
ddx (k) = ddx(k+1)
ddy (k) = ddy(k+1)
500 continue
n=mn-—1
endif
end if
300 continue
200 continue

do 401 s = 1,n
do 201 i = 1,n—-1

do 301 j = i+1,n
xsl = x(s) — ddx(s)
xs2 = x(s) + ddx(s)
ysl = y(s) — ddy(s)
ys2 = y(s) + ddy(s)
if (x(i).eq.xsl.and.y(i).eq.ysl.and.x(]j).eq.xs2.and.
i)

.eq.ys2) then

B.16 Subroutine scrarr 113

do 501 k = s,n—-1

x(k) = x(k+1)
y(k) = y(k+1)
z(k) = z(k+1)
vr(k) = vr(k+1)
ve(k) = ve(k+1)
kod (k) = kod(k+1)
ddx (k) = ddx(k+1)
ddy (k) = ddy(k+1)
501 continue
n=mn-—1
endif
301 continue
201 continue
401 continue
ntemp = npts
npts = n
n — ntemp
! write (x ,%) 'npts =’,npts
return
end

B.16 Subroutine scrarr

subroutine scrarr(n,x,y,kod,vr,nsc)
! Computes the size of the no flow segments arrays.
integer n, nsc, i
integer kod(n)
real x(n), y(n), vr(n)
nsc = 0
do 117, i = 1,n-1
if (kod(i).1t.0.and.kod(i).eq.kod(i+1).and.vr(i).eq.0.and. &
& vr(i+1).eq.0) then
nsc = nsc + 1
endif
117 continue
return
end

B.17 Subroutine screens

subroutine screens(n,x,y,kod,vr nsc,xsl, ysl, xs2,ys2)
! Fill arrays to keep in memory the end points of no flow segments.
integer n, nsc, i, j
integer kod(n)
real x(n), y(n), vr(n), xsl(nsc), ysl(nsc), xs2(nsc), ys2(nsc)

j =0
do 118, i = 1,n-1
if (kod(i).1lt.0.and.kod(i).eq.kod(i+1).and.vr(i).eq.0.and. &
& vr(i+1).eq.0) then

j=3+1
xs1(j) = x(i)
ysl(j) = y(1)
xs2(j) = x(i+1)
ys2(j) = y(i+1)

114 B. GSLIB Code : Other subroutines

endif
118 continue
return
end

B.18 Subroutine SETROT

subroutine setrot (angl,ang2,ang3,anisl ,anis2,ind ,MAXROT, rotmat)

Sets up an Anisotropic Rotation Matriz
ok ok ok ok ko ok Kk KOk KR oK R ok ok o ok ok Kk KOk oK R ok R ok ok K

Sets up the matriz to transform cartesian coordinates to coordinates

accounting for angles and anisotropy (see manual for a detailed
definition):

INPUT PARAMETERS:

angl Azimuth angle for principal direction

ang?2 Dip angle for principal direction

angl Third rotation angle

anisl First anisotropy ratio

anis2 Second anisotropy ratio

ind matriz indicator to initialize

MAXROT mazimum number of rotation matrices dimensioned
rotmat rotation matrices

NO EXTERNAL REFERENCES

{9~ T o~ T o S o T o T o N T o T S R T o T T o T o O T o T S T o T o I T o T S T T o T o e

parameter (DEG2RAD=3.141592654/180.0 ,EPSLON=1.e —20)
real =8 rotmat (MAXROT, 3 ,3) ,afacl ,afac2 ,sina,sinb ,sint ,
+ cosa ,cosb ,cost

c
¢ Converts the input angles to three angles which make more
¢ mathematical sense:
c
c alpha angle between the major azxis of anisotropy and the
c EW axis. Note: Counter clockwise is positive.
c beta angle between major axis and the horizontal plane.
c (The dip of the ellipsoid measured positive down)
c theta Angle of rotation of minor axzis about the major azis
c of the ellipsoid.
c
if(angl.ge.0.0.and.angl.1t.270.0) then
alpha = (90.0 — angl) x DEG2RAD
else
alpha = (450.0 — angl) = DEG2RAD
endif
beta = —1.0 x ang2 *x DEG2RAD
theta = ang3 * DEG2RAD

¢ Get the required sines and cosines:

B.19 Subroutine setsupr

115

sina

sinb

sint

cosa

cosb

cost
c

¢ Construct

dble
dble
dble
dble
dble
dble

sin
sin
sin
cos
cos
cos

be
th

be
th

NN AN AN AN AN
NN AN AN SN N

the rotation

alpha

alpha))

)
ta))
eta))
))
ta))
)

eta))

matrixz tn the required memory:

c
afacl = 1.0 / dble(max(anisl ,EPSLON))
afac2 = 1.0 / dble(max(anis2 ,EPSLON))
rotnuﬁ(lnd 1,1) = (cosb * cosa)
rotmat (ind ,1,2) = (cosb * sina)
rotmat (ind ,1,3) = (—sinb)
rotmat (ind ,2,1) = afaclx(—costxsina + sint*sinbxcosa)
rotmat (ind ,2,2) = afacl*(costxcosa + sint*sinbxsina)
rotmat (ind ,2,3) = afacl*(sint x cosb)
rotmat (ind ,3,1) = afac2x*(sint*sina + costxsinb#*cosa)
rotmat (ind ,3,2) = afac2*(—sint*cosa + costxsinb=*sina)
rotmat (ind ,3,3) = afac2x*(cost * cosb)

c

¢ Return to calling program:

¢
return
end

B.19 Subroutine setsupr

subroutine setsupr (nx,xmn,xsiz ,ny,ymn,ysiz ,nz,zmn,zsiz ,nd,x,y,z,

e

vr ,ddx,ddy ,tmp, nsec

ysizsup ,nzsup ,zmnsup, zsizsup)

,sec ,MAXSBX,MAXSBY, &
MAXSBZ, nisb , nxsup ,xmnsup, Xsizsup ,nysup ,ymnsup, &

&

by super

The idea
relevant

An array ,

array it
location.

NN 'S ' ' 'S ' ' ' ' ' 'S ' ' ' ' ' ' ' ' ' ' ' '

Establish Super Block Search Limits and Sort Data
i I I I oo

block number.

minimum and mazimum limits
the nearest edge block.

18 to
data .

the search network, 1i.e
the block index in each coordinate direction (iz,iy

The limits of the super block
of the grid;

., the index location

ii = (iz—1)xnzsupxnysup + (iy—1)xnxsup + iz

the same size

as the number of super blocks,

establish a 8—D block network that contains
The data are then sorted by their index location
is given after knowing

,i12):

X

that contains the cumulative number of data in the model.

This subroutine sets up a 8—D "super block” model and orders the data
X
data outside are assigned to

set to the

all the
in

constructed
With this

is easy to quickly check what data are located mnear any given

INPUT VARIABLES:

116 B. GSLIB Code : Other subroutines

nT,Tmn, TSi2 Definition of the X grid being considered
ny,ymn, ysiz Definition of the Y grid being considered
nz,zmn, 2842 Definition of the Z grid being considered
nd Number of data

z(nd) X coordinates of the data

y(nd) Y coordinates of the data

z(nd) Z coordinates of the data

vr(nd) Variable at each location.

ddz (nd) X difference for Kriging under BC
ddy(nd) Y difference for Kriging under BC

tmp (nd) Temporary storage to keep track of the super block

index associated to each data (uses the same
storage already allocated for the simulation)

nsec Number of secondary variables to carry with vr (maz=1)
sec(nd) Secondary variable (if nsec = 1)
MAXSB[X,Y,Z] Mazimum size of super block network

OUTPUT VARIABLES:

nish () Array with cumulative number of data in each
super block.

nrsup ,rmnsup , xsizsup Definition of the X super block grid

nysup ,ymnsup , ysizsup Definition of the Y super block grid

nzsup ,zmnsup , zsizsup Definition of the Z super block grid

EXTERNAL REFERENCES:

sortem Sorting routine to sort the data

NN ' ' ' ' ' ' ' ' ' 'S ' ' 'S ' 'S 'S ' ' ' ' 'S 'S ' ' ' 'S ' ' ' ' ' ' '

real x(x),y(*),z(%),vr(x),ddx(x),ddy (%), tmp(x),sec(x)
integer nisb (x)
logical inflag

! Establish the number and size of the super blocks:

nxsup = min(nx,MAXSBX)
nysup = min(ny ,MAXSBY)
nzsup = min(nz ,MAXSBZ)
xsizsup = real(nx)xxsiz/real(nxsup)
ysizsup = real(ny)*xysiz/real(nysup)
zsizsup = real(nz)*zsiz /real(nzsup)
xmnsup = (xmn—0.5%xxsiz)+0.5%xsizsup
ymnsup = (ymn—0.5%ysiz)+0.5xysizsup
zmnsup = (zmn—0.5%zsiz)+0.5%zsizsup

! Initialize the extra super block array to zeros:

do i=1,nxsup*nysup*nzsup
nisb (i) =0
end do

B.20 Subroutine SORTEM

117

! Loop over all the data assigning the data to a super block and
! accumulating how many data are in each super block:
!
do i=1,nd
call getindx (nxsup ,xmnsup,xsizsup ,x(1),ix ,inflag)
call getindx (nysup,ymnsup, ysizsup ,y(i),iy,inflag)
call getindx (nzsup ,zmnsup, zsizsup ,z(1),iz,inflag)
ii = ix + (iy —1)x*nxsup + (iz —1)*nxsupxnysup
tmp (i) = ii
nisb (ii) = nisb(ii) + 1
end do

! Sort the data by ascending super block number:

nsort = 6 + nsec
call sortem (1,nd,tmp,nsort ,x,y,z,vr,ddx,ddy, sec)

! Set up array nisb with the starting address of the block data:
do i=1,(nxsup*nysup=nzsup —1)
nisb (i+1) = nisb (i) + nisb(i+1)
end do
! Finished:

return
end

B.20 Subroutine SORTEM

subroutine sortem (ib,ie ,a,iperm ,b,c,d,e,f,g,h)

Quickersort Subroutine
stk Kk ok ok ok ok Ok ok ok ok K Kk ok ok ok KOk

This is a subroutine for sorting a real array in ascending order. This
is a Fortran translation of algorithm 271, quickersort, by R.S. Scowen
in collected algorithms of the ACM.

The method used is that of continually splitting the array into parts
such that all elements of one part are less than all elements of the
other, with a third part in the middle consisting of one element. An
element with value t is chosen arbitrarily (here we choose the middle
element). i and j give the lower and upper limits of the segment being
split. After the split a value q will have been found such that
a(gq)=t and a(l)<=t<=a(m) for all i<=l<q<m<=j. The program then
performs operations on the two segments (i,q—1) and (q+1,5) as follows
The smaller segment is split and the position of the larger segment is
stored in the It and ut arrays. If the segment to be split contains
two or fewer elements, it is sorted and another segment is obtained
from the It and ut arrays. When no more segments remain, the array

is completely sorted.

INPUT PARAMFETERS:

(o T o T o B o T o T & T o T o T o S o T T o T o T o T o T T o T o I o T o T o T e T o T)

118 B. GSLIB Code : Other subroutines

ib ,ie start and end index of the array to be sorteda
a array, a portion of which has to be sorted.
iperm 0 no other array is permuted.

1 array b is permuted according to array a

2 arrays b,c are permuted.

3 arrays b,c,d are permuted.

4 arrays b,c,d,e are permuted.

5 arrays b,c,d,e,f are permuted.

6 arrays b,c,d,e,f,g are permuted.

7 arrays b,c,d,e,f,g,h are permuted.

>7 no other array is permuted.

b,c,d,e,f,g,h arrays to be permuted according to array a.
OUTPUT PARAMETERS:

a = the array, a portion of which has been sorted.

b,c,d,e,f,g,h =arrays permuted according to array a (see iperm)

NO EXTERNAL ROUTINES REQUIRED:

([~ T o N o T o S o T T o N o T o N o I T o T T o T o T T o R T o T o T S T o T)

dimension a(x),b(x),c(x),d(x),e(x),f(x),g(x),h(x)
c
¢ The dimensions for It and ut have to be at least log (base 2) n
c

integer 1t (64) ,ut (64),i,j,k,m,p,q

c
¢ Initialize:
c
j = ie
m =1
i = ib
iring = iperm—+1
if (iperm.gt.7) iring=l1
c
¢ If this segment has more than two elements we split it
c
10 if (j—i-1) 100,90,15
c
¢ p is the position of an arbitrary element in the segment we choose the
¢ middle element. Under certain circumstances it may be advantageous
¢ to choose p at random.
c
15 p (j+1)/2
ta = a(p)
a(p) = a(i)
go to (21,19,18,17,16,161,162,163),iring
163 th = h(p)
h(p) = h(i)
162 tg = g(p)
g(p) = g(i)
161 tf = f(p)
f(p) = £(1)
16 te = e(p)
e(p) = e(i)
17 td = d(p)

B.20 Subroutine SORTEM 119

d(p) = d(i)
18 tc = c(p)

c(p) = c(i)
19 tb = b(p)

b(p) = b(i)
21 continue

c
¢ Start at the beginning of the segment, search for k such that a(k)>t
c

q =]
k =1
20 k = k+1
if(k.gt.q) go to 60
if(a(k).le.ta) go to 20
c
¢ Such an element has now been found mow search for a q such that a(q)<t
¢ starting at the end of the segment.
c
30 continue
if(a(q).1t.ta) go to 40
q = q-1
if(q.gt.k) go to 30
go to 50

¢
¢ a(q) has now been found. we interchange a(q) and a(k)
¢

40 xa = a(k)
a(k) = a(q)
aa) — xa
go to (45,44,43.42,41,411,412,413),iring

413 xh = h(k)

h(k) = h(q)
h(q) = xh
412 xg = g(k)
g(k) = g(aq)
g(a) = xg
411 xf = f(k)
£(k) = £(a)
f(q) = xf
41 xe = e(k)
e(k) — e(q)
e(q) = xe
42 xd = d(k)
d(k) = d(q)
d(q) = xd
43 xc = c(k)
¢(k) — c(a)
c(q) = xc
44 xb = b(k)
b(k) = b(q)
b(q) = xb
45 continue

c
¢ Update q and search for another pair to interchange:
c
q = q-1
go to 20
50 q = k-1

120 B. GSLIB Code : Other subroutines

60 continue
c
¢ The upwards search has now met the downwards search :
c
a(i)=a(q)
a(q)=ta
go to (65,64,63,62,61,611,612,613),iring
613 h(i) = h(q)
h(q) = th
612 g(i) - gla)
g(a) = tg
611 f(i) = f(q)
f(q) = tf
61 e(i) = e(q)
e(q) = te
62 d(i) = d(q)
d(q) = td
63 ¢(i) = c(a)
¢(q) = te
64 b(i) = b(q)
b(q) = tb
65 continue
c
¢ The segment is now divided in three parts: (i,q—1),(q),(q+1,j)
¢ store the position of the largest segment in It and ut
c
if (2xq.le.i+j) go to 70
It (m) = i
ut(m) = q-—1
i =q+l
go to 80
70 It (m) = q+1
ut (m) = j
J = a-1
c
¢ Update m and split the new smaller segment
c
80 m = m+l1
go to 10
c
¢ We arrive here if the segment has two elements we test to see if
¢ the segment is properly ordered if not, we perform an interchange
c
90 continue
if (a(i).le.a(j)) go to 100
xa=a(i)
a(i)=a(j)
a(j)=xa
go to (95,94,93.92,91,911,912,913),iring
913 xh = h(i)
h(i) = h(j)
h(j) = xh
912 xg = g(i)
g(i) = g(j)
g(j) = xg
911 xft = f(i)
f(i) = £(j)

£(j) = xt

B.21 Subroutine SQDIST 121

Cc

91

92

93

94

xe
e(i)
e(j)
xd
d(i)
d(j)
XC
c(i)
c(j)
xb
b(i)
b(j)

= e(i)
ie(j)
=d(i)
= d(j)
= xd

= c(i)
iC(j)
= b(i)
=b(j)
= xb

95 continue

¢ If It and ut contain more segments to be sorted repeat process:

Cc

100 m = m—1

110

if (m.le.0) go to 110
i = 1t (m)
j = ut(m)
go to 10
continue

return
end

B.21 Subroutine SQDIST

real«8 function sqdist(x1,yl,z1,x2,y2,2z2,ind ,MAXROT, rotmat)

o T o T o T S T T o T T T o I T o T o T T o I o T o T o T o T o T o T T o T T o T - T T e T T)

This routine

Squared Amnisotropic Distance Calculation Given Matriz Indicator
R I I I I I I oo

given the
anisotropy .

calculates the anisotropic distance between two points

coordinates of each point and a definition of the

INPUT VARIABLES:

zl,yl,z1
2,92, 22
ind
MAXROT

rotmat

OUTPUT VARIABLES:

sqdist

Coordinates of first point

Coordinates of second point

The rotation matriz to use

The mazimum number of rotation matrices dimensioned
The rotation matrices

The squared distance accounting for the anisotropy
and the rotation of coordinates (if any).

NO EXTERNAL REFERENCES

122 B. GSLIB Code : Other subroutines

c
real«8 rotmat (MAXROT,3,3),cont ,dx,dy,dz
c
¢ Compute component distance wvectors and the squared distance:
c
dx = dble(x1 — x2)
dy = dble(yl — y2)
dz = dble(zl — z2)
sqdist = 0.0
do i=1.,3
cont = rotmat(ind,i,1) x dx
+ + rotmat (ind ,i,2) * dy
+ + rotmat (ind ,i,3) * dz
sqdist = sqdist + cont % cont
end do
return
end

B.22 Subroutine srchsupr

subroutine srchsupr(xloc,yloc,zloc ,radsqd,irot ,MAXROT, rotmat , &
nsbtosr ,ixsbtosr ,iysbtosr ;izsbtosr ,noct ,nd, &
X,y,%,ddx,ddy,tmp, nisb ,nxsup ,xmnsup, xsizsup , &
nysup ,ymnsup, ysizsup ,nzsup ,zmnsup , zsizsup , &
nsc,xsl,ysl,xs2,ys2,nclose ,close,infoct)

SR o o

Search Within Super Block Search Limits

>k 3k ok ok 3k ok ok sk ok ok ok skok ok Sk ok ok sk ok sk sk sk ok ok ok sk ok skook ok sk sk ok ok okok ok skok

This subroutine searches through all the data that have been tagged in
the super block subroutine. The close data are passed back in the
index array "close". An octant search is allowed.

INPUT VARIABLES:

zloc ,yloc , zloc location of point being estimated/simulated
radsqd squared search radius

irot index of the rotation matriz for searching
MAXROT size of rotation matriz arrays

rotmat rotation matrices

nsbtosr Number of super blocks to search

izsbtosr X offsets for super blocks to search

iysbtosr Y offsets for super blocks to search

izsbtosr Z offsets for super blocks to search

noct If >0 then data will be partitioned into octants
nd Number of data

z(nd) X coordinates of the data

y(nd) Y coordinates of the data

z(nd) Z coordinates of the data

ddz (nd) X difference for Kriging under BC

ddy(nd) Y difference for Kriging under BC

tmp (nd) Temporary storage to keep track of the squared

NN ' ' ' 'S ' ' ' ' 'S 'S ' ' 'S ' ' ' ' ' ' ' 'S ' ' ' ' ' ' ' 't

distance associated with each data

B.22 Subroutine srchsupr 123

nish () Array with cumulative number of data in each
super block.

nrsup ,rmnsup , xsizsup Definition of the X super block grid
nysup ,ymnsup , ysizsup Definition of the X super block grid
nzsup ,zmnsup , zsizsup Definition of the X super block grid
nsc Number of "gradient” segments
xzsl(nsc) X coordinates of the 1st endpoint of a "gradient” segment
zs2(nsc) Y coordinates of the 1st endpoint of a "gradient” segment
ysl(nsc) X coordinates of the 2nd endpoint of a "gradient” segment
ys2(nsc) Y coordinates of the 2nd endpoint of a "gradient” segment

NN 'S ' ' ' ' ' ' ' ' ' ' ' 'S ' 'S ' ' 'S ' ' ' ' ' ' ' ' ' ' '

OUTPUT VARIABLES:

nclose
close ()

infoct

Number of close data
Index of close data

Number of informed octants (only computes if
performing an octant search)

EXTERNAL REFERENCES:

sqdist Computes anisotropic squared distance
sortem Sorts multiple arrays in ascending order
intersect Checks if two segments are intersecting
real x(*%),y(*),z(*),ddx(*),ddy (%) ,tmp (%), close (*)
real xs1(*),ysl(*),xs2(*),ys2(%)
real+«8 rotmat (MAXROT,3 ,3) ,hsqd,sqdist

integer nsc
integer nisb (%) ,inoct (8)

integer

logical inflag , intersect

ixsbtosr (x),iysbtosr (%),izsbtosr (x)

Determine the super block location of point being estimated:

call getindx (nxsup ,xmnsup, xsizsup ,xloc ,ix,inflag)
call getindx (nysup ,ymnsup,ysizsup ,yloc ,iy ,inflag)
call getindx (nzsup ,zmnsup,zsizsup ,zloc ,iz ,inflag)

Loop over all the possible Super Blocks:

nclose = 0

do 1 isup=1,nsbtosr

Is this super block within the grid system:

ixsup =
iysup =
izsup =

ix + ixsbtosr(isup)
iy + iysbtosr(isup)
iz + izsbtosr (isup)

if (ixsup.le.0.or.ixsup.gt.nxsup.or. &

e

iysup.le.0.or.iysup.gt.nysup.or. &
izsup.le.0.or.izsup.gt.nzsup) go to 1

124 B. GSLIB Code : Other subroutines

!

! Figure out how many samples in this super block:
!

ii = ixsup + (iysup —1)*nxsup + (izsup —1)*nxsup#nysup
if(ii.eq.1) then
nums = nisb (ii)
i =0
else
nums = nisb(ii) — nisb(ii —1)
i = nisb(ii 1)
endif

! Loop over all the data in this super block:

do 2 ii=1,nums
i=1i+1

! Check if this is a "real” data point:
if ((ddx(i).ne.0.0).or.(ddy(i).ne.0.0)) go to 2
! Check squared distance:
hsqd = sqdist (xloc,yloc,zloc ,x(i),y(i),z(i),irot ,MAXROT,
rotmat)

if (real(hsqd).gt.radsqd) go to 2

! Check if this point is screened by "no flow" segments:

do k=1,nsc
if(intersect (xloc ,yloc ,x(i),y(i),xsl(k),ysl(k), &
& xs2(k),ys2(k)).eq..true.) go to 2
end do

! Accept this sample:

nclose = nclose + 1

close(nclose) = real(i)

tmp(nclose) = real(hsqd)
2 continue

1 continue
! Sort the nearby samples by distance to point being estimated:
call sortem(1,nclose ,tmp,1,close,c,d,e,f,g,h)
! If we aren’t doing an octant search then just return:
if (noct.le.0) return
! PARTITION THE DATA INTO OCTANIS:
do i=1,8
inoct (i) =0
end do

! Now pick up the closest samples in each octant:

B.23 Subroutine srchsupr2

125

/

nt = 8*mnoct
na = 0
do j=1,nclose
i = int(close(j))
h = tmp(j)
dx = x(i) — xloc
dy = y(i) — yloc
dz = z(i) — zloc
if(dz.1t.0.) go to 5
iq=4

if(dx.le.0.0 .and. dy.
if(dx.gt.0.0 .and. dy.
if(dx.1t.0.0 .and. dy.

go to 6
iq=8

if(dx.le.0.0 .and. dy.
.and. dy.
if(dx.1t.0.0 .and. dy.

if (dx. gt .

o
)

continue
inoct (iq) = inoct(iq)

! Keep this sample if the maximum

!

! End of data selection. Compute number of informed octants and return:

/

if (inoct (iq).le.noct)
na = na + 1

close(na) = i
tmp (na) =h
if(na.eq.nt) go
endif
end do

nclose = na
infoct = 0
do i=1,8

if (inoct(i).gt.0) infoct

end do

! Finished:

!

return
end

gt.0.0)

ge.
le.0.0)

(e)
o
~—

gt.0.0)

ge.
le.0.0)

o
o
~—

+ 1

has not

then

to 7

B.23 Subroutine srchsupr?2

Instead of “Check if this is a "real" data point: (...

/

Difference with srchsupr :

iq=1
iq=2
iq=3

iq=5
iq=6
iq=7

been exceeded:

— infoct + 1

)7

! Check if this is a "gradient" data point:

!

if ((ddx(i).eq.0.0).and.(ddy(i).eq.0.0)) go to 2

126 B. GSLIB Code : Other subroutines

B.24 Subroutine SRCHSUPRS3

Difference with srchsupr :
No “Check if this is a "real" data point: (...)".
No “Check if this point is screened by "no flow" segments: (...)".

Appendix C

GSLIB Code : Input Files

C.1 Example of a parameter file

Parameters for COKIBC

KK K K K K Kk K K ok kK koK k ok ok ok ok ok ok ok

START OF PARAMETERS:
c:\ Tests\K-BC2. txt

1 \ number of variables primary+other
0 \ estimated variable : O=head, l=transmittivity
1 2 0 3 4 5 1\ columns for X,Y,Z,kod and variables
—9e+6 le+29 \ trimming limits
0 \co—located cokriging? (0=no, l=yes)
\ file with gridded covariate
4 \ column for covariate
3 \debugging level: 0,1,2,3
coktbc .dbg
coktbc .out
51 0.0 10.0 \nx,xmn, xsiz
51 0.0 10.0 \ny,ymn, ysiz
1 0.5 1.0 \nz,zmn, zsiz
1 1 1 \x, vy, and z block discretization
0 \O=constant or l=moving neighborhood
1 50 50 50 \min primary ,max primary ,max grad ,max all sec
710 710 0 \maximum search radii: primary
710 710 O \maximum search radii: all secondary
0 0 0 \angles for search ellipsoid
2 \kriging type (0=SK, 1=0OK, 2=OK-trad)
110000000 \drift: x,y,z,XxX,yy,%%,Xy,X%,2y
0.00 0.00 0.00 0.00 \mean(i),i=1,nvar
1 \mean of transmissivity
0.1 270.0 \head gradient, gradient angle with X axis
0 \grid file type
c:\ Temp\tmpllB.tmp
0 1 \use log interpolation flag
0 0 \Restrict Min Value, Value Min
0 0 \Restrict Max_Value, Value Max
1 1 \semivariogram for "i" and "j"
1 0.01 \ nst , nugget effect
6 1 0 0 0 \ it ,cc,angl ,ang2,ang3
710 710 1 \ a_hmax, a hmin, a_ vert

128

C. GSLIB Code : Input Files

N =] 00
—
o

—
o

710

—

—_

\semivariogram for "i" and "j"

\ nst , nugget effect

\ it ,cc,angl ,ang2,ang3

\ a_hmax, a_hmin, a_vert
\semivariogram for "i" and "]

\ nst , nugget effect

\ it ,cc,angl ,ang2 ,ang3

\ a_hmax, a_hmin, a_vert

C.2 Example of a data file

Irregularly spaced 18 points

5

Column 1
Column 2
Column 3
Column 4
Column 5
395 25
155 85
315 145
55 185
415 215
245 245
375 305
35 315
195 375
305 415
455 455
65 485
0 500
0 0
500 O
500 0.1
500 500
0.1 500

—_ = O OO OO0 OO O

o
—

2.07758
6.534819
8.481745
12.45673
10.37956
13.05593
13.10351
19.32508
18.22474
16.15247
14.53221
28.41367
50

0

o O o O

—-9999999
—9999999
—9999999
—9999999
—9999999
—-9999999
—-9999999
—-9999999
—9999999
—9999999
—9999999
—-9999999
—-9999999
—9999999
—9999999
—9999999
—-9999999
—9999999

	Abstract
	Acknowledgements
	Contents
	List of Figures
	Introduction
	Kriging
	Prerequisites
	Random Variable
	Random Function
	Other Definitions
	Stationarity Hypothesis
	A Useful Result

	Structural Analysis
	Experimental Variogram
	Variogram Characteristics
	Variogram Examples

	Kriging Basics
	Universal Kriging or Kriging with a Trend Model
	Drift Terms
	Linearity Constraint
	Authorization Constraint
	Unbiasedness Constraints
	Optimality Constraint
	Solving the Kriging Equations

	Multivariate Geostatistics : Cokriging

	Kriging under Boundary Conditions
	Boundary Conditions in Hydrogeology
	Prescribed Head
	Prescribed Flux

	The Kriging under Boundary Conditions System
	Linearity Constraint
	Authorization Constraint
	Unbiasedness Constraints
	Optimality Constraint

	Code Implementation
	Kriging Neighborhood
	Adding the Boundary Conditions Data
	Discretization Parameters
	Singularity Conditions
	Constant Flux Conditions
	Cubic Variogram
	Filling the Kriging under Boundary Conditions Matrix

	Application of Kriging under Boundary Conditions
	Comparison between Universal Kriging and Kriging under Boundary Conditions
	Undefined boundaries
	Constant Flux Boundaries
	River and Inside Constant Flux
	``Screen Effect''

	Conclusion

	(Co-)Kriging with Multivariate Structural Analysis
	Further Geostatistical Definitions
	Intrinsic Random Function of order k (IRF-k)
	Generalized Covariance

	Kriging the Head using Transmissivity Knowledge
	Hydrogeologic Context
	The Stochastic Equation Z = Y
	Covariance Model
	Covariance Choice and Code Implementation
	Application

	Cokriging Head and Log Transmissivity
	Cross-covariance
	The Cokriging System
	The Cokriging under Boundary Conditions System

	Inverse Problem
	The Inverse Problem Kriging System
	The Bias in Lognormal Kriging

	Application
	Code Implementation
	Results
	Conclusion

	Conclusion
	Bibliography
	APPENDIXES
	GSLIB Code : Main Algorithm
	GSLIB Code : Other subroutines
	Include file COKTBC.inc
	Subroutine bdarr
	Subroutine bdpts
	Subroutine CCW
	Subroutine CHKNAM
	Subroutine COVA3
	Subroutine ficcoord
	Subroutine fluxcoor
	Subroutine GETINDX
	Subroutine getopenfilename
	Subroutine getopenfilesurf
	Subroutine intersect
	Subroutine KTSOL
	Subroutine PICKSUPR
	Subroutine remdup
	Subroutine scrarr
	Subroutine screens
	Subroutine SETROT
	Subroutine setsupr
	Subroutine SORTEM
	Subroutine SQDIST
	Subroutine srchsupr
	Subroutine srchsupr2
	Subroutine SRCHSUPR3

	GSLIB Code : Input Files
	Example of a parameter file
	Example of a data file

