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S U M M A R Y 

To explain induced polarization, membrane polarization is often referred to as a rele v ant 
process taking place in granular media – particularly, when narrow pore throats are present. 
This polarization effect is based on the membrane-like behaviour of pore throats caused by the 
presence of an usually ne gativ e charge on the pore surface, that influences charge transport in 

the pore fluid. Existing analytical, 1D models describe the pore system as a series of cylindrical 
pores with different radii and lengths. The polarization response is calculated by solving the 
Poisson–Nernst–Planck system for the current densities of one single anion and one single 
cation species representing the charge transport in the electrolyte and the diffuse layer at the 
pore surface. To include charge transport in the Stern layer, cations in the Stern layer have so 

far simply been considered by increasing the concentration of the diffuse layer cations. As we 
know from numerical modelling, this approach fails to predict the polarization response when 

the Stern layer is significantly charged. Here, we present a new semi-analytical model that 
treats the Stern-layer cations as a separate ion species and allows the Stern layer to polarize 
indi viduall y. To v alidate our ne w model, we compare it to the pre viousl y used anal ytical 
model and numerical simulations for different relative charges in Stern- and diffuse layer. 
We also use electrostatic surface-complexation models for two mineral surfaces (quartz and 

montmorillonite) to simulate the response of real geologic material under varying chemical 
conditions. This work is a step forward for considering realistic pore properties in induced- 
polarization modelling. 

Key words: Electrical proper ties; Microstr ucture; Induced polarization; Numerical mod- 
elling; Hydrogeophysics. 
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1  I N T RO D U C T I O N  

Induced polarization (IP) is based on measuring the frequency- 
dependent behaviour of the complex conductivity. That frequency 
dependence is caused by polarization processes in geologic ma- 
terials and is closely related to the structure of the pore space, 
particularly the pore surface (B örner & Sch ön 1991 ; Kruschwitz 
et al. 2010 ; Weller et al. 2010 ), and the electrochemical properties 
of the pore fluid (Revil 2012 ; Baierlein et al. 2016 ; H ördt et al. 
2017 ). IP was first described by Schlumberger ( 1920 ) and is cur- 
rently used in a broad field of applications, such as the prospection 
of minerals (e.g. Bleil 1953 ; Seigel et al. 2007 ; Revil et al. 2022 ), 
hydro geolo gy (e.g. B örner et al. 1996 ; H ördt et al. 2007 ; Slater 
2007 ), permafrost research associated with climate warming (e.g. 
Maierhofer et al. 2022 ; Mudler et al. 2022 ) or for monitoring the 
1910 
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transport and accumulation of contaminants in biogeophysics (e.g. 
Atekwana & Slater 2009 ; Wainwright et al. 2016 ). 

Several empirical models have been proposed for the 
parametrization of measured complex conductivity spectra (e.g. 
Cole & Cole 1941 ; Dias 2000 ). Ho wever , only mechanistic mi- 
croscale models can provide insight into the underlying physical 
processes. 

In geological materials free of electron conductors, low- 
frequency polarization (typically between 1 mHz and 1 kHz) is com- 
monly attributed to the electrical double layer (EDL), that forms due 
to electrochemical processes at the solid-electrolyte interface. These 
processes are usually described by surface-complexation models 
(SCM) that take the reactions at the mineral surface as well as 
the resulting electric potential in the electrolyte into account. Such 
models exist for a large number of mineral surfaces, including clays 
ress on behalf of The Royal Astronomical Society. This is an Open Access 
s Attribution License ( https://creati vecommons.org/licenses/b y/4.0/ ), which 
 any medium, provided the original work is properly cited. 
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(a) (b)

Figure 1. Schematic representation of the basic Stern model of (a) the basal surface of montmorillonite (after Leroy et al. 2015 ) and (b) the main quartz 
surface, quartz (0001) crystal surface (after Leroy et al. 2013 ) in contact with a binary monovalent electrolyte. The surface-charge density � 0 of the mineral 
surface at x = x 0 is partly counterbalanced by the surface-charge density � S of the Stern layer (region 1) at x = x S (determined by the capacitance C 1 ). The 
electric potential drops from ϕ 0 at the surface to ϕ d at the Stern plane. The remaining charge is counterbalanced by the surface-charge density � d of the diffuse 
layer (region 2). The characteristic length scale of the diffuse layer is the Debye length λd , which is determined by the exponential drop of the electric potential 
in the diffuse layer. Outside the double layer, the electrolyte is undisturbed and the electric potential approaches zero (region 3). 
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Leroy & Revil 2004 ; Leroy et al. 2015 ) or amorphous silica and
uartz (Leroy et al. 2008 , 2013 , 2022 ). 

Early polarization models deal with the polarization of the Stern
ayer, the part of the EDL consisting of counter-ions (usually
ations) directly adsorbed to the mineral surface, around a spher-
cal particle embedded in an electrolyte solution (O’Konski 1960 ;
chwarz 1962 ; Schurr 1964 ). Lyklema et al. ( 1983 ) expand this
article-based model by including the coupling between charges of
tern layer and diffuse layer. 
Polarization can also be understood in terms of pore constrictions

cting as membranes. A membrane-like behaviour can be caused by
he ne gativ e charge of the pore surface, which leads to an increased
ation concentration and a decreased anion concentration and thus
enders the transport of anions through the pore throat less ef fecti ve
han the transport of cations. This difference in transport numbers
eads to a concentration polarization across the pore which is also
nown as membrane polarization. 

Early membrane-polarization models consider the pore system
s a sequence of “active” and “passive” zones (Marshall & Madden
959 ), corresponding to a “wide” and “narrow” pore (compared to
he thickness of the EDL), respecti vel y. Membrane polarization is
losely connected to the geometry of the pore space. This can be
een for example in a quadratic dependence of the relaxation time,
he time the fully polarized system needs to relax, on the length
f the wide pore (Blaschek & H ördt 2009 ; Volkmann & Klitzsch
010 ) or the narrow pore, respecti vel y (Titov et al. 2002 ). B ücker
 H ördt ( 2013b ) regard these two behaviours as limiting cases of

he model of Marshall & Madden ( 1959 ). 
Buchheim & Irmer ( 1979 ) discuss the influence of the EDL and

f the pore’s cross-sectional area on membrane polarization. Gomaa
 El-Diw an y ( 2020 ) deri ve a simplified impedance equation for the

ase of thin diffuse layers (compared to pore size). B ücker & H ördt
 2013a ) expand the model of Marshall & Madden ( 1959 ) to include
he influence of EDL and pore radius as they consider a radially
arying ion concentration distribution. These authors also include
he contribution of the Stern layer to the overall polarization in a
argely simplified way by adding the positive charges in the Stern
ayer to the cations of the diffuse layer. 

H ördt et al. ( 2017 ) study the influence of pore length and ra-
ius on the polarization model by B ücker & H ördt ( 2013a ). On
he basis of numerical simulations of the pore space, B ücker et al.
 2019 ) investigate the coupled polarization of Stern layer and the
iffuse layer in a cylindrical pore sequence. They show, that the
odel of Marshall & Madden ( 1959 ) together with the expan-

ion by B ücker & H ördt ( 2013a ) fails to reproduce the numer-
cally calculated spectra in presence of a significant Stern-layer
harge. 

Here, we present a ne w semi-anal ytical model, that does not
nly include the ions in the diffuse layer, but also explicitly takes
he cations in the Stern layer into account. The Stern-layer cations
re treated as a separate ion species, that allow for an additional
olarization of the Stern layer besides the classical membrane po-
arization of the diffuse layer. To include the Stern-layer cations, that
re usually described by a surface charge density (e.g. in Schwarz
962 ), into a 1D model, we define an ef fecti ve Stern-layer ion con-
entration and specific boundary conditions to adapt for the strong
inding of the cations to the surface. Additionally, we use surface-
omplexation models for the basal surface of montmorillonite and
he (0001) surface of a quartz crystal to calculate the structure of the
DL for these two mineral surfaces under varying electrochemical
onditions and use the results as an input for our new membrane
olarization model. 

 S T RU C T U R E  O F  T H E  E L E C T R I C A L  

O U B L E  L AY E R  

he low-frequency polarization response strongly depends on the
tructure of the electrical double layer that in our model is described
y the surface-charge density of the Stern-layer � S and the potential
 d at the d-plane as indicated in Fig. 1 (all symbols used in this
anuscript are displayed in Tables 1 and 2 ). The values of these

wo parameters vary strongly depending on the mineral surface and
he composition of the pore fluid, including pH and ionic strength,
hich equals the bulk ion concentration in the case of a monovalent,

ymmetric electrol yte. The respecti ve structure of the EDL can be
etermined using an appropriate SCM. 

In this study, we focus on the basal surface of montmorillonite and
n a quartz (0001) crystal surface in contact with an NaCl solution
epresenting the pore fluid. Fig. 1 shows sketches of the resulting
DL configuration for these two mineral surfaces. We assume both

art/ggae370_f1.eps
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Table 1. List of all symbols (latin characters) used in alphabetical order. 

Symbol Meaning Unit 

a Pore cross-section ratio dimensionless 
a i Ion activity mol L 

−1 

b p,n Ef fecti ve ion-mobility ratio dimensionless 
c 0 Bulk ion concentration (surface-complexation model) mol L 

−1 

c ∞ 

Bulk ion concentration (polarization model) mol m 

−3 

c i Ion concentration (polarization model) mol m 

−3 

C 1 Capacitance between mineral surface and Stern plane F m 

−1 

D i Ion diffusion coefficient m 

2 s −1 

e Elementary charge C 

F Faraday’s constant A s mol −1 

f Q 

Partition coefficient dimensionless 
j i Current density A m 

−2 

k B Boltzmann constant J K 

−1 

K i Equilibrium constant dimensionless 
L i Pore length m 

M Correction coefficient (Lyklema et al. 1983 ) dimensionless 
R Particle radius m 

r Spatial coordinate (3D) m 

r i Pore radius m 

r S Spatial coordinate (along surface) m 

T Absolute temperature K 

t Time s 
U Electric potential (polarization model) V 

V Initial electric potential (polarization model) V 

x Spatial coordinate (1D) m 

x 0 Coordinate of the mineral surface m 

x S Coordinate of the Stern plane m 

z i Ion valence dimensionless 

Table 2. List of all symbols (greek characters) used in alphabetical order. 

Symbol Meaning Unit 

γNa Sodium ion activity coefficient dimensionless 
� i Surface site density m 

−2 

ε 0 Permittivity of vacuum F m 

−1 

ε r Relati ve permitti vity dimensionless 
κ Inverse Debye length m 

−1 

λd Debye length m 

μi Ion mobility m 

2 V 

−1 s −1 

σ Total complex conductivty S m 

−1 

σ ′ Real conductivity S m 

−1 

σ ′′ Imaginary conductivity S m 

−1 

σ ′′ 
max Maximum imaginary conductivity S m 

−1 

� 0 Surface-charge density of the mineral surface C m 

−2 

σ0 Bulk electrolyte conductivity S m 

−1 

� d Surface-charge density of the diffuse layer C m 

−2 

� S Surface-charge density of the Stern layer C m 

−2 

τ Relaxation time s 
ϕ Electric potential (surface-complexation model) V 

ϕ d Electric potential at the d-plane V 

ω Angular frequency rad s −1 
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surfaces to exhibit a negative surface-charge density � 0 < 0 at the 
0-plane ( x 0 ). At a certain distance ( x S − x 0 ) that can be calculated 
from the ratio of the water permittivity to the capacitance C 1 of 
region (1) (Leroy et al. 2013 ), cations are specifically adsorbed to 
the surface, forming the Stern layer with a surface-charge density 
� S . At distances beyond the Stern plane ( x > x S ), within region (2), 
anion concentrations increase and cation concentrations decrease 
with the distance to the surface. This layer is called diffuse layer. 
We consider a basic Stern model (Westall & Hohl 1980 ), where 
the inner boundary of the diffuse layer (d-plane) coincides with the 
Stern plane at x = x S . 
The difference in anion and cation concentration in the diffuse 
layer leads to a spatial charge density, that can be described in terms 
of a surface-charge density � d . Electro-neutrality implies that the 
surface-charge density of the Stern plane � S and of the diffuse layer 
� d cancel out the surface-charge density at the 0-plane � 0 , i.e. 

� 0 + � S + � d = 0 . (1) 

The Debye length 

λd = 

√ 

ε 0 ε r k B T 

2 × 10 3 ec 0 F 

(2) 
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Table 3. Model parameters used for surface-complexation modelling, if not stated otherwise. 

Parameter Symbol [unit] Value 

Absolute temperature T [K] 293 
Relati ve electrol yte permitti vity ε r [-] 80 
Stern-layer capacitance (Mt) a C 1 [F m 

−2 ] 0.71 
Stern-layer capacitance (quartz) b C 1 [F m 

−2 ] 3.43 
Equilibrium constant (Na-adsorption at Stern plane, Mt) c K Na , Mt [-] 10 0 . 88 

Equilibrium constant (Na-adsorption at Stern plane, quartz) b K Na , Qtz [-] 10 0 . 58 

Equilibrium constant (protonation) b K H [-] 10 7 . 28 

Surface-site density (quartz) d � S [m 

−2 ] 4 . 6 × 10 18 

a The SCM for the basal surface of montmorillonite is not sensitive to C 1 . We arbitrarily choose 
C 1 to relate it to a Stern-layer thickness of 1 nm using eq. ( 5 ) 
b Leroy et al. ( 2022 ) 
c Tournassat et al. ( 2009 ) 
d Hiemstra et al. ( 1989 ) 
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s a measure for the extension of the diffuse layer, with ε r being
he relative permittivity of the electrolyte solution, ε 0 = 8 . 85 ×
0 −12 F m 

−1 the permittivity of a vacuum, the bulk ion concentra-
ion c 0 (in mol L 

−1 ), Faraday’s constant F = 96 485 . 33 A s mol −1 ,
he elementary charge e = 1 . 602 × 10 −19 C , Boltzmann’s constant
 B = 1 . 380 × 10 −23 J K 

−1 , and the absolute temperature T (in K).
t suf ficientl y large distances of se veral Deb ye lengths, i.e. in re-
ion (3), both the anion and the cation concentration approach the
quilibrium concentration c 0 . 

.1 Surface-complexation models 

or both minerals, we implement a 1D basic Stern model (Leroy
t al. 2013 , 2015 , 2022 ) using COMSOL MULTIPHYSICS R ©. The model
onsists of three regions, as displayed in Fig. 1 : In region (1) be-
ween the mineral surface and the Stern-plane, we solve the Laplace
quation 

ϕ = 0 (3) 

or the electric potential ϕ (in V). At x 0 = 0 (the so called 0-plane),
e apply the boundary condition 

ϕ 

∣∣
x 0 

= − � 0 

ε 0 ε r 
. (4) 

Bourg et al. 2007 ). Note that eq. ( 4 ) implies that the potential is
onstant within the mineral. The position x S of the Stern plane, i.e.
he boundary between regions (1) and (2), is calculated from the
apacitance C 1 (in F m 

−2 ) as 

x S = 

ε 0 ε r 

C 1 
. (5) 

he capacitance C 1 can be determined experimentally using geo-
hemical and electrokinetic methods (Hiemstra & Van Riemsdijk
006 ) and is treated as an input parameter, which we take from lit-
rature (see Table 3 for reference). At the Stern plane, the gradient
f the electric potential is given by 

ϕ 

∣∣
x S 

= −� 0 + � S 

ε 0 ε r 
. (6) 

n the diffuse layer region (2), we solve the Poisson–Boltzmann
quation, which reads 

ϕ = 

F c 0 
ε 0 ε r 

(
exp 

(
eϕ 

k B T 

)
− exp 

(
− eϕ 

k B T 

))
(7) 

or the studied case of a monovalent, symmtetric electrolyte. Re-
ion (3) represents the bulk aqueous electrolyte, where the electric
otential equals zero and the ion concentrations are equal to the
ulk concentration c 0 . 

.1.1 Montmorillonite 

or montmorillonite (Mt), we use the SCM presented in Leroy et al.
 2015 ), considering only the adsorption of Na + at clay surface sites
 X 

−: 

> X 

− + Na + � > X 

− · · · Na + , K Na , Mt , (8) 

here K Na , Mt is the corresponding equilibrium constant, which is
n input parameter that can also be estimated by geochemical and
lectrokinetic methods. The ne gativ e surface sites on the montmo-
illonite basal surface arise from isomorphic substitution of Al 3 + 

nd Fe 3 + ions by Mg 2 + and Fe 2 + ions in the octahedral sheet (Leroy
t al. 2015 ). The surface-charge density � 0 at the 0-plane is also an
nput parameter of our model. For the basal surface of montmoril-
onite, it is possible to relate � 0 to the measured cation exchange
apacity (CEC, Leroy et al. 2015 ). After some algebraic manipula-
ions given in Appendix A1 , we obtain the surface-charge density
t the Stern plane from the mineral surface-charge density: 

 S = −
K Na , Mt a Na exp 

(
− eϕ d 

k B T 

)
1 + K Na , Mt a Na exp 

(
− eϕ d 

k B T 

)� 0 . (9) 

he activity a Na of sodium ions in the bulk electrolyte can be ap-
roximated by 

 Na = γNa c 0 (10) 

ith γNa being the sodium activity coefficient in the bulk electrolyte
hat can be calculated by using Davies’ equation (Davies 1962 ): 

log γNa = −1 

2 

( √ 

c 0 
1 + 

√ 

c 0 
− 0 . 3 c 0 

)
. (11) 

.1.2 Quartz 

he EDL of a quartz (0001) crystal surface can be modelled with the
CM presented in Leroy et al. ( 2022 ). In this model, a protonation
eaction takes place at the 0-plane: 

> SiO 

− + H 

+ � > SiOH , K H , (12) 
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Figure 2. Calculated d-plane potential (upper panel), Stern-layer surface- 
charge density (middle panel), and partition coefficient (lower panel) with 
varying NaCl concentrations at different surface-charge densities for the 
montmorillonite basal surface. Solid lines show the results of our numerical 
simulation, dots show the PHREEQC results. 

Figure 3. Calculated d-plane potential (upper panel), Stern-layer surface- 
charge density (middle panel), and partition coefficient (lower panel) with 
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with K H being the respective equilibrium constant. Here, we ne- 
glect further protonation reactions due to their comparably low- 
equilibrium constants (Leroy et al. 2013 ). At the Stern plane, Na - 
ions are adsorbed: 

> SiO 

− + Na + � > SiO 

− · · · Na + , K Na , Qtz . (13) 

After some algebraic transformations given in Appendix A2 , we 
obtain the surface-charge densities at the 0-plane 

� 0 = −e 

(
1 + K Na , Qtz a Na exp 

(
− eϕ d 

k B T 

))
� S 

A 

(14) 

and at the Stern plane 

� S = −e K Na , Qtz a Na exp 

(
− e ϕ d 

k B T 

)
� S 

A 

(15) 

with 

A = 1 + K H a H exp 

(
− eϕ 0 

k B T 

)
+ K Na , Qtz a Na exp 

(
− eϕ d 

k B T 

)
. (16) 

� S is the total surface-site density of > SiO 

−- and > SiOH -sites and 
is treated as an input parameter. While the activity of Na + in the 
bulk electrolyte can be calculated using Davies’ equation (eqs 10 
and 11 ), we calculate the proton activity in the bulk electrolyte from 

pH as 

a H = 10 −pH . (17) 

2.2 Modelled doub le-lay er structur e 

From our surface-complexation model, we extract the potential ϕ d 

at the d-plane and the surface-charge density � S of the Stern layer as 
well as the partition coefficient ( 0 ≤ f Q 

≤ 1 ), which is the fraction 
of the counter-charge compensated by the Stern layer 

f Q 

= 

� S 

| � 0 | . (18) 

To validate the numerical implementation of our model in COM- 
SOL MULTIPHYSICS R ©, we compare these results to the predictions 
of a corresponding PHREEQC simulation for both mineral surfaces. 
PHREEQC is a widely used free geochemical modelling software 
from USGS (Parkhurst & Apelo 2013 ). The parameters used for 
the calculations are given in Tab le 3 . F ig. 2 shows the calculated 
EDL parameters of the montmorillonite basal surface for differ- 
ent surface-charge densities with varying NaCl concentration c 0 
in the electrolyte. The results for the quartz (0001) crystal surface 
at different NaCl concentrations with varying pH are displayed in 
Fig. 3 . 

Both numerical model predictions are in good agreement with 
the corresponding PHREEQC results. We therefore conclude that our 
new implementation of the model yields the correct structure of the 
EDL. In the range of parameter values investigated, we found that 
the EDL of the basal surface of montmorillonite does not behave 
like the EDL of the quartz (0001) surface. For both montmorillonite 
and quartz, the modelled d-plane potential magnitude decreases 
when salinity increases. Ho wever , the surface-charge density of the 
Stern layer and partition coefficient are high and relatively constant 
for montmorillonite whereas they vary over a broad range of values 
for quartz. 

Therefore, in the case of quartz, a wide range of possible EDL 

parameters has to be taken into account when studying a modelled 
IP response. The partition coefficient of the montmorillonite basal 
surface is high (above 50 per cent) whatever the investigated salinity 
varying pH at different salinities for a quartz (0001) crystal surface. Solid 
lines show the results of our numerical simulation, dots show the PHREEQC 

results. Model parameters are given in Table 3 . 
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s. Therefore, the relative contribution of the Stern layer to the mod-
lled IP response of the basal surface of montmorillonite is expected
o be high. For quar tz, var ying the NaCl concentration and/or the
H leads to a strong change in the partition coefficient (from about
 per cent up to 80 per cent), indicating that the relative importance
f Stern layer and diffuse layer for the modelled IP response may
hange drastically depending on the chemical conditions. 

 P O L A R I Z AT I O N  M O D E L  

.1 Basic equations 

o model the polarization of the pore system, we use a Poisson–
ernst–Planck equation system for a symmetric and monovalent

lectrolyte consisting of one cation (subindex p) and one anion
pecies (subindex n ), e.g. NaCl. In the following equations, we
ill not explicitly consider the ion valence z p,n = 1 . Neglecting the

f fect of advecti ve flow on the electric current density of the ions,
he electric current densities j p,n of cations and anions are gi ven b y 

 p,n ( r , t) = −F D p,n ∇c p,n ( r , t) 

∓F μp,n c p,n ( r , t) ∇U ( r , t) . (19) 

n this equation, c p,n (in mol m 

−3 = 10 3 mol L 

−1 ) is the ion concen-
ration and U the electric potential (in V), D p,n (in m 

2 s −1 ) and μp,n 

in m 

2 V 

−1 s −1 ) are the ion dif fusion coef ficient and the ion mo-
ility, respecti vel y. These two parameters are linked to each other
y the Nernst–Einstein equation D p,n = μp,n k B T / ( e) . The vector r
epresents the spatial coordinate and t is the time. 

The divergence of the current density and the temporal variation
f the ion concentration are connected by the continuity equation 

j p,n + F 

∂ 

∂t 
c p,n ( r , t) = 0 . (20) 

e now consider a harmonic perturbation ∝ exp ( iωt) of the elec-
ric potential and both ion concentrations, where ω is the angular
requency (in rad s −1 ): 

( r , t) = U 

(0) ( r ) + δU ( r , ω) exp ( iωt) , (21) 

 p,n ( r , t) = c (0) 
p,n ( r ) + δc p,n ( r , ω) exp ( iωt) , (22) 

ith the equilibrium electric potential U 

(0) and the equilibrium
on concentrations c (0) 

p,n . The per turbation ter ms δU for the electric
otential and δc p,n for the ion concentrations are assumed to be
mall compared to the respective equilibrium quantities. 

The equilibrium ion concentrations can be calculated from 

 

(0) 
p,n ( r ) = c ∞ 

exp 

(
∓ e 

k B T 
U 

(0) ( r ) 

)
. (23) 

n this equation, c ∞ 

is the equilibrium ion concentration in the bulk
lectrolyte. For the case of an external electric field, combining
qs ( 21 ) and ( 22 ) with eqs ( 19 ) and ( 20 ) and neglecting products of
wo perturbation terms yields the linearized equation 

ω δc p,n ( r , ω) = ∇ { D p,n ∇ δc p,n ( r , ω) 

+ μp,n [ c 
(0) 
p,n ( r ) ∇δU ( r , ω) 

+ δc p,n ( r , ω) ∇U 

(0) ( r )] } . (24) 

he effect of non-vanishing charge densities resulting from unequal
ation and anion concentrations on the electric potential can be
xpressed using Poisson’s equation: 

 

2 U ( r , t) = − F 

ε r ε 0 

(
c p ( r , t) − c n ( r , t) 

)
. (25) 
or the equilibrium case, we can use eq. ( 23 ), which results in 

 

2 U 

(0) ( r ) = −κ2 k B T 

e 
sinh 

(
e 

k B T 
U 

(0) ( r ) 

)
. (26) 

sing the assumption of a har monic per turbation for the case with
n external electric field, we obtain 

 

2 δU ( r , ω) = − F 

ε r ε 0 

(
δc p ( r , ω) − δc n ( r , ω) 

)
. (27) 

ince Stern-layer cations arrange within a thin layer at the mineral
urface, we regard them as a surface-charge density � S . Analo-
ously to the ion concentrations of cations and anions, a harmonic
erturbation is expected for the Stern-layer surface-charge density: 

 S ( r S , t) = � 

(0) 
S + δ� S ( r S , ω ) exp ( iω t) , (28) 

here � 

(0) 
S is the equilibrium value and δ� S is the perturbation of

he Stern-layer surface-charge density. Analo gousl y to eq. ( 24 ), one
an obtain a Nernst–Planck equation for the Stern-layer cations as
ell: 

ω δ� S ( r S , ω) = ∇ S ( D S ∇ S δ� S ( r S , ω) 

+ μS � 

(0) 
S ∇ S δU S ( r S , ω)) . (29) 

he operator ∇ S means that gradient and divergence are only formed
long the pore surface. 

.2 New semi-analytical model 

e calculate the low-frequency polarization response of a system
onsisting of two cylindrical pores with radii r 1 and r 2 and lengths
 L 1 and 2 L 2 representing a pore constriction (Figs 4 a and b). The
ider pore is referred to as pore 1 and the narrow pore is referred

o as pore 2. We apply periodic boundary conditions at the ends of
he pore system, describing an infinite sequence of connected pores
f the same geometry. The pore space is assumed to be filled with
 symmetric, monovalent electrolyte with one cation and one anion
pecies (e.g. NaCl). 
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The Poisson–Nernst–Planck equation system is now transformed 
into a 1D system of partial differential equations. We define a sep- 
arate coordinate system for each of the two pores, ranging from 

[ −L 1 , L 1 ] and from [ −L 2 , L 2 ] , respecti vel y, and solve the equa-
tion systems indi viduall y. The indi vidual solutions are then matched 
by suitable boundary conditions as described below. 

To transform eq. ( 24 ) to the 1D, the gradient operators are ex- 
changed by partial derivatives ∂/∂x . We assume the variation of 
the equilibrium electric potential U 

(0) along the pores to be zero, 
because variations in the equilibrium electric potential and ion con- 
centrations only occur in radial direction. The radial variation can 
be described by eqs ( 23 ) and ( 26 ) and suitable boundary condi- 
tions at the pore surface. We use the approach of B ücker & H ördt 
( 2013a ), in which the ion concentrations of anions and cations are 
av eraged ov er the pore’s cross-section. The resulting mean concen- 
tration is then di vided b y the bulk ion concentration, which yield 
the dimensionless factor b p,n . Using this factor, an ef fecti ve ion mo- 
bility of μp,n = b p,n μ

(0) 
p,n can be considered to account for the radial 

variation of concentrations in the equilibrium case. For a more de- 
tailed introduction of this approach, please refer to B ücker & H ördt 
( 2013a ). 

In the non-equilibrium case, we assume an external potential ±V 

to be applied at the two ends of the pore system. 
For simplicity, in the following, we use the symbols for the dif- 

ferent quantities themselves ( c p , c n , � S and U ) rather than the 
symbols for the respective perturbation quantities ( δc p , δc n , δ� S 

and δU ). Ho wever , all equations in this section refer to the respec- 
tive perturbation of the respective quantities. Although the system 

of equations is solved for both pore types indi viduall y, we here only 
present the equations for the wider pore for brevity. 

The resulting partial differential equations for the cation and an- 
ion concentration in the electrolyte have the following form (Mar- 
shall & Madden 1959 ): 

i ω c p = D p 
∂ 2 c p 
∂x 2 

− μp c 0 
∂ 2 U 

∂x 2 
, (30) 

i ω c n = D n 
∂ 2 c n 
∂x 2 

+ μn c 0 
∂ 2 U 

∂x 2 
. (31) 

Here, we use the assumption that in the equilibrium state, the mono- 
v alent, symmetric electrol yte is electroneutral, i.e. c (0) 

p = c (0) 
n = c ∞ 

and the diffusion coefficients D p,n as well as the ion mobilities μp,n 

refer to the ef fecti ve parameters computed following the approach 
by B ücker & H ördt ( 2013a ) as described above. 

To include Stern-layer polarization into the model, we use an 
equi v alent ion concentration. To this end, we multiply the surface- 
charge density by the pore’s circumference and divide by the pore’s 
cross-sectional area. Dividing the result by Faraday’s constant yields 
an equi v alent ion concentration (in mol m 

−3 ): 

c S = 

2 � S 

F r 1 
, c S = 

2 � S 

F r 2 
. (32) 

Note that this approach is an assumption rather than a rigorous 
deri v ation. Since for the pore constriction r 2 < r 1 , this leads to a 
higher equi v alent Stern-layer ion density in the narrow pore. We 
model the Stern-layer cations as an independent third ion species. A 

Nernst–Planck equation for the Stern-layer cations replaces equa- 
tion ( 29 ): 

i ω c S = M D S 
∂ 2 c S 
∂x 2 

− μS c S, 0 
∂ 2 U 

∂x 2 
, (33) 

where c S, 0 is the equi v alent equilibrium ion density of the Stern- 
layer ions, calculated from � 

(0) 
S via eq. ( 32 ). The factor M was 
introduced by Lyklema et al. ( 1983 ) as 

M = 1 + 

κ� S 

2 F c ∞ 

cosh 
(

eϕ d 
2 k B T 

) . (34) 

with κ being the inverse Debye length given by κ = λ−1 
d . Lyklema 

et al. ( 1983 ) originally derived the coefficient M for a spherical 
particle embedded in an electrolyte solution. It accounts for the 
interaction between the Stern-layer cations and the ions in the diffuse 
layer and, for a positi vel y charged Stern layer ( M ≥ 1 ), leads to a 
smaller relaxation time of the cations in the Stern layer. Although M
w as originall y deri ved for a spherical geometr y, we will see fur ther 
below that the effect is the same in our cylindrical model geometry. 
To take the influence of Stern-layer charges on the variation of 
the electric potential along the pore into account, the equi v alent 
ion concentration of the Stern-layer ions has to be included into 
Poisson’s equation as 

∂ 2 U 

∂x 2 
= 

F 

ε 0 ε r 

(
c p − c n + c S 

)
. (35) 

Eqs ( 30 ), ( 31 ), ( 33 ) and ( 35 ) apply to the narrow pore as well.
We use overlined quantities ( c p , c n , c S and U ) to distinguish the 
narrow-pore quantities from the ones in the wider pore (Fig. 4 c). 
Note that for the Stern-layer cations, the equilibrium concentration 
c (0) 

S is different in both pores due to the radius dependency expressed 
in equation ( 32 ). 

Since all three ion flux densities have to be continuous between 
the two cylindrical pores, we have to account for the smaller cross- 
section of the narrow pore when defining the boundary conditions. 
Using the cross-section ratio a = r 2 2 /r 2 1 these boundary conditions 
write: 

j p ( L 1 ) = a j p ( −L 2 ) , 

j n ( L 1 ) = a j n ( −L 2 ) , (36) 

j S ( L 1 ) = a j S ( −L 2 ) . 

The ion concentration of the ions in the electrolyte is assumed to be 
continuous at the boundary, as well: 

c p ( L 1 ) = c p ( −L 2 ) , c n ( L 1 ) = c n ( −L 2 ) . (37) 

As the Stern layer is a thin layer at the pore surface, the Stern-layer 
surface-charge density rather than the equi v alent Stern-layer ion 
concentration should be assumed to be continuous between the two 
cylindrical pores. Therefore, we include the radius dependency of 
the equi v alent ion density into the boundary condition by using the 
square root of the pre viousl y described cross-section ratio a: 

c S ( L 1 ) = 

√ 

a c S ( −L 2 ) . (38) 

Note that on the ion concentrations (eqs 37 and 38 ), the cross- 
section ratio a is not included into the boundary conditions. The 
equation system consisting of eqs ( 30 ), ( 31 ), ( 33 ) and ( 35 ) along
with the boundary conditions in eqs ( 36 ), ( 37 ) and ( 38 ) is solved 
semi-anal yticall y for the electric potential and the ion concentra- 
tions in both pores. We derive an eigenvalue equation which we 
solve numerically and continue calculating the solution analyti- 
cally. A detailed description of the solution can be found in the 
Supplementary Material. Our semi-analytic approach differs from 

the model by B ücker & H ördt ( 2013a ) not only with respect to the 
incorporation of the Stern layer as an additional ion species. It also 
does not require a limitation of the valid frequency range to low 

frequencies – one of the simplifications made in earlier analytic 
membrane polarization models (Marshall & Madden 1959 ; B ücker 
& H ördt 2013a ). 
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Table 4. Model parameters used for the calculation of the IP response, if 
not stated otherwise. 

Parameter Symbol [unit] Value 

Equilibrium NaCl concentration c ∞ 

[mol m 

−3 ] 1 
Absolute temperature T [K] 293 
Relati ve electrol yte permitti vity ε r [-] 80 
Equilibrium ion mobility μ0 [m 

2 V 

−1 s −1 ] 5 × 10 −8 

Equilibrium Stern-layer cation mobility μS [m 

2 V 

−1 s −1 ] 5 × 10 −9 

Pore length of wide pore 2 L 1 [m] 9 × 10 −5 

Pore length of narrow pore 2 L 2 [m] 1 × 10 −5 

Pore radius of wide pore r 1 [m] 2 × 10 −6 

Pore radius of narrow pore r 2 [m] 2 × 10 −7 
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To calculate the resulting ef fecti ve conducti vity of the 1D pore
ystem, we insert the solution for the ion concentration into the
orresponding Nernst–Planck equation to obtain the current den-
ity. The conductivity can then be determined by integrating the
odelled current densities of the ion species over the length of

he two pores, dividing it by the applied electric potential V , and
ultiplying the result with the total length of the pore system: 

= 

2( L 1 + L 2 ) 

V 

[∫ L 1 

−L 1 

(
j p − j n + j S 

)
dx 

+ a 

∫ L 2 

−L 2 

(
j p − j n + j S 

)
dx 

]
. (39) 

he resulting conductivty σ is a complex frequency-dependent
uantity and can therefore be written as 

( ω) = σ ′ ( ω) + iσ ′′ ( ω) (40) 

ith σ ′ being the real and σ ′′ the imaginar y par t of the conductivity.

.3 Numerical model 

o validate the new semi-analytical model, we compare the result-
ng conductivity spectra with a numerical model first presented by
 ücker et al. ( 2019 ). The 3D model consists of two rotationally sym-
etric, cylindrical pores, representing the pore system (Fig. 4 ). The

nterior of the cylinders is assumed to be filled with a monovalent,
ymmetric electrolyte described by the respective ion concentra-
ions of anions and cations. A surface charge density on the pore
urface represents the Stern layer. 

The narrow pore is enclosed by a non-conducting region rep-
esenting the matrix material. In this region, the electric potential
ust fulfill the Laplace equation 

 

2 δU ( r , ω) = 0 . (41) 

he solution for the electric potential and the ion concentrations
nside the pores are calculated in two steps: First, the static solution
s calculated by solving eq. ( 26 ). As a boundary condition, the
quilibrium electric potential on the surface is set to be equal to
he d-plane potential, that is approximated by the Zeta potential
B ücker et al. 2019 ). Via eq. ( 23 ) the ion distribution in the diffuse
ayer and the free electrolyte is computed from the solution for the
otential. For the Stern layer, the equilibrium surface-charge density
s � 

(0) 
S . 

With the static solution at hand, the frequency-dependent case of
 harmonic external electric field applied at the boundaries can be
alculated by solving eqs ( 24 ) and ( 27 ) for the ion concentrations
nd the electric potential, respecti vel y, and eq. ( 29 ) for the Stern-
ayer surface-charge density. 

The non-conducting matrix material, the Stern layer, and the
lectrolyte are coupled by using suitable boundary conditions as
iscussed in B ücker et al. ( 2019 ). 

To calculate the ef fecti ve conducti vity of the pore system, both
he contribution of the electrolyte and the Stern layer have to be
aken into account. The total current density in the electrolyte is
alculated by integrating the anion and cation current densities over
he pore’s cross-section. For the Stern la yer, w e calculate the current
ensity at one end of the pore system from the Nernst–Planck
quation eq. ( 29 ). Both contributions are added and then normalized
o the applied electric field to obtain the conductivity of the 3D
odel of the cylindrical pore sequence. 
 M O D E L  C O M PA R I S O N  

.1 Spectral response 

e compare the spectra obtained from the new semi-analytic model
nd the numerical model by B ücker et al. ( 2019 ) to the response of
he “old analytical” model by B ücker & H ördt ( 2013a ). For the latter,
e also use the correction for the Stern-lay er cations, w hich B ücker
 H ördt ( 2013a ) in their largely simplifying approach simply add

o the diffuse-layer cations. If not stated otherwise, the parameters
sed for the simulations are listed in Table 4 . 

Figs 5 (a) and (c) show example spectra of the normalized com-
lex conductivity σ ( ω) /σ0 , where 

0 = 2 F μ0 c ∞ 

(42) 

s the bulk conductivity of the electrolyte. Fig. 5 (b) shows the real
art of the normalized complex conductivity relative to its low-
requency limit: σ ( ω) /σ ′ ( ω → 0) . 

The real part of the normalized complex conductivity (Figs 5 a and
) is different for all three models, but varies only over a rather small
ange. Normalizing the real part to the respective low-frequency
imits illustrates that the overall spectral behaviour of the new semi-
nalytical model and the numerical model show a similar frequency
ependence, while the old analytical model deviates. 

For the imaginary part (Fig. 5 c), the ne w semi-anal ytic model
hows a fair agreement with the numerical simulation around the
eak at lower frequencies, whereas there are significant differences
t higher frequencies. Our semi-analytic model does not explicitly
nclude Maxwell–Wagner polarization of the modelled material,
hich is caused by a difference in bulk electric properties. How-
 ver, our semi-anal ytic approach in volving tw o different types of 1D
ores leads to an artificial difference in the electrical conductivity
t the boundary between these pores. Therefore, our semi-analytic
odel exhibits a high-frequency peak, which is a mathematical

rtifact and should not be confused with the physical process of
axwell–Wagner polarization in a real 3D pore sequence. In con-

rast, the numerical model includes a pore constriction in the form
f a matrix material narrowing the pore channel. By doing that,
he electrical properties of the matrix are included in the numerical
odel and therefore, the high-frequency peak can be interpreted as
axwell–Wagner polarization (B ücker et al. 2019 ). Since the high-

requency increase of the new semi-analytic model is not related to
 real physical process, we define an interpretable frequency range
white area in Fig. 5 ) as the regime where the low-frequency peak
s not masked by the high-frequency increase and can clearly be
istinguished from it. 

In comparison to the other models, the old analytical model only
roduces a polarization response where the polarization peak is
maller and shifted to significantly higher frequencies for the chosen
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Figure 5. Complex-conductivity spectra. (a) Real part normalized to the bulk conductivity σ0 , (b) real part normalized to the respective low-frequency limit 
σDC and (c) imaginary part of the complex conductivity normalized to the bulk conductivity, produced by the new semi-analytical model, the numerical 
model by B ücker et al. ( 2019 ) and the old analytical model by B ücker & H ördt ( 2013a ) for � S = 1 mC m 

−2 and ϕ d = −25 mV. The yellow lines indicate the 
maximum imaginary conductivity σmax and the relaxation time τ of the new semi-analytical model. The grey area indicates the frequency range, in which our 
ne w semi-anal ytical model is not interpretable. 
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parameter set. Since the contribution at higher frequencies is omitted 
in the old analytical model, no additional high-frequency peak is 
visible in the spectra produced by that model. 

The imaginary conductivity spectra for other parameter sets are 
displayed in Fig. 6 . For spectra 1 and 3 (i.e. low d-plane potentials), 
the ne w semi-anal ytical model is able to reproduce the numerical 
model and exhibits the same non-symmetric spectral shape, while 
the old analytic model shows significant deviations. For spectrum 2 
(i.e. high d-plane potential and Stern-layer surface-charge density), 
both the old and the ne w semi-anal ytic model are able to repro- 
duce the primary peak at low frequencies, but fail to reproduce the 
behaviour at frequencies at around ∼ 10 3 rad s −1 , where the nu- 
merical model shows a secondary peak. For spectrum 4 (i.e. a low 

d-plane potential and a high Stern-layer surface-charge density), the 
response of the new semi-analytic model merges into that of the old 
analytic model. Compared to the numerical model, the polarization 
magnitude is overestimated whereas the peak frequency is fairly 
well reproduced. 

4.2 Maximum imaginary conductivity and relaxation time 

To compare our new semi-analytic model with the numerical model 
and the old analytical model over a wider parameter range, we 
calculate the maximum imaginary conductivity σ ′′ 

max and the related 
relaxation time. We approximate the latter with the inverse of the 
peak angular frequency of the imaginary conductivity, that is τ = 
(
ω( σ ′′ 

max ) 
)−1 

. If no low-frequency peak is detectable, no value is 
given for the chosen parameter set. Since our new semi-analytic 
model and the numerical model include the polarization of both the 
Stern layer and the diffuse layer (i.e. membrane polarization), two 
distinct peaks related to either process may e ventuall y occur in the 
low-frequency range (e.g. Fig. 6 b). In that case, we consider the 
peak with the higher maximum imaginary conductivity to be the 
primary peak. 

Fig. 7 shows the maximum imaginary conductivity and the re- 
spective relaxation time for the numerical model (a and b), the new 

semi-analytic model (c and d) and the old analytic model (e and f) for 
varying d-plane potentials and Stern-layer surface-charge densities. 
All three models show similar patterns in terms of the maximum 

imaginary conductivity (Figs 7 a, c and e) and cover the same range 
of values in the studied parameter space. For low d-plane potential 
magnitudes, the numerical model and the new semi-analytic model 
agree well, while the old analytic model shows slightly higher max- 
imum imaginary conductivities for high Stern-layer surface-charge 
densities. At higher d-plane potential magnitudes, the new semi- 
analytic model rather fits the old analytic model with an approxi- 
mately constant maximum imaginary conductivity for a changing 
surface-charge density of the Stern lay er, w hile the numerical model 
shows some slight dependence on the Stern-layer surface-charge 
density. This behaviour can also be observed in the example spectra 
in Fig. 6 : Spectra 1 and 3 show the same maximum imaginary con- 
ductivity for the numerical and the new semi-analytic model, while 

art/ggae370_f5.eps


Stern-layer polarization in pore throats 1919 

Figure 6. Imaginary part of the normalized complex conductivity of the three models for (a) � S = 57 . 5 mC m 

−2 and ϕ d = −46 mV, (b) � S = 57 . 5 mC m 

−2 

and ϕ d = −165 mV, (c) � S = 2 . 5 mC m 

−2 and ϕ d = −46 mV and (d) � S = 2 . 5 mC m 

−2 and ϕ d = −165 mV. 
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Figure 7. Maximum imaginary conductivity (a, c and e) and relaxation time (b, d and f) for the numerical model (a and b), the new semi-analytical model 
(c and d) and the old analytical model (e and f). The red star indicates the position of the example spectrum in Fig. 5 in the parameter space, the white dots 
correspond to the spectra in Fig. 6 . 
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Figure 8. (a and c) Relati ve Dif ference of the maximum imaginary conductivity and (b and d) logarithmic difference of the relaxation time for (a and b) the 
ne w semi-anal ytical model and (c and d) the old anal ytical model. 
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for Spectrum 4, the peak amplitude of the new semi-analytic model 
rather matches that of the old analytic model. 

For the numerical model, the calculated relaxation time (Fig. 7 b) 
exhibits two regimes: for low d-plane potential magnitudes, the 
relaxation time strongly varies with the surface-charge density of 
the Stern lay er, w hile for suf ficientl y high d-plane potential magni- 
tudes, no significant variation is apparent. This behaviour is related 
to the relative importance of Stern-layer and membrane polarization, 
that is which process dominates the overall polarization response. 
For low d-plane potential magnitudes, the dominating process is 
the polarization of the Stern lay er, w hile for higher d-plane poten- 
tial magnitudes, the relaxation time is dominated by a membrane- 
polarization process. The new semi-analytic model shows a similar 
behaviour, although the transition between the two regimes hap- 
pens at slightly lower d-plane potential magnitudes. The old ana- 
lytic model shows no strong variation in the relaxation time, since 
Stern-layer polarization is not included in the model and there- 
fore membrane polarization is the dominating process in the whole 
parameter space. This behaviour is also apparent in the spectra dis- 
play ed in F ig. 6 : While we see a shift in the peak frequency for the 
numerical model and the new semi-analytic model, the peak occurs 
in the same frequency range for the old anal ytic model. Onl y in 
the parameter space where the polarization process is dominated by 
membrane polarization, all three models predict the same relaxation 
time. 

Fig. 8 shows the relati ve dif ference of the maximum imaginary 
conductivity 

� rel σ
′′ 
max = 

σ ′′ 
max − σ ′′ 

max , num 

σ ′′ 
max , num 

(43) 

and the logarithmic difference of the relaxation time 

� log τ = log ( τ ) − log ( τnum 

) (44) 

of both the ne w semi-anal ytic model and the old analytic model 
compared to the results of the numerical model. Although both 
models exhibit deviations compared to the numerical model, the 
dif ferences are significantl y larger for the old analytical model. 
In particular, the prediction of the relaxation time at low d-plane 
potential magnitudes is improved by the new semi-analytic model. 

Overall, the new semi-analytic model is able to reproduce the 
main features in terms of polarization time and maximum imag- 
inary conductivity, while the old analytic model only agrees well 
when the polarization process is dominated by membrane polar- 
ization. Therefore, the ne w semi-anal ytic model is a significant 
improvement, particularly in the regime dominated by Stern-layer 
polarization. 

5  R E S U LT S  A N D  D I S C U S S I O N  

5.1 Polarization response for different mineral surfaces 

We investigate the polarization response of a montmorillonite and a 
quartz surface predicted by the new semi-analytic model. We vary 
the NaCl concentration along with the permanent ne gativ e surface- 
charge density due to isomorphic substitution (montmorillonite) or 
the pH (quartz), respecti vel y. 

In a first step, we use our surface-complexation models to calcu- 
late the Stern-layer surface-charge density and the d-plane potential 
for each parameter combination. The results are displayed as isolines 
in Fig. 9 . We then use the resulting EDL parameters to calculate 
the IP response of the ne w semi-anal ytic membrane-polarization 
model. To analyse the results, we consider the maximum imaginary 
conductivity and the relaxation time as previously defined. 

We will use the same pore geometry for both types of surface (see 
Table 3 ) in order to investigate the effect of the different surface- 
complexation models separately from the effect of geometry. Ad- 
ditionally, we will use the same pore geometry as in B ücker et al. 
( 2019 ) to make our results comparable to previous results. How- 
ever, the choice of the same pore geometry for quartz and clay is 
not realistic in comparison to realistic geologic materials. While 
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he chosen length scales are reasonable for quar tz g rains (e.g. Koch
t al. 2011 ; Weller et al. 2011 ), the microstructure of clay typically
xhibits smaller length scales (e.g. Leroy et al. 2015 ; Tournassat
t al. 2015 ). We will discuss our results considering more realistic
ore geometries for montmorillonite in Section 5.4 . 

.1.1 Montmorillonite surface 

or the basal surface of montmorillonite (Figs 9 a and c), the Stern-
ayer surface-charge density mostly depends on the surface-charge
ensity at the clay surface. The d-plane potential magnitude is
argely controlled by the NaCl concentration but also shows a
light dependence on the surface-charge density. In the parame-
er space considered here, the maximum imaginary conductivity
trongl y v aries with the d-plane potential, exhibiting the largest val-
es for high d-plane potential magnitudes. This is due to higher
-plane potential magnitudes corresponding to a higher charge den-
ity in the diffuse layer, leading to a larger polarization effect (e.g.
 ördt et al. 2016 ). 
The relaxation time decreases with increasing surface-charge

ensity of the Stern-layer, especially for high NaCl concentrations
nd thus low d-plane potential magnitudes. A similar effect is de-
cribed by the Stern-layer polarization model by Lyklema et al.
 1983 ), where the relaxation time of the Stern layer depends on the
arameter M : 

L = 

R 

2 

2 D S M 

∝ 

1 

M 

, (45) 

here R is the radius of the polarizing grain. Because M increases
ith increasing Stern-layer surface-charge density (eq. 34 ), the re-

axation time τL decreases accordingly. This indicates, that for mont-
orillonite, Stern-layer polarization is the dominant polarization

rocess due to the comparably high partition coefficients of around
0 per cent in the studied parameter space (see Fig. 2 ). 
For higher d-plane potential magnitudes, that is at lower NaCl
oncentrations, the dependence on the Stern-layer surface-charge
ensity becomes weaker. This can be explained by the contribu-
ion of membrane polarization becoming more important for the
verall polarization response, which is, ho wever , still dominated by
tern-layer polarization. Consequently, in our membrane polariza-

ion model, Stern-layer polarization is the more important polariza-
ion process for clay minerals for the chosen pore lengths and radii.
ote that the pore geometry might have an influence on this result,

s it also has a strong effect on the polarization behaviour. 

.1.2 Quartz surface 

or a quartz surface (Figs 9 b and d), the surface-charge density of
he Stern layer strongly increases with increasing pH and with in-
reasing NaCl concentration, while the d-plane potential magnitude
ncreases with an increasing pH and decreases with an increasing
aCl concentration. As it is the case for montmorillonite (Fig. 9 a),

he maximum imaginary conductivity increases for an increasing
-plane potential magnitude due to the larger number of ions in the
iffuse layer. We can identify two regimes in the relaxation time
Fig. 9 d): For an ion concentration smaller than 10 mol m 

−3 , the
elaxation time is mostly controlled by the d-plane potential, indi-
ating that membrane polarization is the dominant process. For ion
oncentrations larger than 10 mol m 

−3 , the relaxation time is domi-
ated by the surface-charge density of the Stern layer, indicating that
tern-layer polarization is the dominant process. In both regimes, a
ecrease of the relaxation time for increasing pH can be observed.
or the membrane-polarization regime, this is in accordance with
he results from H ördt et al. ( 2016 ) (their fig. 14). For the regime
ominated by Stern-layer polarization, the pH dependency of the
elaxation time is even more pronounced. 
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Figure 10. Imaginary conductivity spectra for different NaCl concentra- 
tions for a pore system with a quartz surface at pH 5.5. Black circles indicate 
the picked peak position for each spectrum. 
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We now want to investigate the transition between these two 
regimes more closely. For that purpose, we consider selected spec- 
tra of the imaginary conductivity for a quartz surface at pH 5.5 
for different NaCl concentrations around 10 mol m 

−3 . The resulting 
spectra are displayed in Fig. 10 . The picked peaks of the imagi- 
nary conductivity for each spectrum are indicated by black circles 
in Fig. 10 . For concentrations above the threshold of 10 mol m 

−3 , 
the spectrum is dominated by a low-frequency peak at ∼0.3 rad s −1 

caused by Stern-layer polarization. For decreasing concentration, a 
second peak caused by membrane polarization at a higher frequency 
of ∼2 Hz builds up and becomes dominant below 10 mol m 

−3 . As 
soon as the membrane polarization becomes dominant, the calcu- 
lated relaxation time (i.e. the inverse of the peak frequency) shows 
a sudden increase, which leads to the transition between regimes 
visible in Fig. 9 (d). 

This observation indicates that for quartz surfaces, depending on 
the ion concentration, both membrane polarization and polarization 
of the Stern layer make a significant contribution to the overall 
polarization response. In addition, pH also influences the respective 
contribution of membrane polarization and Stern-layer polarization 
to the overall polarization. Note that at the limit between the two 
re gimes, both processes hav e a similar magnitude. Therefore, the 
maximum imaginary conductivity in Fig. 9 (b) exhibits a smooth 
transition around the threshold concentration. 

5.2 Influence of pore geometry 

Besides the structure of the EDL, also the pore geometry, that is the 
pore lengths and radii, have a large influence on the IP-response. We 
therefore run a parameter study varying the geometric parameters 
of the pore system and compare our results to those H ördt et al. 
( 2017 ) obtained for the old analytic model. 

When changing the length of the pores, H ördt et al. ( 2017 ) ob- 
served two regimes for the relaxation time (their figs 3 and 4): For 
suf ficientl y short wide pores, the relaxation time quadratically de- 
pends on the length of the wide pore, while for longer wide pores, 
only a quadratic dependence on the length of the narrow pore can be 
observed. This behaviour can be explained as the relaxation mainly 
takes place in one of the two pores, leading to a relaxation time 
that only depends on one pore length. These two regimes are called 
long and short narrow regime, depending on the pore dominating 
the relaxation process (B ücker & H ördt 2013b ). Our new semi- 
analytic model shows a similar behaviour and is therefore not fur- 
ther discussed (see Supplementary Material for the corresponding 
figures). 

Fig. 11 shows the maximum imaginary conductivity (a and c) 
and the relaxation time (b and d) for the new (a and b) and the 
old analytic model (c and d). Note that results for r 2 > r 1 are not 
shown, because for those parameter combinations, the narrow and 
the wide pore simply switch their roles. For the new semi-analytic 
model, no value is given for high radii of the wider pore, because in 
that regime, the polarization peak is masked by the high-frequency 
polarization and can therefore not be identified. We observe a sim- 
ilar behaviour of both models for most parameters, indicating that 
membrane polarization is the dominant process in the parameter 
space studied. Only for small radii, the relaxation times of the 
ne w semi-anal ytic model de viate from those of the old anal ytic 
model, because Stern-layer polarization becomes the dominating 
process. Hence, not only the structure of the EDL, but also the 
pore geometry, or more precisely, the radii of the two pores, in- 
fluence the relative importance of the two competing polarization 
processes. 

5.3 Comparison to grain-based models 

Due to their complex geometrical structure, natural geologic ma- 
terials are only represented in a highly simplified manner by both, 
pore-based models like those discussed in this study and grain- 
based models considering spherical particles (e.g. Schwarz 1962 ; 
Lyklema et al. 1983 ; Leroy et al. 2008 ; B ücker et al. 2019 ). A com- 
parison to grain-based models can help identifying differences and 
similarities of the predictions of both model families. 

The IP relaxation time for non-conducting geologic materials 
typically exhibits a quadratic dependence on a characteristic length 
scale. Just as existing models (e.g. Volkmann & Klitzsch 2010 ; 
B ücker & H ördt 2013a , b ), for our new semi-analytic model this 
length scale is related to the pore length of either the wide or the 
narrow pore. In contrast, the relaxation time of grain-based models 
is controlled by the grain radius (e.g. Schwarz 1962 ; Dukhin & 

Shilov 1974 ; Fixman 1980 ; Lyklema et al. 1983 ). 
Lyklema et al. ( 1986 ) and de Lima & Sharma ( 1992 ) ob- 

served that the diffuse layer polarization model involving po- 
larization of neutral ion clouds outside the EDL better repro- 
duces low-frequency dielectric dispersion measurements on col- 
loidal particles than a Stern-layer polarization model. Delgado et al. 
( 1998 ) showed that the surface diffusion mechanism associated with 
Stern-layer polarization dominates the polarization response com- 
pared to the volume-diffusion mechanism associated with diffuse- 
layer polarization when particle concentration increases in such a 
way that the space allowing ion cloud formation is not available 
anymore. 

Studies of the coupled polarization of Stern layer and diffuse 
layer (Lesmes & Morgan 2001 ; B ücker et al. 2019 ) show that for 
grain-based models, typically the polarization of the Stern layer 
is the dominating polarization process as it exhibits a larger mag- 
nitude (de Lima & Sharma 1992 ), while the polarization of the 
diffuse layer only plays a minor role. In our new semi-analytic 
model, the polarization of the Stern layer and the membrane polar- 
ization can lead to comparably large polarization amplitudes (see 
Fig. 10 ). Whether one or the other process dominates depends on 
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he structure of the EDL, which in turn depends on electrolyte con-
entration and pH, and pore geometr y. Therefore, Ster n-layer po-
arization should no longer be neglected in membrane-polarization

odelling. 

.4 Comparison to experimental data 

ow we want to compare the predictions of our new semi-analytic
odel to some experimental results from previous studies. Mendi-

ta et al. ( 2021 ) performed spectral induced-polarization measure-
ents on unconsolidated clays with varying fluid conductivity. They

bserved an increasing imaginary conductivity with fluid conduc-
ivity at low values of fluid conductivity and a decreasing imaginary
onductivity with fluid conductivity at higher fluid conductivity. A
imilar behaviour was already observed in the modelling results
f H ördt et al. ( 2016 ) for membrane polarization with suf ficientl y
mall radii. 

For the comparison, we use a pore geometry similar to the mi-
rostructure of montmorillonite. For the pore constriction, we use a
ore cross-section of approximately four Debye lengths, which is a
ypical distance between two montmorillonite particles (Leroy et al.
015 ). Note that the Debye length changes with fluid conductivity
eq. 2 ). For the wide pore, we assume a pore cross-section which is
.5 times larger than that of the narrow pore (i.e. ten Debye lengths).
ypically, montmorillonite clay platelets have a length between 50
nd 1000 nm (Tournassat et al. 2015 ). We therefore choose a length
f 500 nm for the narrow pore, such that the pore constriction rep-
esents the space between two montmorillonite particles. For the
arger pore, we chose a length of 5 μm. 
For this clay-like pore geometry, we calculate the maximum imag-
nary conductivity for different surface-charge densities and vary-
ng ion concentration, which are displayed in Fig. 12 . The results
f the full parameter space (i.e. for varying � 0 and c ∞ 

as shown in
ig. 9 for the larger pore geometry) are given in the Supplementary
aterial. The maximum imaginary conductivity shows increasing

alues at low ion concentrations and decreasing values at higher
on concentrations. The concentration of the peak tends to higher
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concentrations for larger surface-charge densities. This peak-like 
behaviour of the maximum imaginary conductivity is similar to the 
one observed by Mendieta et al. ( 2021 ). 

For glass beads, Leroy et al. ( 2008 ) observe a decreasing max- 
imum phase shift with increasing fluid salinity and Weller et al. 
( 2011 ) see a similar behaviour for the chargeability of sandstones. 
In agreement with these experimental observations, our model pre- 
dicts a decreasing maximum imaginary conductivity (Fig. 9 b) for 
quartz surfaces. For sandstone Weller et al. ( 2011 ) report a con- 
stant or slightly decreasing relaxation with increasing fluid salinity. 
Fig. 9 (d) shows such a behaviour for some parameter combinations. 
Ho wever , the variation of the relaxation time in Fig. 9 (d) is highly 
dynamic and therefore no clear prediction of the direction of change 
of the relaxation time with fluid conductivity can be made. 

5.5 Limitations of the model 

The ne w semi-anal ytic model exhibits v arious limitations. Al- 
though the predicted main relaxation time and the amplitude of 
the imaginary-conductivity peak of the new semi-analytic model 
are in agreement with those of the numerical model, the exact spec- 
tral response including minor peaks can not be reproduced well for 
some parameter sets. This limitation is probably due to the use of the 
ef fecti ve concentration of Stern-layer cations instead of describing 
the Stern-layer cations in terms of a surface-charge density. 

To achieve a suitable description of Stern-layer polarization, the 
mobility of the cations in the Stern layer is an important parameter. 
Ho wever , this value is not well constrained (Weller et al. 2013 ). 
Modelling of the surface conductivity of clay materials indicates 
that the Stern-layer cation (e.g. Na + ) mobility might be several 
orders of magnitude lower than the cation mobility in the bulk 
electrol yte (Re vil 2012 ; Weller et al. 2013 ), whereas cation (e.g. 
Na + ) mobilities in the Stern layer and the bulk electrolyte are more 
likely to have similar values for silica minerals (Leroy et al. 2008 ; 
Revil 2012 ). In the case of dispersed clay suspensions, Leroy et al. 
( 2017 ) successfully reproduced measured low-frequency complex 
conductivity spectra considering that Na + mobility in the Stern layer 
of montmorillonite is half its value in bulk electrolyte. Compared 
to Leroy et al. ( 2017 ), increasing clay-particle concentration in 
the experiments used in Revil ( 2012 ) may explain the very low- 
ef fecti ve Na + mobility in the Stern layer found by Revil ( 2012 ) due 
to interacting clay particles. 

Fur ther more, the spectral response at high frequencies can not 
be modelled suitably, limiting the model’s interpretable frequency 
range to the frequency range, at which the low-frequency polariza- 
tion is not masked by the steep high-frequency increase in imaginary 
conductivity. 

At this stage, our model is limited to a monovalent, symmetric 
electrolyte and the surface-complexation model is only valid for a 
NaCl solution. Since naturally occuring pore fluids contain many 
different ion species with some of them having higher valences, 
this limitation restricts the practical applicability of our model to 
the modelling of realistic geological materials. We do not take the 
contribution of H 

+ -ions to the overall conductivity into account, 
which might cause deviations at low pH (Skold et al. 2011 ). 

Additionally, our model describes the pore channel as a system 

consisting of two types of cylindrical pores. This represents a strong 
simplification compared to the pore space of real geologic materials. 
In addition, our model can only account for two pore radii, which is 
in contrast to the wide range of pore radii occuring in natural rocks. 
Therefore, a suitable upscaling technique is necessary to model 
realistic geologic materials. Such models have been proposed, for 
example by Stebner et al. ( 2017 ) or Maineult et al. ( 2017 ) in the 
form of random networks of different pores, where the overall po- 
larization response is calculated from Kirchhoff’s law (Kirchhoff 
1845 ). An alternative hybrid approach is presented by Niu et al. 
( 2020 ), where small-scale polarization models are convoluted with 
the pore-size distribution of a rock sample. The result is used to 
calculate an ef fecti ve fluid conducti vity, which is then used to pre- 
dict the overall response of the rock geometry taken from digital 
images. Our new model can be used with either upscaling method, 
of course al wa ys considering the limitations discussed above. 

To this point, our model relates the difference in transference 
numbers causing the polarization effect to a difference in pore radii. 
Chuprinko & Titov ( 2017 ) studied a model consisting of two pores 
of the same radius, but exhibiting different EDL structures, which 
they relate to different mineral surfaces. Their work indicates that 
such a situation might lead to another membrane polarization mech- 
anism in addition the polarization of the Stern layer and membrane 
polarization caused by pore constrictions (Chuprinko & Titov 2017 ). 
An extension of our model to different mineral surfaces in the two 
pores might enable modelling this kind of polarization, too. 

6  C O N C LU S I O N  

We present a new model for membrane polarization that does not 
only include the polarization of the diffuse layer but also the po- 
larization of the cations in the Stern layer. This extension is im- 
plemented by considering a third Nernst–Planck differential equa- 
tion describing the Stern-layer cations besides those for cations and 
anions in the electrolyte and the diffuse layer. Comparison with nu- 
merical simulations using the model by B ücker et al. ( 2019 ) shows 
a good agreement and a great improvement relative to the analytical 
model by B ücker & H ördt ( 2013a ). 

We use surface-complexation models for both a clay and a silica 
surface to model the structure of the EDL for different chemical 
conditions in the electrolyte solution (NaCl concentrations, pH). 
We then use these results in our polarization model: For montmo- 
rillonite, in the studied parameter space of surface charge densities 
between −0 . 1 and −0 . 15 C m 

−2 and NaCl concentrations between 
1 and 100 mol m 

−3 , the overall polarization response is dominated 
by Stern-layer polarization. In the case of a quartz surface, two 
regimes can be identified that correspond to a dominant Stern-layer 
polarization (for NaCl concentrations below ∼ 10 mol m 

−3 ) and a 
dominant polarization of the diffuse layer (for NaCl concentrations 
above ∼ 10 mol m 

−3 ), respecti vel y. It is noteworthy that both po- 
larization processes contribute with similar magnitudes in the pore 
constriction geometry, which dif fers significantl y from the relative 
contributions of Stern- and diffuse-layer polarization predicted by 
grain-based models. 

Beside the structure of the EDL, as in earlier membrane- 
polarization models, the pore geometry has a strong influence on 
the predicted polarization behaviour. Overall, our new semi-analytic 
model shows a similar dependence on geometrical parameters (pore 
lengths and radii) as the model of B ücker & H ördt ( 2013a ). The re- 
laxation time systematically depends on the length of either the 
wider or the narrow pore, depending on which pore dominates the 
relaxation process. Similar to the structure of the EDL, the pore 
radius has an influence on the respective contribution of Stern-layer 
polarization and the polarization of the diffuse layer: For small 
radii (below 5 × 10 −8 nm for the wide and below 5 × 10 −9 nm for 
the narrow pore), Stern-layer polarization is the dominant process, 
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hile for larger radii, membrane polarization dominates the overall
olarization response. 

Since the inclusion of Stern-layer polarization in the membrane-
olarization model is a significant improvement compared to previ-
us analytic models, our model allows further investigation of the
olarization taking place at constrictions of electrolyte-filled pores.
uture investigations of the modeled polarization response will give
eeper insight into the processes taking place at the pore scale. 
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 ücker , M. , Flores-Orozco, A., Undorf, S. & Kemna, A., 2019. On the role
of Stern- and diffuse-layer polarization mechanisms in porous media, J.
Geophys. Res. Solid Earth, 124, 5656–5677. 
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 ördt , A. , Bairlein, K., Bielefeld, A., B ücker, M., Kuhn, E., Nordsiek, S. &
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A P P E N D I X  A :  C A L C U L AT I O N  O F  

S U R FA C E  C H A RG E  D E N S I T I E S  

A1 Montmorillonite 

The equilibrium constant of Na -adsorption can be calculated as 

K Na , Mt = 

� X −···Na + 

� X −a Na 
exp 

(
eϕ d 

k B T 

)
(A1) 

with � i being the surface-site density of species i . In particular, � X −

is the surface-site density of the clay sites > X 

− without a sodium 

cation attached. The total surface-charge density is connected to the 
surface-site densities by 

� 0 = −e ( � X − + � X −···Na + ) . (A2) 

Inserting eq. ( A2 ) into eq. ( A1 ) and rearranging leads to 

� X −···Na + = −
K Na , Mt a Na exp 

(
− eϕ d 

k B T 

)
1 + K Na , Mt a Na exp 

(
− eϕ d 

k B T 

) � 0 

e 
(A3) 

and with 

� S = e� X −···Na + (A4) 

we obtain eq. ( 9 ). 

A2 Quartz 

The two equilibrium constants for protons and sodium cations can 
be expressed in terms of the surface-site densities � i as 

K H = 

� SiOH 

� SiO −a H 
exp 

(
eϕ 0 

k B T 

)
(A5) 
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K Na , Qtz = 

� SiO −···Na + 

� SiO −a Na 
exp 

(
eϕ d 

k B T 

)
. (A6) 

hese equations can be rearranged to 

 SiOH = K H a H exp 

(
− eϕ 0 

k B T 

)
� SiO − (A7) 

nd 

 SiO −···Na + = K Na , Qtz a Na exp 

(
− eϕ d 

k B T 

)
� SiO − . (A8) 

he total surface-site density is 

 S = � SiO − + � SiOH + � SiO −···Na + = A� SiO − (A9) 
C © The Author(s) 2024. Published by Oxford University Press on behalf of The R
article distributed under the terms of the Creative Commons Attribution License ( h
permits unrestricted reuse, distribution, and reproduction in any medium, provided
ith A defined in eq. ( 16 ). We can therefore make the substitution 

 SiO − = 

� S 

A 

(A10) 

n eqs ( A7 ) and ( A8 ). Now the surface-charge densities at the 0-
lane can be expressed as 

 0 = −e ( � SiO − + � SiO −···Na + ) (A11) 

nd at the Stern plane as 

 S = −e� SiO −···Na + (A12) 

ielding eqs ( 14 ) and ( 15 ). 
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