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Drawing hydraulic head contour maps is one of the rst requested results in hydrogeology.

This goal can be achieved in several manners : solving the partial dierential equation within discretized models calibrated so as to t the head data, or more simply using spatial data interpolation techniques. One of these techniques is kriging, a stochastic approach that estimates the value of a natural phenomenon in unsampled sites, using an unbiased linear combination of neighboring measures of the phenomenon, with a minimum variance. The rst part of this thesis explains the basics of the kriging theory.

However, the main goal of this work is to combine this geostatistical method with some features of the partial dierential equations problem to provide a mapping tool that has the kriging simplicity of use but provides scientically better results. Two dierent improvements are described in this thesis. The rst one introduces the use of boundary conditions in the kriging algorithm, and the second one focuses on covariance models that take into account the transmissivity values, both for kriging and cokriging estimation. For both features, the theoretical explanation is followed by application examples that highlight the improvements in the estimated results. Finally, the use of the improved cross-covariance models to solve the inverse problem (determining the transmissivity knowing the hydraulic head) is detailed. All the examples were made using GSLIB kriging and cokriging algorithms that were modied for that purpose.

The results presented in this thesis show that Kriging under Boundary Conditions is an ecient way of improving the interpolated contour maps without involving discretized modeling. Cokriging between the hydraulic head and the transmissivity with a structural analysis focused on ensuring that the two variables verify the partial dierential equation allows to take into account the variations of the transmissivity while assuming a regionally monodirectional ow of constant hydraulic gradient J and a discharge Q = 0. It can be used to solve both the direct and the inverse problem. The rst results are promising, but there is still some work to be done to have a tool as robust as Kriging under Boundary Conditions.

Introduction

One of the main parameters hydrogeologists need to know for their studies is the hydraulic head. Thus, drawing adequate head contour maps is a common issue in hydrogeology. Two very dierent methodologies can be used to achieve this goal :

• Solving the partial dierential equation within discretized models :

This method requires the input of the needed parameters to solve the diusivity equation so that the computed head surface knows the head data points. In most cases, the problem is too complex to nd an analytical solution and a numerical simulation has to be computed, often based on either the nite dierence or nite element methods, as explained by [START_REF] De Marsily | Hydrogéologie quantitative[END_REF]. This approach provides the best results, but it certainly requires some knowledge in hydrogeologic modeling, sucient parameters data, and, obviously, the adequate code.

• Using a spatial interpolation technique : Spatial interpolation is a mathematical processing that allows the reconstruction of a phenomenon over a domain based on a limited number of data samples of this phenomenon. Basically, one only has to enter his data and choose an interpolation method to build his contour map. However, if the estimate produced is correct, it does not veriy the same partial dierential equation that the real data does. In hydrogeology, that means that the ow equation will not be veried.

Knowing this, the goal of this thesis is to suggest some elements to combine both of these very dierent methods to produce hydraulic head maps that are scientically better than the ones obtained with classic interpolation, but still easier to create than the ones made by solving the partial dierential equations. The chosen interpolator is kriging, because it already takes into account the spatial dependency of the data, and the programming work has been centered on Geostatistical Software Library (GSLIB) kriging and cokriging algorithms. GSLIB is available in the public domain, distributed by Stanford University and documented in [START_REF] Deutsch | GSLIB : Geostatistical Software Library and User's Guide[END_REF]. Their algorithms are widely used in research or commercial codes. In particular, they are present in several Waterloo Hydrogeologic software programs, including GW Contour, an easy-to-use data interpolation and contouring program that also provides techniques for mapping velocity vectors and particle tracks 1 . The aim of my internship was to improve the kriging algorithm for this software, in order to have better head maps, and thus better velocity vectors and particle tracking.

The rst chapter of this thesis presents the kriging theory, which was the interpolation method chosen to implement the new features. The second chapter explains how kriging 0. Introduction can take care of the boundary conditions when mapping the hydraulic head, and presents some examples that show the improvements resulting from this addition. The third chapter suggests another way of improving the head kriging while using some transmissivity data and the partial dierential equation background to improve the covariance computation. It also details the cokriging process between head and transmissivity, while also taking into account the diusivity equation results to compute the cross-covariance. This method can actually be used for both estimating the hydraulic head and the transmissivity, thus in theory, it can be used to solve the inverse problem. Finally, the conclusion rounds up the results of these various researches, explains how they will be implemented in GW Contour, and what the further developments could be.

Chapter 1

Kriging

The word kriging and the method itself have been created by G. Matheron in 1963, after the name of D.G. Krige, a South-African mining engineer whose work initiated Matheron's. This chapter presents some elements of the theory of regionalized variables needed to understand the kriging method. The mathematic process is then described for Universal Kriging, also called Kriging with a Trend model, which is the most generalized version of kriging.

Finally, some characteristics useful for the following chapters are detailed. All the theory presented in this chapter comes from the work of [START_REF] Matheron | Traité de Géostatistique appliquée -Tome I[END_REF][START_REF] Matheron | Traité de Géostatistique appliquée -Tome II : Le krigeage[END_REF][START_REF] Matheron | Les variables régionalisées et leur estimation[END_REF][START_REF] Matheron | Le krigeage universel[END_REF][START_REF] Matheron | La théorie des variables régionalisées et ses applications[END_REF]Matheron ( , 1971a[START_REF] Matheron | The intrinsic random functions and their applications[END_REF][START_REF] Matheron | Eet proportionnel et lognormalité ou : Le retour du serpent de mer[END_REF]. The following references have also been helpful : Geostatistics : Modeling Spatial Uncertainty by [START_REF] Chilès | Geostatistics : Modeling Spatial Uncertainty[END_REF], GSLIB : Geostatistical Software Library and User's Guide by [START_REF] Deutsch | GSLIB : Geostatistical Software Library and User's Guide[END_REF], the various lecture notes on Geostatistics from the Ecole Nationale Supérieure des Mines de Paris by [START_REF] Chauvet | Processing data with a spatial support : Geostatistics and its methods[END_REF]; [START_REF] Rivoirard | Concepts et méthodes de la géostatistique[END_REF][START_REF] Rivoirard | Cours de géostatistique multivariable[END_REF]; [START_REF] Wackernagel | Cours de géostatistique multivariable[END_REF] and Le krigeage : revue de la théorie et application à l'interpolation spatiale de données de précipitation, a well done Master's Thesis by [START_REF] Baillargeon | Le krigeage : revue de la théorie et application à l'interpolation spatiale de données de précipitation[END_REF].

Prerequisites 1.Random Variable

The basic paradigm of predictive statistics is to characterize any unknown value z as a random variable (RV) Z, the probability distribution of which models the uncertainty about z. A random variable is a variable that can take a variety of outcome values according to some probability distribution. The RV model Z, and more specically its probability distribution, is usually location-dependent ; hence the notation Z(x), with x being the location coordinates vector of a point. In the continuation of this thesis, we will work in R 2 , thus a point x will be dened by its two coordinates x and y. The RV Z(x) is also information-dependent in the sense that its probability distribution changes as more data about the unsampled value z(x) become available.

The cumulative distribution function (cdf ) of a continuous RV Z(x) is denoted :

F (x; z) = Prob {Z(x) ≤ z} (1.1)
When the cdf is made specic to a particular information set, for example (n) consisting of n neighboring data values Z(x α ) = z(x α ), α = 1, . . . , n, the notation conditional to n is used, 1. Kriging dening the conditional cumulative distribution function (ccdf ) :

F (x; z|(n)) = Prob {Z(x) ≤ z|(n)} (1.2)
Expression (1.1) models the uncertainty about the unsampled value z(x) prior to using the information set (n) while expression (1.2) models the posterior uncertainty once the information set (n) has been accounted for. The goal of any predictive algorithm is to update prior models of uncertainty such as (1.1) into posterior models such as (1.2). The ccdf F (x; z|(n)) is a function of the location x, the sample size and geometric conguration (i.e. the data locations x α , α = 1, . . . , n), and the sample values z(x α ), α = 1, . . . , n.

From the ccdf (1.2) one can derive dierent optimal estimates for the unsampled value z(x) in addition to the ccdf mean, which is the least-squares error estimate. One can also derive various probability intervals.

In geostatistics, most of the information related to an unsampled value z(x) comes from sample values at neighboring locations x , whether dened on the same attribute z or on some related attribute y. Thus it is important to model the degree of correlation or dependence between any number of RVs Z(x), Z(x α ), α = 1, . . . , n and more generally Z(x), Z(x α ), α = 1, . . . , n, Y (x β ), β = 1, . . . , n . The concept of a random function (RF) allows such modeling and updating of prior cdfs into posterior ccdfs.

Random Function

A random function (RF) is a set of RVs dened over some eld of interest, such as {Z(x), x ∈ study area} also denoted simply as Z(x). Usually the RF denition is restricted to RVs related to the same attribute, say z, hence another RF would be dened to model the spatial variability of a second attribute, say {Y (x), x ∈ study area}.

Just as an RV Z(x) is characterized by its cdf (1.1), an RF Z(x) is characterized by the set of all its K-variate cdfs for any number K and any choice of the K locations x k , k = 1, . . . , K : F (x 1 , . . . , x K ; z 1 , . . . , z K ) = Prob {Z(x 1 ) ≤ z 1 , . . . , Z(x K ) ≤ z K }

(1.3) Just as the univariate cdf of RV Z(x) is used to model uncertainty about the value z(x), the multivariate cdf (1.3) is used to model joint uncertainty about the K values z(x 1 ), . . . , z(x K ).

Of particular interest is the bivariate (K = 2) cdf of any two RVs Z(x), Z(x ), or more generally Z(x), Y (x ) :

The key, in geostatistics, is that we act as though the regionalized variable under study z(x) is a realization of a parent random function {Z(x) : x ∈ R n }. In particular, Delhomme (1976,1978) demonstrated that a number of elds of hydrogeologic variables (head, transmissivity, thickness of aquifer layers. . . ) possess a spatial structure and are therefore amenable to geostatistical techniques.

Spatial Distribution

A random function is described by its nite-dimensional distributions, namely the set of all multidimensional distributions of K-tuples (Z(x 1 ), . . . , Z(x K )) for all nite values of K and all congurations of the points x 1 , . . . , x K . That is what we call the spatial distribution. 1.1.3.3 Distance between two points The distance between two points in R 2 , A(x A , y A ) and B(x B , y B ), is dened by the Euclidean norm of the vector determined by these two points :

d AB = (x B -x A ) 2 + (y B -y A ) 2 1.1.3.

Moments

The mean of the RF is the expected value m(x) = E[Z(x)] of the RV Z(x) at point x. It is also called the drift of Z, especially when m(x) varies with location. The (centered) covariance Cov(x, y) is the covariance of the RV Z(x) and Z(y) :

Cov(x, y) = E Z(x) -m(x) Z(y) -m(y) (1.5) In general, this function depends on both x and y. When x = y, Cov(x, x) = V ar[Z(x)] is the variance of Z(x). Higher-order moments can be dened similarly.

Naturally, in theory, these moments may not exist. As usual in probability theory the mean is dened only if E |Z(x)| < ∞. If E[Z(x)] 2 is nite at every point, Z(x) is said to be a second-order RF : it has a nite variance, and the covariance exists everywhere.

Stationarity Hypothesis

Strict Stationarity

A RF is called stationary when the nite-dimensional distributions are invariant under an arbitrary translation of the points by a vector h : Prob {Z(x 1 ) < z 1 , . . . , Z(x K ) < z K } = Prob {Z(x 1 + h) < z 1 , . . . , Z(x K + h) < z K } (1.6) Physically, this means that the phenomenon is homogeneous in space and repeats itself in the whole space.
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Second-Order Stationarity

When the random function is stationary, its moments, if they exist, are obviously invariant under translations. The second-order stationarity hypothesis consider that the rst two moments (mean and covariance) are stationary. We have then for points x and x + h of R n :

   E Z(x) = m E Z(x) -m Z(x + h) -m = E Z(x)Z(x + h) -m 2 = C(h) (1.7)
The mean is constant and the covariance function C has the following properties :

• It only depends on the separation h,

• It is bounded and doesn't exceed the constant variance :

|C(h)| ≤ C(0) = V ar Z(x)
• It is an even function : C(-h) = C(h).

By denition, an RF satisfying the above conditions is second-order stationary and will be further called Stationary Random Function or SRF. An SRF is isotropic if its covariance function only depends on the length |h| of the vector h, and not on its orientation.

Intrinsic Hypothesis

A milder hypothesis is to assume that for every vector h the increment Y h (x) = Z(x + h)-Z(x) is an SRF in x. Then Z(x) is called an intrinsic random function (IRF) and is characterized by the following relationships :

     E Z(x + h) -Z(x) = a, h E Z(x + h) -Z(x) 2 = V ar Z(x + h) -Z(x) = 2 γ(h) (1.8)
a, h is the linear drift of the IRF (drift of the increment) and γ(h) is its variogram function.

If the linear drift is zero, that is, if the mean is constant, we have the usual form of the intrinsic model :

E Z(x + h) -Z(x) = 0 V ar Z(x + h) -Z(x) = 2 γ(h) (1.9)
This gives us a denition of the usual form of the theoretical variogram :

γ(h) = 1 2 E Z(x + h) -Z(x) 2 (1.10)
The variogram has the following properties :

• It only depends on the separation h,

• It is an even function : γ(-h) = γ(h),

• It is nonnegative : γ(h) ≥ 0, and γ(h = 0) = 0.

Existence of the expectation of the increments of an IRF does not imply the existence of the expectation of the IRF itself. An IRF can have an innite variance while its increments do have a nite variance for each vector h. In particular, that means that, whereas we can infer the variogram from the covariance function with the following formula :

γ(h) = C(0) -C(h), ∀h

(1.11) the opposite is not true : you can't dene a covariance function from every variogram.

A Useful Result

The following calculation provides another result that links the covariance and the variogram. It will be used further to establish the kriging system. When E Z(x i ) -Z(x 0 ) = E Z(x j ) -Z(x 0 ) = 0,

Cov [Z(x i ) -Z(x 0 ) , Z(x j ) -Z(x 0 )] = = E Z(x i ) -Z(x 0 ) Z(x j ) -Z(x 0 ) = E Z(x i )Z(x j ) -Z(x i )Z(x 0 ) -Z(x j )Z(x 0 ) + Z(x 0 ) 2 = E Z(x i )Z(x j ) -E Z(x i )Z(x 0 ) -E Z(x j )Z(x 0 ) + E Z(x 0 ) 2 = - 1 2 E Z(x i ) 2 + E Z(x i )Z(x j ) - 1 2 E Z(x j ) 2 + 1 2 E Z(x i ) 2 -E Z(x i )Z(x 0 ) + 1 2 E Z(x 0 ) 2 + 1 2 E Z(x j ) 2 -E Z(x j )Z(x 0 ) + 1 2 E Z(x 0 ) 2 = - 1 2 E Z(x i ) -Z(x j ) 2 + 1 2 E Z(x i ) -Z(x 0 ) 2 + 1 2 E Z(x j ) -Z(x 0 ) 2 = -γ(x i -x j ) + γ(x i -x 0 ) + γ(x j -x 0 )
This result :

Cov Z(x i ) -Z(x 0 ) , Z(x j ) -Z(x 0 ) = -γ(x i -x j ) + γ(x i -x 0 ) + γ(x j -x 0 )

(1.12) combined with equation (1.11) provides, if the covariance function is dened :

Cov Z(x i ) -Z(x 0 ) , Z(x j ) -Z(x 0 ) = C(x i -x j ) -C(x i -x 0 ) -C(x j -x 0 ) + C(0) (1.13)
More precisely, the result that will be further used to solve the kriging system is :

E Z(x i ) -Z(x 0 ) Z(x j ) -Z(x 0 ) = C(x i -x j ) -C(x i -x 0 ) -C(x j -x 0 ) + C(0) (1.14)
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Structural Analysis 1.2.1 Experimental Variogram

In practice, the spatial variability of a regionalized variable z(x) can be measured at various scales by computing the dierence between two data values z 1 and z 2 located in two points x 1 and x 2 of the spatial distribution. This dierence γ is dened by : γ = (z 2 -z 1 ) 2 2 γ depends on the distance and the orientation of the pair of points, described by the vector h = x 2 -x 1 , whatever the position of the points in the spatial distribution is :

γ (h) = 1 2 z(x 1 + h) -z(x 1 ) 2 
Taking the mean of the γ dierences for all the n h couples of data points linked by a given vector h for a given mesh, we can build the experimental variogram :

γ (h) = 1 2 n h α=1 z(x α + h) -z(x α ) 2 (1.15) 1.2.2 Variogram Characteristics

Nugget Eect

The behavior of the variogram near its origin (i.e. for small values of h) is key, as it shows the degree of continuity of the regionalized variable : dierentiable, continuous but not dierentiable, or not continuous. If this last case is true, i.e. if lim h→0 + γ(h) = C 0 > 0, then C 0 is called the nugget eect (see gure 1.1). A steep nugget eect denotes a weak correlation between two very close data values. This can be explained by some undetected variations at a very small scale. The name nugget eect has been given after the fact that such big variations at a small scale can be observed in gold deposits, where there are gold nuggets.

Sill and Range

Usually, we tend to notice that γ (h) increases with |h| and it frequently reaches a variation plateau for big distances. When this plateau is reached, that means that there is no further spatial dependency between data. This distance is called range, and the word sill describes the variance for which this plateau appears (see gure 1.1). Sometimes, the sill is only reached asymptotically. In that case, the real range in innite, but a practical range is dened by the distance at which the variogram reaches 95% of the value of its sill.

If a variogram is not bounded, it does not have any range nor sill. The variance of the RF is then undened, and such an RF is not an SRF, but only an IRF. Another possibility is to notice that the variogram slope changes steeply. One can then imagine that there is an intermediate sill. That in fact means that the variogram has several nested structures, each one being dened by its own range and sill (see gure 1.1). 

Variogram Examples

The goal of this thesis is not to explain how one can determine the variogram of a regionalized variable through a data set. However, here are some examples of the most common models of isotropic variograms, with r = |h|, a being the range and c being the sill :

• Spherical model : (1.17)

• Exponential model :

γ(h) = c 1 -exp - r a
(1.18)

• Gaussian model :

γ(h) = c 1 -exp - r 2 a 2
(1.19)

• Power model, with a power 0 < α < 2 and a positive slope c :

γ(h) = c . r α (1.20)
The representation of these variogram functions can be seen in Figure 1.2.

Kriging

Figure 1.2: Variogram models with unit sill and scale parameters, from [START_REF] Chilès | Geostatistics : Modeling Spatial Uncertainty[END_REF].

Kriging Basics

Kriging is an interpolation method, thus its goal is to estimate the value of the studied regionalized variable Z(x) (considered an RF) at a point x 0 where its value is unknown, using a linear combination of the N neighboring data :

Z (x 0 ) = N i=1
λ i (x 0 ) Z(x i ) + λ 0 (x 0 )

(1.21)

The weights λ i associated to the regionalized variable data are chosen to make an unbiased estimate, whose variance is minimum. These weights depend on the location of the data points and their distance to the estimated point, and on the structure of the spatial dependency. In fact, kriging is the name given to the Best Linear Unbiased Estimator (BLUE).

Kriging is also the rst interpolation method to take into account the spatial dependency structure of data. In fact, from a physical point of view, the RF Z(x) can be described as the following decomposition :

Z(x) = m(x) + R(x) (1.22)
In this equation, m(x) is a smooth deterministic function that describes the systematic aspect of the phenomenon and is usually called the mean (it is indeed the mean of the RF Z(x)) when m(x) is constant and the drift otherwise. R(x) is a zero-mean RF, called the residual, whose spatial variation structure is known, and which captures the erratic uctuations of the RF Z(x).

The structure of the function m(x) determines the type of kriging processed :

• Simple Kriging (SK) : m(x) = m is a known constant, Z(x) is supposed an SRF.

• Ordinary Kriging (OK) : m(x) = m is an unknown constant, Z(x) is supposed an IRF.

• Universal Kriging (UK) :

m(x) = L l=0 a l f l (x) (1.23)
In which the f l (x) functions are known basis functions and a l are xed but unknown coecients.

Four constraints sum up the kriging process :

1. Linearity constraint

The estimate has to be a linear combination of the data, and thus has to be written as in equation (1.21).

Authorization constraint

The expectation and the variance of the estimate error Z (x 0 ) -Z(x 0 ) have to exist. This constraint is used only when the residual R(x) is considered an IRF.

Unbiasedness constraint

The kriging estimate must be unbiased. That means that E[Z (x 0 ) -Z(x 0 )] = 0. A direct consequence of this constraint is that kriging is an exact interpolator.

Optimality constraint

The weights λ i are determined in order to minimize V ar[Z (x 0 )-Z(x 0 )] while following the other constraints. This makes kriging a smoothing interpolator, as that implies

V ar[Z (x i )] ≤ V ar[Z(x i )].
These constraints lead to the linear system of equations that will be solved to determine the kriging weights and nd the estimate. In the next section, is explained how to solve the Universal Kriging system.

Universal Kriging or Kriging with a Trend Model

Universal Kriging doesn't require the validity of some stationarity hypothesis, as opposed to Simple or Ordinary Kriging. In particular, it takes into account any possible drift of the regionalized variable. Applied to the hydraulic head, that means Universal Kriging is able to take into account the existence of a hydraulic gradient, which is more often than not dierent from nil due to the ow conditions. That explains why this kriging method is used in the further developments of this thesis and why its basics are detailed below.

Drift Terms

As explained in section 1.3, in the Universal Kriging method, the RF Z(x) can be described as in equations (1.22) and (1.23) :

Z(x) = m(x) + R(x) with m(x) = L l=0 a l f l (x)
1. Kriging

In order to solve the kriging system, one has to determine the f l (x) functions that dene the trend. Ideally, they should be specied by the physics of the problem. Though, in the absence of any information about the shape of the trend, the dichotomization of the Z data into trend and residual components is somewhat arbitrary : what is regarded as stochastic uctuations R(x) at large scale may later be modeled as a trend if additional data allow focusing on the smaller-scale variability. In the absence of a physical interpretation, the trend is usually modeled as a low-order (≤ 2) polynomial of the coordinates of x, i.e. x and y in our 2D case.

In GSLIB's algorithm, nine drift terms can be included in the kriging system on top of the constant term :

• linear terms in x, y or z,

• quadratic terms in x 2 , y 2 or z 2 ,

• cross quadratic terms in xy, xz or yz.

As we are kriging the hydraulic head in 2D, we obviously won't use the terms in z. So, an example of a possible trend model in our case would be a linear 2D one :

m(x) = µ 0 + µ 1 x + µ 2 y 1.4.

Linearity Constraint

As previously mentioned in equation (1.21), Z(x) has to be a linear combination of the Z(x i ) data and thus it is written :

Z (x 0 ) = N i=1 λ i (x 0 ) Z(x i ) + λ 0 (x 0 ) 1.4

.3 Authorization Constraint

In the Universal Kriging method, the residual function R(x) only follows the intrinsic hypothesis. That means only linear combinations of increments R(x+h)-R(x) have second order moments necessarily dened. Then the estimate error has to be a linear combination of increments of the residual function R(x) to be sure it has a variance.

The following can be written for the estimate error :

Z (x 0 ) -Z(x 0 ) = λ 0 (x 0 ) + N i=1 λ i (x 0 ) Z(x i ) -Z(x 0 ) = λ 0 (x 0 ) + N i=1 λ i (x 0 ) m(x i ) + R(x i ) -m(x 0 ) -R(x 0 ) = λ 0 (x 0 ) + N i=1 λ i (x 0 ) m(x i ) -m(x 0 ) non random terms + N i=1 λ i (x 0 ) R(x i ) -R(x 0 ) Z (x 0 ) -Z(x 0 ) is a linear combination of increments of the residual function R(x) if and only if : λ 0 (x 0 ) + N i=1 λ i (x 0 ) m(x i ) -m(x 0 ) = 0 (1.24)

Unbiasedness Constraints

To have an unbiased estimate, the following condition has to be true, with the simplied

notation λ i = λ i (x 0 ) : E[Z (x 0 ) -Z(x 0 )] = 0 E λ 0 + N i=1 λ i Z(x i ) -Z(x 0 ) = 0 λ 0 + N i=1 λ i m(x i ) -m(x 0 ) = 0 λ 0 + N i=1 λ i L l=0 a l f l (x i ) - L l=0 a l f l (x 0 ) = 0 λ 0 + L l=0 a l N i=1 λ i f l (x i ) -f l (x 0 ) = 0 This is true if : λ 0 = 0 and ∀l = 0, . . . , L, N i=1 λ i f l (x i ) -f l (x 0 ) = 0 (1.25)
One can see that, under such conditions, the above-said authorization constraint is de facto met. Unbiasedness and authorization constraints actually coincide. Since f 0 (x) has to be set equal to 1, ∀x, since the mean is unknown, for l = 0,

N i=1 λ i f l (x i ) = f l (x 0 ) becomes : N i=1 λ i = 1 (1.26)
So we have to work with a sum of kriging weights equal to 1.

The estimate then becomes :

Z (x 0 ) = N i=1 λ i Z(x i ) with N i=1 λ i f l (x i ) = f l (x 0 ) ∀l = 0, . . . , L 1. Kriging 1.4.

Optimality Constraint

The optimality constraint goal is to minimize the estimation variance. Using the unbiasedness constraints (1.25) and the result (1.14), and assuming that the covariance function

C is dened for the RF Z 1 : V ar[Z (x 0 ) -Z(x 0 )] = = V ar N i=1 λ i Z(x i ) -Z(x 0 ) = V ar N i=1 λ i Z(x i ) -Z(x 0 ) = E   N i=1 λ i Z(x i ) -Z(x 0 ) 2   since E N i=1 λ i Z(x i ) -Z(x 0 ) = 0 = E N i=1 N j=1 λ i λ j Z(x i ) -Z(x 0 ) Z(x j ) -Z(x 0 ) = N i=1 N j=1 λ i λ j E Z(x i ) -Z(x 0 ) Z(x j ) -Z(x 0 ) = N i=1 N j=1 λ i λ j C(x i -x j ) -C(x i -x 0 ) -C(x j -x 0 ) + C(0) = N i=1 N j=1 λ i λ j C (x i -x j ) -2 N i=1 λ i C (x i -x 0 ) + C(0)
Under the unbiasedness constraint, the problem is now to nd N weights λ i minimizing V ar[Z (x 0 ) -Z(x 0 )]. This is classically solved by the method of Lagrange multipliers. We consider the function :

Q = V ar[Z (x 0 ) -Z(x 0 )] + 2 L l=0 µ l N i=1 λ i f l (x i ) -f l (x 0 )
where 2 µ l = 2 µ l (x 0 ), l = 0, . . . , L, are L + 1 additional unknowns, the Lagrange multipliers, and determine the unconstrained minimum of Q by equating the partial derivatives of Q to zero.

∂Q ∂λ

i = 2 N j=1 λ j C(x i -x j ) + 2 L l=0 µ l f l (x i ) -2 C(x i -x 0 ) = 0 ∀i = 1, . . . , N ∂Q ∂µ l = 2 N i=1 λ i f l (x i ) -f l (x 0 ) = 0 ∀l = 0, 1, . . . , L
The fact the extremum is indeed a minimum is guaranteed by the convexity of V ar[Z (x 0 ) -Z(x 0 )] as a function of the λ i . This leads to the following set of N + L + 1 linear equations with N + L + 1 unknowns :

           N j=1 λ j C(x i -x j ) + L l=0 µ l f l (x i ) = C(x i -x 0 ) ∀i = 1, . . . , N N i=1 λ i f l (x i ) = f l (x 0 ) ∀l = 0, . . . , L (1.27)
In matrix notations, the Universal Kriging system (1.27) is of the form AX=B with the following structure :

  C ij f l i f l j 0   A   λ j µ l   X =   C i0 f l 0   B
With the simplied notations detailed below :

C ij =    C(x 1 -x 1 ) . . . C(x 1 -x N ) . . . . . . C(x N -x 1 ) . . . C(x N -x N )    f l i =    1 f 1 (x 1 ) . . . f 1 (x N ) . . . . . . . . . 1 f L (x 1 ) . . . f L (x N )    f l j = t (f l i ) λ j =    λ 1 . . . λ N    µ l =    µ 0 . . . µ L    C i0 =    C(x 1 -x 0 ) . . . C(x N -x 0 )    f l 0 =      1 f 1 (x 0 ) . . . f L (x 0 )     
The kriging variance is obtained by premultiplying the rst N equations of (1.27) by λ i , summing over i, and then using the last (L+1) equations. The result is the Universal Kriging variance :

σ 2 U K = E[Z (x 0 ) -Z(x 0 )] 2 = C(0) - N i=1 λ i C(x i -x 0 ) - L l=0 µ l f l (x 0 ) (1.28)
1.4.6 Solving the Kriging Equations 1.4.6.1 Conditions for Nonsingularity

The linear system (1.27) has a unique solution if and only if its matrix A is nonsingular.

This holds under the following set of sucient conditions :

1. That the submatrix (C ij ) is strictly positive denite, 2. That the submatrix (f l i ) is of full rank L + 1 (equal to the number of columns).

The proof follows from straightforward matrix algebra.

Strict positive deniteness of (C ij ) is ensured by the use of a strictly positive denite covariance function and the elimination of duplicate data points. The condition on (f l i )

1. Kriging expresses that the L + 1 basis functions f l (x) are linearly independent on the spatial distribution S :

L l=0 c l f l (x) ∀x ∈ S ⇒ c l = 0 : l = 0, . . . , L
This is a standard condition of sampling design. For one thing there must be at least as many data points as there are basis functions (thus N ≥ L + 1). Moreover the arrangement of the points must provide enough constraints to allow the determination of the coecients a l in the linear model (1.23). A counterexample in 2D is when m(x) is a plane and all sample points are aligned : obviously the plane is not constrained by a single line. Likewise, when m(x) is a quadratic function, the system is singular if all data points lie along two lines, a circle, an ellipse, a parabola, or a hyperbola. In view of these remarks, one must be careful, particularly when using moving neighborhoods, not to create singular systems by a bad selection of the data points.

Computing the Solution

In GSLIB, the kriging system of linear equations (1.27) is solved by the classic Gaussian elimination algorithm, with a use of partial pivoting to take into account that the matrix A is not positive denite in Universal Kriging.

Multivariate Geostatistics : Cokriging

The goal of multivariate geostatistics is to improve the estimate using the correlation between several regionalized variables. In particular, this can improve the results when the studied regionalized variable is undersampled and when there is data of one or several correlated variable(s) available.

For example, the cokriging estimate for the regionalized variable z at a point x 0 , with some correlated data of the regionalized variable y is a linear combination :

z (x 0 ) = λ 0 (x 0 ) + N i=1 λ i (x 0 ) z(x i ) + S s=1 θ s (x 0 ) y(x s ) (1.29)
The weights of this linear combination are chosen to minimize the estimate variance under an unbiasedness constraint, as in kriging. In order to do this, all the regionalized variables are considered as random functions, even the secondary variables. That means that the spatial dependency of all the considered variables is taken into account. The cokriging equations won't be detailed here, as cokriging applied to hydrogeology is discussed further.

Chapter 2

Kriging under Boundary Conditions Kriging as described in Chapter 1, when used to draw contour maps of the hydraulic head, is strictly an interpolation tool. Its main advantage on other interpolation methods is its ability to take into account the spatial variability of the data. Besides this, kriging is only using the data and their location to make an estimate. This chapter describes how we can introduce in the kriging data a key component, used to solve the diusivity equation in hydrogeology, the boundary conditions.

Boundary Conditions in Hydrogeology

As explained in de Marsily (1981), the diusivity equation that dictates the ow in hydrogeology is often written as following, with the usual simplications(cf. de Marsily (1981), chapter 5) :

div (T grad h) = S ∂h ∂t + Q (2.1)
with :

• T , the tensor of order 2 of transmissivity [L 2 .T -1 ],

• h, the hydraulic head [L],

• S, the storage coecient [.],

• Q, the total discharge [L 2 .T -1 ].

In the following, we will assume a 2D steady state ow ( ∂h ∂t = 0), that Q is nil and that T is isotropic and, for the time being, constant. A simplied equation can thus be derived from (2.1) :

∇ 2 h = ∂ 2 h ∂x 2 + ∂ 2 h ∂y 2 = Q T = 0 (2.2)
In order to solve this partial dierential equation for a concrete case, one needs to determine the boundary conditions on the integration domain. There are three usual types of boundary conditions :

• the Dirichlet conditions, on the variable itself : prescribed h,

• the Neumann conditions, on the rst derivative of the variable : prescribed ∂h ∂n ,

• the Fourier conditions, on both h and ∂h ∂n : prescribed h + α ∂h ∂n

.

A fourth type of boundary condition can be added : it concerns specic double conditions (a head condition and a distinct gradient one) such as the phreatic surface or a seepage surface.

But this type of boundary is only encountered in 3D ow. Therefore they won't be detailed below. The Fourier conditions would normally fall into the same category as Dirichlet and

Neumann conditions, but their introduction into the kriging equations is slightly trickier. So they won't be detailed below either.

Prescribed Head

Dirichlet conditions are required on boundaries where the hydraulic head on the boundary doesn't depend on the ow conditions in the aquifer. It will generally be where the aquifer is in direct contact with free water, such as a river, a lake or a sea. Along this contact between the aquifer and the river(or lake, sea. . . ), the hydraulic head is constant and prescribed by the water elevation in the river. The river can either feed or drain the aquifer. Of course, the water level in the river can change along its course, but the river still prescribes the hydraulic head along the boundary.

It is pretty obvious to imagine how we can take into account this type of boundary condition in the kriging system : by discretizing the continuous boundary into a nite number of data points which will be assigned the prescribed head value(s). We will simply add these points to the data points provided by water table measurements.

Prescribed Flux

This is the Neumann condition in hydrogeology. According to the Darcy law, prescribing the head gradient normal to the boundary, ∂h ∂n

, is indeed the same as prescribing the ux -T ∂h ∂n on this boundary, provided T is known. There are two distinct conditions of prescribed ux :

• The no ow boundaries : ∂h ∂n = 0. For example, in a 2D ow, the contact between an aquifer and neighboring impervious formations.

• The prescribed ux with a value dierent than 0. For example, runo water entering an aquifer along a boundary.

Introducing data that species the gradient component normal to the prescribed ux boundary is not something as obvious as adding head data points. It necessitates cokriging with head gradient data, i.e. adding the ux (or head gradient) as a secondary variable.

In principle, since the prescribed ux contour is continuous, one should consider a continuous cokriging estimator. But in the same way as for prescribed head conditions, the head gradient will only be specied at discrete points along the prescribed ux contour. The (co-)kriging estimate would then be, with the simplied notation λ i = λ i (x 0 ) and θ s = θ s (x 0 ), and h represented as the RF Z :

Z (x 0 ) = λ 0 + N i=1 λ i Z(x i ) + S s=1 θ s Z (x s ) (2.3)
A further simplication can be introduced, replacing gradients by nite dierences. In prac- Z being the variable estimated (the hydraulic head h), this gure is in fact the graphic representation of the mathematical approximation :

∂Z ∂n (x) ≈ Z(x 1 ) -Z(x 2 ) |x 1 -x 2 |
(2.4)

The kriging estimate can then be written :

Z (x 0 ) = λ 0 + N i=1 λ i Z(x i ) + S s=1 θ s [Z (x s 1 ) -Z (x s 2 )]
(2.5)

In the no ow boundary case, one notices that the dierences Z (x s 1 ) -Z (x s 2 ) are zeros.

Why then consider these dierences at all since their contribution to the estimator is nil ?

Because, and that is key, the weights λ i are dierent from kriging weights based on the Z(x i )

alone.

This was rst presented by [START_REF] Delhomme | Kriging under boundary conditions[END_REF] at a conference but never published. We worked together to bring this one time application into a widespread robust algorithm.

The Kriging under Boundary Conditions System

The same workow as for Universal Kriging is applied.

Linearity Constraint

As previously mentioned in equation (2.5), Z(x) has to be a linear combination of the Z(x i ) and Z (x s 1 ) -Z (x s 2 ) data. Thus it is written :

Z (x 0 ) = λ 0 + N i=1 λ i Z(x i ) + S s=1 θ s [Z (x s 1 ) -Z (x s 2 )]

Authorization Constraint

Similarly to the Universal Kriging method, we can write for the estimate error :

Z (x 0 ) -Z(x 0 ) = λ 0 + N i=1 λ i Z(x i ) + S s=1 θ s [Z (x s 1 ) -Z (x s 2 )] -Z(x 0 ) = λ 0 + N i=1 λ i m(x i ) + R(x i ) -m(x 0 ) -R(x 0 ) + S s=1 θ s [m (x s 1 ) + R (x s 1 ) -m (x s 2 ) -R (x s 2 )] = λ 0 + N i=1 λ i m(x i ) + S s=1 θ s [m (x s 1 ) -m (x s 2 )] -m(x 0 ) non random terms + N i=1 λ i R(x i ) -R(x 0 ) + S s=1 θ s [R (x s 1 ) -R (x s 2 )]
As in Universal Kriging, Z (x 0 ) -Z(x 0 ) is a linear combination of increments of the residual function R(x) if and only if :

λ 0 + N i=1 λ i m(x i ) + S s=1 θ s [m (x s 1 ) -m (x s 2 )] -m(x 0 ) = 0 (2.6)

Unbiasedness Constraints

To have an unbiased estimate, the following condition has to be true :

E[Z (x 0 ) -Z(x 0 )] = 0 E λ 0 + N i=1 λ i Z(x i ) + S s=1 θ s [Z (x s 1 ) -Z (x s 2 )] -Z(x 0 ) = 0 λ 0 + N i=1 λ i m(x i ) + S s=1 θ s [m (x s 1 ) -m (x s 2 )] -m(x 0 ) = 0 λ 0 + N i=1 λ i L l=0 a l f l (x i ) + S s=1 θ s L l=0 a l f l (x s 1 ) -f l (x s 2 ) - L l=0 a l f l (x 0 ) = 0 λ 0 + L l=0 a l N i=1 λ i f l (x i ) + S s=1 θ s f l (x s 1 ) -f l (x s 2 ) -f l (x 0 ) = 0 This is true if λ 0 = 0 and : ∀l = 0, . . . , L, N i=1 λ i f l (x i ) + S s=1 θ s f l (x s 1 ) -f l (x s 2 ) -f l (x 0 ) = 0 (2.7)
Under such conditions, the authorization constraint is de facto met. Similarly to Universal Kriging, we have to set f 0 (x) = 1, ∀x and equation (2.7) is written for l = 0 :

N i=1 λ i + S s=1 θ s (1 -1) -1 = 0 or N i=1 λ i = 1 (2.8)
The estimate becomes :

Z (x 0 ) = N i=1 λ i Z(x i ) + S s=1 θ s [Z (x s 1 ) -Z (x s 2 )] with N i=1 λ i f l (x i ) + S s=1 θ s f l (x s 1 ) -f l (x s 2 ) = f l (x 0 ) ∀l = 0, . . . , L

Optimality Constraint

The optimality constraint minimizes the estimation variance, using the covariance of increments instead of the covariance for the prescribed ux data points. The calculation still uses the unbiasedness constraints (2.7) and the result (1.14). The derivation of the equations is not as detailed as for the Universal Kriging, as the method is the same.

V ar

[Z (x 0 ) -Z(x 0 )] = = V ar N i=1 λ i Z(x i ) + S s=1 θ s Z(x s 1 ) -Z(x s 2 ) -Z(x 0 ) = V ar N i=1 λ i Z(x i ) -Z(x 0 ) + S s=1 θ s Z(x s 1 ) -Z(x 0 ) -Z(x s 2 ) -Z(x 0 ) = E   N i=1 λ i Z(x i ) -Z(x 0 ) + S s=1 θ s Z(x s 1 ) -Z(x 0 ) -Z(x s 2 ) -Z(x 0 ) 2   = N i=1 N j=1 λ i λ j E Z(x i ) -Z(x 0 ) Z(x j ) -Z(x 0 ) +2 N i=1 S s=1 λ i θ s E Z(x i ) -Z(x 0 ) Z(x s 1 ) -Z(x 0 ) -E Z(x i ) -Z(x 0 ) Z(x s 2 ) -Z(x 0 ) + S s=1 S t=1 θ s θ t E Z(x s 1 ) -Z(x 0 ) Z(x t 1 ) -Z(x 0 ) -E Z(x s 1 ) -Z(x 0 ) Z(x t 2 ) -Z(x 0 ) -E Z(x s 2 ) -Z(x 0 ) Z(x t 1 ) -Z(x 0 ) +E Z(x s 2 ) -Z(x 0 ) Z(x t 2 ) -Z(x 0 ) = N i=1 N j=1 λ i λ j C (x i -x j ) + 2 N i=1 S s=1 λ i θ s C (x i -x s 1 ) -C (x i -x s 2 ) + S s=1 S t=1 θ s θ t C (x s 1 -x t 1 ) -C (x s 1 -x t 2 ) -C (x s 2 -x t 1 ) + C (x s 2 -x t 2 ) -2 N i=1 λ i C (x i -x 0 ) -2 S s=1 θ s C (x s 1 -x 0 ) -C (x s 2 -x 0 ) + C(0)
We now have to nd the N weights λ i and S weights θ s minimizing V ar[Z (x 0 ) -Z(x 0 )],

still with the method of Lagrange multipliers. Thus we consider the same function :

Q = V ar[Z (x 0 ) -Z(x 0 )] + 2 L l=0 µ l N i=1 λ i f l (x i ) -f l (x 0 )
in which 2 µ l = 2 µ l (x 0 ), l = 0, . . . , L, are L+1 additional unknowns, the Lagrange multipliers, and determine the unconstrained minimum of Q by equating the partial derivatives of Q to zero. The simplied notations C ij = C(x i -x j ) and f l i = f l (x i ) are used, ∀i, j.

∂Q ∂λ i = 2 N j=1 λ j C ij + 2 S s=1 θ s [C is 1 -C is 2 ] + 2 L l=0 µ l f l i -2 C i0 ) = 0 ∀i = 1, . . . , N ∂Q ∂θ s = 2 N i=1 λ i [C is 1 -C is 2 ] + 2 S t=1 θ t [C s 1 t 1 -C s 1 t 2 -C s 2 t 1 + C s 2 t 2 ] +2 L l=0 µ l [f l s 1 -f l s 2 ] -2 [C s 1 0 -C s 2 0 ] = 0 ∀s = 1, . . . , S ∂Q ∂µ l = 2 N i=1 λ i f l i + 2 S s=1 θ s [f l s 1 -f l s 2 ] -2 f l 0 = 0 ∀l = 0, 1, . . . , L
This leads to the following set of N +S +L+1 linear equations with N +S +L+1 unknowns :

                               N j=1 λ j C ij + S s=1 θ s [C is 1 -C is 2 ] + L l=0 µ l f l i = C i0 ∀i = 1, . . . , N N i=1 λ i [C is 1 -C is 2 ] + S t=1 θ t [C s 1 t 1 -C s 1 t 2 -C s 2 t 1 + C s 2 t 2 ] + L l=0 µ l [f l s 1 -f l s 2 ] = [C s 1 0 -C s 2 0 ] ∀s = 1, . . . , S N i=1 λ i f l i + S s=1 θ s [f l s 1 -f l s 2 = f l 0 ∀l = 0, . . . , L (2.9) 
In matrix notations, the kriging system (2.9) is of the following structure :

              C ij C it 1 -C it 2 f l i C js 1 C s 1 t 1 -C s 1 t 2 f l s 1 - - C js 2 -C s 2 t 1 + C s 2 t 2 f l s 2 f l j f l t 1 -f l t 2 0                             λ j θ t µ l               =               C i0 C s 1 0 - C s 2 0 f l 0              
With the same simplied notations as in Universal Kriging and the ones added below. The gradient points have their own two-digit notation : the rst one indicates the number of the gradient point while the second indicates the dummy point, and thus can only take the value 1 or 2.

C js 1 -C js 2 =    C(x 1 -x 11 ) -C(x 1 -x 12 ) . . . C(x N -x 11 ) -C(x N -x 12 ) . . . . . . C(x 1 -x S1 ) -C(x 1 -x S2 ) . . . C(x N -x S1 ) -C(x N -x S2 )    C it 1 -C it 2 = t (C js 1 -C js 2 ) C s 1 t 1 -C s 1 t 2 -C s 2 t 1 + C s 2 t 2 =        C(x 11 -x 11 ) -C(x 11 -x 12 ) . . . C(x S1 -x 11 ) -C(x S1 -x 12 ) -C(x 12 -x 11 ) + C(x 12 -x 12 ) . . . -C(x S2 -x 11 ) + C(x S2 -x 12 ) . . . . . . C(x 11 -x S1 ) -C(x 11 -x S2 ) . . . C(x S1 -x S1 ) -C(x S1 -x S2 ) -C(x 12 -x S1 ) + C(x 12 -x S2 ) . . . -C(x S2 -x S1 ) + C(x S2 -x S2 )        f l s 1 -f l s 2 =    f 1 11 -f 1 12 . . . f 1 S1 -f 1 S2 . . . . . . f L 11 -f L 12 . . . f L S1 -f L S2    f l t 1 -f l t 2 = t (f l s 1 -f l s 2 ) θ t =    θ 1 . . . θ S    C s 1 0 -C s 2 0 =    C(x 11 -x 0 ) -C(x 12 -x 0 ) . . . C(x S1 -x 0 ) -C(x S2 -x 0 )   
The Kriging under Boundary Conditions variance is :

σ 2 KBC = E[Z (x 0 ) -Z(x 0 )] 2 (2.10) = C(0) - N i=1 λ i C(x i -x 0 ) - S s=1 θ s C(x s 1 -x 0 ) -C(x s 2 -x 0 ) - L l=0 µ l f l (x 0 )
Finally, it has to be noticed that the matrix becomes singular in the following case :

∃ i, j and s, Z(x i ) = Z(x s 1 ) and Z(x j ) = Z(x s 2 )

(2.11)

As a result, we have to be careful that the dummy points don't overlap some data points.

Code Implementation

To implement this new type of kriging, I used the GSLIB open source code, developed in Stanford University, and documented in [START_REF] Deutsch | GSLIB : Geostatistical Software Library and User's Guide[END_REF]. This code is popular both among researchers and professionals, and it is particularly used in Waterloo Hydrogeologic softwares. The code implementation can be divided in several units. The algorithms won't be detailed in this section, but they are provided in the appendixes. This section starts with a common kriging issue before presenting the main algorithms introduced.

Kriging Neighborhood

The kriging theory is always derived as if all the N data points were used in the estimation ; this is the so-called global neighborhood case. In practice, N may be too large to allow computation and a moving neighborhood has to be used, including only a subset of the data for the estimation of each grid node (see gure 2.2). Formally, this does not change anything for a grid node taken in isolation : the content of the sampled set of points is just dierent. However, it may alter the relationships between estimates at dierent grid nodes and introduce spurious discontinuities. In the case of the GSLIB algorithm, the kriging system not only uses the moving neighborhood method but also limits the number of points allowed in the kriging system. This was done to decrease the computational cost (this algorithm was written in the 80's and released in 1992, when computers were a lot less ecient) while selecting the closest points for each estimation. Though, the combination of these two limits proved to introduce discontinuities in the contour maps, or even to create singular matrices if the number of prescribed ux points was too important. Worse, it can strongly decrease the inuence of the boundary conditions by a signicant margin. To get rid of this issue, the algorithm has been modied to allow global neighborhood. All the examples presented in section 2.4 have been thus made in the global neighborhood case.

Adding the Boundary Conditions Data

There are two input les in GSLIB : the rst one describes all the parameters the main algorithm needs and the second one provides the coordinates of the data points and the values of the studied regionalized variable, the hydraulic head in our case. The method chosen to introduce the boundary conditions data is to discretize the boundary lines into points. The user will input the coordinates and the head value for each point that is a boundary segment end. However, the program has to know if a point is a boundary segment end or not. And in the former case, it also has to know if it is a prescribed head or a prescribed ux condition.

In order to solve this issue, a new input parameter has been created, named kod. This kod is set :

• to 0 for the measured data points,

• to a positive integer value for a prescribed head segment end,

• to a negative integer value for a prescribed ux segment end.

Points that are both ends of the same segment have the same kod. More generally, if a boundary is represented by a broken line, a point will be placed at each direction shift, and all these shift points should have the same kod, as they are part of the same boundary.

Otherwise, two points representing two dierent boundary lines should have a dierent kod.

With these added points, we now have all the needed data for the Kriging under Boundary Conditions process, but we still don't have really our discretized boundaries. In order to provide these, a simple algorithm will read the input data, detect the boundary points (the ones whose kod is not 0) and create several points between the two ends of the segment by linearly interpolating the coordinates (and the head value for a prescribed head segment).

We have to notice here that, for this subroutine to work properly, the two ends of a boundary segment, or two consecutive shift points of a broken line, have to follow one another in the list of input data points. The data set now consists of both the real data points and the points representing the discretized boundary lines.

Finally, another algorithm scans the data set again, selects the prescribed ux points, and adds the dummy points in order for them to make a segment perpendicular to the boundary line they are representing. For a dened boundary, this is done using the previous and the following boundary points to compute the local slope of the boundary and setting the slope of the dummy points segment to make it perpendicular to the boundary (cf. Fig. 2.1). For the segment ends, the local slope is computed using the end point itself and its closest neighbor in the segment.

To be honest, this subroutine doesn't really add dummy points. Otherwise we would have to delete the point used to create its dummies and be careful that both dummy points are always selected when choosing the data points included in the kriging neighborhood. It's easier to just add two parameters ddx and ddy for each point of the data array. ddx and ddy will be set to 0 for each non prescribed ux data point, and to verify for a point A and its dummies A 1 and A 2 :

x(A 1 ) = x(A) -ddx(A) x(A 2 ) = x(A) + ddx(A) y(A 1 ) = y(A) -ddy(A) y(A 2 ) = y(A) + ddy(A)
Dummy points are actually computed on the y when lling the kriging matrices.

Discretization Parameters

The two algorithms mentioned in the previous subsection both require a key parameter that has still not been dened : the spacing between two points of a discretized boundary line for one, and the spacing between the dummy points for the other. Nothing in the Kriging under Boundary Conditions theory indicates which values these parameters should be set to.

However, we can easily deduce the following conditions for the rst parameter :

• The more boundary points, the more precisely the boundaries will be dened and the better they will be honored.

• The more boundary points, the less real data points relatively taken into account.

This is a problem if our measured data can be trusted more than the position of our boundaries.

• The more boundary points, the more computing time !

In fact, the number of data points taken into account in a kriging neighborhood is bounded (by a user dened value though) to limit the computing time. And we need L + 1 (L being the number of drift terms) real head values to solve the kriging system. This issue was addressed by allowing kriging with a global neighborhood, but it shows that we can't add as many boundary points as we want if we choose to use a moving neighborhood. Thus, we need to nd a good compromise to have enough boundary points to reproduce faithfully the boundary conditions, while still having sucient real data points to solve the kriging system.

The following solution has nally been chosen :

• if dist ≤ 2 csiz, spacin = dist 2 , • if dist ≥ 20 csiz, spacin = dist 20 , • else spacin = csiz.
With dist being the boudary segment length, csiz the distance between 2 consecutive nodes of tke kriging grid, and spacin the distance between two consecutive points of a discretized boundary segment. So we have chosen to base our discretization on the kriging grid, with a lower limit of 3 points and an upper limit of 21 points to represent a discretized segment.

The spacing between two dummy points is even harder to set. One could imagine that it represents the extension of the prescribed ux inuence as, the longer the distance between the dummy points, the further the boundary condition is honored. However, practice can hardly check if this assumption is true, as no major dierence has been detected when changing this parameter. It has nally been set to 2 ciz, thus it is also based on the kriging grid.

Singularity Conditions

It was already mentioned that we have to avoid dummy points overlapping some data points (cf. equation (2.11)). More precisely, the matrix becomes singular if both points of a dummy couple overlap head data points. A subroutine that scans the data array to check this has been created. If such a case occurs, we have chosen to remove the dummy points couple to protect the measured data.

Constant Flux Conditions

Expression of the Constant Flux

The variable data input for prescribed ux boundary points is not the hydraulic head of the point ; it is the dierence between the hydraulic heads of the dummy points. When there 2. Kriging under Boundary Conditions is no ow, the input value is pretty obvious, we have to set it to 0 : no dierence in the hydraulic head between two points implies no ow between these points ! However, when the prescribed ux is a non nil constant, the input data is indeed the dierence ∆h between the hydraulic heads of the dummy points, i.e. a length value [L]. And yet we usually input a ux as a volumic ow rate [L 3 .T -1 ]. To provide a simple tool that any hydrogeologist can use, we have to transform this length value into a ow rate. We have from the diusivity equation (2.2), assuming a ow along the x axis, a boundary perpendicular to the ow and subsequently the dummy points segment along the x axis too (that case will be generalized in subsubsection 2.3.5.2 below) :

d 2 h d x 2 = Q L T
Where Q L is the ow rate per unit length [L 2 .T -1 ] and T the transmissivity. We can twice integrate this equation between the two dummy points separated by the distance l :

l 0 l 0 d 2 h d x 2 dx 2 = l 0 l 0 Q L T dx 2 h(x = l) -h(x = 0) = Q L T [l -0] 2 ∆h = Q L l 2 T
We can also compute the volumic ow rate Q V by integrating the ow rate per unit length Q L on y :

Q V = L 0 Q L dy = Q L L
With L being the length of the boundary and e the thickness of the aquifer. We then have for ∆h

: ∆h = Q V l 2 T L
(2.12) So, in order to be able to input his constant ux data as a global volumic ow rate Q V for all the boundary segment, the user also has to input a mean value for the transmissivity T . The length of the boundary L and the distance between the dummy points l are already known by the algorithm.

Constant Flux and Orthogonality

The subsubsection 2.3.5.1 above explained how to prescribe a constant ux boundary condition if the ow is orthogonal to the boundary. In fact, the segment of dummy points being perpendicular to the boundary, we will always input the ux component orthogonal to the boundary. Fortunately, that is also what hydrogeologists usually do. However, if the ow crossing the boundary is indeed not perpendicular to the boundary, there exists a colinear ux that would be nil for a ow perpendicular to the boundary. Unfortunately, the Kriging under Boundary Conditions system knows nothing about the colinear ux. So, we have to also specify this condition. This will be done by adding a second couple of dummy points, colinear to the boundary this time. And, as we have just explained, we want this colinear ux to be nil for a ow perpendicular to the boundary. So the variable data associated to this couple of dummy points will in such a case be set to 0, as for any other no ow boundary point. However, constant ux boundary lines are now represented by twice as many points as they were before this correction.

Flux Sign

Finally, there is one issue left : the sign of the constant ux. As we can put some constant ux boundaries inside the study area, it was not possible to set the sign as usual, i.e. positive for an outow, and negative for an inow. Instead, the sign of the ow will be linked to the

x and y axes :

1. If the boundary isn't colinear to the x axis :

• A positive sign will induce a ow going towards the increasing x.

• A negative sign will induce a ow going towards the decreasing x.

2. If the boundary is colinear to the x axis :

• A positive sign will induce a ow going towards the increasing y.

• A negative sign will induce a ow going towards the decreasing y.

That last issue on constant ux conditions also brings one nal comment : these conditions cannot be used to represent a well. They do not allow water to be put in or out the aquifer except along external boundaries. Within the aquifer, they can only force an hydraulic head dierence, which can be used to represent a known local gradient trend, whose origin can be a local change of the transmissivity for example.

Cubic Variogram

The GSLIB algorithm allows to choose a variogram model between all the usual models described in section 1.2.3, but one : the cubic variogram. This variogram is dened as following :

γ(h) =    c 7 r a 2 -8.75 r a 3 + 3.5 r a 5 -0.75 r a 7 if r ≤ a c if r ≥ a
The cubic variogram is traditionally used for dierentiable variables because of its nil derivative at the origin. That explains why it is commonly used for the hydraulic head variogram, its steeper slope than the Gaussian variogram also representing better the head spatial variability. Consequently, it has been added to the variogram choice in the GSLIB program.

Filling the Kriging under Boundary Conditions Matrix

To conclude this section, I have to mention that the main task of implementing the Kriging under Boundary Conditions process in the GSLIB algorithm was arguably to properly ll the new kriging matrix. There is no special diculty in this task but to fully understand the structure of the GSLIB subroutine. The nal algorithm is provided in Appendix A.

2. Kriging under Boundary Conditions

Application of Kriging under Boundary Conditions

This section illustrates the dierent improvements in the contour maps provided by the Kriging under Boundary Conditions method. The examples are pictured by a square map.

By convention, as these examples are ctive, we will assume that the top of the map is the north. The graphical user interface (GUI) to implement Kriging under Boundary Conditions in GW Contour wasn't done yet when this thesis was written. So the contour maps have been produced with Surfer, using the output kriged grid and the Nearest Neighbor interpolation method to compute the kriging map from the kriged grid.

Comparison between Universal Kriging and Kriging under Boundary Conditions

The example detailed below consists of a study area of 500 m × 500 m, whose boundary conditions are :

• Prescribed head h = 0 m on the southern border,

• Prescribed head h = 50 m on the northwestern corner,

• No ow boundary on both the eastern and northern border.

This system has been modeled with Visual Modow 4.11 . The output hydraulic head map is presented in gure (2.3). 12 data points have been selected on this modeled map. These 12 head values and the prescribed head in the top left corner will be the basis of our kriging example. They are identied in gure (2.4). First, Universal Kriging has been applied to the set of 13 points (the northwestern prescribed head h = 50 m has been added as it is not strictly a boundary). The following parameters have been applied :

• Distance between 2 grid nodes = 10 m,

• Constant neighborhood,
• Linear drift in x and y only considered,

• Cubic variogram, with a sill of 1, a range of 710 m and a nugget eect of 0.01. The new contour map is shown in gure 2.7. It is almost identical to the Modow model map (gure 2.3), unlike the Universal Kriging map (gure 2.5). The improvement is really noteworthy. Still, one could argue that the contour lines are not exactly perpendicular to the no ow limits, especially in the northeastern zone. This is explained by the fact that there is a boundary point in the top right corner, a point whose dummy segment slope is dened by its two neighbors. However, it happens that one of these neighbors belongs to the eastern boundary while the other belongs to the northern boundary. Obviously, the dummy segment won't be perpendicular to any of the lines, but will be the bisector of the angle between the two boundary segments. The resulting condition can explain why the contour lines are less perpendicular in this zone. 

Undened boundaries

Another feature that has to be mentioned is that Kriging under Boundary Conditions doesn't require all the boundaries of the study area to be dened. Both Finite Dierence and Finite Element Modeling programs assume that all the undened boundaries are no ow limits. Kriging under Boundary Conditions provides a degree of freedom here, compared to the discretized solving of the partial dierential equation. The following example illustrates this.

• Figure 2.8 presents another set of boundary conditions applied to the same study area and the new set of hydraulic head values modeled with Visual Modow.

• Figure 2.9 presents the output map computed with Visual Modow.

• Second example.

The dierence between the two maps is obvious in the northern zone : while Visual Modow makes the contour lines perpendicular to the upper limit, Kriging under Boundary Conditions doesn't. The only boundary conditions honored are the ones dened by the user. This can be useful when the area to be studied has an arbitrary limit (e.g. a country border, here, the norhern limit), for which no hydrogeological conditions could be set.

Constant Flux Boundaries

The goal of this subsection is to highlight the issue presented in subsection 2.3.5.2, i.e.

the fact that the kriging system doesn't know anything about the colinear component of the ux, if not directly specied. To illustrate this, the same example as described in gure 2.4 has been used, except that the northern no ow boundary has been replaced by a constant ux boundary. The hydraulic head dierence between the two dummy points has been respectively set to ∆h = 5 m (c.f. gure 2.11, left map) and ∆h = -5 m (c.f. gure 2.11, right map). The left map thus illustrates an outow (ow going towards the increasing y, cf. 2.3.5.3), and the right map an inow (ow going towards the decreasing y).

River and Inside Constant Flux

A frequently asked question during my work was to know if Kriging under Boundary

Conditions allows to put some boundaries inside the study area. The answer to this question is provided in this subsection, and in subsection 2.4.5. To illustrate the river and the inside constant ux cases, a very simple example has been created. Its boundary conditions are :

• Prescribed head h = 50 m on the northern boundary, h = 0 m on the southern one,

• No ow boundary on the eastern and western limits,

• River, i.e. prescribed head between the points (250; 250) and (250; 0), with a head decrasing from h = 15 m to h = 0 m or,

• Constant ux on a line between the points (200; 200) and (300; 200), with a local head gradient of ∆h = -20 m The results are presented in gures 2.12 and 2.13 and are as expected :

• The hydraulic head is set to the river level along its stream, thus radically changing the shape of the whole contour map.

• The high gradient zone due to the constant ux could be interpreted as a low transmissivity zone. The head dierence ∆h was purposedly set to a high value, and we can see that it forces the kriging system to consider that there is a very high head hill north of the ux constraint, in order to honor both the prescribed ux and the prescribed head conditions.

Screen Eect

One case of inside boundary condition has not been mentioned yet : the no ow boundary one. To illustrate it, the same example as the one used for an inside constant ux has been created (see subsection 2.4.4). The only dierence is obviously that the hydraulic head dierence ∆h is set to 0. The output map is presented in gure 2.14. The result is not at all what was expected and doesn't seem to follow the no ow condition as the contour lines don't look perpendicular to the inside boundary. The result surprisingly looks as if we have a higher transmissivity zone at the boundary location, as the hydraulic gradient is low there. However, further examination of this location shows that the no ow condition is indeed respected : if we draw the appropriate contour lines, we can see that they briey become perpendicular to the boundary at its location. The perturbation of the hydraulic head map is minimal though.

This result makes us question the true nature of such a no ow condition in the middle of the study area. Thus, this example was modeled in Visual Modow. The result is presented in gure 2.15. It clearly shows that the water doesn't cross the no ow boundary, and is forced to by-pass it, thus creating a discontinuity in the hydraulic head at the location of the boundary. This is what we can call the screen eect, something that kriging cannot reect, as it assumes that the hydraulic head is a continuous variable.

However, this issue can be solved by considering the boundary as a screen indeed, when kriging. That means that for every estimation node, the kriging neighborhood will be limited to the data points that are not behind the screen. An algorithm was implemented to select only the data points that are on the same side of the screen as the estimation point. Basically, it's a classic convex hull problem, and we just have to check if the segment between the data point and the estimation node crosses the screen segment or not. This is well explained by [START_REF] Erickson | Computational geometry : Convex hull and plane sweep algorithms[END_REF] 2 . The kriged map with the screen eect is presented in gure 2.16. It does reect the screen eect as expected. However, the result is still quite dierent from the one computed with Visual Modow (see gure 2.15). In fact, the cones on each side of the screen illustrate the lack of data for these points : the only head values selected in the kriging system here are the ones from the constant heads that are on the same side of the screen. And these constant head boundaries have one single value along the boundary. Thus the estimation in these cones can only take the value of these constant heads : 0 m below the screen, and 50 m above it.

To have a proper map of this study area, four head data points taken from the Visual Modow modeling were therefore added on each side of the screen. The result is shown in gure 2.17 In order to prove that the added data points did not entirely solve the problem, the map presented in gure 2.19 shows the results with the added data points but without the screen eect.

And nally, the oblong no ow zone between x = 200 and x = 300, y = 200 and y = 210 modeled with Visual Modow in gure 2.15 was introduced in Kriging under Boundary Conditions, with four no ow segments. The result is presented in gure 2.20. The result looks similar to gure 2.15. The only issue here is that the contouring algorithm preserves the continuity of the head, and thus the contour lines drawn cross the no ow zone. We would have to make them invisible in the no ow box to actually see the real result of Kriging under Boundary Conditions. 

Conclusion

Kriging under Boundary Conditions proved to be an ecient tool to take into account Dirichlet and Neumann conditions, without adding more requirements to compute the kriging system but adding the boundaries themselves. However, one has to be aware that it does not solve other types of boundary conditions than the Dirichlet and the Neumann ones. In particular, a well cannot be taken into account with this method.

Chapter 3 (Co-)Kriging with Multivariate Structural Analysis

Chapter 2 showed that kriging can take into account some usual boundary conditions used to solve the diusivity equation (2.2). However, can we consider that all our estimates are verifying the same partial dierential equation as the data ? Obviously not. The diusivity equation depends on several variables (transmissivity T , total discharge Q and storage coecient S), and our Kriging under Boundary Conditions only uses the head data to compute its estimates. This chapter explains how a multivariate structural analysis can help the estimate to try and better verify the same partial dierential equation as the data, both for kriging and cokriging. The guiding idea and some of the results used are based on a Ph.D. thesis by [START_REF] Dong | Estimation géostatistique des phénomènes régis par des équations aux dérivées partielles[END_REF]. However, the chapter starts with some generalized denitions of what was explained in subsection 1.1.4. These denitions are needed to explain the theory in this chapter.

Further Geostatistical Denitions

3.1.1 Intrinsic Random Function of order k (IRF-k) A random function Z(x) is intrinsic of order k if for any allowable measure λ ∈ Λ k the random function : Z λ (x) = i λ i Z(x i + x) (3.1)
is second-order stationary in x ∈ R n and has a zero mean. This is equivalent to :

E Z λ (x) = 0 E Z λ (x) Z λ (y) = K λ (y -x) ∀x, y ∈ R n , λ ∈ Λ k (3.2)
An IRF-k is simply a random function with stationary increments of order k. The usual intrinsic model described in subsection 1.1.4.3 corresponds to k = 0. Clearly, an IRF-k is also an IRF-(k + 1) and of any higher order, since Λ k+1 ⊂ Λ k .

The condition that increments of order k have a zero mean is introduced for a simpler presentation and does not restrict generality. If these increments are stationary, their mean is necessarily a polynomial of degree k + 1 at most (c.f. [START_REF] Matheron | The intrinsic random functions and their applications[END_REF]), which is eliminated by regarding Z(x) as an IRF-(k + 1).

As usual with random functions, it will be assumed that Z(x) is continuous in the mean square sense, to extend the theory from the space Λ k of discrete measures to the space M k of measures with compact supports.

Generalized Covariance

Subsection 1.1.4 explained that the correlation structure of an SRF (or IRF-(-1)) is dened by its ordinary covariance function C(h) and the correlation structure of an IRF (or IRF-0) is dened by its variogram γ(h). In the same manner, when the stationarity assumptions are limited to generalized increments of order k (IRF-k)), what characterizes the correlation structure of z(x) is a function called generalized covariance, denoted by K(h).

For an IRF-k Z and any pair of measures λ, µ ∈ Λ k , the generalized covariance function K(h) of Z, dened on R n is dened by :

E Z(λ) Z(µ) = i j λ i µ j K(y j -x i ) (3.3) If λ = µ, we then have : E Z(λ) 2 = i j λ i λ j K(y j -x i ) (λ ∈ Λ k ) (3.4)
K(h) is a symmetric function and is used just as an ordinary covariance function C(h) and we also have the following property :

Theorem 1. Any continuous IRF-k has a continuous generalized covariance K(h). K(h) is unique as an equivalence class, in the sense that any other generalized covariance is of the form K(h) + Q(h), where Q(h) is an even polynomial of degree 2k or less.

A useful result is the relation between the ordinary covariance σ of Z and its generalized covariance K (see [START_REF] Dong | Estimation géostatistique des phénomènes régis par des équations aux dérivées partielles[END_REF] and [START_REF] Chilès | Geostatistics : Modeling Spatial Uncertainty[END_REF]) :

σ(x, y) = K(y -x) + p l=1 a l (y) f l (x) + p l=1 a l (x) f l (y) (3.5)
With :

• f l a monomial of degree ≤ 1,

• p the number of monomials,

• a l some continuous functions.

3.2 Kriging the Head using Transmissivity Knowledge

Hydrogeologic Context

In Chapter 2, we have considered the diusivity equation (2.1) in the case Q was nil and T was constant over the study area. We will now consider that the transmissivity T and the head h depend on the 1D ow direction x, while the discharge is still assumed nil. We can then write :

div(T grad h) = 0 (3.6) ∂ ∂x T ∂h ∂x = 0 ∂T ∂x ∂h ∂x + T ∂ 2 h ∂x 2 = 0 ∂ 2 h ∂x 2 = - 1 T ∂T ∂x ∂h ∂x with ∂h ∂x = J = hydraulic gradient ∂ 2 h ∂x 2 = J ∂(Log T ) ∂x (3.7)
The strong restriction of the result (3.7) has to be remembered : this equation assumes that the ow is unidimensional and that the hydraulic gradient is a constant on the study area. We can notice that we could have also considered solving equation (2.2) ∆h = Q T

The Stochastic

, which is also a Poisson equation. In that case, the Y source term would have been Q T and we could have solved the Poisson equation ∆h = Q T , with the assumption that T is constant in the study area. Thus, we would have had the variogram of the total discharge Q dening the variogram of h. However, in this thesis, the emphasis has been put on linking h with the transmissivity variations.

To consider solving this equation with a geostatistical method, we have rst to assume that Y and Z are random functions of R n , with n = 2 in our case, and that ∆Z = Y is therefore considered as a stochastic equation. The rst question that then arises is that of the existence of a stochastic model compatible with this equation. Matheron (1971a) has stated the following theroem : -(-1)) of R n , there exists a unique twice dierentiable IRF-1 Z satisfying the dierential equation ∆Z = Y and : If Y is a continuous IRF(-2) of R n , there exists a unique twice dierentiable IRF-0 Z satisfying the dierential equation ∆Z = Y .

Theorem 2. If Y is a continuous IRF-k of R n , there exists a unique twice dierentiable IRF-(k + 2p) Z satisfying the dierential equation ∆ p Z = Y , which implies that : If Y is a continuous SRF (i.e. IRF

Covariance Model

From this, we can derive the relationship between the generalized covariances of Z and of Y . To keep things simple, let us consider only the case where Y is a zero-mean SRF (it is still possible to come down to this case and add a polynomial of degree 1 with constant coecients to the usual solution of Z). Let x = (x 1 , . . . , x n ) and y = (y 1 , . . . , y n ) be two points of R n . Denoting by C(h) the stationary covariance of Y , we get :

C(y -x) = E Y (x) Y (y) = E ∆Z(x) ∆Z(y) = E n i=1 n j=1 ∂ 2 Z(x) ∂ x 2 i ∂ 2 Z(y) ∂ y 2 j
With Z being twice dierentiable, its nonstationary covariance σ(x, y) is dierentiable four times, and therefore :

C(y -x) = n i=1 n j=1 ∂ 2 ∂ x 2 i ∂ 2 ∂ y 2 j E Z(x) Z(y) = ∆ x ∆ y σ(x, y) (3.8)
where ∆ x is the Laplacian operator applied with respect to x. Combining equations (3.5) and (3.8), we get :

∆ x ∆ y σ(x, y) = ∆ x ∆ y K(y -x) = ∆ 2 K(h) with h = y -x
The covariance C of Y and the generalized covariance K of Z, with Z and Y linked by the equation ∆Z = Y are thus related by the equation :

∆ 2 K(h) = C(h) (3.9)
Theorem 2 then tells us that, Y being an SRF, Z will be an IRF-1.

However, the equation (3.7) we want to solve is more of the form ∆Z = ∂Y ∂x , with Z being the hydraulic head and Y being Log(T ). To study this equation knowing the result (3.9) of ∆Z = Y , we will use a variable X dened by Z = ∂X ∂x (there is no real physical explanation for this variable).

We then have ∆

∂X ∂x = ∂Y ∂x , which implies that ∂ ∂x (∆X) = ∂Y ∂x
. This is the derivative

on x of the equation ∆X = Y , in which Y is an SRF (or IRF-(-1)) with a covariance C Y (h)
and X is an IRF-1 with a generalized covariance K so that we have, as in equation (3.9) :

∆ 2 K(h) = C Y (h) (3.10)
Z, the derivative of X on x, is then an IRF-0 and the relation between K and the variogram γ H of the hydraulic head Z is :

γ H (h) = J 2 ∂ 2 K ∂h 2 x (h) (3.11)
With h x being the rst coordinate of the vector h(h x , h y ). We can notice that the variogram of the variable Z is not isotropic and depends on the angle between the vector h and the ow direction.

3.2.4 Covariance Choice and Code Implementation [START_REF] Dong | Estimation géostatistique des phénomènes régis par des équations aux dérivées partielles[END_REF] computed the variograms γ H of the hydraulic head h integrated from γ Log(T )

of Log(T ) for several usual variogram models in R, R 2 and R 3 .

The calculations were made using several common variogram models for Log(T ). We have chosen to restrict ourselves to the spherical model as it is usually the one chosen for Log(T ). The corresponding model for H is therefore 1 :

γ H (h) =          ca 2 16 h 2 a - 8 15 h 3 a + 8 175 h 5 a + dx 2 a 2 - 8 5 h a + 8 35 h 3 a if h a ≤ 1 ca 2 16 32 75 + 3 35 h 2 a + 4 5 Log(h a ) + dx 2 a 4 5h 2 a - 6 35h 4 a if h a ≥ 1 (3.12)
With :

• c being the sill of the variogram of Log(T ),

• a being its range,

• h a = h a

• dx a being the rst coordinate of h a in the Cartesian coordinate system in which the x axis is dened by the direction of the hydraulic gradient.

In the GSLIB algorithm, the covariance model associated to the variogram dened in (3.12) has been coded. To simplify the input for the user, instead of asking the sill of the variogram, the program asks to input the ratio T max T min , and the sill c of the head variogram is then computed assuming :

Log T max T min = 4 V ar(Log T ) V ar(Log T ) = 1 16 Log T max T min 2 c = J 2 V ar(Log T ) c = J 2 16 Log T max T min 2 (3.13)

Application

The same example as the one used in subsection 2.4.1 has been computed, taking into account the full boundary conditions. The output map is presented in gure 3.1.

1 If one manages to get his hand on Anne Dong's Ph.D thesis, p239, he might be surprised to nd that there is no h 5 a behind the term 8 175 . This is indeed a typo in Dong's thesis, as a constant term in a spherical based variogram is not correct and the h 5 a term is needed to ensure the continuity of the rst derivative of γ(h). There are no real improvements yet over the map presented in gure 2.7, except that the no ow boundary conditions are a bit better honored in the northeastern corner. However, using the Log(T ) integrated variogram was not supposed to drastically improve the Kriging under Boundary Conditions. It is more a step towards full cokriging between h and Log(T ).

Cokriging Head and Log Transmissivity

Cross-covariance

Before describing the cokriging system, let us complete the multivariate structural analysis of our study area. Thanks to section 3.2, we have linked the head variogram with the Log(T ) one. To compute the kriging system, we also have to know the cross-covariance between h and Log(T ) (see subsection 3.3.2).

First, we have to notice that E Z(x) Y (y) doesn't necessarily exist. We have proved in subsection 3.2.3 that Z is an IRF-0 when Y is an SRF. The product Z(x) Y (y) then has an hybrid status. We will make the hypothesis that we are in the good case and that E Z(x) Y (y) exists. This is a common assumption for the hydraulic head.

As for the covariance in subsection 3.2.3, we have for the cross-covariance :

E Z(x) Y (y) = J ∂∆K ∂x (x, y) (3.14)
For the spherical model in R 2 , we have 2 :

∂∆K ∂x (x, y) =        c (x 1 -y 1 ) 1 2 - 1 2 h a + 1 10 h 3 a if h a ≤ 1 c (x 1 -y 1 ) 10 h 2 a if h a ≥ 1 (3.15)
With the same notations as for equation (3.12) and x 1 , y 1 being the rst coordinates of the points x and y in the Cartesian coordinate system in which the rst axis x is dened by the direction of the hydraulic gradient.

The Cokriging System

As the kriging process has already been detailed twice in previous chapters, the demonstration is shortened as much as possible here. Basically, the process is almost identical to the one used for Kriging under Boundary Conditions, except that we have here a true secondary variable with cross-covariance terms and its own covariance terms, instead of the dierences between head covariances we had in Kriging under Boundary Conditions. The system described is the Cokriging with a Trend (or Universal Cokriging) system, and it estimates the hydraulic head based on head and transmissivity data.

Z stands for the hydraulic head h and Y represents Log(T ) where T is the transmissivity. Z is dened as in previous chapters (see equations (1.22) and (1.23)), this time using the anistropic variogram γ H (h), and Y (y) = m Y + R Y (y) where the mean m Y is a constant and the covariance σ of Y is isotropic.

Linearity Constraint

Z (x 0 ) = λ 0 + N i=1 λ i Z(x i ) + S s=1 θ s Y (x s ) 3.3.2.2 Authorization Constraint Z (x 0 ) -Z(x 0 ) = λ 0 + N i=1 λ i m(x i ) -m(x 0 ) non random terms + N i=1 λ i R(x i ) -R(x 0 ) + S s=1 θ s R Y (x s )
Thus the authorization constraint is once again :

λ 0 + N i=1 λ i m(x i ) -m(x 0 ) = 0 (3.16) 3.3.2.3 Unbiasedness Constraint E[Z (x 0 ) -Z(x 0 )] = 0 E λ 0 + N i=1 λ i Z i + S s=1 θ s Y s -Z 0 = 0 λ 0 + N i=1 λ i m(x i ) -m(x 0 ) = 0 λ 0 + L l=0 a l N i=1 λ i f l i -f l 0 + S s=1 θ s m Y = 0
This is true if λ 0 = 0 and :

∀l = 0, . . . , L, N i=1 λ i f l i = f l 0 and ∀m Y , S s=1 θ s = 0 (3.17)
The authorization constraint is de facto met. Once again, we have f 0 (x) = 1, and the weights λ i add up to 1 whereas the weights θ s add up to zero.

Optimality Constraint

As for Universal Kriging, we have to minimize V ar[Z (x 0 ) -Z(x 0 )]. However, in this case, the covariance of the hydraulic head represented here by Z is not strictly dened. We have to use its anisotropic variogram. The result presented in subsection 1.1.5 can be written in variogram terms :

E Z(x i ) -Z(x 0 ) Z(x j ) -Z(x 0 ) = -γ ij + γ i0 + γ j0 with γ ij = γ(x i -x j ) V ar[Z (x 0 ) -Z(x 0 )] = - N i=1 N j=1 λ i λ j γ ij + S s=1 S t=1 θ s θ t σ st + 2 N i=1 S s=1 λ i θ s J ∂∆K ∂x (x i , x s ) +2 N i=1 λ i γ i0 -2 S s=1 θ s J ∂∆K ∂x (x 0 , x s )
As for Kriging under Boundary Conditions, we obtain the derivatives respectively on λ i , θ s and µ l to compute the kriging system of N + S + L + 1 linear equations with N + S + L + 1 unknowns :

                           - N j=1 λ j γ ij + S s=1 θ s J ∂∆K ∂x (x i , x s ) + L l=0 µ l f l i = -γ i0 ∀i = 1, . . . , N N i=1 λ i J ∂∆K ∂x (x i , x s ) + S t=1 θ t σ st + µ 0 = J ∂∆K ∂x (x 0 , x s ) ∀s = 1, . . . , S N i=1 λ i f l i = f l 0 ∀l = 0, . . . , L S s=1 θ s = 0 (3.18)
In matrix notations, the kriging system (3.18) is of the following structure, with the usual notations :

                -γ ij J ∂∆K ∂x (x i , x t ) f l i 0 J ∂∆K ∂x (x j , x s ) σ st 0 1 f l j 0 0 0 0 1 0 0                                 λ j θ t µ l µ 0                 =                 -γ i0 J ∂∆K ∂x (x 0 , x s ) f l 0 0                
The Universal Cokriging variance will then be :

σ 2 U CoK = N i=1 λ i γ i0 - S s=1 θ s J ∂∆K ∂x (x 0 , x s ) - L l=0 µ l f l 0 (3.19)

The Cokriging under Boundary Conditions System

The Cokriging under Boundary Conditions system can easily be obtained by combining the Kriging under Boundary Conditions system (2.9) and the Cokriging system (3.18). Only its matrix is represented there.

                              -γ ij -γ iβ 1 + γ iβ 2 J ∂∆K ∂x (x i , x t ) f l i 0 -γ jα 1 -γ α 1 β 1 + γ α 1 β 2 J ∂∆K ∂x (x α1 , x t ) f l α 1 + - -0 γ jα 2 +γ α 2 β 1 -γ α 2 β 2 J ∂∆K ∂x (x α2 , x t ) f l α 2 J ∂∆K ∂x (x β1 , x s ) J ∂∆K ∂x (x j , x s ) - σ st 0 1 J ∂∆K ∂x (x β2 , x s ) f l j f l β 1 -f l β 2 0 0 0 0 0 1 0 0      =                               -γ i0 -γ α 1 0 + γ α 2 0 J ∂∆K ∂x (x 0 , x s ) f l 0 0                              
The Cokriging under Boundary Conditions variance will then be :

σ 2 U CoKBC = N i=1 λ i γ i0 + A α=1 ξ α γ α 1 0 -γ α 2 0 - S s=1 θ s J ∂∆K ∂x (x 0 , x s ) - L l=0 µ l f l 0 (3.20)

Inverse Problem

Solving the partial dierential equation div(T grad h) = 0 is called solving the direct problem, as the estimated variable is h, the main variable of the partial dierential equation. Consequently, the inverse problem is estimating T , knowing h under zero discharge conditions (virgin state of the aquifer). In practice, it is a very common problem in hydrogeology that often has to be solved before modeling with dierent discharge conditions (e.g. wells).

To create a groundwater model, one has to enter the parameters of the partial dierential equation, including the transmissivity. However, transmissivity data are scarce, while the hydraulic head is usually better known, because it only requires piezometer logging while estimating the transmissivity requires a heavier pumping test. Therefore solving the inverse problem gives us a better knowledge of T before modeling. This is critical as the better the transmissivity input, the easier it will be to obtain a good calibration when modeling, since it is easier to optimize parameters if they are closer from their real value since the beginning.

A geostatistical approach makes it possible to take account of the joint spatial variability of h and T , thereby to restrict the space of possible equations and, in the end, to express the set of solutions as a family of conditional simulations. However, no one has really applied so far Anne Dong's results to use cokriging with a multivariate structural analysis based on Log(T ) for a practical problem.

The Inverse Problem Kriging System

The cokriging system for estimating the transmissivity is almost the same as the one used to compute the head (cf. equation (3.18)). In fact, the kriging matrix is identical to the one used for the direct problem. The variables, the data sets and the variographic parameters are the same. Only the estimated variable changes and so only the second term is indeed dierent. Thus the right-hand side matrices for Cokriging and Cokriging under Boundary Conditions will respectively be :

        J ∂∆K ∂x (x i , x 0 ) σ s0 0 1                         J ∂∆K ∂x (x i , x 0 ) J ∂∆K ∂x (x α 1 , x 0 ) - J ∂∆K ∂x (x α 2 , x 0 ) σ s0 0 1                
And the cokriging variances without and with boundary conditions will respectively be :

σ 2 U CoK Inv = σ(0) - N i=1 λ i J ∂∆K ∂x (x i , x 0 ) - S s=1 θ s σ s0 -µ 0 (3.21) σ 2 U CoKBC Inv = σ(0) - N i=1 λ i J ∂∆K ∂x (x i , x 0 ) - A α=1 ξ α J ∂∆K ∂x (x α 1 , x 0 ) -J ∂∆K ∂x (x α 2 , x 0 ) - S s=1 θ s σ s0 -µ 0 (3.22)

The Bias in Lognormal Kriging

In this chapter, we have studied two hydrogeologic variables considered as RFs : the hydraulic head h and the logarithm of the transmissivity Log(T ), but we never questioned the idea of applying kriging to the logarithm of a parameter. In fact, the variations of T are highly nonlinear. So it would not be wise to use the linear estimators of kriging on T itself. On the other hand, the logarithm of T can be considered as a Gaussian RF and thus be a good candidate for kriging. That had to be cleared.

However, when we solve the inverse problem, we want an estimate of T , not Log(T ). Is it possible to just compute the exponential of the Log(T ) estimate to obtain the T estimate ?

In fact not, there is a correction factor to apply when computing the transmissivity estimate. Matheron already mentioned this when he rst described kriging [START_REF] Matheron | Traité de Géostatistique appliquée -Tome II : Le krigeage[END_REF]), and revisited the concepts of so-called lognormal kriging [START_REF] Matheron | Eet proportionnel et lognormalité ou : Le retour du serpent de mer[END_REF]). For Ordinary Cokriging3 , the estimate will be for a RF Z = Log(Y ) :

Z (x 0 ) = exp Y (x 0 ) + σ 2 Y (x 0 ) 2 -µ 0 (3.23)
µ 0 being the Lagrange multiplier for Y present in the kriging system.

However, [START_REF] Roth | Is lognormal kriging suitable for local estimation?[END_REF] believes that this estimator is still biased, and that we can't really get rid of the bias as long as we don't perform Simple Cokriging. In this thesis, we will present a map of Log(T ), thus avoiding this biasedness issue.

Application

This section details the application of solving either the direct, either the inverse problem, using the results and the system described in sections 3.3 and 3.4.

Code Implementation

GSLIB has a cokriging program, but it only does Simple or Ordinary Cokriging. The rst task was to add the drift terms to compute the Universal Kriging system, using the kriging algorithm. Then, the boundary conditions were added as in the matrix presented in subsection 3.3.3, and the cross-covariance model introduced in subsection 3.3.1 was coded.

Finally, the right-hand term of the kriging system used to solve the inverse proble has been implemented, and a new input parameter allows to choose which variable the user wants to estimate.

Results

What dierentiates our study from classic cokriging is the fact that we take account of the partial dierential equation

∂ 2 h ∂x 2 = J ∂(Log T ) ∂x
in our multivariate structural analysis.

So the improvement will lie in the covariance and cross-covariance functions computed in sections 3.2.4 and 3.3.1. Let us have a closer look on these functions. Figure 3.2 shows their representation for an exponential covariance of Log(T ). In fact, the kriged estimate is a linear combination of weights that are functions of these covariances, translated to be centered at the estimated points. We have written that the product of the hydraulic gradient J and the range a of the Log(T ) variogram is involved linearly in the cross-covariance (3.14) and as a square in the head variogram (3.12). This means that in a cokriging approach for estimating the hydraulic head, the weights on Log(T ) data will be proportional to Ja, while when estimating the transmissivity, the weights on head data will be inversely proportional to Ja. Knowledge of this parameter is therefore essential, as it will determine by how much the head map will be distorted. a alone represents the range of the distortion. The antisymmetry of the cross-covariance (3.14) when computing the function around the central point has to be denoted. We can use it to make the following statements, assuming there is a low transmissivity zone :

• There is necessarily a point downstream that will be below this hydraulic head plane dened by the regional gradient J,

• And there is a point upstream that will be above this plane.

This leads to the conclusion that there is a higher hydraulic gradient at the location of the low transmissivity point.

The opposite statement can also be made if we assume there is a high transmissivity zone.

We would then have a smaller hydraulic gradient at the location of the high transmissivity point.

Similarly, for the inverse problem, if we have, for example, a point whose head value is below the plane representing the regional hydraulic gradient, we can then conclude that the transmissivity values will be below the mean value upstram, and above it downstream. The opposite statement can be made for a head value below the regional plane. Figure 3.6 sums up these statements. A rst example, with the same study area as usual, a constant head h = 50 m on the northern boundary and h = 0 m on the southern one and a low transmissivity point in the middle of the area is mapped in gure 3.7. A parameter that has to be noticed here is the range of the covariance of Log(T ). It is set to 70 m in this example, as the boundary conditions must be beyond the range of Log(T ) data points.

The second example displayed in gure 3.8 presents an inverse problem. The study area and the parameters are the same as for the rst example, except that instead of a lowtransmissivity data point, we have two head data points in the middle of the area : one above the regional hydraulic gradient plane (x = 250, y = 251, h = 26), and the other below it (x = 250, y = 249, h = 24). Finally, another interesting gure is gure 3.9. It presents the dierence between the hydraulic head cokriged in gure 3.7 and the hydraulic head of the case in which there is no low-transmissivity data point and thus only the regional hydraulic gradient of 0.1 m/m applies. This gure has some interesting similarities with gure 3.5 4 . This emphasizes the fact that it is the cross-covariance function which disrupts the hydraulic head map when we insert a low-tansmissivity point.

Figure 3.9: Dierence between the hydraulic head maps with and without the low-transmissivity data point.

Conclusion

There is still some testing to be done in order to have a stable cokriging algorithm using this multivariate spatial analysis, but one can easily understand the potential that lies there, as shown in the very rst example. This method could be used to solve both the direct and the inverse problem of the partial dierential equation

∂ 2 h ∂x 2 = J ∂(Log T ) ∂x .

Conclusion

The goal of this thesis was to make kriging respect some conditions of the partial dierential equations that dictate the groundwater ow in hydrogeology. We have concluded in

Chapter 2 that Kriging under Boundary Conditions allows us to take into account the Dirichlet and the Neumann boundary conditions. Kriging under Boundary Conditions proved to be robust enough to be easily used by a hydrogeologist. Consequently, it should be implemented soon in GW Contour. It seems a perfect tool to improve the results computed by this program that basically interpolates the hydraulic head, the hydraulic conductivity and the porosity and then uses these data to solve the Darcy equation on each node of the interpolation grid, in order to produce a velocity vector map and particle tracking.

Chapter 3 focused on making use of the partial dierential equation

∂ 2 h ∂x 2 = J ∂(Log T ) ∂x
, in a multivariate spatial analysis cokriging approach, to take into account the transmissivity data and the fact that its structure is deeply linked to the hydraulic head structure. This is a more generalized problem than Kriging under Boundary Conditions, as the important hydrogeologic parameter that transmissivity is, is not considered constant anymore and is indeed used to evaluate the hydraulic head surface. This promising last minute research needs further work and testing, but the rst results look very promising and the fact that it can also solve the inverse problem makes it even more interesting.

Appendix A GSLIB Code : Main Algorithm program main C % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % C % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % c----------------------------------------------------------------------- call g e t a r g ( 1 , s t r ) else call f i l e o p e n ( s t r ) e n d i f write ( * , * ) 'FILE OPENED ' , s t r i f ( s t r ( 1 : 1 ) . eq . ' ' ) s t r =' coktbc . par ' inquire ( f i l e=str , exist=t e s t f l ) i f ( . not . t e s t f l ) then write ( * , * ) 'ERRORthe parameter f i l e does not exist , ' write ( * , * ) ' check f o r the f i l e and t r y again ' write ( * , * ) i f ( s t r ( 1 : 2 0 ) . eq . ' coktbc . par ' ) then write ( * , * ) ' c r e a t i n g a blank parameter file ' call makepar write ( * , * ) end i f stop read( l i n , * , err=98) n s t ( ind ) , c0 ( ind ) write( ldbg , 1 0 3 ) i , j , n s t ( ind ) , c0 ( ind ) i s t a r t = 1 + ( ind -1) * MAXNST do i =1, n s t ( ind ) index = i s t a r t + i -1 read( l i n , * , err=98) i t ( index ) , cc ( index ) , ang1 ( index ) , + ang2 ( index ) , ang3 ( index ) read( l i n , * , err=98) aa ( index ) , aa1 , aa2 a n i s 1 ( index ) = aa1 / max( aa ( index ) ,EPSLON) a n i s 2 ( index ) = aa2 / max( aa ( index ) ,EPSLON) i f ( i t ( index ) . eq . 4 . and . ktype . eq . 0 )

+ stop 'No Power model with SK' end do write( ldbg , 1 0 4 ) ( i t ( i s t a r t+i -1) , i =1, n s t ( ind ) ) write( ldbg , 1 0 5 ) ( aa ( i s t a r t+i -1) , i =1, n s t ( ind ) ) write( ldbg , 1 0 6 ) ( cc ( i s t a r t+i -1) , i =1, n s t ( ind ) ) write( ldbg , 1 0 7 ) ( ang1 ( i s t a r t+i -1) , i =1, n s t ( ind ) ) write( ldbg , 1 0 8 ) ( ang2 ( i s t a r t+i -1) , i =1, n s t ( ind ) ) write( ldbg , 1 0 9 ) ( ang3 ( i s t a r t+i -1) , i =1, n s t ( ind ) ) write( ldbg , 1 1 0 ) ( a n i s 1 ( i s t a r t+i -1) , i =1, n s t ( ind ) ) write( ldbg , 1 1 1 ) ( a n i s 2 ( i s t a r t+i -1) , i =1, n s t ( i f ( n s t ( ind1 ) . eq . -1. and . n s t ( ind2 ) . eq . -1) then write ( * , * ) ' Need variogram between v a r i a b l e s ' , i , j stop end i f i f ( n s t ( ind1 ) . eq . -1) then

n s t ( ind1 ) = n s t ( ind2 ) c0 ( ind1 ) = c0 ( ind2 ) i s t a r t 1 = 1 + ( ind1 -1) * MAXNST i s t a r t 2 = 1 + ( ind2 -1) * MAXNST do i s t =1, n s t ( ind1 ) index2 = i s t a r t 2 + i s t -1 index1 = i s t a r t 1 + i s t -1 i t ( index1 ) = i t ( index2 ) cc ( index1 ) = cc ( index2 ) aa ( index1 ) = aa ( index2 ) ang1 ( index1 ) = ang1 ( index2 ) ang2 ( index1 ) = ang2 ( index2 ) ang3 ( index1 ) = ang3 ( index2 ) a n i s 1 ( index1 ) = a n i s 1 ( index2 ) a n i s 2 ( index1 ) = a n i s 2 ( index2 ) end do else i f ( n s t ( ind2 ) . eq . -1) then n s t ( ind2 ) = n s t ( ind1 ) c0 ( ind2 ) = c0 ( ind1 ) i s t a r t 1 = 1 + ( ind1 -1) * MAXNST i s t a r t 2 = 1 + ( ind2 -1) * MAXNST do i s t =1, n s t ( ind2 ) index2 = i s t a r t 2 + i s t -1 index1 = i s t a r t 1 + i s t -1 i t ( index2 ) = i t ( index1 ) cc ( index2 ) = cc ( index1 ) aa ( index2 ) = aa ( index1 ) ang1 ( index2 ) = ang1 ( index1 ) ang2 ( index2 ) = ang2 ( index1 ) ang3 ( index2 ) = ang3 ( index1 ) a n i s 1 ( index2 ) = a n i s 1 ( index1 ) a n i s 2 ( index2 ) = a n i s 2 ( index1 )
end do end i f end do end do c c R e s c a l e t h e "Tmax/Tmin" p a r a m e t e r t o make i t e q u a l t o t h e s i l l c i f ( nvr . eq . 2 . or . i t ( 1 ) . eq . 7 ) then do i =1,MXVARG * MAXNST i f ( cc ( i ) . gt . 0 ) then cc ( i ) = ( 0 . do i =1, nvr do j =1, nvr ind1 = i + ( j -1) * MAXVAR do i 2 =1, nvr do j 2 =1, nvr ind2 = i 2 + ( j2 -1) * MAXVAR i f ( n s t ( ind1 ) . ne . n s t ( ind2 ) ) linmod = . f a l s e . i s t a r t 1 = 1 + ( ind1 -1) * MAXNST i s t a r t 2 = 1 + ( ind2 -1) * MAXNST do i =1, nvr do j =1, nvr i f ( i . ne . j ) then i i = i +( i -1) * MAXVAR j j = j +(j -1) * MAXVAR i j = i +(j -1) * MAXVAR j i = j +( i -1) * MAXVAR i s t a r t i i = 1 + ( i i -1) * MAXNST i s t a r t j j = 1 + ( j j -1) * MAXNST i s t a r t i j = 1 + ( i j -1) * MAXNST i s t a r t j i = 1 + ( j i -1) * MAXNST c c F i r s t c h e c k t h e n u g g e t e f f e c t s : c i f ( c0 ( i i ) . l e . 0 . 0 . or . c0 ( j j ) . l e . 0 . 0 . or . + ( c0 ( i i ) * c0 ( j j ) ) . l t . ( c0 ( i j ) * c0 ( j i ) ) ) then p o s d e f = . f a l s e .

do i s t =1, n s t ( ind1 ) index2 = i s t a r t 2 + i s t -1 index1 = i s t a r t 1 + i s t -1 i f ( i t ( index1
write( ldbg , 1 2 0 ) i , j e n d i f do i s t =1, n s t ( i i ) i n d e x i i = i s t a r t i i + i s t -1 i n d e x j j = i s t a r t j j + i s t -1 i n d e x i j = i s t a r t i j + i s t -1 i n d e x j i = i s t a r t j i + i s t -1 i f ( cc ( i n d e x i i ) . l e . 0 . 0 . or . cc ( i n d e x j j ) . l e . 0 . 0 . or . stop ' NDMIN too small ' i f ( ndmaxp . gt .MAXSAM) stop ' NDMAXP too l a r g e ' i f ( ndmaxg . gt .MAXSAM) stop ' NDMAXG too l a r g e ' i f ( ndmaxs . gt .MAXSAM) stop ' NDMAXS too l a r g e ' i f ( ( ndmaxs / 2 ) . l e . nvr . and . ktype . eq . 2 ) then write call bdpts ( nd , x , y , z , vr , sec1 , kod , c s i z ) do i =1,nd write ( 1 1 4 , ' ( i4 , 5 f 1 0 . 2 , i 8 ) ' ) i , x ( i ) , y ( i ) , z ( i ) , vr ( i ) , s e c 1 ( i ) , do i =1,nd write ( 1 1 5 , ' ( i4 , 4 f 1 0 . 2 , i8 , 2 f 1 0 . 2 ) ' ) i , x ( i ) , y ( i ) , vr ( i ) , s e c 1 ( i ) , + kod ( i ) , ddx ( i ) , ddy ( i ) enddo c c C h e c k For d u p l i c a t e p o i n t s c call remdup ( nd , x , y , z , vr , sec1 , kod , ddx , ddy , newnd ) write ( * , * ) nd , newnd write ( * , * ) ' D u p l i c a t e X,Y P a i r s removed = ' ,nd-newnd i f ( newnd . l t . nd ) nd = newnd write ( 1 1 5 1 , do i s =1, n s t ( 1 ) call s e t r o t ( ang1 ( i s ) , ang2 ( i s ) , ang3 ( i s ) , a n i s 1 ( i s ) , a n i s 2 ( i s ) , + i s ,MAXROT, rotmat ) i f ( i t ( i s ) . eq . 4 ) then write ( 1 1 6 , ' ( i4 , 7 f 1 0 . 2 ) ' ) i , x ( i ) , y ( i ) , z ( i ) , vr ( i ) , s e c 1 ( i ) , + ddx ( i ) , ddy ( i ) enddo call picks up ( nxsup , x s i z s u p , nysup , y s i z s u p , nzsup , z s i z s u p , i f ( np . eq . ndmaxp . and . nborhood . ne . 0 ) go to 32 ind = i n t ( close ( i )+0.5) i f ( ( vr ( ind ) . ge . tmin ) . and . ( vr ( ind ) . l t . tmax ) .

+ kod ( i ) enddo

coktbc c----------------------------------------------------------------------- c c C o K r i g i n g o f a 3-D R

+

and . ( np . l t . ndmaxp . or . nborhood . eq . 0 ) ) then end i f e s t = UNEST e s t v = UNEST go to 4 end i f 999 format( ' Encountered a l o c a t i o n where t h e r e were too few data ' , / , + ' to e s t i m a t e a l l o f the d r i f t terms but t h e r e would be ' , / , + ' enough data f o r OK or SK . KT3D c u r r e n t l y l e a v e s ' , / , do i =1,na write ( 1 1 9 , ' ( i4 , 6 f 1 0 . 2 ) ' ) i , xa ( i ) , ya ( i ) , za ( i ) , vra ( i ) , + ddxa ( i ) , ddya ( i ) enddo c c S o l v e t h e K r i g i n g S y s t e m : c i f ( ktype . eq . 0 ) neq = na i f ( ktype . eq . 1 ) neq = na + 1 i f ( ktype . eq . 2 ) neq = na + mdt + nvr -1 i f ( ( neq-na ) . gt . na . or . na . l t . ndmin ) then write( l o u t , 1 0 0 ) UNEST,UNEST go to 4 end i f c c S e t up k r i g i n g m a t r i c e s : c do i =1, neq * neq a ( i ) = 0 . 0 end do do i =1, neq r ( i ) = 0 . 0 end do do j =1,na do i =1, j ind = i v a ( i ) + ( i v a ( j ) -1) * MAXVAR i f ( ( i . gt . np ) . and . ( i . l e . np+ng ) . and . ( j . gt . np ) .

np = np + 1 na = na + 1 xa ( na ) = x ( ind ) -x l o c + 0 . 5 * x s i z ya ( na ) = y ( ind ) -y l o c + 0 . 5 * y s i z za ( na ) = z ( ind ) -z l o c + 0 . 5 * z s i z vra ( na ) = vr ( ind ) ddxa ( na ) = 0 . 0 ddya ( na ) = 0 . 0 i v a ( na ) = 1 end i f end do
+
= ng + 1 na = na + 1 xa ( na ) = x ( ind ) -x l o c + 0 . 5 * x s i z ya ( na ) = y ( ind ) -y l o c + 0 . 5 * y s i z za ( na ) = z ( ind ) -z l o c + 0 . 5 * z s i z vra ( na ) = vr ( ind ) ddxa ( na ) = ddx ( ind ) ddya ( na ) = ddy ( ind ) i v a ( na ) = 1 i f ( vr ( ind ) . ne . 0 ) then ng = ng + 1 na = na + 1 xa ( na ) = x ( ind ) -x l o c + 0 . 5 * x s i z ya ( na ) = y (

+

and . ( j . l e . np+ng ) ) then

x i 1 = xa ( i ) -ddxa ( i ) x i 2 = xa ( i ) + ddxa ( i ) y i 1 = ya ( i ) -ddya ( i ) y i 2 = ya ( i ) + ddya ( i ) x j 1 = xa ( j ) -ddxa ( j )
x j 2 = xa ( j ) + ddxa ( j ) y j 1 = ya ( j ) -ddya ( j ) y j 2 = ya ( j ) + ddya ( j ) else i f ( ( i . l e . np . and . j . gt . np . and . j . l e . np+ng ) . or . + ( i . gt . np . and . i . l e . np+ng . and . j . gt . np+ng ) ) then

x j 1 = xa ( j ) -ddxa ( j ) x j 2 = xa ( j ) + ddxa ( j ) y j 1 = ya ( j ) -ddya ( j ) y j 2 = ya ( j ) + ddya ( j ) call cova3 ( xa ( i ) , ya ( i ) , za ( i ) , xj1 , yj1 , za ( j ) , c c W r i t e a w a r n i n g i f t h e m a t r i x i s s i n g u l a r : c i f ( i s i n g . ne . 0 ) then write( ldbg , * ) 'WARNING COKTBC: s i n g u l a r matrix ' write( ldbg , * ) ' f o r block ' , ix , iy , i z write( l o u t , 1 0 0 ) UNEST,UNEST go to 4 e n d i f c c W r i t e t h e k r i g i n g w e i g h t s and d a t a i f r e q u e s t e d : c i f ( idbg . ge . 2 ) then write( ldbg , * ) ' ' write( ldbg , * ) 'BLOCK: ' , ix , iy , i z , ' at ' , xloc , yloc , z l o c write ( 1 1 7 , ' ( 2 f 1 2 . 2 ) ' ) xloc , y l o c write( ldbg , * ) ' ' i f ( ktype . eq . 1 ) then write( ldbg , * ) ' Lagrange m u l t i p l i e r : ' , s ( na+1) else i f ( ktype . ge . 2 ) then write( ldbg , * ) ' Lagrange m u l t i p l i e r : ' , s ( na+1) write( ldbg , * ) ' Lagrange m u l t i p l i e r : ' , s ( na+mdt+1)

+
xk1 = xa ( k ) -ddxa ( k ) xk2 = xa ( k ) + ddxa ( k ) yk1 = ya ( k ) -ddya ( k ) yk2 = ya ( k ) + ddya ( k ) a ( neq * ( im-1)+k ) =
e n d i f write( ldbg , * ) ' np , ng , ns and na : ' , np , ng , ns , na write( ldbg , * ) ' BLOCK EST : x , y , z , vr , ddx , ddy , wt ' do i =1,na write( ldbg , ' ( 6 f 9 . 2 , f 1 2 . 3 ) ' ) xa ( i ) , ya ( i ) , za ( i ) , vra ( i ) ,

+ ddxa ( i ) , ddya ( i ) , s ( i )
end do i f ( ( whatest . eq . 0 ) . and . ( l o g o p t 1 . eq . 1 ) ) ook = ook / l o g ( 1 0 . ) i f ( ( whatest . eq . 1 ) . and . ( l o g o p t 2 . eq . 1 ) ) ook = ook / l o g ( 1 0 . ) i f ( ook . gt . restmax . and . nrestmax . ne . 0 ) ook = restmax i f ( ook . l t . r e s t m i n . and . nrestmin . ne . 0 ) ook = r e s t m i n k r i g o u t ( n c e l l s ) = ook i f ( ook . gt . datamax ) datamax = ook i f ( ook . l t . datamin ) datamin = ook i f ( whatest . eq . 0 ) then write( l o u t , 1 0 0 ) ook , ookv else write( l o u t , 1 0 0 0 ) ook , ookv e n d i f format( f 1 2 . 4 , 1 x , f 1 2 . 4 ) format( f 2 1 . 1 3 , 1 x , f 1 2 . 4 ) i f ( n o u t f i l e . eq . 1 ) then write ( 2 1 , * ) datamin , datamax i f ( datamin . l t . 0 . 0 1 ) then write ( 2 1 , 3 2 2 ) ( k r i g o u t ( i i i ) , i i i =1, n c e l l s ) else write ( 2 1 , 3 2 3 ) ( k r i g o u t ( i i i ) , i i i =1, n c e l l s ) e n d i f else i f ( n o u t f i l e . eq . 2 ) then write ( 2 1 ) d b l e ( datamin ) , d b l e ( datamax ) write ( 2 1 ) ( k r i g o u t ( i i i ) , i i i =1, n c e l l s ) else i f ( n o u t f i l e . eq . 3 ) then write C % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % C % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % integer n , addpts , newn , i integer kod ( n ) real x ( n ) , y ( n ) real c s i z , d i s t addpts = 0 newn = n do 111 , i = 1 , n-1 i f ( ( kod ( i ) . ne . 0 ) . and . ( kod ( i ) . eq . kod ( i +1))) then integer n , addpts , i , j , k integer kod ( n ) real c s i z , d i s t , s l o p e , spacin , step , stepz , s t e p v r , s t e p v e real x ( n ) , y ( n ) , z ( n ) , vr ( n ) , ve ( n ) addpts = 0 i = 1 112 i f ( ( kod ( i ) . ne . 0 ) . and . ( kod ( i ) . eq . kod ( i +1))) then

c----------------------------------------------------------------------- c c O r d i n a r y C o K r i g i n g o f a 3-D R
d i s t = s q r t ( ( x ( i )-x ( i +1)) * * 2+(y ( i )-y ( i +1)) * * 2) i f ( d i
d i s t = s q r t ( ( x ( i )-x ( i +1)) * * 2+(y ( i )-y ( i +1)) * * 2) i f ( d i s t . l t . ( 2 . * c s i z ) ) then addpts = 1 s p a c i n = d i s t / 2 . else i f ( d i s t . gt . ( 2 0 . * c s i z ) ) then addpts = 19 s p a c i n = d i s t / 2 0 .
else i f (mod( d i s t , c s i z ) . ne . 0 ) then addpts = i n t ( d i s t / c s i z ) s p a c i n = c s i z else addpts = i n t ( d i s t / c s i z )-1 s p a c i n = c s i z endif s t e p z = s p a c i n / d i s t * ( z ( i +1)-z ( i ) ) s t e p v r = s p a c i n / d i s t * ( vr ( i +1)-vr ( i ) ) s t e p v e = s p a c i n / d i s t * ( ve ( i +1)-ve ( i ) )

i f ( x ( i ) . ne . x ( i +1)) then s l o p e = ( y ( i +1)-y ( i ) ) / ( x ( i +1)-x ( i ) ) s t e p = s p a c i n / s q r t (1+ s l o p e * * 2) else s t e p = 0 endif do 113 , k = n , i+1+addpts ,-1 

x ( k ) = x ( k-addpts ) y ( k ) = y ( k-addpts ) z ( k ) = z ( k-addpts ) vr ( k ) = vr ( k-addpts ) ve ( k ) = ve ( k-addpts ) kod ( k ) = kod ( k-addpts ) 113 continue do 114 , j = 1 , addpts i f ( x ( i ) . l t . x ( i+1+addpts ) ) then x ( i+j ) = x ( i ) + j * s t e p else x ( i+j ) = x ( i ) -j * s t e p endif i f ( y ( i ) . l t . y ( i+1+addpts ) ) then i f ( x ( i ) . ne . x ( i+1+addpts 
c----------------------------------------------------------------------- c c C h e c k f o r a V a l i d F i l
---------------------------------------------------------------------- parameter (MAXLEN=132) character s t r (MAXLEN) * 1 c c Remove l e a d i n g b l a n k s : c do i =1, len -1 i f ( s t r ( i ) . ne . ' ' ) then i f ( i . eq . 1 ) go to 1 do j =1, len -i +1 k = j + i -1 s t r ( j ) = s t r ( k )
end do do j=len , len -i +2,-1 s t r ( j ) = ' ' end do go to 1 end i f end do subroutine cova3 ( x1 , y1 , z1 , x2 , y2 , z2 , i v a r g , nst ,MAXNST, c0 , i t , cc , aa , i f ( i s t . ne . 1 ) then i r = min ( ( i r o t+i s -1) ,MAXROT) hsqd=s q d i s t ( x1 ,y1 ,z1 ,x2 ,y2 ,z2 ,i r ,MAXROT,rotmat ) end i f h = real ( d s q r t ( hsqd ) ) c c S p h e r i c a l V a r i o g r a m Model ? c i f ( i t ( i s t ) . eq . 1 ) then hr = h/ aa ( i s t ) i f ( hr . l t . 1 . ) cova=cova+cc ( i s t ) * (1. -hr * (1.5 -.5 * hr * hr ) ) c c E x p o n e n t i a l V a r i o g r a m Model ? c else i f ( i t ( i s t ) . eq . 2 ) then cova = cova + cc ( i s t ) * exp ( -3.0 * h/ aa ( i s t ) ) c c G a u s s i a n V a r i o g r a m Model ? c else i f ( i t ( i s t ) . eq . 3 ) then cova = cova + cc ( i s t ) * exp ( integer n , nx , ny , i , j integer kod ( n ) real x s i z , y s i z , xbig , ybig , perp , spacin , s t e p real x ( n ) , y ( n ) , ddx ( n ) , ddy ( n ) s p a c i n = c s i z ddx = 0 . 0 ddy = 0 . 0 do 116 , i = 2 , n-1 i f ( ( kod ( i ) . l t . 0 ) . and . ( kod ( i -1). eq . kod ( i ) ) . and .

+ gradh , angh , i r o t ,MAXROT, rotmat , cmax , cova ) c----------------------------------------------------------------------- c c C o v
( kod ( i ) . eq . kod ( i +1))) then i f ( y ( i +1). ne . y ( i -1)) then perp = -(x ( i +1)-x ( i -1))/( y ( i +1)-y ( i -1)) s t e p = s p a c i n / s q r t (1+ perp * * 2) ddx ( i ) = s t e p ddy ( i ) = s t e p * perp else ddy ( i ) = s p a c i n endif else i f ( ( kod ( i ) . l t . 0 ) . and . ( kod ( i -1). ne . kod ( i ) ) . and .

( kod ( i ) . eq . kod ( i +1))) then i f ( y ( i +1). ne . y ( i ) ) then perp = -(x ( i +1)-x ( i ) ) / ( y ( i +1)-y ( i ) ) s t e p = s p a c i n / s q r t (1+ perp * * 2) ddx ( i ) = s t e p ddy ( i ) = s t e p * perp else ddy ( i ) = s p a c i n endif else i f ( ( kod ( i ) . l t . 0 ) . and . ( kod ( i -1). eq . kod ( i ) ) . and .

( kod ( i ) . ne . kod ( i +1))) then i f ( y ( i ) . ne . y ( i -1)) then perp = -(x ( i )-x ( i -1))/( y ( i )-y ( i -1)) s t e p = s p a c i n / s q r t (1+ perp * * 2) ddx ( i ) = s t e p ddy ( i ) = s t e p * perp else ddy ( i ) = s p a c i n endif endif i f ( ( kod ( 1 ) . l t . 0 ) . and . ( kod ( 2 ) . eq . kod ( 1 ) ) ) then i f ( y ( 2 ) . ne . y ( 1 ) ) then perp = -(x(2) -x ( 1 ) ) / ( y(2) -y ( 1 ) ) s t e p = s p a c i n / s q r t (1+ perp * * 2) ddx ( 1 ) = s t e p ddy ( 1 ) = s t e p * perp else ddy ( 1 ) = s p a c i n endif endif i f ( ( kod ( n ) . l t . 0 ) . and . ( kod ( n -1). eq . kod ( n ) ) ) then i f ( y ( n ) . ne . y ( n-1)) then perp = -(x ( n)-x ( n -1))/( y ( n)-y ( n-1)) s t e p = s p a c i n / s q r t (1+ perp real x11 , y11 , x12 , y12 , x21 , y21 , x22 , y22 integer CCW i f (CCW( x11 ,y11 ,x12 ,y12 ,x21 ,y21 ) . eq . 0 ) then i n t e r s e c t= . f a l s e . else i f (CCW( x11 ,y11 ,x12 ,y12 ,x22 ,y22 ) . eq . 0 ) then i n t e r s e c t= . f a l s e . else i f (CCW( x11 ,y11 ,x21 ,y21 ,x22 ,y22 ) . eq . 0 ) then i n t e r s e c t= . f a l s e . else i f (CCW( x12 ,y12 ,x21 ,y21 ,x22 ,y22 ) . eq . 0 ) then i n t e r s e c t= . f a l s e . else i f (CCW( x11 ,y11 ,x21 ,y21 ,x22 ,y22 ) . eq .CCW( x12 , y12 , x21 , y21 , & & x22 , y22 ) ) then i n t e r s e c t = . f a l s e . else i f (CCW( x11 ,y11 ,x12 ,y12 ,x21 ,y21 ) = j 1+n j 2 = j 2+n t = a ( j 2 ) a ( j 2 ) = a ( j 1 ) a ( j 1 ) = t i 1 = j 1 i 2 = kdiag do i=kp1 , n i 1 = i 1 +1 i 2 = i 2 +1 a ( i 1 ) = a ( i 1 )+a ( i 2 ) * a ( j 1 ) end do end do c c I n t e r c h a n g e and m o d i f y t h e n s r i g h t hand m a t r i c e s : 

c----------------------------------------------------------------------- c c S
---------------------------------------------------------------------- implicit real * 8 ( a-h , o-z ) real * 8 x (
c i 1 = nvb+i p i v i 2 = nvb+k do i =1, ns t = b ( i 1 ) b ( i 1 ) = b ( i 2 ) b ( i 2 ) = t j 1 = i 2 j 2 = kdiag do j=kp1 , n j 1 = j 1+1 j 2 = j 2+1 b ( j 1 ) = b ( j 1 )+b ( i 2 ) * a ( j 2 )
= nvb2-( i l -1) * n-k+1 b ( kb ) = b ( kb )/ a ( kdiag ) t = -b ( kb ) i 1 = kb i 2 = kdiag do i =1,nmk i 1 = i1 -1 i 2 = i2 -1 b ( i 1 ) = b ( i 1 )+a ( i 2 ) * t end do end do kdiag = kdiag-n-1 kb = kb-1 b ( kb ) = b ( kb )/ a ( kdiag )
c----------------------------------------------------------------------- c c E
----------------------------------------------------------------------
real * 8 rotmat (MAXROT, 3 , 3 ) , hsqd , s q d i s t , s h o r t e s t do 200 i = 1 , n-1 do 300 j = i +1,n i f ( x ( j ) . eq . x ( i ) . and . y ( j ) . eq . y ( i ) ) then i f ( ( kod ( i ) . ge . 0 . and . kod ( j ) . ge . 0 ) . or .

do i 1 =-1,1 do j 1 =-1,1 do k1=-1,1 do i 2 =-1,1 do j 2 =-1,1 do k2=-1,1 i f ( i
( kod ( i ) . l e . 0 . and . kod ( j ) . l e . 0 ) ) then do 500 k = j , n-1 i f ( x ( i ) . eq . xs1 . and . y ( i ) . eq . ys1 . and . x ( j ) . eq . xs2 . and . y ( j ) . eq . ys2 ) then i f ( k . gt . q ) go to 60 i f ( a ( k ) . l e . ta ) go to 20 c c S u c h an e l e m e n t h a s now b e e n f o u n d now s e a r c h f o r a q s u c h t h a t a ( q )< t c s t a r t i n g a t t h e e n d o f t h e s e g m e n t . c 30 continue i f ( a ( q ) . l t . ta ) go to 40 q = q-1 i f ( q . gt . k ) go to 30 go to 50 c c a ( q ) h a s now b e e n f o u n d . we i n t e r c h a n g e a ( q ) and a ( k ) c 40 xa = a ( k ) a ( k ) = a ( q ) a ( q ) = xa go to ( 4 5 , 4 4 , 4 3 , 4 2 , 4 1 , 4 1 1 , 4 1 2 , 4 1 3 ) , i r i n g 413 xh = h ( k ) h ( k ) = h ( q ) h ( q ) = xh 412 xg = g ( k ) g ( k ) = g ( q ) g ( q ) = xg 411

x ( k ) = x ( k+1) y ( k ) = y ( k+1) z ( k ) = z ( k+1) vr ( k ) = vr ( k+1) ve ( k ) = ve ( k+1) kod ( k ) = kod ( k+1) ddx ( k ) = ddx ( k+1) ddy ( k ) = ddy ( k+1) 500 continue n = n -1 endif end i f
do 501 k = s , n-1 x ( k ) = x ( k+1) y ( k ) = y ( k+1) z ( k ) = z ( k+1) vr ( k ) = vr ( k+1) ve ( k ) = ve ( k+1) kod ( k ) = kod ( k+1) ddx ( k ) = ddx ( k+1) ddy ( k ) =
= j + 1 xs1 ( j ) = x ( i ) ys1 ( j ) = y ( i ) xs2 ( j ) = x ( i +1) ys2 ( j ) = y ( i +1)
( cosb * c o s a ) rotmat ( ind , 1 , 2 ) = ( cosb * s i n a ) rotmat ( ind , 1 , 3 ) = (-s i n b ) rotmat ( ind , 2 , 1 ) = a f a c 1 * (-c o s t * s i n a + s i n t * s i n b * c o s a ) rotmat ( ind , 2 , 2 ) = a f a c 1 * ( c o s t * c o s a + s i n t * s i n b * s i n a ) rotmat ( ind , 2 , 3 ) = a f a c 1 * ( s i n t * cosb ) rotmat ( ind , 3 , 1 ) = a f a c 2 * ( s i n t * s i n a + c o s t * s i n b * c o s a ) rotmat ( ind , 3 , 2 ) = a f a c 2 * (-s i n t * c o s a + c o s t * s i n b * s i n a ) rotmat ( ind , 3 , 3 ) = a f a c 2 * ( c o s t * cosb ) c c R e t u
!----------------------------------------------------------------------- ! ! E
x f = f ( k ) f ( k ) = f ( q ) f ( q ) = x f 41 xe = e ( k ) e ( k ) = e ( q ) e ( q ) = xe a ( i )=a ( q ) a ( q)= ta go to ( 6 5 ,6 4 ,6 3 ,6 2 ,6 1 ,6 1 1 ,6 1 2 ,6 1 3 ) , i r i n g h ( i ) = h ( q ) h ( q ) = th g ( i ) = g ( q ) g ( q ) = tg f ( i ) = f ( q ) f ( q ) = t f e ( i ) = e ( q ) e ( q ) = t e d ( i ) = d ( q ) d ( q ) = td c ( i ) = c ( q ) c ( q ) = t c b ( i ) = b ( q ) b ( q ) = tb continue c c The s e g m e n t i s now d i v i d e d i n t h r e e p a r t s : ( i , q -1) , ( q ) , ( q +1 , j ) 

Figure 1

 1 Figure 1.1: A variogram and a nested structure example.

  tice, it suces to discretize the problem and replace the orthogonal gradient component by the dierences between pairs of dummy points : one of the dummy points is on one side of the boundary while the other is on the other side, the two points drawing a segment perpendicular to the boundary, as depicted in Figure 2.1.

Figure 2 . 1 :

 21 Figure 2.1: From gradient to a pair of dummy points.

Figure 2 . 2 :

 22 Figure 2.2: Example of selecting a subset of points with a search radius R.

Figure 2 . 3 :

 23 Figure 2.3: Visual Modow modeled map. First example.

Figure 2

 2 Figure 2.4: Diagram outlining the boundary conditions and the 12 data points selected. First example.

Figure 2 .

 2 Figure2.5 shows that the boundary conditions are not honored with the Universal Kriging, be it the prescribed head or the no ow limits. A rst step is to introduce the southern prescribed head boundary. The output result is presented in gure 2.6. It shows that the head values are indeed set to 0 on the southern border of the area. It already improves the map when we compare this one with both the Universal Kriging and the Visual Modow ones. The next step is to introduce the full boundary conditions, i.e. adding the no ow limits.

Figure 2

 2 Figure 2.5: Universal Kriging contour map.Figure2.6: Kriging with the prescribed head

Figure

  Figure 2.5: Universal Kriging contour map.Figure 2.6: Kriging with the prescribed head condition map.

Figure 2

 2 Figure 2.7: Kriging under Boundary Conditions map. First example.

  Figure 2.10 presents the Kriging under Boundary Conditions map.

Figure 2 . 8 :

 28 Figure 2.8: Diagram outlining the boundary conditions and the 12 data points selected.

Figure 2

 2 Figure 2.9: Visual Modow modeled map. Second example.Figure2.10: Kriging under Boundary Conditions map. Second example.

Figure 2 .

 2 Figure 2.11: Kriging under Boundary Conditions map. Constant Flux example.

Figure 2 .

 2 Figure 2.12: River conditioning the ow.Figure2.13: Inside constant ux condition.

Figure 2 .

 2 Figure 2.14: No ow boundary inside the study area.

Figure 2 .

 2 Figure 2.15: Visual Modow modeled map. Screen eect.

Figure 2 .

 2 Figure 2.16: Representation of the screen eect.

  . It still doesn't look exactly like the Visual Modow map of gure 2.15. The result does look similar to the one computed for a low-transmissivity zone with the Wall package of Visual Modow, that can create a thin low-transmissivity zone between two grid cells (see gure 2.18).

Figure 2 .

 2 Figure 2.17: Screen eect with added data points.

Figure 2 .

 2 Figure 2.18: Visual Modow modeled map. Wall package.

Figure 2 .

 2 Figure 2.19: No ow boundary inside the study area, with added data points but without the screen eect.

Figure 2 .

 2 Figure 2.20: No ow box inside the study area.

  Equation ∆Z = Y Equation (3.7) can be more generally written ∆Z = Y , and not only applied to hydrogeology. This equation is named the Poisson equation and represents the dependency between the studied variable Z the hydraulic head h in our case and a given source term Y J ∂(Log T ) ∂x , i.e the constant hydraulic gradient multiplied by the derivative on x of Log(T ).

Figure 3

 3 Figure 3.1: Kriging under Boundary Conditions with γ of h computed from γ of Log(T ).

Figure 3

 3 Figure 3.2: Exponential covariance C Y of Y = Log(T ), variogram γ φ of head perturbation φ and cross-covariance of Y (x) and φ(x + h) -φ(x) in the two-dimensional case, for an unidirectional ow in an innite aquifer, from Chilès and Delner (1999), p.620.

Figures 3

 3 Figures 3.3, 3.4 and 3.5 present the representations of the covariance of Log(T ) and both, the variogram of h and the cross-covariance between Log(T ) and h computed from this covariance. The ow is assumed parallel to the North-South axis.

Figure 3

 3 Figure 3.3: 2D representation of C Log(T ) centered on the point (25; 25).

Figure 3

 3 Figure 3.4: 2D representation of γ(h) centered on the point (25; 25).

Figure 3

 3 Figure 3.5: 2D representation of the cross-covariance between Log(T ) and h centered at point (25; 25).

Figure 3 . 6 :

 36 Figure 3.6: Summary of the inuence of the cross-covariance anti-symmetry on h and Log(T ) estimates, by Jean-Pierre Delhomme.

Figure 3

 3 Figure 3.7: Cokriging with one low transmissivity point in the middle of the study area.

Figure 3

 3 Figure 3.8: Inverse problem : Log 10 (T ) map cokriged from h and Log(T ) data.

  p y r i g h t (C) 1 9 9 6 , The Board o f T r u s t e e s o f t h e L e l a n d S t a n f o r d % C J u n i o r U n i v e r s i t y . A l l r i g h t s r e s e r v e d . % C % C The p r o g r a m s i n GSLIB a r e d i s t r i b u t e d i n t h e h o p e t h a t t h e y w i l l b e % C u s e f u l , b u t WITHOUT ANY WARRANTY. No a u t h o r o r d i s t r i b u t o r a c c e p t s % C r e s p o n s i b i l i t y t o a n y o n e f o r t h e c o n s e q u e n c e s o f u s i n g them o r f o r % C w h e t h e r t h e y s e r v e any p a r t i c u l a r p u r p o s e o r w o r k a t a l l , u n l e s s h e % C s a y s s o i n w r i t i n g . E v e r y o n e i s g r a n t e d p e r m i s s i o n t o c o p y , m o d i f y % C and r e d i s t r i b u t e t h e p r o g r a m s i n GSLIB , b u t o n l y u n d e r t h e c o n d i t i o n % C t h a t t h i s n o t i c e and t h e a b o v e c o p y r i g h t n o t i c e r e m a i n i n t a c t . % C %

  --------------------------------------------------------------------c c I n i t i a l i z a t i o n and Read P a r a m e t e r s c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * c c The i n p u t p a r a m e t e r s and d a t a a r e r e a d , some q u i c k e r r o r c h e c k i n g i s c p e r f o r m e d , and t h e s t a t i s t i c s o f a l l t h e v a r i a b l e s b e i n g c o n s i d e r e d c a r e w r i t t e n t o s t a n d a r d o u t p u t . ---------------------------------------------------------------------USE DFLIB i n c l u d e ' coktbc . inc ' parameter(MV=20) real var (MV) , av (MV) , s s (MV) integer i v r l (MV) , nn (MV) , whatest character d a t a f l * 500 , o u t f l * 500 , d b g f l * 500 , s e c f l * 500 , s t r * 500 logical t e s t f l , linmod , p o s d e f integer * 4 s u r f l o n g , npars , s t a t double precision s u r f d b l CHARACTER(1) key / 'h e name o f t h e p a r a m e t e r f i l et r y t h e d e f a u l t name i f no i n p u t : c c w r i t e ( * , * ) ' Which p a r a m e t e r f i l e do y o u w a n t t o u s e ? ' c r e a d ( * , ' ( a 4 0 ) ' ) s t r npars=i a r g c ( ) i f ( npars . ge . 1 ) then

  e n d i f open( l i n , f i l e=str , status='OLD' ) c c F i n d S t a r t o f P a r a m e t e r s : c 1 read( l i n , ' ( a4 ) ' , end=98) s t r ( 1 : 4 ) i f ( s t r ( 1 : 4 ) . ne . 'STAR' ) go to 1 c c Read I n p u t P a r a m e t e r s : c read( l i n , ' ( a ) ' , err=98) d a t a f l c c a l l chknam ( d a t a f l , 4 0 )write ( * , * ) ' data f i l e = ' , d a t a f l read( l i n , * , err=98) nvr write ( * , * ) ' number o f v a r i a b l e s = ' , nvr i f ( nvr . gt .MAXVAR) stop ' nvr i s too b i gmodify . i n c file ' i f ( nvr . gt . 2 ) stop ' can not use more than 1 secondary v a r i a b l e ' read( l i n , * , err=98) whatest write ( * , * ) ' e s t i m a t e d v a r i a b l e : 0=head , 1= t r a n s m i s s i v i t y ' , + whatesti f ( whatest . l t . 0 . or . whatest . gt . 1 ) stop ' Est . v a r i a b l e = 0 ou 1 . ' read( l i n , * , err=98) i x l , i y l , i z l , ikod , ( i v r l ( i ) , i =1, nvr ) write ( * , * ) ' columns = ' , i x l , i y l , i z l , ikod , ( i v r l ( i ) , i =1, nvr ) read( l i n , * , err=98) tmin , tmax write ( * , * ) ' trimming l i m i t s = ' , tmin , tmax read( l i n , * , err=98) i c o l l o c write ( * , * ) ' co-l o c a t e d c o k r i g i n g f l a g = ' , i c o l l o c i f ( i c o l l o c . eq . 1 ) then write ( * , * ) write ( * , * ) ' The co-l o c a t e d c o k r i g i n g f l a g does not work . ' write ( * , * ) ' Modify the s e a r c h and ndmaxs f o r co-l o c a t e d . ' write ( * , * ) ' The o r i g i n a l i n t e n t was f o r the program to ' write ( * , * ) ' e s t a b l i s h the variograms u s i n g a Markov model . ' write ( * , * ) ' You can do t h a t o u t s i d e the program. ' write ( * , * ) write ( * , * ) ' Note : the c o l l o c a t e d c o k r i g i n g f i l e i s not used ' write ( * , * ) stop end i f read( l i n , ' ( a ) ' , err=98) s e c f l c c a l l chknam ( s e c f l , 4 0 ) write ( * , * ) ' c o l l o c a t e d c o k r i g i n g f i l e = ' , s e c f l read( l i n , * , err=98) i c l c o l write ( * , * ) ' column f o r c o v a r i a t e = ' , i c l c o l read( l i n , * , err=98) idbg write ( * , * ) ' debug l e v e l = ' , idbg read( l i n , ' ( a ) ' , err=98) d b g f l c c a l l chknam ( d b g f l , 4 0 ) write ( * , * ) ' debug f i l e = ' , d b g f l write ( * , * ) write ( * , * ) ' Some i nput parameters a r e now echoed to debug file ' write ( * , * ) c o p e n ( l d b g , f i l e =d b g f l , s t a t u s = 'UNKNOWN' ) read( l i n , ' ( a ) ' , err=98) o u t f l c c a l l chknam ( o u t f l , 4 0 )

  read( l i n , * , err=98) radiusp , r a d i u s 1 , r a d i u s 2 write ( * , * ) ' primary s e a r c h r a d i i = ' , radiusp , r a d i u s 1 , r a d i u s 2 i f ( r a d i u s p . l t .EPSLON) stop ' r a d i u s must be g r e a t e r than zero ' radsqdp = r a d i u s p * r a d i u s p s a n i s p 1 = r a d i u s 1 / r a d i u s p s a n i s p 2 = r a d i u s 2 / r a d i u s p read( l i n , * , err=98) r a d i u s s , r a d i u s 1 , r a d i u s 2 write ( * , * ) ' secondary s e a r c h r a d i i = ' , r a d i u s s , r a d i u s 1 , r a d i u s 2 i f ( r a d i u s s . l t .EPSLON) stop ' r a d i u s must be g r e a t e r than zero ' radsqds = r a d i u s s * r a d i u s s s a n i s s 1 = r a d i u s 1 / r a d i u s s s a n i s s 2 = r a d i u s 2 / r a d i u s s read( l i n , * , err=98) sang1 , sang2 , sang3

  v a l u e t o -1 t o f l a g a l l m i s s i n g v a r i o g r a m s s many v a r i o g r a m s a s a r e i n t h e p a r a m e t e r f i l e : c 3 read( l i n , * , end=4,err=98) i , j i f ( i . gt .MAXVAR. or . j . gt .MAXVAR) then write ( * , * ) ' Variogram s p e c i f i e d f o r v a r i a b l e beyond MAXVAR' stop end i f ind = i + ( j -1) * MAXVAR

  ind ) ) format(/ , ' USER input variogram f o r v a r i a b l e s ' , i2 , ' and ' , i2 , / , + ' number o f s t r u c t u r e s = ' , i2 , ' nugget e f f e c t = ' , f l l i n c r o s s v a r i o g r a m s j = i i f t h e y h a v e n o t b e e n e x p l i c i t

  2 5 * LOG( cc ( i ) ) ) * * 2 else i f ( cc ( i ) . l t . 0 ) then write ( * , * ) ' Warning : n i l or n e g a t i v e s i l l d e f i n e d ' h e l i n e a r m o d e l o f c o r e g i o n a l i z a t i o n b e e n u s e d ? c linmod = . t r u e .

cc

  Yes , t h e l i n e a r m o d e l o f c o r e g i o n a l i z a t i o n h a s b e e n u s e d , now c h e c k c t o e n s u r e p o s i t i v e d e f i n i t e n e s s : c p o s d e f = . t r u e .

+

  ( cc ( i n d e x i i ) * cc ( i n d e x j j ) ) . l t . + ( cc ( i n d e x i j ) * cc ( i n d e x j i ) ) ) then p o s d e f = . f a l s e . , ' P o s i t i v e d e f i n i t e n e s s v i o l a t i o n on nugget e f f e c t s ' + , / , ' between ' , i2 , ' and ' , i 2 ) 121 format(/ , ' P o s i t i v e d e f i n i t e n e s s v i o l a t i o n on s t r u c t u r e ' t e ( * , * ) ' The l i n e a r m o d e l o f c o r e g i o n a l i z a t i o n i s NOT' c w r i t e ( * , * ) ' p o s i t i v e d e f i n i t e ! T h i s c o u l d l e a d t o s i n g u l a r ' c w r i t e ( * , * ) ' m a t r i c e s and u n e s t i m a t e d p o i n t s . ' c w r i t e ( * , * ) c w r i t e ( * , * ) ' Do y o u w a n t t o p r o c e e d ? ( y / n ) ' c r e a d ( * , ' ( a ) ' ) s t r c i f ( s t r ( 1 : 1 ) . ne . ' y ' . and . s t r ( 1 : 1 ) . ne . ' Y ' ) s t o t e ( * , * ) ' A l i n e a r m o d e l o f c o r e g i o n a l i z a t i o n h a s NOT' c w r i t e ( * , * ) ' b e e n u s e d ! ! T h i s c o u l d l e a d t o many s i n g u l a r ' c w r i t e ( * , * ) ' m a t r i c e s and u n e s t i m a t e d p o i n t s . ' c w r i t e ( * , * ) c w r i t e ( * , * ) ' Do y o u w a n t t o p r o c e e d ? ( y / n

  s u r f l o n g s u r f l o n g = 1145655879 write ( 2 ) s u r f l o n g s u r f l o n g = 72 write ( 2 ) s u r f l o n

  e s t s on c o l u m n n u m b e r s : c i f ( i x l . gt . n v a r i . or . i y l . gt . n v a r i . or . i z l . gt . n v a r i . or . + ikod . gt . n v a r i . or . i v r l ( 1 ) . gt . n v a r i ) then write ( * , * ) ' There a r e only ' , nvari , ' columns i n input data ' write ( * , * ) ' your s p e c i f i c a t i o n i s out o f range ' stop end i f c c Read a l l t h e d a t a u n t i l t h e e n d o f t h e f n , * , end=9,err=99) ( var ( j ) , j =1, n v a r i ) nd = nd + 1 i f ( nd . gt .MAXDAT) then write ( * , * ) ' ERROR: Exceeded a v a i l a b l e memory f o r data ' stop end i fc c S t o r e d a t a v a l u e s ( a l l s e c o n d a r y d a t a must b e t r a n s f o r m e d s u c h t h a t c t h e i r mean i s t h e same a s t h e p r i m a r y v a r i a b l e ( i f t h e f i r s t t y p e o f c o r d i n a r y k r i g i n g i s b e i n g u s e d ) ) : c vr ( nd ) = var ( i v r l ( 1 ) ) i f ( vr ( nd ) . ge . tmin . and . vr ( nd ) . l t . tmax ) then nn ( 1 ) = nn ( 1 ) + 1 av ( 1 ) = av ( 1 ) + vr ( nd ) s s ( 1 ) = s s ( 1 ) + vr ( nd ) * vr ( nd ) e n d i f i f ( l o g o p t 1 . eq . 1 ) then i f ( vr ( nd ) . gt . 0 . 0 ) then vr ( nd ) = l o g ( vr ( nd ) ) else vr ( nd ) = -9999999 write ( * , * ) ' Logarithmic I n t e r p o l a t i o n cannot be used f o r ' , + ' v a l u e s <=0: i s t h i s v a l u e a no-data f l a g ? ' e n d i f end i f i f ( nvr . ge . 2 ) then s e c 1 ( nd ) = var ( i v r l ( 2 ) ) i f ( s e c 1 ( nd ) . ge . tmin . and . s e c 1 ( nd ) . l t . tmax ) then nn ( 2 ) = nn ( 2 ) + 1 av ( 2 ) = av ( 2 ) + s e c 1 ( nd ) s s ( 2 ) = s s ( 2 ) + s e c 1 ( nd ) * s e c 1 ( nd ) e n d i f i f ( l o g o p t 2 . eq . 1 ) then i f ( s e c 1 ( nd ) . gt . 0 . 0 ) then s e c 1 ( nd ) = l o g ( s e c 1 ( nd ) ) else s e c 1 ( nd ) = -9999999 write ( * , * ) ' Logarithmic I n t e r p o l a t i o n cannot be used f o r ' , + ' v a l u e s <=0: i s t h i s v a l u e a no-data f l a g ? s i g n t h e c o o r d i n a t e l o c a t i o n o f t h i s d a t a ) = var ( i y l ) e n d i f i f ( i z l . l e . 0 ) then z ( nd ) h e a v e r a g e s and v a r i a n c e s a s an e r r o r c h e c k f o r t h e u s e r : c do i =1, nvr av ( i ) = av ( i ) / max( real ( nn ( i ) ) , 1 . 0 ) s s ( i ) =( s s ( i ) / max( real ( nn ( i ) ) , 1 . 0 ) ) -av ( i ) * av ( i ) write ( * , * ) 'COKTBC V a r i a b l e ' , i , ' i n data f i l e : ' , i v r l ( i ) write ( * , * ) ' Number = ' , nn ( i ) write ( * , * ) ' Average = ' , av ( i ) write ( * , * ) ' Variance = ' , s s ( i ) end do c c C r e a t e a r r a y s f o r no f l o w s c r e e n s e g m e n t s c call s c r a r r( nd , x , y , kod , vr , nsc ) call s c r e e n s( nd , x , y , kod , vr , nsc , xs1 , ys1 , xs2 , ys2 ) write ( 1 1 3 , * ) 'Nb s c r e e n segments ' , nsc write ( * ) 'Nb p o i n t s ' , nd c s i z = ( x s i z + y s i z ) / 2 .

  p l y t h e c o r r e c t i o n f a c t o r f o r t h e c o n s t a n t f l u x d a t a : Q -> D e l t a h c call f l u x c o r r ( nd , x , y , vr , kod , c s i z , Tmean) c c Add 2 f i c t i v e x & y c o o r d i n a t e s a l o n g p r e s c r i b e d f l u x b o u n d a r y l i n e s c call f i c c o o r d ( nd , x , y , kod , c s i z , ddx , ddy ) write ( 1 1 5 , * ) '

  e c t a n g u l a r G r i d c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * c c T h i s s u b r o u t i n e e s t i m a t e s p o i n t o r b l o c k v a l u e s o f o n e v a r i a b l e b y c o r d i n a r y c o k r i g i n g u s i n g up t o MAXVAR v a r i a b l e s . a l l o c a t a b l e : : k r i g o u t ( : ) integer nump(MAXSAM) , nums (MAXSAM) , v a r s (MAXSAM) , whatest real * 8 rottemp , b l n k v a l integer * 4 dataid , d a t a l e n logical f i r c o n data f i r c o n / . t r u e . / integer ( 4 ) : : n a l l o c n a l l o c = nx * ny a l l o c a t e ( k r i g o u t ( n a l l o c t up t h e s e a r c h and c o v a r i a n c e r o t a t i o n m a t r i c e s

  c c F i n i s h c o m p u t i n g t h e r e s c a l i n g f a c t o r and s t c = 2 . 0 * r a d i u s p / max( covmax , 0 . 0 0 0 1 ) else r e s c =(4.0 * radsqdp )/ max( covmax , 0 . 0 0 0 1 ) e n d i f i f ( r e s c . l e . 0 . 0 ) then write ( * , * ) 'ERROR KT3D: The r e s c a l i n g v a l u e i s wrong ' , r e s c write ( * ,

+ i s r

  o t ,MAXROT, rotmat , radsqdp , n s b t o s r , i x s b t o s r , + i y s b t o s r , i z s b t o s r ) c c Compute t h e number o f d r i f t t e r m s , i f SK i s b e i n g c o n s i d e r e d c t h e n we w i l l s e t a l l t h e d r i f t t e r m s o f f and mdt t o 0 ktype . eq . 0 . or . ktype . eq . 1 ) i d r i f( i ) = 0 i f ( i d r i f ( i ) . l t . 0 . or . i d r i f ( i ) . gt . 1 ) then write ( * , * ) 'ERROR KT3D: i n v a l i d d r i f t term ' , i d r i f ( i ) stop e n d i f mdt = mdt + i d r i f ( i )end do i f ( ktype . eq . 0 ) mdt = 0 i f ( ktype . eq . 1 ) mdt = 0 c c S e t up t h e d i s c r e t i z a t i o n p o i n t s p e r b l o c k . F i g u r e o u t how many c a r e n e e d e d , t h e s p a c i n g , and f i l l t h e x d b , y d b and z d b a r r a y s w i t h c t h e o f f s e t s r e l a t i v e t o t h e b l o c k c e n t e r ( t h i s o n l y g e t s d o n e o n c e ) : c ndb = n x d i s * n y d i s * n z d i s x d i s = x s i z / max( real ( n x d i s ) , 1 . 0 ) y d i s = y s i z / max( real ( n y d i s ) , 1 . 0 ) z d i s = z s i z / max( real ( n z d i s ) , 1 c = x l o c + x d i s y l o c = -0.5 * ( y s i z+y d i s ) do i y =1, n y d i s y l o c = y l o c + y d i s z l o c = -0.5 * ( z s i z+z d i s ) do i z =1, n z d i s z l o c = z l o c + z d i s i = i +1 xdb ( i ) = x l o c + 0 . 5 * x s i z ydb ( i ) = y l o c + 0 . 5 * y s i z zdb ( i ) = z l o c + 0 . 5 * z s l c u l a t e B l o c k C o v a r i a n c e f o r h e a d and e v e n t u a l l y f o r t r a n s m i s s i v i t y . c C h e c k f o r p o i n t k r i g i n g . c call

  i f ( i . eq . j ) cova = cova -c0 (1) cbb = cbb + cova end do end do cbb = cbb/ real ( ndb * ndb ) e n d i f write( ldbg , * ) ' Block av er ag e c o v a r i a n c e ' , cbb c c Mean v a l u e s o f t h e d r i = bv ( 1 ) + xdb( i ) bv ( 2 ) = bv ( 2 ) + ydb ( i ) bv ( 3 ) = bv ( 3 ) + zdb ( i ) bv ( 4 ) = bv ( 4 ) + xdb ( i ) * xdb ( i ) bv ( 5 ) = bv ( 5 ) + ydb ( i ) * ydb ( i ) bv ( 6 ) = bv ( 6 ) + zdb ( i ) * zdb ( i ) bv ( 7 ) = bv ( 7 ) + xdb ( i ) * ydb ( i ) bv ( 8 ) = bv ( 8 ) + xdb ( i ) * zdb ( i ) bv(9 ) = bv ( 9 ) + ydb ( i ) * zdb ( i ) z =1, nz z l o c = zmn + ( i z -1) * z s i z do 4 i y =1,ny y l o c = ymn + ( iy -1) * y s i z do 4 i x =1,nx x l o c = xmn + ( ix -1) * x s i z c c F i n d t h e n e a r e s t h e a d d a t a s a m p l e s : c call s r c h s u p r ( xloc , yloc , z l o c , radsqdp , i s r o t ,MAXROT, rotmat , n s b t o s r , + i x s b t o s r , i y s b t o s r , i z s b t o s r , noct , nd , x , y , z , ddx , ddy , + tmp , nisb , nxsup , xmnsup , x s i z s u p , nysup , ymnsup , y s i z s u p , + nzsup , zmnsup , z s i z s u p , nsc , xs1 , ys1 , xs2 , ys2 , n c l o s e , + close , i n f o c t ) c c Load t h e n e a r e s t h e a d d a t a i n xa , ya , z a , v r a , d d x a , d d y a

  r e a r e e n o u g h d a t a s a m p l e s t o e s t i m a t e a l l d r i f t t e r m s : c i f ( np . ge . 1 . and . np . l e . mdt) then i f ( f i r c o n ) then write( ldbg , 9 9 9 ) f i r c o n = . f a l s e .

  ind ) -y l o c + 0 . 5 * y s i z za ( na ) = z ( ind ) -z l o c + 0 . 5 * z s i z vra ( na ) = 0 ddxa ( na ) = -ddy ( ind ) ddya ( na ) = ddx ( ind ) i n d t h e n e a r e s t s a m p l e s : c call s r c h s u p r 3 ( xloc , yloc , z l o c , radsqdp , i s r o t ,MAXROT, rotmat , n s b t o s r , + i x s b t o s r , i y s b t o s r , i z s b t o s r , noct , nd , x , y , z , tmp , nisb , + nxsup , xmnsup , x s i z s u p , nysup , ymnsup , y s i z s u p , nzsup , + zmnsup , z s i z s u p , n c l o s e 3 , c l o s e 3 , i n f o c t ns . eq . ndmaxs . and . nborhood . ne . 0 ) go to 32 ind = i n t ( c l o s e 3 ( i )+0.5) i f ( ( s e c 1 ( ind ) . ge . tmin ) . and . ( s e c 1 ( ind ) . l t . tmax ) . + and . ( nvr . ge . 2 ) . and . ( ns . l t . ndmaxs . or . nborhood . eq . 0 ) ) then ns = ns + 1 na = na + 1 xa ( na ) = x ( ind ) -x l o c + 0 . 5 * x s i z ya ( na ) = y ( ind ) -y l o c + 0 . 5 * y s i z za ( na ) = z ( ind ) -z l o c + 0 . 5 * z s i z vra ( na ) = s e c 1

  * ( i -1)+ j ) = d b l e ( cova ) a ( neq * ( j -1)+ i ) = d b l e ( cova )

  xdb ( j 1 ) dy = yyydb ( j 1 ) dz = zzzdb ( j 1 ) i f ( ( dx * dx+dy * dy+dz * dz ) . l t .EPSLON) then cb = cb + cova -c0 ( ind ) else cb = cb + cova end i f end do cb = cb / real ( ndb ) e n d i f r ( j ) = d b l e ( cb ) c c R i g h t hand s i d e c o v a r i a n c e i f e s t . v a r i a b l e = t r a n s m i t t i v i t y :

  xdb ( j 1 ) dy = yyydb ( j 1 ) dz = zzzdb ( j 1 ) i f ( ( dx * dx+dy * dy+dz * dz ) . l t .EPSLON) then cb = cb + cova -c0 ( ind ) t up f o r e i t h e r s i m p l e o r o r d i n a r y c o k r i g i n g : c i f ( ktype . eq . 1 ) then do i =1,na a ( neq * ( i -1)+na+1) = d b l e ( unbias ) a ( neq * na+i ) = d b l e ( unbias ) end do else i f ( ktype . eq . 2 ) then do i =1,mdt lim = na + i do k=1,np a ( neq * ( lim -1)+k ) = d b l e ( unbias ) a ( neq * ( k-1)+lim ) = d b l e ( unbias ) end do i f ( whatest . eq . 0 ) r ( lim ) = d b l e ( unbias ) end do do j =1 ,( nvr -1) lim2 = na + mdt + j do k=(np+ng ) , na a ( neq * ( lim2 -1)+k ) = d b l e ( unbias ) a ( neq * ( k-1)+lim2 ) = d b l e ( unbias ) end do i f ( whatest . ne . 0 ) r ( lim2 ) = d b l e ( unbias ) end do e n d i f c c Add t h e a d d i t i o n a l u n b i a s e d n e s s c o n s t r a i n t s : c i f ( ktype . eq . 2 ) then im = na + * ( im-1)+k ) = d b l e ( xa ( k ) * r e s c ) a ( neq * ( k-1)+im ) = d b l e ( xa ( k ) * r e s c ) end do do k=(np +1) ,( np+ng ) xk1 = xa ( k ) -ddxa ( k ) xk2 = xa ( k ) + ddxa ( k ) a ( neq * ( im-1)+k ) = d b l e ( ( xk1-xk2 ) * r e s c ) a ( neq * ( k-1)+im ) = d b l e ( ( xk1-xk2 ) * r e s c ) end do i f ( whatest . eq . 0 ) r ( im ) = d b l e ( bv ( 1 ) ) e n d i f c c S e c o n d d r i f t t e r m ( l i n e a r i n " y " ) : c i f ( i d r i f ( 2 ) . eq . 1 ) then im=im+1 do k=1,np a ( neq * ( im-1)+k ) = d b l e ( ya ( k ) * r e s c ) a ( neq * ( k-1)+im ) = d b l e ( ya ( k ) * r e s c ) end do do k=(np +1) ,( np+ng ) yk1 = ya ( k ) -ddya ( k ) yk2 = ya ( k ) + ddya ( k ) a ( neq * ( im-1)+k ) = d b l e ( ( yk1-yk2 ) * r e s c ) a ( neq * ( k-1)+im ) = d b l e ( ( yk1-yk2 ) * r e s c ) end do i f ( whatest . eq . 0 ) r ( im ) = d b l e ( bv ( 2 i r d d r i f t t e r m ( l i n e a r i n " z " ) : c i f ( i d r i f ( 3 ) . eq . 1 ) then im=im+1 do k=1,np a ( neq * ( im-1)+k ) = d b l e ( za ( k ) * r e s c ) a ( neq * ( k-1)+im ) = d b l e ( za ( k ) * r e s c ) end do i f ( whatest . eq . 0 ) r ( im ) = d b l e ( bv ( 3 * ( im-1)+k ) = d b l e ( xa ( k ) * xa ( k ) * r e s c ) a ( neq * ( k-1)+im ) = d b l e ( xa ( k ) * xa ( k ) * r e s c ) end do do k=(np +1) ,( np+ng ) xk1 = xa ( k ) -ddxa ( k ) xk2 = xa ( k ) + ddxa ( k ) a ( neq * ( im-1)+k ) = d b l e ( ( xk1 * xk1-xk2 * xk2 ) * r e s c ) a ( neq * ( k-1)+im ) = d b l e ( ( xk1 * xk1-xk2 * xk2 ) * r e s c ) end do i f ( whatest . eq . 0 ) r ( im ) = d b l e ( bv ( 4 * ( im-1)+k ) = d b l e ( ya ( k ) * ya ( k ) * r e s c ) a ( neq * ( k-1)+im ) = d b l e ( ya ( k ) * ya ( k ) * r e s c ) end do do k=(np +1) ,( np+ng ) yk1 = ya ( k ) -ddya ( k ) yk2 = ya ( k ) + ddya ( k ) a ( neq * ( im-1)+k ) = d b l e ( ( yk1 * yk1-yk2 * yk2 ) * r e s c ) a ( neq * ( k-1)+im ) = d b l e ( ( yk1 * yk1-yk2 * yk2 ) * r e s c ) end do i f ( whatest . eq . 0 ) r ( im ) = d b l e ( bv ( 5 ) ) e n d i f c c S i x t h d r i f t t e r m ( q u a d r a t i c i n " z " * ( im-1)+k ) = d b l e ( za ( k ) * za ( k ) * r e s c ) a ( neq * ( k-1)+im ) = d b l e ( za ( k ) * za ( k ) * r e s c ) end do i f ( whatest . eq . 0 ) r ( im ) = d b l e ( bv ( 6 v e n t h d r i f t t e r m ( q u a d r a t i c i n " x y " ) : c i f ( i d r i f ( 7 ) . eq . 1 ) then im=im+1 do k=1,np a ( neq * ( im-1)+k ) = d b l e ( xa ( k ) * ya ( k ) * r e s c ) a ( neq * ( k-1)+im ) = d b l e ( xa ( k ) * ya ( k ) * r e s c ) end do do k=(np +1) ,( np+ng )

  d b l e ( ( xk1 * yk1-xk2 * yk2 ) * r e s c ) a ( neq * ( k-1)+im ) = d b l e ( ( xk1 * yk1-xk2 * yk2 ) * r e s c ) g h t h d r i f t t e r m ( q u a d r a t i c i n " x z " ) : c i f ( i d r i f ( 8 ) . eq . 1 ) then im=im+1 do k=1,np a ( neq * ( im-1)+k ) = d b l e ( xa ( k ) * za ( k ) * r e s c ) a ( neq * ( k-1)+im ) = d b l e ( xa ( k ) * za ( k ) * r e s c ) end do do k=(np +1) ,( np+ng ) xk1 = xa ( k ) -ddxa ( k ) xk2 = xa ( k ) + ddxa ( k ) a ( neq * ( im-1)+k ) = d b l e ( ( xk1-xk2 ) * za ( k ) * r e s c ) a ( neq * ( k-1)+im ) = d b l e ( ( xk1-xk2 ) * za ( k ) * r e s c ) end do i f ( whatest . eq . 0 ) r ( im ) = d b l e ( bv ( 8 * ( im-1)+k ) = d b l e ( ya ( k ) * za ( k ) * r e s c ) a ( neq * ( k-1)+im ) = d b l e ( ya ( k ) * za ( k ) * r e s c ) end do do k=(np +1) ,( np+ng ) yk1 = ya ( k ) -ddya ( k ) yk2 = ya ( k ) + ddya ( k ) a ( neq * ( im-1)+k ) = d b l e ( ( yk1-yk2 ) * za ( k ) * r e s c ) a ( neq * ( k-1)+im ) = d b l e ( ( yk1-yk2 ) * za ( k ) * r e s c ) end do i f ( whatest . eq . 0 ) r ( im ) = d b l e ( bv ( 9 h e r i g h t hand s i d e t o c o m p u t e t h e k r i g i n g v a r i a n c e l a t e r i t e o u t t h e k r i g i n g M a t r i x i f S e r i o u s l y D e b u g g i n g : c i f ( idbg . ge . 3 ) then write( ldbg , * ) ' ' write( ldbg , * ) ' * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ' write( ldbg , * ) ' ' write( ldbg , * ) ' Estimating node index : ' , ix , iy , s o l ( neq , 1 , 1 , a , r , s , i s i n g ,MAXEQ)

  i . l e . na ) then ookv = ookvreal ( s ( i ) ) * r r ( i ) sumw = sumw + real ( s ( i ) ) ook = ook + real ( s ( i ) ) * vra ( i ) else ookv = ookvreal ( s ( i ) ) * r r ( i a t e s t . e q . 0 ) . and . ( l o g o p t 1 . e q . 1 ) ) o o k = e x p ( o o k + 0 . 5 * o o k va t e s t . e q . 1 ) . and . ( l o g o p t 2 . e q . 1 ) ) o o k = e x p ( o o k + 0 . 5 * o o k v -

  vk = vk + ook * ook i f ( idbg . ge . 3 ) write( ldbg , * ) ' e s t i m a t e , v a r i a n c e ' , ook , ookv c c END OF MAIN LOOP OVER ALL THE BLOCKS : c continue c c I /O F i l e s Format I s s u e s c

  ( 2 1 ) d b l e ( datamin ) , d b l e ( datamax ) rottemp = 0 . 0 b l n k v a l = 1 . 7 0 1 4 1 e38 d a t a i d = 1096040772 d a t a l e n = nx * ny * 8 write ( 2 1 ) rottemp , blnkval , dataid , d a t a l e n write ( 2 1 ) ( d b l e ( k r i g o u t ( i i i ) ) , i i i =1, n c e l l s ) nk . gt . 0 . and . idbg . gt . 0 ) then vk = ( vk-uk * uk/ real ( nk ) ) / real ( nk ) uk = uk/ real ( nk ) write( ldbg , * ) write( ldbg , * ) ' Estimated ' , nk , ' b l o c k s ' write( ldbg , * ) ' a ve ra ge ' , uk write( ldbg , * ) ' v a r i a n c e ' , vk write ( * , * ) write ( * , * )

  p y r i g h t (C) 1 9 9 6 , The Board o f T r u s t e e s o f t h e L e l a n d S t a n f o r d % C J u n i o r U n i v e r s i t y . A l l r i g h t s r e s e r v e d . % C % C The p r o g r a m s i n GSLIB a r e d i s t r i b u t e d i n t h e h o p e t h a t t h e y w i l l b e % C u s e f u l , b u t WITHOUT ANY WARRANTY. No a u t h o r o r d i s t r i b u t o r a c c e p t s % C r e s p o n s i b i l i t y t o a n y o n e f o r t h e c o n s e q u e n c e s o f u s i n g them o r f o r % C w h e t h e r t h e y s e r v e any p a r t i c u l a r p u r p o s e o r w o r k a t a l l , u n l e s s h e % C s a y s s o i n w r i t i n g . E v e r y o n e i s g r a n t e d p e r m i s s i o n t o c o p y , m o d i f y % C and r e d i s t r i b u t e t h e p r o g r a m s i n GSLIB , b u t o n l y u n d e r t h e c o n d i t i o n % C t h a t t h i s n o t i c e and t h e a b o v e c o p y r i g h t n o t i c e r e m a i n i n t a c t . % C %

  e c t a n g u l a r G r i d c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * c c The f o l l o w i n g P a r a m e t e r s c o n t r o l s t a t i c d i m e n s i o n i n g w i t h i n c o k t b c : e r A d j u s t a b l e P a r a m e t e r s : c parameter(MAXSBX = 21 , MAXSBY = 21 , MAXSBZ = 11 , a t i c A r r a y D i m e n s i o n i n g : c integer n s t (MXVARG) , i t (MXVARG * MAXNST) , i v a (MAXCOK) , n i s b (MAXSB) , + i x s b t o s r (8 * MAXSB) , i y s b t o s r (8 * MAXSB) , i z s b t o s r (8 * MAXSB) , + i d r i f (MAXDT) , kod (MAXDAT) real x (MAXDAT) , y (MAXDAT) , z (MAXDAT) , vr (MAXDAT) , s e c 1 (MAXDAT) , + ddx (MAXDAT) , ddy (MAXDAT) , tmp(MAXDAT) , close (MAXDAT) , + c l o s e 2 (MAXDAT) , c l o s e 3 (MAXDAT) , bv ( 9 ) , xa (MAXCOK) , + ya (MAXCOK) , za (MAXCOK) , vra (MAXCOK) , ddxa (MAXCOK) , + ddya (MAXCOK) , xdb (MAXDIS) , ydb (MAXDIS) , zdb (MAXDIS) , + vmean (MAXVAR) , c0 (MXVARG) , cc (MXVARG * MAXNST) , + aa (MXVARG * MAXNST) , ang1 (MXVARG * MAXNST) , ang2 (MXVARG * MAXNST) , + ang3 (MXVARG * MAXNST) , a n i s 1 (MXVARG * MAXNST) , + a n i s 2 (MXVARG * MAXNST) , xs1 (MAXDAT) , ys1 (MAXDAT) , xs2 (MAXDAT) , + ys2 (MAXDAT) real * 8 r (MAXEQ) , r r (MAXEQ) , s (MAXEQ) , a (MAXEQ * MAXEQ) , unbias , a t a and o t h e r i n p u t v a r i a b l e s : c common /datcom/ nd , x , y , z , vr , sec1 , kod , ddx , ddy , ktype , nvr , whatest , + vmean , tmin , tmax , nx , ny , nz , xmn , ymn , zmn , x s i z , y s i z , + z s i z , idbg , ldbg , l o u t , newnd , nsc , xs1 , ys1 , xs2 , ys2 , + c s i z , n o u t f i l e , logopt1 , logopt2 , nrestmin , + nrestmax , restmin , restmax , Tmean c c K r i g i n g p a r a m e t e r s : c common / krigcm / ndmin , ndmaxp , ndmaxg , ndmaxs , radiusp , r a d i u s s , noct , + nxdis , nydis , nzdis , i d r i f , nborhood c c V a r i o g r a m P a r a m e t e r s : c common / vargdt / nst , i t , c0 , cc , aa , ang1 , ang2 , ang3 , anis1 , a r c h v a r i a b l e s and d a t a f o r k r i g i n g : c common / srccom / sang1 , sang2 , sang3 , s a n i s p 1 , s a n i s p 2 , i s r o t , s a n i s s 1 , + s a n i s s 2 , radsqdp , radsqds , na , np , ng , ns , xa , ya , za , vra , + ddxa , ddya , iva , xas , yas , zas , vras , xdb , ydb , zdb , ndb , bvc c K r i g i n g s y s t e m s ( d o u b l e p r e c i s i o n a r r a y s ) : c common / k r g s y s / r , rr , s , a , unbias , rotmat B.2 Subroutine bdarr subroutine bdarr ( n , x , y , kod , c s i z , newn )

  s t . l t . ( 2 . * c s i z ) ) then addpts = 1 else i f ( d i s t . gt . ( 2 0 . * c s i z ) ) then addpts = 19 else i f (mod( d i s t , c s i z ) . ne . 0 ) then addpts = i n t ( d i s t / c s i z ) else addpts = i n t ( d i s t / c s i z )n , x , y , z , vr , ve , kod , c s i z ) ! D e t e c t s t h e b o u n d a r y p o i n t s and a d d o t h e r p o i n t s a l o n g t h e b o u n d a r y ! l i n e s t o s m o o t h e r t h e i n t e r p o l a t i o n . E s s e n t i a l f o r C o n s t r a i n t F l u x . ! 2D s u b r o u t i n e .

  ) ) then y ( i+j ) = y ( i ) + j * s t e p * s l o p e else y ( i+j ) = y ( i ) + j * s p a c i n endif else i f ( x ( i ) . ne . x ( i+1+addpts ) ) then y ( i+j ) = y ( i ) -j * s t e p * s l o p e else y ( i+j ) = y ( i ) -j * s p a c i n endif endif z ( i+j ) = z ( i ) + j * s t e p z vr ( i+j ) = vr ( i ) + j * s t e p v r ve ( i+j ) = ve ( i ) + j * s t e p v e kod ( i+j ) = kod ( i ( x1 , y1 , x2 , y2 , x3 , y3 ) ! C h e c k i f t h e 3 p o i n t s a r e i n C o u n t e r C l o c k Wise o r d e r . real x1 , y1 , x2 , y2 , x3 , y3 i f ( ( ( y3-y1 ) * ( x2-x1 ) ) . gt . ( ( y2-y1 ) * ( x3-x1 ) ) ) then CCW = 1 else i f ( ( ( y3-y1 ) * ( x2-x1 ) ) . eq . ( ( y2-y1 ) * ( x3-x1 ) ) ) then

  e Name c * * * * * * * * * * * * * * * * * * * * * * * * * * * c c T h i s s u b r o u t i n e t a k e s t h e c h a r a c t e r s t r i n g " s t r " o f l e n g t h " l e n " and c r e m o v e s a l l l e a d i n g b l a n k s and b l a n k s o u t a l l c h a r a c t e r s a f t e r t h e c f i r s t b l a n k f o u n d i n t h e s t r i n g ( l e a d i n g b l a n k s a r e r e m o v e d f i r s t ) .

  t u r n w i t h m o d i f i e d f i l e name :

  a r i a n c e B e t w e e n Two P o i n t s c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * c c T h i s s u b r o u t i n e c a l c u l a t e d t h e c o v a r i a n c e a s s o c i a t e d w i t h a v a r i o g r a m c m o d e l s p e c i f i e d b y a n u g g e t e f f e c t and n e s t e d v a r i g o r a m s t r u c t u r e s . c The a n i s o t r o p y d e f i n i t i o n c a n b e d i f f e r e n t f o r e a c h n e s t e d s t r u c t u r e . r d i n a t e s o f s e c o n d p o i n t c n s t ( i v a r g ) number o f n e s t e d s t r u c t u r e s ( maximum o f 4 ) c i v a r g v a r i o g r a m number ( s e t t o 1 u n l e s s d o i n g c o k r i g i x p o n e n t i a l m o d e l o f p a r a m e t e r a ; c i . e . p r a c t i c a l r a n g e i s 3 a c 3 . g a u s s i a n m o d e l o f p a r a m e t e r a ; c i . e . p r a c t i c a l r a n g e i s a * s q r t ( 3 ) c 4 . p o w e r m o d e l o f p o w e r a ( a must b e g t e a r m o d e l , a =1 , c=s l o p e . c 5 . h o l e e f f e c t m o d e l c c c ( i ) m u l t i p l i c a t i v e f a c t o r o f e a c h n e s t e d s t r u c t u r e . c ( s i l l -c0 ) f o r s p h e r i c a l , e x p o n e n t i a l , and g a u s s i a n c s l o p e f o r l i n e a r m o d e l . c aa ( i ) p a r a m e t e r " a " o f e a c h n e s t e d s t r u c t u r e . c g r a d h v a l u e o f t h e h y d r a u l i c h e a d g r a d i e n t ( v a r i a n c e c c o v a c o v a r i a n c e b e t w e e n ( x1 , y1 , z 1 ) and ( x2 , y2 , z 2 ) c c c c EXTERNAL REFERENCES : s q d i s t c o m p u t e s a n i s o t r o p i c s q u a r e d d i s t a n c e c r o t m a t c o m p u t e s r o t a t i o n m a t r i x f o r d i s t a n c e c----------------------------------------------------------------------parameter(PI=3.14159265 ,PMX=999. ,EPSLON=1. e -10) integer n s t ( * ) , i t ( * ) real c0 ( * ) , cc ( * ) , aa ( * ) , gradh , angh , hr , dxa , ct , h1 , hr1 real * 8 rotmat (MAXROT, 3 , 3 ) , hsqd , s q d i s t c c C a l c u l a t e t h e maximum c o v a r i a n c e v a l u e ( u s e d f o r z e r o d i s t a n c e s and c f o r p o w e r m o d e l c o v a r i a n c e ) : c i s t a r t = 1 + ( i v a r g -1) * MAXNST cmax = c0 ( i v a r g )

  c c C h e c k f o r " z e r o " d i s t a n c e , r e t u r n w i t h cmax i f s o : c hsqd = s q d i s t ( x1 , y1 , z1 , x2 , y2 , z2 , i r o t ,MAXROT, rotmat )i f ( real ( hsqd ) . l t .EPSLON) v e r a l l t h e s t r u c t u r e s : c cova = 0 . 0 do i s =1, n s t ( i v a r g ) i s t = i s t a r t + i s -1 c c Compute t h e a p p r o p r i a t e d i s t a n c e : c

  i f ( hr . l t . 1 . ) then cova = cova + cmaxgradh * cc ( i s t ) * h1 * ( 0 . 5 -0.5 * hr + +0.1 * hr * * 3) else cova = cova + cmaxgradh * cc ( i s t ) * h1 / ( 1 0 . * hr * * 2) e n c c o o r d ( n , x , y , kod , c s i z , ddx , ddy ) ! C r e a t e 2 f i c t i v e x & y c o o r d i n a t e s f o r e a c h p r e s c r i b e d f l u x BC p o i n t ! t o i m p r o v e t h e i n t e r p o l a t i o n 2D s u b r o u t i n e .

  subroutine g e t i n d x ( n , min , s i z , l o c , index , i n f l a g )c----------------------------------------------------------------------c c G e t s t h e c o o r d i n a t e i n d e x l o c a t i o n o f a p o i n t w i t h i n a g r i d c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * c c c n number o f " n o d e s " o r " c e l l s " i n t h i s c o o r d i n a t e d i r e c t i o l o c a t i o n i s o u t s i d e t h e n i n d e x w i l l b e s e t t u r n t o c a l l i n g p r o g r a m : c return end B.10 Subroutine getopenlename ! E x a m p l e o f c a l l i n g t h e Win32 API r o u t i n e GetOpenFileName ! T h i s c a n b e u s e d f r o m any a p p l i c a t i o n t y p e , i n c l u d i n g C o n s o l e ! Make s u r e t h a t c o m d l g 3 2 . l i b i s i n c l u d e d i n t h e l i s t o f l i b r a r i e s ! t o b e s e a r c h e d . ! ! G e t S a v e F i l e N a m e i s v e r y s i m i l a r . ! ! NOTE! You must h a v e DVF 5 . 0 B o r l a t e r t o c o m p i l e t h i s e x a m p l e ! ! subroutine f i l e o p e n ( fname ) use dfwin implicit none! D e c l a r e s t r u c t u r e u s e d t o p a s s and r e c e i v e a t t r i b u t e s ! type(T_OPENFILENAME) ofn ! D e c l a r e f i l t e r s p e c i f i c a t i o n . T h i s i s a c o n c a t e n a t i o n o f ! p a i r s o f n u l l -t e r m i n a t e d s t r i n g s . The f i r s t s t r i n g i n e a c h p a i r ! i s t h e f i l e t y p e name , t h e s e c o n d i s a s e m i c o l o n -s e p a r a t e d l i s t ! o f f i l e t y p e s f o r t h e g i v e n name . The l i s t e n d s w i t h a t r a i l i n g ! n u l l -t e r m i n a t e d e m p t y s t r i n g . ! character * ( * ) fname character * ( * ) ,parameter : : f i l t e r _ s p e c = & " Parameter F i l e s "C// " * . par "C// & " S u r f e r F i l e s "C// " * . grd ; * . grd "C// ""C ! D e c l a r e s t r i n g v a r i a b l e t o r e t u r n t h e f i l e s p e c i f i c a t i o n . ! I n i t i a l i z e w i t h an i n i t i a l f i l e s p e c , i f anyn u l l s t r i n g ! o t h e r w i s e ! character * 512 : : f i l e _ s p e c = ""C integer status , i l e n ofn%l S t r u c t S i z e = SIZEOF( ofn ) ofn%hwndOwner = NULL ! For non-c o n s o l e a p p l i c a t i o n s , ! s e t t h i s t o t h e Hwnd o f t h e ! Owner window . For QuickWin ! and S t a n d a r d G r a p h i c s p r o j e c t s , ! u s e GETHWNDQQ(QWIN$FRAMEWINDOW) ! ofn%h I n s t a n c e = NULL ! For Win32 a p p l i c a t i o n s , y o u ! c a n s e t t h i s t o t h e a p p r o p r i a t e ! h I n s t a n c e ! ofn%l p s t r F i l t e r = l o c ( f i l t e r _ s p e c ) ofn%l p s t r C u s t o m F i l t e r = NULL ofn%nMaxCustFilter = 0 ofn%n F i l t e r I n d e x = 1 ! S p e c i f i e s i n i t i a l f i l t e r v a l u e ofn%l p s t r F i l e = l o c ( f i l e _ s p e c ) ofn%nMaxFile = s i z e o f ( f i l e _ s p e c ) ofn%nMaxFileTitle = 0 ofn%l p s t r I n i t i a l D i r = NULL ! Use Windows d e f a u l t d i r e c t o r y ofn%l p s t r T i t l e = l o c ( ""C) ofn%F l a g s = OFN_PATHMUSTEXIST ofn%l p s t r D e f E x t = l o c ( " par "C) ofn%lpfnHook = NULL ofn%lpTemplateName = NULL ! C a l l GetOpenFileName and c h e c k s t a t u s ! status = GetOpenFileName ( ofn ) i f ( status . eq . 0) then type * , 'No f i l e name s p e c i f i e d ' else ! Get l e n g t h o f f i l e _ s p e c b y l o o k i n g f o r t r a i l i n g NUL i l e n = INDEX( f i l e _ s p e c ,CHAR( 0 ) ) type * , ' F i l e s p e c i s ' , f i l e _ s p e c ( 1 : i l e n -1) ! E x a m p l e o f how t o s e e i f u s e r s a i d " Read O n l y " ! i f (IAND( ofn%f l a g s ,OFN_READONLY) /= 0) & type * , ' Readonly was r e q u e s t e d ' end i f fname ( 1 : i l e n -1) = f i l e _ s p e c ( 1 : i l e n -1) end subroutine f i l e o p e n B.11 Subroutine getopenlesurf ! E x a m p l e o f c a l l i n g t h e Win32 API r o u t i n e GetOpenFileName ! T h i s c a n b e u s e d f r o m any a p p l i c a t i o n t y p e , i n c l u d i n g C o n s o l e ! Make s u r e t h a t c o m d l g 3 2 . l i b i s i n c l u d e d i n t h e l i s t o f l i b r a r i e s ! t o b e s e a r c h e d . ! ! G e t S a v e F i l e N a m e i s v e r y s i m i l a r . ! ! NOTE! You must h a v e DVF 5 . 0 B o r l a t e r t o c o m p i l e t h i s e x a m p l e ! ! subroutine f o p e n s u r f ( fname ) use dfwin implicit none ! D e c l a r e s t r u c t u r e u s e d t o p a s s and r e c e i v e a t t r i b u t c i f i c a t i o n . T h i s i s a c o n c a t e n a t i o n o f ! p a i r s o f n u l l -t e r m i n a t e d s t r i n g s . The f i r s t s t r i n g i n e a c h p a i r ! i s t h e f i l e t y p e name , t h e s e c o n d i s a s e m i c o l o n -s e p a r a t e d l i s t ! o f f i l e t y p e s f o r t h e g i v e n name . The l i s t e n d s w i t h a t r a i l i n g ! n u l l -t e r m i n a t e d e m p t y s t r i n g . ! character * ( * ) fname character * ( * ) , parameter : : f i l t e r _ s p e c = & " S u r f e r F i l e s "C// " * . grd "C// & " S u r f e r F i l e s "C// " * . grd ; * . grd "C// ""C ! D e c l a r e s t r i n g v a r i a b l e t o r e t u r n t h e f i l e s p e c i f i c a t i o n . ! I n i t i a l i z e w i t h an i n i t i a l f i l e s p e c , i f anyn u l l s t r i n g ! o t h e r w i s e ! character * 512 : : f i l e _ s p e c = ""C integer status , i l e n ofn%l S t r u c t S i z e = SIZEOF( ofn ) ofn%hwndOwner = NULL ! For non-c o n s o l e a p p l i c a t i o n s , ! s e t t h i s t o t h e Hwnd o f t h e ! Owner window . For QuickWin ! and S t a n d a r d G r a p h i c s p r o j e c t s , ! u s e GETHWNDQQ(QWIN$FRAMEWINDOW) ! ofn%h I n s t a n c e = NULL ! For Win32 a p p l i c a t i o n s , y o u ! c a n s e t t h i s t o t h e a p p r o p r i a t e ! h I n s t a n c e ! ofn%l p s t r F i l t e r = l o c ( f i l t e r _ s p e c ) ofn%l p s t r C u s t o m F i l t e r = NULL ofn%nMaxCustFilter = 0 ofn%n F i l t e r I n d e x = 1 ! S p e c i f i e s i n i t i a l f i l t e r v a l u e ofn%l p s t r F i l e = l o c ( f i l e _ s p e c ) ofn%nMaxFile = s i z e o f ( f i l e _ s p e c ) ofn%nMaxFileTitle = 0 ofn%l p s t r I n i t i a l D i r = NULL ! Use Windows d e f a u l t d i r e c t o r y ofn%l p s t r T i t l e = l o c ( ""C) ofn%F l a g s = OFN_PATHMUSTEXIST ofn%l p s t r D e f E x t = l o c ( " grd "C) ofn%lpfnHook = NULL ofn%lpTemplateName = NULL ! C a l l GetOpenFileName and c h e c k s t a t u s ! status = GetOpenFileName ( ofn ) i f ( status . eq . 0) then type * , 'No f i l e name s p e c i f i e d ' else ! Get l e n g t h o f f i l e _ s p e c b y l o o k i n g f o r t r a i l i n g NUL i l e n = INDEX( f i l e _ s p e c ,CHAR( 0 ) ) type * , ' F i l e s p e c i s ' , f i l e _ s p e c ( 1 : i l e n -1) ! E x a m p l e o f how t o s e e i f u s e r s a i d " Read O n l y " ! i f (IAND( ofn%f l a g s ,OFN_READONLY) /= 0) & type * , ' Readonly was r e q u e s t e d ' end i f fname ( 1 : i l e n -1) = f i l e _ s p e c ( 1 : i l e n -1) end subroutine f o p e n s u r f B.12 Subroutine intersect logical function i n t e r s e c t( x11 , y11 , x12 , y12 , x21 , y21 , x22 , y22 ) ! C h e c k i f t h e 2 s e g m e n t s d e f i n e d b y t h e i r e n d p o i n t s i n t e r s e c t .

  o l u t i o n o f a s y s t e m o f l i n e a r e q u a t i o n s b y g a u s s i a n e l i m i n a t i o n w i t h c p a r t i a l p i v o t i n g . S e v e r a l r i g h t hand s i d e m a t r i c e s and s e v e r a l c v a r i a b l e s a r e a l l o w e d . c c c NOTE: A l l i n p u t m a t r i c e s must b e i n d o u b l e p r e c i s i o t hand s i d e m a t r i c e s v e r s u s c o l u m n w i s e . c b ( n * n s * nv ) i n p u t r i g h t hand s i d e m a t r i c e s l l p i v o t a p p e a r e d a t t h e k t h i t e r a t i o n . c t o l u s e d i n t e s t f o r n u l l p i v o t . d e p e n d s on m a c h i n e c p r e c i s i o n and c a n a l s o b e s e t f o r t h e t o l e r a n c e c o f an i l l -d e f i n e d k r i g i n g s y s t e m .

  d i c e s o f l o c a t i o n i n v e c t o r s a and b : c nva = ntn * ( iv -1) nvb = n * ns * ( iv -1) c c G a u s s i a n e l i m i n a t i o n w i t h p a r t i a l p i v o t i n g d i c e o f t h e d i a g o n a l e l e m e n t i n t h e k t h row : c kdiag = nva+(k-1) * n+k c c F i n d t h e p i v o ti n t e r c h a n g e d i a g o n a l e l e m e n t / p i v o t s t f o r s i n g u l a r i t y : c i f ( abs ( a ( kdiag ) ) . l t . t o l ) then k t i l t=k write ( * , * ) ' S i n g u l a r Value , kdiag , k t i l t = ' , t e r c h a n g e and e l i m i n a t e c o l u m n p e r c o l u m n :

  s t f o r s i n g u l a r i t y f o r t h e l a s t p i v o t : c kdiag = ntn * i v i f ( abs ( a ( kdiag ) ) . l t . t o l f t r i a n g u l a t i o n . Now , s o l v e b a c k v a r i a b l e p e r v a r i a b l e d i c e s o f l o c a t i o n i n v e c t o r s a and b : c nva = ntn * i v nvb1 = n * ns * ( iv -1)+1 nvb2 = n * ns * i v c c Back s u b s t i t u t i o n w i t h t h e n s r i g h t hand m a t r i c e s : c do i l =1, ns do k=1,nm1 nmk = n-k c c I n d i c e o f t h e d i a g o n a l e l e m e n t o f t h e ( n-k +1) t h row and o f c t h e ( n-k +1) t h e l e m e n t o f t h e l e f t hand s i d e . c kdiag = nva-(n+1) * (k-1) kb

  o f b a c k s u b s t i t u t i o n : subroutine picks up ( nxsup , x s i z s u p , nysup , y s i z s u p , nzsup , z s i z s u p , + i r o t ,MAXROT, rotmat , radsqd , n s b t o s r , i x s b t o s r , + i y s b t o s r , i z s b t o s r )

  s t a b l i s h Which S u p e r B l o c k s t o S e a r c h c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * c c T h i s s u b r o u t i n e e s t a b l i s h e s w h i c h s u p e r b l o c k s must b e s e a r c h e d g i v e n c t h a t a p o i n t b e i n g e s t i m a t e d / s i m u l a t u p , x s i z s u p D e f i n i t i o n o f t h e X s u p e r b l o c k g r i d c n y s u p , y s i z s u p D e f i n i t i o n o f t h e Y s u p e r b l o c k g r i d c n z s u p , z s i z s u p D e f i n i t i o n o f t h e Z s u p e r b l o c k g r i d c i r o t i n d e x o f t h e r o t a t i o n m a t r i x f o r s e a r c h i i s t Computes a n i s o t r o p i c s q u a r e d d i s t a n c

  integer i x s b t o s r ( * ) , i y s b t o s r ( * ) , i z s b t o s r ( -(nxsup -1) ,( nxsup -1) do j =-(nysup -1) ,( nysup -1) do k=-(nzsup -1) ,( nzsup -1) xo = real ( i ) * x s i z s u p yo = real ( j ) * y s i z s u p zo = real ( k ) * z s i z s u p c c F i n d t h e c l o s e s t d i s t a n c e b e t w e e n t h e c o r n e r s o f t h e s u p e r b l o c k s : c s h o r t e s t = 1 . 0 e21

  remdup subroutine remdup( n , x , y , z , vr , ve , kod , ddx , ddy , npts ) ! Removes d u p l i c a t e x , y p a i r sreal x ( n ) , y ( n ) , z ( n ) , vr ( n ) , ve ( n ) , kod ( n ) , ddx ( n ) , ddy( n )! w r i t e ( * , * ) ' n = ' , n npts = n

  ( s ) -ddx ( s ) xs2 = x ( s ) + ddx ( s ) ys1 = y ( s ) -ddy ( s ) ys2 = y ( s ) + ddy ( s )

  t r o t( ang1 , ang2 , ang3 , anis1 , anis2 , ind ,MAXROT, rotmat ) c----------------------------------------------------------------------c c S e t s up an A n i s o t r o p i c R o t a t i o n M a t r i x c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * c c S e t s up t h e m a t r i x t o t r a n s f o r m c a r t e s i a n c o o r d i n a t e s t o c o o r d i n a t e s c a c c o u n t i n g f o r a n g l e s and a n i s o t r o p y ( s e e manual f o r a d e t a i l m u t h a n g l e f o r p r i n c i p a l d i r e c t i o n c a n g 2 Dip a n g l e f o r p r i n c i p a l d i r e c t i o --------------------------------------------------------------------parameter(DEG2RAD=3.141592654/180.0 ,EPSLON=1. e -20) real * 8 rotmat (MAXROT, 3 , 3 ) , afac1 , afac2 , s i n a , sinb , s i n t , + cosa , cosb , c o s t c c C o n v e r t s t h e i n p u t a n g l e s t o t h r e e a n g l e s w h i c h l e b e t w e e n t h e m a j o r a x i s o f a n i s o t r o p y and t h e c E-W a x i s . N o t e : C o u n t e r c l o c k w i s e i s p o s i t i v e . c b e t a a n g l e b e t w e e n m a j o r a x i s and t h e h o r i z o n t a l p l a n e . c ( The d i p o f t h e e l l i p s o i d m e a s u r e d p o s i t i v e down ) c t h e t a A n g l e o f r o t a t i o n o f m i n o r a x i s a b o u t t h e m a j o r a x 4 5 0 . 0 -ang1 ) * DEG2RAD e n d i f beta = -1.0 * ang2 * DEG2RAD t h e t a = ang3 * DEG2RAD c c Get t h e r e q u i r e d s i n e s and c o s i n e s : c s i n a = d b l e ( s i n ( alpha ) ) s i n b = d b l e ( s i n ( beta ) ) s i n t = d b l e ( s i n ( t h e t a ) ) c o s a = d b l e ( c o s ( alpha ) ) cosb = d b l e ( c o s ( beta ) ) c o s t = d b l e ( c o s ( t h e t a ) ) c c C o n s t r u c t t h e r o t a t i o n m a t r i x i n t h e r e q u i r e d memory : c a f a c 1 = 1 . 0 / d b l e (max( anis1 ,EPSLON) ) a f a c 2 = 1 . 0 / d b l e (max( anis2 ,EPSLON) ) rotmat ( ind , 1 , 1 ) =

  s t a b l i s h S u p e r B l o c k S e a r c h L i m i t s and S o r t Data ! * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ! ! T h i s s u b r o u t i n e s e t s up a 3-D " s u p e r b l o c k " m o d e l and o r d e r s t h e d a t a ! b y s u p e r b l o c k number . The l i m i t s o f t h e s u p e r b l o c k i s s e t t o t h e ! minimum and maximum l i m i t s o f t h e g r i d ; d a t a o u t s i d e a r e a s s i g n e d t o ! t h e n e a r e s t e d g e b l o c k . ! ! The i d e a i s t o e s t a b l i s h a 3-D b l o c k n e t w o r k t h a t c o n t a i n s a l l t h e ! r e l e v a n t d a t a . The d a t a a r e t h e n s o r t e d b y t h e i r i n d e x l o c a t i o n i n ! t h e s e a r c h n e t w o r k , i . e . , t h e i n d e x l o c a t i o n i s g i v e n a f t e r k n o w i n g ! t h e b l o c k i n d e x i n e a c h c o o r d i n a t e d i r e c t i o n ( i x , i y , i z ) : ! i i = ( i z -1) * n x s u p * n y s u p + ( i y -1) * n x s u p + i x ! An a r r a y , t h e same s i z e a s t h e number o f s u p e r b l o c k s , i s c o n s t r u c t e d ! t h a t c o n t a i n s t h e c u m u l a t i v e number o f d a t a i n t h e m o d e l . With t h i s ! a r r a y i t i s e a s y t o q u i c k l y c h e c k w h a t d a t a a r e l o c a t e d n e a r any g i v e n ! l o c a t i o n . i n i t i o n o f t h e X g r i d b e i n g c o n s i d e r e d ! ny , ymn , y s i z D e f i n i t i o n o f t h e Y g r i d b e i n g c o n s i d e r e d ! nz , zmn , z s i z D e f i n i t i o n o f t h e Z g r i d b e i n g c o n s i d e r f f e r e n c e f o r K r i g i n g u n d e r BC ! d d y ( nd ) Y d i f f e r e n c e f o r K r i g i n g u n d e r BC ! tmp ( nd ) Temporary s t o r a g e t o k e e p t r a c k o f t h e s u p e r b l o c k ! i n d e x a s s o c i a t e d t o e a c h d a t a ( u s e s t h e same ! s t o r a g e a l r e a d y a l l o c a t e d f o r t h e s i m u l a t i o n ) ! n s e c Number o f s e c o n d a r y v a r i a b l e s t o c a r r y w i t h v r a y w i t h c u m u l a t i v e number o f d a t a i n e a c h ! s u p e r b l o c k . ! n x s u p , xmnsup , x s i z s u p D e f i n i t i o n o f t h e X s u p e r b l o c k g r i d ! n y s u p , ymnsup , y s i z s u p D e f i n i t i o n o f t h e Y s u p e r b l o c k g r i d ! n z s u p , zmnsup , z s i z s u p D e f i n i t i o n o f t h e Z s u p e r b l o c k g r --------------------------------------------------------------------real x ( * ) , y ( * ) , z ( * ) , vr ( * ) , ddx ( * ) , ddy ( * ) , tmp ( * ) , s e c ( * ) integer n i s b ( * ) logical i n f l a g ! ! E s t a b l i s h t h e number and s i z e o f t h e s u p e r b l o c k s : z s u p = real ( nx ) * x s i z / real ( nxsup ) y s i z s u p = real ( ny ) * y s i z / real ( nysup ) z s i z s u p = real ( nz ) * z s i z / real ( nzsup ) xmnsup = (xmn-0.5 * x s i z )+0.5 * x s i z s u p ymnsup = (ymn-0.5 * y s i z )+0.5 * y s i z s u p zmnsup = (zmn-0.5 * z s i z )+0.5 * z s i z s u p ! ! I n i t i a l i z e t h e e x t r a s u p e r b l o c k a r r a y t o z e r o s :! do i =1, nxsup * nysup * nzsup n i s b ( i ) = 0 end do ! do i =1,ndcall g e t i n d x ( nxsup , xmnsup , x s i z s u p , x ( i ) , ix , i n f l a g ) call g e t i n d x ( nysup , ymnsup , y s i z s u p , y ( i ) , iy , i n f l a g ) call g e t i n d x ( nzsup , zmnsup , z s i z s u p , z ( i ) , i z , i n f l a g ) i i = i x + ( iy -1) * nxsup + ( i z -1) * nxsup * nysup tmpr t t h e d a t a b y a s c e n d i n g s u p e r b l o c k number : ! n s o r t = 6 + n s e c call sortem ( 1 , nd , tmp , nsort , x , y , z , vr , ddx , ddy , s e c ) ! ! S e t up a r r a y n i s b w i t h t h e s t a r t i n g a d d r e s s o f t h e b l o c k d a t a : ! do i =1 ,( nxsup * nysup * nzsup -1) n i s b ( i +1) = n i s b ( i ) + n i s b ( i +1) end do ! dimension a ( * ) , b ( * ) , c ( * ) , d ( * ) , e ( * ) , f ( * ) , g ( * ) , h ( * ) c c The d i m e n s i o n s f o r l t and u t h a v e t o b e a t l e a s t l o g ( b a s e 2 s s e g m e n t h a s more t h a n t w o e l e m e n t s we s s t h e p o s i t i o n o f an a r b i t r a r y e l e m e n t i n t h e s e g m e n t we c h o o s e t h e c m i d d l e e l e m e n t . Under c e r t a i n c i r c u m s t a n c e s i t may b e a d v a n t a g e o a r t a t t h e b e g i n n i n g o f t h e s e g m e n t , s e a r c h f o r k s u c h t h a t a ( k

  d a t e q and s e a r c h f o r a n o t h e r p a i r t o i n t e r c h a n g e : p w a r d s s e a r c h h a s now met t h e d o w n w a r d s s e a r c h : c
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  c s t o r e t h e p o s i t i o n o f t h e l a r g e s t s e g m e n t i n l t and u r r i v e h e r e i f t h e s e g m e n t h a s t w o e l e m e n t s we t e s t t o s e e i f c t h e s e g m e n t i s p r o p e r l y o r d e r e d i f n o t , we p e r f o r m an i n t e r c h a n u t c o n t a i n more s e g m e n t s t o b e s o r t e d r e p e a t p r o c e s s s q d i s t( x1 , y1 , z1 , x2 , y2 , z2 , ind ,MAXROT, rotmat ) c----------------------------------------------------------------------c c S q u a r e d A n i s o t r o p i c D i s t a n c e C a l c u l a t i o n G i v e n M a t r i x I n d i c a t o r c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * c c T h i s r o u t i n e c a l c u l a t e s t h e a n i s o t r o p i c d i s t a n c e b e t w e e n t w o p o i n t s c g i v e n t h e c o o r d i n a t e s o f e a c h p o i n t and a d e f i n i t i o n o f t u a r e d d i s t a n c e a c c o u n t i n g f o r t h e a n i s o t r o p y c and t h e r o t a t i o n o f c o o r d i n a t e s ( i f any ) . --------------------------------------------------------------------real * 8 rotmat (MAXROT, 3 , 3 ) , cont , dx , dy , dz c c Compute c o m p o n e n t d i s t a n c e v e c t o r s and t h e s q u a r e d d i s t a n c e : c dx = d b l e ( x1 -x2 ) dy = d b l e ( y1 -y2 ) dz = d b l e ( z1ind , i , 3 ) * dz s q d i s t = s q d i s t + cont * cont end do return end B.22 Subroutine srchsupr subroutine s r c h s u p r ( xloc , yloc , z l o c , radsqd , i r o t ,MAXROT, rotmat , & & n s b t o s r , i x s b t o s r , i y s b t o s r , i z s b t o s r , noct , nd , & & x , y , z , ddx , ddy , tmp , nisb , nxsup , xmnsup , x s i z s u p , & & nysup , ymnsup , y s i z s u p , nzsup , zmnsup , z si z s u p , & & nsc , xs1 , ys1 , xs2 , ys2 , n c l o s e , close , i n f o c t ) !-----------------------------------------------------------------------! ! S e a r c h W i t h i n S up e r B l o c k S e a r c h L i m i t s ! * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ! ! ! T h i s s u b r o u t i n e s e a r c h e s t h r o u g h a l l t h e d a t a t h a t h a v e b e e n t a g g e d i n ! t h e s u p e r b l o c k s u b r o u t i n e . The c l o s e d a t a a r e p a s s e d b a c k i n t h e ! i n d e x a r r a y " c l o s e " . An o c t a n t s e a r c h i s a l l o w e d . ) Y c o o r d i n a t e s o f t h e d a t a ! z ( nd ) Z c o o r d i n a t e s o f t h e d a t a ! d d x ( nd ) X d i f f e r e n c e f o r K r i g i n g u n d e r BC ! d d y ( nd ) Y d i f f e r e n c e f o r K r i g i n g u n d e r BC ! tmp ( nd ) Temporary s t o r a g e t o k e e p t r a c k o f t h e s q u a r e d ! d i s t a n c e a s s o c i a t e d w i t h e a c h d a t a u p , xmnsup , x s i z s u p D e f i n i t i o n o f t h e X s u p e r b l o c k g r i d ! n y s u p , ymnsup , y s i z s u p D e f i n i t i o n o f t h e X s u p e r b l o c k g r i d ! n z s u p , zmnsup , z s i z s u p D e f i n i t i o n o f t h e X s u p e r b l o c k g r o r d i n a t e s o f t h e 1 s t e n d p o i n t o f a " g r a d i e n t " s e g m e n t ! x s 2 ( n s c ) Y c o o r d i n a t e s o f t h e 1 s t e n d p o i n t o f a " g r a d i e n t " s e g m e n t ! y s 1 ( n s c ) X c o o r d i n a t e s o f t h e 2 nd e n d p o i n t o f a " g r a d i e n t " s e g m e n t ! y s 2 ( n s c ) Y c o o r d i n a t e s o f t h e 2 nd e n d p o i n t o f a " g r a d i e n t " s e g m e o c t Number o f i n f o r m e d o c t a n t s ( o n l y c o m p u t e s i f ! p e r f o r m i n g an o c t a n t s e a r c h ) t s m u l t i p l e a r r a y s i n a s c e n d i n g o r d e r ! i n t e r s e c t C h e c k s i f t w o s e g m e n t s a r e i n t e r s e c t i --------------------------------------------------------------------real x ( * ) , y ( * ) , z ( * ) , ddx ( * ) , ddy ( * ) , tmp ( * ) , close ( * ) real xs1 ( * ) , ys1 ( * ) , xs2 ( * ) , ys2 ( * ) real * 8 rotmat (MAXROT, 3 , 3 ) , hsqd , s q d i s t integer nsc integer n i s b ( * ) , i n o c t ( 8 ) integer i x s b t o s r ( * ) , i y s b t o s r ( * ) , i z s b t o s r ( * ) logical i n f l a g , i n t e r s e c t ! ! D e t e r m i n e t h e s u p e r b l o c k l o c a t i o n o f p o i n t b e i n g e s t i m a t e d : ! call g e t i n d x ( nxsup , xmnsup , x s i z s u p , xloc , ix , i n f l a g ) call g e t i n d x ( nysup , ymnsup , y s i z s u p , yloc , iy , i n f l a g ) call g e t i n d x ( nzsup , zmnsup , z s i z s u p , z l o c , i z , i n f l a g ) ! ! Loop o v e r a l l t h e p o s s i b l e S u p e r B l o c k s t h i s s u p e r b l o c k w i t h i n t h e g r i d s y s t e m : ! i x s u p = i x + i x s b t o s r ( i s u p ) i y s u p = i y + i y s b t o s r ( i s u p ) i z s u p = i z + i z s b t o s r ( i s u p ) i f ( i x s u p . l e . 0 . or . i x s u p . gt . nxsup . or . & ! ! F i g u r e o u t how many s a m p l e s i n t h i s s u p e r b l o c k : ! i i = i x s u p + ( iysup -1) * nxsup + ( izsup -1) * nxsup * nysup i f ( i i . eq . 1 " r e a l " d a t a p o i n t : ! i f ( ( ddx ( i ) . ne . 0 . 0 ) . or . ( ddy ( i ) . ne . 0 . 0 ) ) go to 2 ! ! C h e c k s q u a r e d d i s t a n c e : ! hsqd = s q d i s t ( xloc , yloc , z l o c , x ( i ) , y ( i ) , z ( i ) , i r o t ,MAXROT, rotmat ) i f ( real ( hsqd ) . gt . radsqd ) go to 2 ! ! C h e c k i f t h i s p o i n t i s s c r e e n e d b y " no f l o w " s e g m e n t s : ! do k=1, nsc i f ( i n t e r s e c t ( xloc , yloc , x ( i ) , y ( i ) , xs1 ( k ) , ys1 ( k ) , & & xs2 ( k ) , ys2 ( k ) ) . eq . . t r u e . ) go to 2 end do ! ! A c c e p t t h i s s a m p l e : ! n c l o s e = n c l o s e + 1 close ( n c l o s e ) = real ( i ) tmp( n c l o s e ) = real ( hsqd ) r t t h e n e a r b y s a m p l e s b y d i s t a n c e t o p o i n t b e i n g e s t i m a t e d : ! call sortem ( 1 , n c l o s e , tmp , 1 , close , c , d , e , f , g , h ) ! ! I f we a r e n ' t d o i n g an o c t a n t s e a r c h t h e n j u s t r e t u r n Now p i c k up t h e c l o s e s t s a m p l e s i n e a c h o c t a n t : dx . l e . 0 . 0 . and . dy . gt . 0 . 0 ) i q=1 i f ( dx . gt . 0 . 0 . and . dy . ge . 0 . 0 ) i q=2 i f ( dx . l t . 0 . 0 . and . dy . l e . 0 dx . l e . 0 . 0 . and . dy . gt . 0 . 0 ) i q=5 i f ( dx . gt . 0 . 0 . and . dy . ge . 0 . 0 ) i q=6 i f ( dx . l t . 0 . 0 . and . dy . l e . 0 . 0 ) i q=7 6 continue i n o c t ( i q ) = i n o c t ( i q ) + 1 ! ! Keep t h i s s a m p l e i f t h e maximum h a s n o t b e e n e x c e e d e d : ! i f ( i n o c t ( i q ) . l e . noct ) f d a t a s e l e c t i o n . Compute number o f i n f o r m e d o c t a n t s and r e t u r n : i n o c t ( i ) . gt . 0 ) i n f o c t = i n f o c t

  

  write ( * , * ) ' output f i l e = ' , o u t f l read( l i n , * , err=98) nx , xmn , x s i z write (

* , * ) ' nx , xmn , x s i z = ' , nx , xmn , x s i z read( l i n , * , err=98) ny , ymn , y s i z write ( * , * ) ' ny , ymn , y s i z = ' , ny , ymn , y s i z read( l i n , * , err=98) nz , zmn , z s i z write ( * , * ) ' nz , zmn , z s i z = ' , nz , zmn , z s i z read( l i n , * , err=98) nxdis , nydis , n z d i s write ( * , * ) ' nxdis , nydis , n z d i s = ' , nxdis , nydis , n z d i s i f ( ( n x d i s * n y d i s * n z d i s ) . gt .MAXDIS) then write ( * , * ) 'ERROR COKTBC: Too many d i s c r e t i z a t i o n p o i n t s ' write ( * , * ) ' I n c r e a s e MAXDIS or lower n [ xy ] d i s ' stop e n d i f read( l i n , * , err=98) nborhood write ( * , * ) ' c o n s t a n t or moving neighborhood : ' , nborhood i f ( nborhood . l t . 0 . or . nborhood . gt . 1 ) stop ' Neighborhood = 0 ou 1 . ' read( l i n , * , err=98) ndmin , ndmaxp , ndmaxg , ndmaxs write ( * , * ) ' ndmin , ndmaxp , ndmaxg , ndmaxs = ' , ndmin , ndmaxp , ndmaxg , + ndmaxs

  write ( * , * ) ' s e a r c h a n i s o t r o p y a n g l e s = ' , sang1 , sang2 , sang3 read( l i n , * , err=98) ktype write ( * , * ) ' k r i g i n g type = ' , ktype i f ( ktype . l t . 0 . or . ktype . gt . 2 ) stop ' ERROR: i n v a l i d k r i g i n g type '

	read( l i n , * , err=98) ( i d r i f ( i ) , i =1 ,9) write ( * , * ) ' d r i f t terms = ' , ( i d r i f ( i ) , i =1 ,9)
	read( l i n , * , err=98) ( vmean ( i ) , i =1, nvr ) write ( * , * ) ' v a r i a b l e means = ' , ( vmean ( i ) , i =1, nvr )
	read( l i n , * , err=98) Tmean write ( * , * ) ' Tmean : ' , Tmean
	read( l i n , * , err=98) gradh , angh write (

* , * ) ' gradh , angh : ' , gradh , angh c Read O u t p u t F i l e o p t i o n read( l i n , * ) n o u t f i l e s t r = ' ' read( l i n , ' ( A500 ) ' ,END=4) s t r c Read w h e t h e r u s e r w a n t s t o i n t e r p o l a t e l o g o f v a l u e s f o r e a c h v a r i a b l e read( l i n , * ) logopt1 , l o g o p t 2 i f ( l o g o p t 1 . l t . 0 . or . l o g o p t 1 . gt . 1 ) stop ' Log o p t i o n = 0 ou 1 . ' i f ( l o g o p t 2 . l t . 0 . or . l o g o p t 2 . gt . 1 ) stop ' Log o p t i o n = 0 ou 1 . ' write ( * , * ) c Read w h e t h e r u s e r w a n t s t o b o u n d r e s u l t s w i t h i n a max and a min read( l i n , * ) nrestmin , r e s t m i n read( l i n , * ) nrestmax , restmax i f ( nrestmin . ne . 0 . and . nrestmax . ne . 0 . and . r e s t m i n . gt . restmax ) stop + ' Restmin < Restmax ! '

  ( 

	+	) ' S e t t i n g up super block s e a r c h s t r a t e g y ' call s e t s u p r ( nx , xmn , x s i z , ny , ymn , y s i z , nz , zmn , z s i z , nd , x , y , z , vr , ddx , ddy , tmp , nsec , sec1 ,MAXSBX,MAXSBY,MAXSBZ, nisb ,
	+	nxsup , xmnsup , x s i z s u p , nysup , ymnsup , y s i z s u p , nzsup ,
	+ write ( 1 1 6 , * ) ' i zmnsup , z s i z s u p ) x + ' vr s e c 1 do i =1 ,(nd )	y ddx	z ddy '	' ,

* , *

  1 . ne . 0 . and . j 1 . ne . 0 . and . k1 . ne . 0 . and .

		end do end do end do		
	c			
	c Keep t h i s s u p e r b l o c k	i f	i t	i s c l o s e e n o u t g h :
	c	i f ( real ( s h o r t e s t ) . l e . radsqd
	+			i 2 . ne . 0 . and . j 2 . ne . 0 . and . k2 . ne . 0 ) then x d i s = real ( i1 -i 2 ) * 0 . 5 * x s i z s u p + xo y d i s = real ( j1-j 2 ) * 0 . 5 * y s i z s u p + yo z d i s = real ( k1-k2 ) * 0 . 5 * z s i z s u p + zo hsqd = s q d i s t ( 0 . 0 , 0 . 0 , 0 . 0 , xdis , ydis , z d i s ,
	+	end i f end do end do end do	i r o t ,MAXROT, rotmat ) i f ( hsqd . l t . s h o r t e s t ) s h o r t e s t = hsqd

  Dierence with srchsupr :Instead of Check if this is a "real" data point: (. . . ) :

	1	2			\ semivariogram f o r " i " and " j "
	1	0 . 0			\	nst , nugget e f f e c t
	8	1	0	0	\	i t , cc , ang1 , ang2 , ang3
	710 710 1		\	a_hmax , a_hmin , a_vert
	2	2			\ semivariogram f o r " i " and " j "
	1	0			\	nst , nugget e f f e c t
	1	1	0	0	\	i t , cc , ang1 , ang2 , ang3
	710 710 1		\	a_hmax , a_hmin , a_vert
	C.2 Example of a data le
	I r r e g u l a r l y spaced 18 p o i n t s	
	5					
	Column 1				
	Column 2				
	Column 3				
	Column 4				
	Column 5				
	395 25	0	. 0 7 7 5 8	-9999999
	155 85	0	. 5 3 4 8 1 9 -9999999
	315 145 0	. 4 8 1 7 4 5 -9999999
	55	185 0	. 4 5 6 7 3 -9999999
	415 215 0	. 3 7 9 5 6 -9999999
	245 245 0	. 0 5 5 9 3 -9999999
	375 305 0	. 1 0 3 5 1 -9999999
	35	315 0	. 3 2 5 0 8 -9999999
	195 375 0	. 2 2 4 7 4 -9999999
	305 415 0	. 1 5 2 4 7 -9999999
	455 455 0	. 5 3 2 2 1 -9999999
	65	485 0	. 4 1 3 6 7 -9999999
	0	500 0	50	-9999999
	0	0	1		-9999999
	500 0	1		-9999999
	500 0 . 1 -1		-9999999
	500 500 -1		-9999999
	0 . 1 500 -1		-9999999
						2

! ! C h e c k i f t h i s i s a " g r a d i e n t " d a t a p o i n t : ! i f

( ( ddx ( i ) 

. eq . 0 . 0 ) . and . ( ddy ( i ) . eq . 0 . 0 ) ) go to

More information available on http://www.waterloohydrogeologic.com/software/gw_contour/gw_con\ discretionary{-}{}{}tour_ov.htm

This is not a prerequisite in Universal Kriging, but GSLIB works with covariance models, that is why we use them instead of the variograms here.

Kriging under Boundary Conditions

More information available on http://www.waterloohydrogeologic.com/software/visual_modow/visual_ modow_ov.htm

http://compgeom.cs.uiuc.edu/~jee/teaching/373/notes/x05-convexhull.pdf and . . . x06-sweepline.pdf

The previously described system is called Universal Cokriging, but, in fact, we only take into account the drift for h, not for Log(T ), whose mean is unknown but assumed constant.

Note that the hydraulic gradient is from East to West in gure 3.5 and from North to South in gure 3.9.

' Estimated ' , nk , ' b l o c k s ' write ( * , * ) ' a ve ra ge ' , uk

! Computes t h e number o f p o i n t s t o a d d t o d e t e r m i n e t h e s i z e o f t h e! d a t a a r r a y .

& kod ( j ) . eq . kod ( i ) . and . kod ( j +1). ne . kod ( j ) ) then d i s t = s q r t ( ( x ( i )-x ( j )) * * 2+( y ( i )-y ( j ) ) * * 2 ) do 119 , k=i , j vr ( k ) = vr ( k ) * ( 2 * c s i z ) * * 2 / (Tmean * d i s t )

&i y s u p . l e . 0 . or . i y s u p . gt . nysup . or . & & i z s u p . l e . 0 . or . i z s u p . gt . nzsup ) go to 1
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 ---------------------------------------------------------------------write( lun , 3 0 2 ) format ( ' 0 . 1 2 7 0 . 0 ' , + '-head g r a d i e n t , g r a d i e n t a n g l e with X a x i s ' ) write( lun , 3 0 3 ) format( ' 1 ' , + '-g r i d f i l e type ' ) write( lun , 3 0 4 ) format( ' 0 1 ' , + '-use_log i n t e r p o l a t i o n f l a g ' ) write( lun , 3 0 5 ) format( ' 0 0 write( lun , 4 5 ) format( ' 1 1 . 0 0 . 0 0 . 0 0 . 0