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Abstract
In this work, we use a statistical approach for modeling shallow landslide rainfall thresh-
olds (Caine 1980) with a case study for the Alpes-Maritimes region (France). Cumulated 
rainfall / duration (ED) thresholds are obtained with the CTRL-T algorithm (Melillo and 
al. 2018) for different non-exceedance probabilities from a landslide and two climatic data-
sets. This tool allows to automatically define rainfall events that might trigger landslides, 
ensuring robustness and objectivity in this process. The first climate dataset stores high 
resolution gridded rainfall data (1km resolution, hourly), which provides rainfall data with 
high temporal and spatial accuracy. This dataset, coming from radar data, is calibrated with 
rainfall gauges, ensuring a higher accuracy of the rainfall measurements. It provides the 
rainfall records directly used in the threshold construction The second dataset contains 
lower resolution gridded rainfall, snow, temperature, and evapotranspiration data (8km 
resolution, daily); it enables to assess the region’s climate through parameters imported in 
CTRL-T. The thresholds are then validated using a method designed by Gariano and et al. 
(2015). Several improvements are made to the initial method. First, evapotranspiration val-
ues approximated in the process are replaced by values from the second climate dataset, the 
result accounting best for the regional climate. Then, computing duration values used for 
isolating events and sub-events for each mesh point allows to consider the heterogeneity 
of the Alpes-Maritimes climate. Rainfall thresholds are eventually obtained, successively 
from a set of probable conditions (MRC) and a set of highly probable conditions (MPRC). 
The validation process strengthens the analysis as well as enables to identify best perform-
ing thresholds. This work represents novel scientific progress towards landslide reliable 
warning systems by (a) making a case study of empirical rainfall thresholds for Alpes-Mar-
itimes, (b) using high-resolution rainfall data and (c) adapting the method to climatically 
heterogeneous zones.
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1  Introduction

In many regions in the world, the principal trigger of shallow landslides is rainfall, causing 
fatalities, isolating population, and resulting in damage and economic losses. Forecasting 
the occurrence of landslides is one of the ways of mitigating the risk and of protecting 
the population. In that purpose, rainfall thresholds constitute a widely used tool to pre-
dict the possible occurrence of a landslide, especially applied at a territorial scale (Guz-
zetti et  al. 2008). Different approaches can be founded for defining thresholds (Guzzetti 
et al. 2007): empirically, statistically (based on past conditions that resulted in landslides) 
or using physically-based (related to physical concepts such as slope stability models). The 
physically-based approach can be used for susceptibility models, dynamically (considering 
water table level) or in combination with threshold models. These methods are very inter-
esting but have still some limitations. Indeed, in most of study, the studied area is small, at 
local scale. This is due to different elements needed for this kind of models; indeed phys-
ically-based models over large areas require big computational needs (Alvioli and Baum 
2016). Moreover, geological, geotechnical and hydrogeological information at high resolu-
tion is necessary to feed these models, while these data are usually available only for small 
areas. At the contrary, statistical approaches are very interesting at territorial scale, as they 
require less computer means and less accurate input data.

A rainfall threshold for landslide triggering can be defined as a set of rainfall, soil mois-
ture or hydrological conditions that, when reached or exceeded, are prone to initiating 
landslides. The first rainfall threshold proposed in the literature (Caine 1980) is a curve 
of equation I = �D−� separating triggering and non-triggering intensity (I) /duration (D) 
conditions. Empirical thresholds are most often based on rainfall events characteristics, 
that can be intensity/duration (ID), cumulated rainfall (E)/ duration (D) / (ED) or intensity/
cumulated rainfall (IE). Depending on studies, intensity parameter can be defined consid-
ering peak intensity or mean intensity. The cumulated rainfall E is defined as the sum of 
precipitations within an event, and the difference of their definition depends on the extents 
of the rainfall events. For instance, Peruccacci et al. (2012) defined a rainfall event that is 
preceded and followed by a dry period of a certain period, depending on the season. Some 
models take into account the antecedent rainfall as well (Guzzetti et al. 2007). The scope 
of this work being to define a single threshold for a whole territorial unit (French depart-
ment) in the perspective of a future LEWS, we made the choice to work with empirical 
thresholds.

A lot of publications can be found using statistical rainfall thresholds (Aleotti 2004; 
Guzzetti et al. 2007; Brunetti et al. 2010; Segoni et al. 2014; Melillo et al. 2018). Moreo-
ver, Segoni et al. (2018) recently performed a review of 107 papers on rainfall thresholds 
for landslide triggering, analyzing different features such as: rain gauge selection, type of 
threshold, threshold parameters, validation method, and landslide type. The most used 
characteristics of rainfall are the intensity, cumulated rainfall, and duration of the rainfall 
event.

A high variety exists in the objectives, uses and characteristics of rainfall thresholds 
(Segoni et al. 2018). This review highlights the necessity of using an automatic proce-
dure for all steps for defining thresholds, as it ensures robustness and objectivity. More-
over, the quality of input data (rainfall data and landslide database) is of great impor-
tance for obtaining a reliable threshold, even more as the final objective is to design a 
Landslide Early Warning System (LEWS). Most studies dedicated to landslide rainfall 
threshold determination are based on rain gauge data. However, the use of this data has 
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some limits (Marra et al. 2014), as: i) the rain gauge network often has a low density, 
with heterogeneous locations, ii) the spatial distribution might lack representativeness, 
especially in high altitude mountains where few rain gauges are installed. These lim-
its lead to a systematic underestimation of the triggering conditions. At the contrary, 
remote–sensing observations, and among them weather radar rainfall, provide a high 
temporal and spatial resolution rainfall estimation (Marra et al. 2014). However, radar 
rainfall estimates are to be carefully considered, as several factors (i.e., meteorological, 
instrumental) might decrease its accuracy. Several procedures can be applied for cor-
recting the bias, including a correction based on rain gauge data.

Finally, a critical key point revealed by Segoni et al. (2018), is related to the lack 
of validation of the method. The rainfall threshold validation, associated to the per-
formance of LEWS constitutes a key step into the effectiveness of the system. Several 
authors propose some methodologies; most of them exploit a contingency table (Wilks 
2006). Piciullo et  al. (2020) have listed the indicators used by authors (Tiranti and 
Rabuffetti 2010; Staley et  al. 2013; Segoni et  al. 2015) for validating rainfall thresh-
olds. These indicators are based on the four elements of the contingency table: true 
positive TP, true negative TN, false positive FP, false negative FN. These methods are 
interesting, as they provide objectivity and standardization (Segoni et al. 2018).

Recently, an algorithm was developed by Melillo et  al. (2018), which enables to 
design thresholds considering input rainfall and landslide data. The algorithm also per-
forms the intermediate steps of reconstructing significant rainfall events, made of sub-
events, (Melillo et al. 2015) and selecting rain gauges. Both events and sub-events are 
generated by extracting from the rainfall record rainy periods isolated by dry periods 
superior to a given duration. The dry period required is smaller for sub-events than for 
events, and changes with the time of the year. Indeed, as evapotranspiration is higher 
in the dry season, smaller periods are considered to reset the influence of rainfall on 
soils. Results are very satisfying, and CTRL-T is used in several studies (Melillo et al. 
2018; Teja et al. 2019; Gariano et al. 2019, 2020; Jordanova et al. 2020; Abraham et al. 
2021). Based on this code, the methodology or input data might be improved, such as 
the assessment of some climatic parameters (e.g., evapotranspiration ratio).

In this paper, we present an alternative methodology for estimating landslide rain-
fall thresholds, using the algorithm CTRL-T, tailored to the Alpes Maritime depart-
ment (France), the first step towards an operational LEWS. The advances rest in the 
use of high-resolution radar-derived rainfall data, a local assessment of the climate 
parameters, and the validation of the obtained thresholds.

In a first section, the study site is described, and we present the methodology that 
has been applied, providing the main features of the software and the improved char-
acterization of the climatic parameters. Guidelines from Segoni et  al. (2018) will be 
cautiously applied to rise above limitations of existing works. This methodology analy-
ses the contingency table, the receiver operating characteristic (ROC) and the related 
skill scores. The various datasets used in this study are also described, from landslide 
inventory to rainfall and climate data. The results are then presented in another sec-
tion, in the light of similar works completed in Europe. The validation step, based 
on the method proposed by Gariano et  al. (2015), is then described and commented. 
Finally, the results are discussed, pointing out the significant outcomes and the limits 
of the approach that might be improved.
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2 � Methods

2.1 � Threshold definition

Even though ID thresholds are most commonly found in the literature, we decided 
to use ED thresholds as event duration and event cumulated rainfall are independent 
variables, and consequently establishing a relationship is more statistically appropriate 
(Peruccacci et al. 2012).

The methodology used in this work is the one developed within the CTRL-T algo-
rithm (Melillo et al. 2018). This choice is based on one principal aspect: it entirely auto-
mates the threshold creation process, only taking as input a landslide inventory, rainfall 
records and additional, region-specific climate parameters. The code CTRL-T is split in 
three functional blocks: a first block builds rainfall events using the continuous rainfall 
records and the climate parameters, a second block associates the landslide occurrences 
to the rainfall events to establish triggering conditions, and the last block operates on 
this pool of conditions to assess thresholds. The flowchart of CTRL-T is displayed on 
Fig. 1.

The concept of the first block is to define rainfall events and sub-events for each indi-
vidual record (i.e., from rain gauges or gridded data). The raw rainfall records and the rain 
gauge locations are imported as well as a set of climate-dependent parameters, that are 
detailed in Melillo et al. 2018. The study describing CTRL-T (Melillo et al. 2018), makes 
use of a method based on the Monthly Soil Water Balance (MSWB) model (Thornthwaite 
and Mather 1957) for evaluating for the entire study zone the start (sws) and end (ews) of 
the warm season, and the ratio R of the cold and warm seasons’ durations. The different 
steps necessary for obtaining these parameters are described in Melillo et al. 2018).

Fig. 1   Flowchart of the CTRL-T algorithm with focus on the climate parameters
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Amongst these steps, mean monthly values of potential evapotranspiration (PET
m
) are 

approximated from mean monthly values of temperature and the latitude of the study area. 
The subsequent steps consist in estimating real evapotranpiration from this potential evapo-
transpiration, and from this determine an aridity index, whose monthly values eventually 
indicate the extent of warm and cold seasons, useful for computing the R ratio.

An improvement of this approach is proposed in this study, by replacing the approxi-
mated MSWB PET

m
 by modeled PET values included in our second rainfall dataset, 

with a lower resolution. Moreover, considering single values of sws, ews and R for the 
whole study zone is not adapted to the Alpes-Maritimes area as its climate is heterogenous 
(Fig. 2). To fix this issue a second improvement is suggested: sws, ews and R are computed 
separately for each mesh point (equivalent to a station). This allowed obtaining a varying 
range of durations for a single region. To assess the importance of these climate-dependent 
parameters, we included in the analysis a comparison to rainfall thresholds obtained with 
a fixed R (R = 1 and R = 4, with a warm season starting in May and ending in September).

The second block of CTRL-T confronts the newly created rainfall events and sub-events 
to the landslide records. For each landslide occurrence, sub-events of the last rainfall event 
of geographically close rain gauges are combined to generate conditions. Two pools of con-
ditions are created: Multiple Rainfall Conditions (MRC), which include all conditions from 
a single rain gauge for each landslide, and Most Probable Rainfall Conditions (MPRC) 
restraining the number of conditions per landslide to one. The selection of MPRC from 
MRC is based on a weight coefficient favoring intense events featuring high cumulated 

Fig. 2   Simplified climate map of Alpes-Maritimes department (based on (Joly et al. 2010). Mountain cli-
mates are represented in the north and Mediterranean climates in the south along the Mediterranean coast-
line. Cities featuring a population above 50.000 are as well indicated. Nice, the Prefecture of Alpes-Mari-
times is specified with a triangle
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rainfall recorded in stations geographically close to the landslide event. We consider that 
rainfall separated by more than 48 h to a landslide occurrence cannot have triggered the 
movement. Therefore, landslide events isolated from rainfall conditions in such manner are 
discarded from the analysis.

Finally, the third block generates rainfall thresholds for different non-exceedance prob-
abilities (NEPs) using successively the MRC and the MPRC pools of triggering condi-
tions. The definition of the thresholds is based on a frequentist approach (Brunetti et  al. 
2010) coupled to a bootstrap for uncertainty assessment (Peruccacci et  al. 2012). This 
method enables obtaining a linear equation from a single (D, E) dataset and a given non-
exceedance probability. A bootstrap completes this technique: the process is repeated with 
k randomly sampled series of m (D, E) couples from the same dataset. k linear coeffi-
cients are obtained from these series of m couples. The mean and standard deviation of 
these coefficients respectively represent the final coefficient value and the uncertainty. The 
process is repeated for a series of non-exceedance probabilities, first for the MRC then 
for the MPRC datasets. The obtained thresholds have a power law equation of the type 
E = (� ± Δ�)D(�±Δ�).

In this work, we set the bootstrap parameters to k = 100 and m varying from 10 to the 
population size, similarly to what was done by (Melillo et al. 2018), which allowed us to 
assess the variations of uncertainty with the number of landslides. We repeated the process 
setting the non-exceedance probability parameter to 16 possible values: 50%, 35%, 20%, 
10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1.5%, 1%, 0.5% and 0.005%.

2.2 � Validation

In a second phase, a validation process has been carried out on the MPRC thresholds. The 
methodology (Gariano et  al. 2015), requiring an independent dataset, has been designed 
specifically for ED thresholds obtained with a frequentist approach coupled to a bootstrap.

A pre-processing of the sub-events, following the method developed by (Gariano et al. 
2015), is done. It consists of several steps. First, the sub-events of the validation set are 
compared to the validation MPRC. We identify the sub-events that form the MPRC as trig-
gering (red markers). To avoid repetition, all sub-events recorded at the same time than 
the triggering condition by neighboring rain gauges are discarded (yellow markers). Then, 
rainfall sub-events whose durations were not included in the threshold validity range are 
removed (grey markers). The remaining sub-events are considered non-triggering (blue 
markers).

Then the predictive performance of the thresholds is estimated by counting contin-
gencies (True Positives, True Negatives, False Positives and False Negatives), and then 
by computing skill scores: Probability of Detection (POD), Probability of False Detection 
(POFD), Probability of False Alarms (POFA), and Hanssen-Kuipers (HK) Skill Score. The 
POD quantifies the sensitivity of a system, i.e., the ability to predict true positives. The 
POFD is on the other hand equal to 1 minus the specificity of the system, which is the abil-
ity to predict true negatives. The POFA describes the proportion of false alarms in relation 
to the number of positives. Ultimately, the HK skill score is equal to the subtraction of 
POD and POFD.

We then determined which NEP led to the best performing threshold by performing 
a ROC Analysis (Fawcett 2006), method designed to assess the performance of binary 
classifiers.
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The three blocks of CTRL-T are available in http://​geomo​rphol​ogy.​irpi.​cnr.​it/​tools/​rainf​
all-​events-​and-​lands​lides-​thres​holds/​ctrl-​algor​ithm/​ctrl-​code/​CTRL_​code.R/; Melillo et al. 
2018). The preparation of the datasets, the validation steps and the analysis were carried 
out with Python scripts.

3 � Study area and data

3.1 � Study area

The analysis has been carried out in the French Alpes-Maritimes department, located in 
South-East of France. Alpes-Maritimes department (4200 km2) shares a border with Italy 
and faces the Mediterranean Sea. The north sector of the territory intersects the Alps 
Mountain range.

The Alpes-Maritimes department has experienced numerous episodes of intense rainfall 
over the last twenty years, with some particularly notable in terms of intensity, such as in 
2000, in February and November 2014, October 2015, generating damaging landslides (see 
ORRM 2023).

The climate of the south of Alpes-Maritimes is Mediterranean, i.e., characterized by 
dry and hot summers. On the opposite, the climate of the northern zone of this territory is 
a mountain climate, in which the summers are warm to cool, and where no dry season is 
observed. The location as well as the climate zoning of Alpes-Maritimes is represented on 
Fig. 2, according to the climate classification defined by (Joly et al. 2010). Some other cli-
mate classification can be found and are described, such as the Köppen classification (Kot-
tek et al. 2006; Rubel et al. 2017). Thus the studied area integrates the Csa, Csb, Cfb, Dfb 
and ET climates. This climate diversity needs to be considered as the methodology and 
process for defining rainfall threshold take into account the local climate. The rainfall data 
from the different climate areas will consequently receive a different processing.

This analysis is confirmed by precipitation (sum of rainfall and snowfall) statistics com-
puted on the Safran dataset (described a few sections below) presented in Fig. 3. A and B 
display the average year cumulated precipitation, mapped and as time series. On the other 
hand, C and D respectively map the average cumulated precipitation of the driest and wet-
test months in the year. We indeed can subdivide the region in three zones: an area in the 
North more subjected to rainfall, a drier area in the South and a transition zone between 
the two of them. The amount of cumulated precipitation in a year averaged over the entire 
zone varies between 600 and 1300 mm. This indicator does not present any apparent time 
evolution pattern.

In the Southern, Mediterranean-climate area of the department, the average cumulated 
rainfall of the driest month between 1959–2016 ranges between 4 and 8 mm, whereas it is 
two to three times more important in the North, mountain climate area. This pattern is also 
observed for the average year and wettest month cumulated rainfall.

3.2 � Landslide data

The landslide inventory, provided by the French Geological Survey (BRGM), is based 
on BRGM-CEREMA (https://​www.​geori​sques.​gouv.​fr/​donne​es/​bases-​de-​donne​es/​base-​
de-​donne​es-​mouve​ments-​de-​terra​in) and RTM (https://​bdrtm.​onf.​fr) databases, Depart-
ment 06 Council, Regional Major Hazards Observatory (ORRM) and some municipalities 

http://geomorphology.irpi.cnr.it/tools/rainfall-events-and-landslides-thresholds/ctrl-algorithm/ctrl-code/CTRL_code.R/
http://geomorphology.irpi.cnr.it/tools/rainfall-events-and-landslides-thresholds/ctrl-algorithm/ctrl-code/CTRL_code.R/
https://www.georisques.gouv.fr/donnees/bases-de-donnees/base-de-donnees-mouvements-de-terrain
https://www.georisques.gouv.fr/donnees/bases-de-donnees/base-de-donnees-mouvements-de-terrain
https://bdrtm.onf.fr
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data, and completed within the Interreg ALCOTRA AD-VITAM program (https://​www.​
inter​reg-​alcot​ra.​eu/​fr/​ad-​vitam), consists of 941 events that occurred in Alpes-Maritimes 
between 1905 and 2015. All landslides in the database are shallow landslides, with vol-
umes estimated between a few m3 to a maximal volume around 20 000 m3. From this infor-
mation, we selected events whose occurrence dates were precisely known (known day of 
occurrence) and that occurred in the time window for which rainfall data was available 
(1997–2016). 597 events were discarded, which left 344 events fitted to the analysis. This 
initial dataset is then split in two subsets: a calibration dataset, from which thresholds are 
generated, and an independent validation dataset designed to assess the thresholds. The 
calibration set compiles 269 landslides (78.2%) that occurred between 1997 and 2013, and 
the validation set is made of 75 landslides (21.8%) that occurred between 2014 and 2015. 
We willingly subdivided the initial dataset in two continuous periods: the aim was to pre-
serve year rainfall patterns, in a warning-system perspective.

Fig. 3   Assessment of the climate of Alpes-Maritimes (from the Safran rainfall dataset presented below). 
Precipitation is obtained summing rainfall and snow variables. Mean year cumulated precipitation mapped 
over the area (A); spatial mean of cumulated precipitations per year (B). Average cumulated precipitation of 
the driest and wettest months in a year, respectively in (C) and (D)

https://www.interreg-alcotra.eu/fr/ad-vitam
https://www.interreg-alcotra.eu/fr/ad-vitam
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The yearly, monthly distributions, and a map of the landslides of both sets are featured 
on Fig. 4. The number of landslides is not constant over the years: the years 2000 and 2014 
account for more than half of the documented events. Figure 4C indicates that most of the 
landslides of 2000 occurred in November and October, and in November and January for 
2014. These time windows are correlated with exceptionally intense rainfall events docu-
mented by Météo-France (Météo-France 2023), including storms Rebekka and Qendresa. The 
graph displaying the monthly distributions of landslides underlines that most of the events 
occur during cold seasons: November and January accumulate the highest numbers. The spa-
tial distribution of landslides, depicted on the map, also brings out relevant information. Even 
though mountain relief is highly favorable to the occurrence of landslides, most of them have 
been observed along the coastline, nearby urban zones. A bias exists in our landslide inventory 
as this denotes that most certainly much more landslides occurred in the mountain yet have 
not been documented.

3.3 � Rainfall data

Two rainfall datasets, provided by Météo-France, were used in the present study. The first 
dataset, named Comephore, contains high-resolution rainfall data. It consists of hourly rain-
fall values issued from a reanalysis (Tabary et al. 2012) starting from the 01/01/1997 to the 
31/12/2016, in each point of a 1 km-meshed grid covering Alpes-Maritimes department. This 
quantitative precipitation estimation, with high spatial and temporal accuracy, covers this area 
with no spatial nor temporal gaps. It is based on radar data providing pseudo-CAPPI reflectiv-
ity images that have been pre-processed and converted into rainfall rates. A radar/rain gauge 
calibration factor field has then been computed, and applied to the daily radar accumulation. In 
the case no calibration factor can be obtained, due to a lack of rain gauge, the daily radar accu-
mulation is given by ordinary kriging of daily precision rain gauges. For computational pur-
poses, we only considered the values of the 30 days before each landslide occurrence to com-
pute the thresholds, taking Comephore mesh points located less than 1 km away from these 
same landslides. The time filtering was not applied over the validation period, the entirety 
of the rainfall data being relevant for this step. The selection of Comephore mesh points and 
landslide locations are plotted on Fig. 5.

The second dataset, named Safran, provides additional variables, with a lower resolu-
tion. Safran (Système d’analyse fournissant des renseignements atmosphériques à la neige) 
(Durand et al. 1993), initially developed for snow modeling, generates from observations and 
interpolates on a grid a set of atmospheric forcing (among which rain and snowfall). Assets of 
using the Safran dataset include the robustness of the analysis over long time periods (Vidal 
et al. 2010), and its good correlation with field observations (Quintana-Seguí et al. 2008). In 
our version of the dataset, rainfall, snow, temperature, and evapotranspiration values are avail-
able over France on an 8 km meshed grid with a daily time step from 01/08/1958 onwards. 
The SAFRAN dataset proved itself useful as the climate analysis developed by (Melillo et al. 
2018) requires both precipitation and temperature fields, Comephore lacking the latter. The 
nearest Safran points to the Comephore selection (Fig. 5) are used to compute sws, ews and R 
parameters for the 1995–2015 period.
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Fig. 4   Yearly (A) and monthly (B) distributions of the calibration and validation landslide datasets. The 
monthly distributions of the years 2000 and 2014 are available in a separate plot (C). Relief map of Alpes-
Maritimes featuring landslides from the calibration and validation datasets, and discarded landslides (D)
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4 � Results

4.1 � Climate analysis

The parameters obtained from the climate analysis on the selection of Safran mesh 
points is on Fig. 6.

The start of the warm season varies from February (2) to June (6), and the end from 
August (8) to September (9). On the other hand, the value of the R ratio ranges from 1 
to 4, depending on the SAFRAN mesh points.

To illustrate the difference, the results of the climate analysis for a mountain station 
and a Mediterranean station are represented in Fig. 7.

Fig. 5   Selected Comephore and Safran stations along with the landslide dataset. Comephore points (blue) 
have first been selected based on their geographical proximity to landslides (brown), and then Safran sta-
tions (red) were associated to Comephore
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4.2 � Thresholds

Several rainfall thresholds are obtained from the calibration set, for different non-exceed-
ance probabilities. 51 landslide events, separated from rainfall by more than 48  h, were 
discarded out of the initial 269 events chosen for the calibration, leaving 218 landslides for 
which conditions are reconstructed. The characteristics (equation, number of conditions, 
validity range and relative uncertainty) of the thresholds obtained from the calibration set 
are available in Table 1.

We also computed thresholds from this set considering constant climate-dependent 
parameters over the whole region (R = 1 and R = 4, with the warm season starting in May 
and ending in September). The equations and characteristics of the obtained 5% NEP 
thresholds are as well included in Table  1. All the NEP can be seen in Supplementary 
materials section.

Fig. 6   Results of the climate analysis made on the nearest SAFRAN points to the Comephore points, over 
the period 1995–2015. Are represented month numbers respectively marking the start of the warm season 
(A), the end of the warm season (B) and the rounded ratio of the cold and warm seasons durations’ (C)
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Figure 8 displays for MPRC, 5% and 50% (best fit line) NEP thresholds superposed 
over a scatterplot of the conditions, and statistical distributions of δ (difference of the 
logarithm of the data points’ cumulated rainfall and the best fit line,. In supplementary 
material section, detailed equation (A), and MRC (B), 5% and 50% NEP thresholds are 
provided.

Fig. 7   Results of the climate analysis for a mountain station and a Mediterranean station: Bagnoul-Gaussen 
diagrams (Comparison of mean monthly rainfall and mean monthly temperature) (A, B), evapotranspiration 
diagrams (C, D) and aridity index charts (E, F). The range of monthly mean RET values obtained by vary-
ing RD and AWSC is represented in (C, D) by RET min and RET max, respectively the upper and lower 
bounds of the range of values. The mean value, RET mean, was selected as result. Ajusted PET on this 
same graph was obtained from the average of daily values from the rainfall dataset
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The probability density functions of the δ variable estimated from the distributions 
by Kernel Density Estimation (kde) are as well represented on the graph. The size of a 
scatter point on the MRC graph represents the likeliness of the condition (larger points 
are MPRC). The MRC dataset contains twice as many conditions (446 conditions) as 
the MPRC dataset does (218 conditions).

37 (8%) and 219 (49%) conditions are respectively observed below the T5% and 
T50% datasets for the MRC dataset. For the MPRC dataset, we counted 15 (7%) and 102 

Table 1   Characteristics (description of conditions, validity range, equation, and relative uncertainty) of the 
thresholds obtained from the calibration set. The coefficients of the most used 5% NEP thresholds are rep-
resented with a bold font. Equations of the 5% NEP thresholds obtained with constant climate-dependent 
parameters (R = 1 and R = 4) are included

Conditions Equation NEP α Δα Δα/α

Climate-dependent R
MRC
446 conditions
Validity range
D ∈ [3, 274] h

E = (� ± Δ�)D0.27±0.04 50 24.47 4.15 0.17
20 14.48 2.67 0.18
10 11.02 2.13 0.19
5 8.79 1.77 0.20
1 5.75 1.25 0.22

Climate-dependent R
MPRC
218 conditions
Validity range
D ∈ [3, 169] h

E = (� ± Δ�)D0.31±0.04 50 22.66 3.52 0.16
20 13.55 2.21 0.16
10 10.35 1.76 0.17
5 8.29 1.46 0.18
1 5.47 1.04 0.19

R = 1, NEP = 5%
215 MPRC

E = (5.8 ± 1.3)D0.41±0.06

R = 4, NEP = 5%
200 MPRC

E = (16.0 ± 3.6)D0.08±0.06

Fig. 8   T5% and T50% thresholds, superposed to scatterplots of conditions, and statistical distributions of 
δ along with probability density function estimated by Kernel Density Estimation MPRC. The size of the 
marker of the MRC scatterplot is related to the likeliness of the condition
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(47%) conditions below thresholds of same NEP. The thresholds obtained with MRC 
have a wider validity range (3–274 h) than the MPRC thresholds (3–169 h).

The distributions of the conditions in the (D, E) space are further investigated by com-
puting cumulative distribution functions. The validation sets are included in the statistics. 
The cumulative distribution functions (CDF) of the cumulated rainfall and duration of both 
MRC and MPRC of the calibration and validation set are plotted on Fig. 9. The graph plot-
ting the distributions of the durations indicates that MRC of both calibration and validation 
sets tend to have longer durations than MPRC. A slight difference between calibration set 
and validation set is noted in the statistics of cumulated rainfall values. There is a higher 
number of values (steeper curve) around 100 mm in the calibration set than in the valida-
tion set. This difference is smaller for the MRC than for the MPRC.

4.3 � Validation

The thresholds obtained from the calibration set, described above, are compared to all the 
rainfall sub-events generated from the validation set. Only 4 entities out of the initial 75 
landslides of the validation set were discarded, once again because of the delay rainfall/
landslide exceeding 48  h. The pre-processing of these sub-events, following the method 
developed by (Gariano et al. 2015), explained below, is done.

The scatter-plot of the different sub-events in the D,E space, along with the 1%, 5% and 
10% NEP MPRC thresholds obtained from the validation set is available on Fig. 10. Statis-
tics (mean, min, max, standard deviations and quartiles) describing the different categories 
of sub-events are available on Table 2.

We notice that the statistics are quite similar for triggering sub-events, and sub-events 
recorded at the time of the landslide by neighboring rain gauges. We also acknowledge the 
drastic difference in cumulated rainfall for the triggering and non-triggering sub-events.

After a deletion of 7917 sub-events, 75 triggering sub-events and 17,095 non-trigger-
ing sub-events are considered to compute scores. For each non-exceedance probability, we 
counted true positives (TP), false negatives (FN), false positives (FP) and true negatives 
(TN) by comparing the observed data of the validation period and the thresholds of the 
calibration set. From these numbers, we calculated skill scores: probability of detection 
(POD), probability of false detection (POFD), probability of false alarm (POFA) and Hans-
sen and Kuipers skill score (HK). The scores are displayed for some NEP in Table 3. All 
the NEP can be seen in Supplementary materials section.

Fig. 9   Cumulative distribution functions (CDF) of the rainfall durations (A) and cumulated rainfalls (B) of 
the MRC and MPRC of calibration and validation datasets
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An optimal system can predict with confidence true positives as well as true nega-
tives. The ROC analysis (Fawcett 2006), built on this assumption, compares binary 
classifiers based on their POFD and POD scores. In our case, MPRC thresholds gener-
ated with different non-exceedance probabilities are represented as a curve on a POFD/
POD space (Fig. 11). The best prediction performance corresponds to a POD equal to 
1 and a POFD equal to 0 (sensitivity and specificity equal to 1, red marker on Fig. 11). 
Conversely, the line POFD = POD (“no gain line”) corresponds to a random classi-
fier. δ, in Table  3, is the ROC space distance of the threshold to the best prediction 
performance.

T35% is identified as best performing threshold according to both the HK score and 
the δ coefficient obtained through the ROC curve.

5 � Discussion

This study leads to the creation of statistical rainfall thresholds for landslide trigger-
ing for Alpes-Maritimes department, from high resolution rainfall data, considering 
different non-exceedance probabilities. A validation step enables the identification of 
best performing thresholds. These results pave the way towards a regional operational 
landslide monitoring system.

Fig. 10   Scatterplot of the validation sub-events and thresholds T10%, T5% and T1% obtained from the 
calibration set. Sub-events are color-coded. Red and blue markers respectively stand for triggering and non-
triggering sub-events. Yellow markers, corresponding to triggering sub-events recorded by neighboring rain 
gauges, and grey markers exceeding the threshold bounds were discarded in the next steps
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Table 3   Confusion matrix (TP, FP, TN, FN) and skill scores (POD, POFD, POFA, HK, δ) obtained for 
thresholds at different NEPs; best results for each score are shown in bold. The optimal scores (perfect clas-
sifier) that would be obtained for this dataset are displayed in the last line

NEP TP FN FP TN POD POFD POFA HK δ

50 51 24 1261 15,834 0.680 0.074 0.961 0.606 0.328
20 61 14 2657 14,438 0.813 0.155 0.978 0.658 0.243
10 64 11 3742 13,353 0.853 0.219 0.983 0.634 0.263
5 66 9 4637 12,458 0.880 0.271 0.986 0.609 0.297
1 70 5 6408 10,687 0.933 0.375 0.989 0.558 0.381
Optimal score 75 0 0 17,095 1 0 0 1 0

Fig. 11   ROC analysis curve. Each MPRC threshold is represented as a point in the POFD/POD space. The 
best performing threshold is the one closest (smaller δ) to the perfect classifier (red marker)
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5.1 � Climate analysis

The climate analysis yields longer warm seasons in the south of the department and along 
the coastline. This corroborates the climate zoning described by other studies, detailed in 
10. The value of the ratio R, proportional to the length of the warm season, tends as well 
to be higher in the south. Computing rainfall events and sub-events separators separately 
for each grid point enables to assess the impact of rainfall locally, based on the climate. A 
rainfall normalization step is not compulsory when choosing this option.

The thresholds obtained for varying R ratios are plotted on Fig.  12 from the data of 
Table 1. They yield information on the sensitivity of the method to the climate-dependent 
parameters. We note significant differences in the threshold slopes. This can be explained 
by MPRC having a longer duration for similar accumulated rainfall for higher R ratios. 
Indeed, choosing a higher R ratio means considering longer event and sub-event separa-
tors during the cold season, and eventually designing longer events. The significant differ-
ences in the resulting thresholds stress the importance of these parameters in the threshold 
design.

5.2 � Threshold calibration

First of all, the number of landslide triggering rainfall events is recommended to be supe-
rior to 200 to reduce sample variation when using a frequentist method based on landslide 
occurrence (Peres and Cancelliere 2021): both MRC and MPRC calibration sets fulfill this 
requirement. However, the relative uncertainty Δα/α is recommended to be inferior to 0.10 
in an operational landslide warning system (Peruccacci et al. 2012), yet we have obtained 

Fig. 12   Comparative plot of the 5% NEP thresholds obtained for the calibration set changing the climate-
dependent R ratio (R computed separately for each station, R = 1 and R = 4)
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in the best case (MPRC) relative uncertainties ranging from 0.16 to 0.23. Solutions to 
lower the relative uncertainty could either be to increase the number of landslides in the 
database, or to narrow the study zone around more homogeneous D, E conditions. Then, 
more than 15% of the landslide events of the calibration set (51 out of a total of 269 events) 
have been discarded due to the lack of immediate rainfall triggers. It is necessary to ana-
lyze what induced these landslides. Within the different hypotheses that might explain this, 
the contribution of the snowmelt, or even snowmelt events, might be significant (Krøgli 
et al. 2018; Mostbauer et al. 2018), especially in Köppen climates Dfb and ET. This phe-
nomenon is not accounted for in this study, yet is to consider as a non-negligible part of 
Alpes-Maritimes is covered by the Alps (Mercantour range).

The thresholds obtained for the Alpes-Maritimes department were compared to thresh-
olds issued from the literature computed as well with the CTRL-T algorithm, for Liguria 
(Melillo et al. 2018), Slovenia (Jordanova et al. 2020), for different climates in Italy found 
in the Maritime Alps (Peruccacci et al. 2017), and for the Italian Alps (Peruccacci et al. 
2017; Palladino et al 2018).

These two neighboring regions feature climatic characteristics similar to our study zone: 
Alpes-Maritimes department encapsulates the Köppen climates Csa, Csb, Cfb and Dfb 
found both in Liguria (Csa, Csb, Cfb) and Slovenia (Cfb, Dfc, ET) (Rubel et  al. 2017). 
Although we obtained best results for T35%, T5% were compared, being more commonly 
used. We used the Ligurian threshold obtained taking R = 2 and the Slovenian threshold 
describing zones of the country whose mean annual rainfall (MAR) ranges between 800 
and 1300 mm, most alike Alpes-Maritimes. The comparative plot are available in Fig. 13.

In subplot A, we only compare thresholds made for climates in Italy that are found in 
the Maritime Alps. Csa designates the hot summer Mediterranean climate, encountered in 

Fig. 13   Comparative plot of T5% ED thresholds obtained in different studies using CTRL-T for Alpes-Mar-
itimes, Slovenia, Liguria, different climates in Italy found in the Maritime Alps, and for the Italian Alps 
(Melillo et al. 2018; Peruccacci et al. 2017; Palladino et al 2018; Jordanova et al. 2020)
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Coastal Alpes-Maritimes. Dfb describes a cool continental climate, as found in the moun-
tainous area of the department. Finally, Cfb describes the transition sector between these 
two zones. The threshold is closer to the Csa Mediterranean climate. As this climate is 
characterized by short and intense rainfall events in the autumn (Météo-France 2024), the 
slope of the threshold is less important than for the other climates. We explain the simili-
tude to our threshold by the fact that the landslide inventory is concentrated on the coastal 
part of the department. In subplot B, the thresholds established for the Italian Alps are 
very different from the one obtained in the Alpes Maritime department, which corroborates 
the point made above. in subplot C, we compare our threshold with thresholds based on 
average annual precipitation criteria. They are close, which means that mean annual rain-
fall could be a decisive criterion for defining thresholds. Finally in subplot D the rainfall 
thresholds have similar slopes. The intercept of the threshold obtained by (Melillo et  al. 
2018) is higher, which physically translates to more intense triggering conditions in Ligu-
ria. We expected our results to be most like Ligurian thresholds given the climatic and 
geographical proximity, yet this was not the case.

More general comments can be made regarding the hypothesis inherent to the frequen-
tist method. The threshold equation coefficients are obtained from a Gaussian curve mod-
eled over the probability distribution function of the δ variable, derived from the distribu-
tion with Kernel Density Estimation. However, we obtained in this work negatively skewed 
probability density functions, and even bimodal characteristics for MRC. This might 
explain why for MRC and MPRC, 7% and 8% of conditions were observed below the T5% 
instead of the expected 5%. This weakness must not be ignored before operational use as it 
leads to underestimating triggering conditions.

5.3 � Validation

From the validation results, we remark that some sub-events with a duration inferior to 
the thresholds’ lower boundary (3 h) have very high associated cumulated rainfall. Given 
the lack of calibration MPRC with such durations, we are not able to make predictions for 
these sub-events, yet they definitely could trigger landslides given their intensities.

The scores reveal that our thresholds are efficient when it comes to identify a triggering 
event or a non-triggering event (high POD, low POFD). For our optimal T35% threshold 
we obtained a POD of 0.79, which corresponds to identifying the occurrence of 4 land-
slides out of 5. However the method yields mediocre results when it comes to avoiding 
false alarms: the lowest POFA we obtain is equal to 0.961 – only one out of twenty forecast 
events actually occurs. This is explained by the scarcity of landslide data, compared to non-
triggering rainfall information.

This is problematic when it comes to the implementation of a warning system, as a high 
number of false alarms lead to a loss of credibility and acceptance of the system. On the 
other hand, a low number of missed alarms is compulsory for a strong EWS as the security 
of people is the fundamental target of the EWS. In that way a compromise has to be done, 
and an optimal threshold should be defined based on the expected objectives of the EWS.

Both the Hanssen-Kuipers skill score and the delta metric indicate that the threshold 
with a 35% NEP design is the most reliable. Other studies (Gariano et al. 2015; Jordanova 
et  al. 2020), using as well the ROC curve methodology obtained thresholds with lower 
NEPs (7–15%) as best results. We can explain our different results by the non-Gaussian 
distribution of the delta variable: the number of conditions below the T35% threshold is 
overestimated – it is equivalent to lower NEP thresholds.
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Another limitation to our approach is that we work with rainfall sub-events for the val-
idation, whereas the thresholds were obtained from conditions (combinations of rainfall 
sub-events). This explains why, for the validation set, we have more triggering sub-events 
(75) than MPRC (71). It is not possible to compute conditions for the validation period, 
given that a landslide date is required in the process. The consequences are that some of the 
sub-events used in the validation process are not representative of the triggering condition, 
especially knowing that percolation is only taken into account when computing conditions.

The analysis of the distribution of all conditions shows that conditions from the valida-
tion set have higher cumulated rainfall than those from the calibration set. This implies that 
the validation set is not fully representative of the regional rainfall regime; as seen in Fig. 2 
and Fig. 4, the validation set is not representative of mountainous climate, as landslides are 
more located within Mediterranean climate. Repeating the validation process over different 
time ranges would solve this issue.

To investigate further this issue and characterize the resulting bias, we compared thresh-
olds obtained in this study to those resulting from 10 random subdivisions of landslides 
(80% calibration, 20% validation). The following results were obtained in Fig. 14:

All thresholds and their uncertainty ranges overlap: this suggests that for our dataset, 
a pool of conditions based on 80% of landslides are sufficient to obtain robust thresholds 
with this method, and no bias arises from the definition of the calibration set. However, 
the scores obtained using 2014–2015 as the validation period are lower for the higher NEP 
than those obtained by randomly selecting 20% of landslides for validation. The choice of 
the two years for the validation period introduces a bias in the validation scores. Overall, 
the definition of the calibration and validation years does not lead to a biased threshold as 
the method is robust enough, although the validation scores are lower.

5.4 � General remarks

More broad comments can be made regarding the methodological approach. The novel 
use of high-resolution rainfall data and evapotranspiration data is a strength of this 

Fig. 14   a 5% NEP MPRC Thresholds obtained taking 1997–2013 as calibration period (black) versus 
randomly selecting 80% of landslides for calibration (10 iterations, colors); b ROC curves obtained tak-
ing 2014–2015 as validation period (green) versus randomly selecting 20% of landslides for validation (10 
iterations, blue). The error bars represent the minimal and maximal score obtained for each NEP
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work, although the method could use other improvements. Among them, the incorpora-
tion of other factors than rainfall duration and cumulated rainfall, such as antecedent 
rainfall and snowmelt, would represent a step forward.

The use of gridded rainfall data of high spatial (1 km) and temporal (hourly) resolu-
tion is an asset of this study. Rainfall triggering conditions are reconstructed with a high 
accuracy, which is especially relevant given the complex orographic system of Alpes-
Maritimes and the rainfall typology of the Mediterranean climate (Segoni et al. 2018). 
With an important relief, meteorological conditions vary significantly over short dis-
tances. Therefore, capturing rainfall conditions within a very small radius of the land-
slide is a major asset of this work.

Also, the use of coarse temporal resolution rainfall data drastically increases uncer-
tainties (Gariano et al. 2020). However, the bias induced by the clustering of landslides 
along the coastline persists- we must ponder that the thresholds account more for the 
Mediterranean zone than the Mountain zone of the region.

The addition of Safran data to compute sws, ews and R parameters improves the 
description of the heterogeneous regional climate. As replacing evapotranspiration 
approximations by data enhance the results of the climate analysis, the next improve-
ment steps would be to do the same with the approached soil and vegetation characteris-
tics considering the existence and availability of such data. More generally, the effective 
rainfall constitutes a key issue, with considering in particular the infiltrated water.

Then, a weakness of our approach is that Safran mesh points were selected using 
only a criterion of geographical distance, even though it is known that local climatic 
conditions severely change with altitude. This criticism can be spread to the method of 
selection of rain gauges from landslide coordinates in the code CTRL-T.

Next, the high uncertainty of the thresholds was raised in a previous section. Even 
though solutions were pointed out to reduce this uncertainty, the main weakness resides 
in the small number of landslide events in our inventory. Moreover, as analysed by (Peres 
et al. 2018), the time uncertainty on the landslide initiation may have some impacts on 
rainfall threshold. Several studies (Leonarduzzi and Molnar 2020; Hirschberg et al. 2021) 
have pointed out the frequentist method for neglecting non triggering rainfall informa-
tion, crucial for the assessment of the false alarm rate. The second study even adds a 
threshold adjustment step from the obtained TSS score, which integrate the information 
of the non-triggering events. Moreover, studies have shown that thresholds obtained from 
a frequentist method focused on triggering rainfall lack robustness, and that frequen-
tist methods centered on non-triggering or triggering and non-triggering events lead to 
thresholds with a higher sensitivity and specificity (Peres and Cancelliere 2021).

Apart from the neglect of non-triggering rainfall data, another limitation of this method 
is that it considers only duration and cumulated rainfall as landslide trigger estimators, 
whereas it is commonly known that the process is complex and multivariate. New research 
approaches include improving thresholds obtained by a frequentist method by machine 
learning techniques, integrating significant variables such as rainfall peak intensity (Diste-
fano et al. 2021). We can imagine incorporating the information of the rainfall antecedent, 
and the snowmelt, another significant indicators, in the same fashion. Moreover, Another 
main drawback of landslide rainfall-based Te-EWS is their poor spatial prediction capac-
ity: a threshold overcoming produces an alert for the entire area encompassing the events 
used for calibration, while the location of expected landslides is poorly constrained. This is 
related to the multifactorial character of landslide triggering, which is not only controlled 
by meteorological forcing, but also by local conditions. To improve the spatial prediction 
of EWS, some authors proposed to combine rainfall fields to susceptibility maps based on 
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predisposition factors, such as relief, geology, land-use and landforms (Tiranti et al. 2014; 
Berenguer et al. 2015).

6 � Conclusion

Rainfall thresholds are models that aim to specify rainfall conditions able to trigger land-
slides. When issued from empirical data, they can be defined at a regional scale and there-
fore can be integrated to Landslide Early Warning Systems (LEWS).

In this work, we have computed statistical cumulated rainfall/duration rainfall thresh-
olds for the Alpes-Maritimes French department, a mountain region subjected to intense 
Mediterranean type rainfall. The CTRL-T algorithm (Melillo et al. 2018) was used to gen-
erate the thresholds, as we favored automatic and objective approaches based only on rain-
fall data, a landslide inventory and regional climatic characteristics.

Our landslide inventory was split in two parts: thresholds were first computed from a 
calibration subset, and then tested with an independent validation subset. We obtained 
thresholds, for different non-exceedance probabilities (design percentage of false nega-
tives), and for two distinct pools of conditions: Multiple Rainfall Conditions, and Most 
Probable Rainfall Conditions, restraining the number of conditions to one for each land-
slide. The best performing thresholds is the T35% MPRC threshold. This work represents 
novel scientific progress by (a) making a case study of empirical rainfall thresholds for 
Alpes-Maritimes, (b) using high-resolution rainfall data and (c) adapting the method to 
climatically heterogeneous zones.

However, some weaknesses of this work can be underlined: the uncertainty, linked to 
the number of events in the landslide inventory, seems too high for a direct operational use. 
Next steps for further improvement include integrating other factors, such as non-trigger-
ing rainfall information, and rainfall antecedent.
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