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A B S T R A C T

Tracking and forecasting changes in coastal morphology is vital for development, risk reduction, and overall
coastal management. One challenge of current coastal research and engineering is to find a method able to
accurately assess the bathymetry profile along the coast and key parameters such as slope and sandbars. Tradi-
tional bathymetry measurements are obtained through echo-sounding, which is time-consuming, hazardous and
costly. Using a variety of simulated cases, we test the potential of machine learning and in particular Neural
Networks to reconstruct the coastal bathymetry profile from offshore sensed waves, based on shore-based wave
reflection. Features such as foreshore slope, curvature, sandbars amplitude and positions can be captured.
1. Introduction

Coastal areas are currently facing environmental and resource prob-
lems aggravated by anthropogenic pressure and over-exploitation. The
environmental context of extreme events (eg, floods and coastal ero-
sion) combined with anthropogenic pressure is a limiting factor for
coastal development and flood-risk exposure (Oppenheimer et al.,
2019). The state and evolution of the nearshore bathymetry over time is
an important element in determining coastal risk exposure, that must be
considered for coastal development and planning, but the acquisition of
in-situ measured data is time-consuming and expensive, and not always
possible due to the energetic nature of breaking waves in the coastal
zone. Hence, performing bathymetric measurements is a challenge.
Reliable, fast, and inexpensive estimates of coastal ocean depth are
increasingly necessary for coastal areas (Cesbron et al., 2021; Turner
et al., 2021). Specifically, knowledge of morphological characteristics
(e.g. beach slope) holds significant importance in various applications,
including the computation of wave runup and overtopping, as well as
the assessment of longshore sediment transport (Kamphuis et al., 1986).
Furthermore, the presence and amplitude of sandbars have proven to be
of utmost significance, not only for amphibious operations but also as
a natural protective mechanism in response to storms (Ruessink et al.,
2009; Elgar et al., 2001).
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Recently, remote sensing tools have emerged as sources of inexpen-
sive data that can be used to estimate and forecast coastal dynamics
and features globally (Benveniste et al., 2019; Melet et al., 2020),
including traditionally low-data regions (Almar et al., 2023). These
tools range from shore-based (Almar et al., 2009; Holman et al., 2013)
or drone-mounted video cameras (Bergsma et al., 2019b), to space-
borne satellite constellations (Almar et al., 2019b, 2021; Bergsma
et al., 2019a). The present work focuses on the ability to estimate the
coastal bathymetry profile based on off-the-coast wave measurements.
After the pioneering work by Iribarren and Nogales (1949), further
studies (Madsen and Plant, 2001; Almar et al., 2019a) have provided
insights on the potential to reconstruct near-shore bathymetry profiles
from distant measurements of reflected waves. However, research ef-
forts have yet to provide a deterministic system of equations which
captures and models the physical relation between coastal bathymetry
and wave reflections offshore.

Deep Learning (DL) is a field of machine learning algorithms which
has seen many improvements over the last decade, from simple Artifi-
cial Neural Networks (ANN) to complex deep models. DL has demon-
strated impressive capabilities in a variety of different fields (Good-
fellow et al., 2016), especially in Remote Sensing (Ma et al., 2019).
Recent works have applied deep learning to the problem of bathymetry
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estimation using water color (Sagawa et al., 2019) and wave kinemat-
ics (Al Najar et al., 2022), as well as estimating wave-driven morpholo-
gies (Goldstein et al., 2019) and shorelines (Calkoen et al., 2021). In
this work, we evaluate the feasibility of using simple deep learning
models to predict coastal bathymetry from offshore wave reflection
spectra. We create a synthetic dataset with a wide range of bathyme-
tries and wave conditions and train a three-layer ANN model to predict
bathymetry features. We perform feature importance analysis on the
ANN model.

In Section 2, we begin by describing the process of generating
the dataset and examining how each bathymetry feature influences
the wave spectra. Section 3 then outlines two distinct approaches to
predicting bathymetry. The first approach involves a direct predic-
tion of bathymetry, while the second approach focuses on predict-
ing bathymetry features and subsequently deriving the bathymetry
values from these predictions. Additionally, this section provides a
comprehensive overview of the learning methods utilized for training.
The outcomes of the various approaches employing Neural Networks
are presented in Section 4. In Section 5, we apply the models to
real bathymetry profiles. Section 6 engages in a detailed discussion
that encompasses the experimentation with real data, highlighting
the encountered challenges in selecting input variables and accurately
predicting sandbars.

2. Data

Neural Networks require vast amounts of data for their training,
on the order of thousands of labeled examples. The availability of
measured coastal bathymetry profiles and their corresponding wave
data is somewhat limited. Nonetheless, a viable approach involves the
generation of synthetic beach profiles and the simulation of waves
through a model. This section presents the process of generating such
data and offers an analysis of the resulting spectra depending on
bathymetry feature values.

2.1. Dataset generation

We generate bathymetry profiles consisting of 1001 data points,
corresponding to a span of one kilometer. These profiles are computed
using feature values which are selected randomly on the following
ranges:

• slope 𝑠 ∈ [0.015, 0.050]
• curve 𝑐 ∈ [0.5, 1.5]
• number of sandbars 𝑆 ∈ {0, 1}
• sandbar height (m) 𝑆ℎ ∈ [0, 25]
• sandbar width (m) 𝑆𝑤 ∈ [0, 800]
• sandbar position (m) 𝑆𝑥 ∈ [0, 700]

Then, we generate the flat bathymetry 𝐁 from a randomly generated
ositional vector 𝐗 by first adjusting 𝐗 according to slope : 𝐚 = 𝐗

|𝐗| |𝐗|
𝑐 .

his vector 𝑎 is then used to calculate the flat bathymetry 𝐵 without
andbars:

= −𝑠
(

𝐚 − (max (𝐚) − max (𝐗)) 𝐚
max(𝐚)

)

+ 𝜖 (1)

here 𝜖 = 0.0001. The final profile is obtained by adding each sandbar
teratively:

= 𝐁 + 𝑆ℎ𝑒
−(𝐗−𝑆𝑥𝑑𝑥+𝐿)2

𝑆𝑤 (2)

where 𝑆𝑥, 𝑆ℎ, and 𝑆𝑤 are respectively the position, height and width of
the sandbar, 𝑑𝑥 denotes the interval distance of 𝐗 (spatial resolution,
here 1 m), and 𝐿 denotes the beach length. For all bathymetries studied
in this work, 𝐿 is set to 1000 m.

The representativeness of the synthetic training data set is key. A

ully-non-linear Boussinesq wave-resolving model, FUNWAVE-TVD (Shi

2 
et al., 2022), is used in order to simulate wave incidence and reflection.
To this end, FUNWAVE-TVD is initialized using a Jonswap distribution
including a default 𝛾 = 3.3 width, and random wave conditions on
the significant wave height (Hs), the peak wave period (Tp), and is
run using the previously-generated bathymetry profiles as inputs. Hs
and Tp are randomly assigned between 0.5 and 2 m, and 5 and 18
s respectively, with no direct relationship between Hs and Tp. The
spectra of the resulting incident and reflected waves are extracted at
512 frequencies.

Incoming and outgoing wave spectra were derived from simulation
output extracted from a Radon transform (Almar et al., 2014b) using
512 frequencies within a given range. The real spectra, derived from
directional wave observations, are set to match the same frequencies.

To effectively predict sandbars, we determined that the models must
be trained on data that have a sandbar with a significant enough impact
on waves. Thus, we focused our attention on the subset of 1-bar data
points where the presence of sandbars satisfies the breaking condition:

𝛾 =
𝐻𝑠
𝑆𝑑

> 0.4 (3)

where 𝐻𝑠 denotes the significant height of the incident wave and 𝑆𝑑 is
the bar depth (Miche, 1944; Battjes, 1974). We further discuss sandbar
prediction in Section 6.2.

The final synthetic dataset contains 8991 beach profiles with as-
sociated bathymetry feature values (slope, curve, number of sandbars,
height, position, and width) and wave spectra (incident and reflected).
80% of the dataset is allocated for training and 20% is reserved for
testing. Fig. 1 illustrates an example of the data.

2.2. Dataset analysis

Given the absence of a deterministic model that establishes a direct
link between wave spectra and bathymetry, our focus lies in inves-
tigating whether the parameters exert any influence on bathymetric
characteristics. To accomplish this, we compute quantiles at the 1/3
and 2/3 levels for key parameters such as slope, curve, sandbar ampli-
tude, sandbar width, and sandbar position. This computation allows us
to visualize and analyze the average reflected/incident spectra ratio of
data residing below the 1/3 quantile and above the 2/3 quantile for
each parameter.

Looking at Fig. 2, it is clear that parameter values have an impact
on the ratio of spectra. These substantial disparities in wave spectra
attributed to varying parameter values suggest that it is relevant to
predict bathymetry from wave spectra. The difference between low-
curve and steep curve is the most obvious. Notably, a steep curve
tends to attenuate high frequencies. The effect of the slope value is
mostly noticeable at frequencies around 0.3 Hz. In fact, steep-slope data
present a higher peak at these frequencies than low-slope data, which
have their highest peak at low frequencies, close to 0 Hz. We also see
that steep slope data present a small bump at high frequencies, around
0.9 Hz. The effect of the position is the least noticeable. We can suppose
that it will lead to worse prediction scores.

We can notice that data with low and steep slopes have similar
spectra shapes to data with low and high sandbars respectively. Then
we can suppose that a steep slope and a high sandbar have a similar
impact on the reflected spectra, which seems logical. We note the
similarity between the low and steep slope spectra and the low and
high sandbar spectra, which suggests that a steep slope or a high
sandbar would lead to similar impacts on the reflected spectra. This
raises the question of whether deep learning algorithms can effectively
differentiate between a steep slope and a high bar.
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Fig. 1. Representative example of the spectral data (top) and corresponding bathymetry data (bottom).
3. Methods

The aim of our deep learning models is to predict bathymetry or
some of the bathymetry features from wave spectra. Various combi-
nations of inputs and outputs were explored and evaluated. In this
Section, the different approaches to predict the bathymetry profile from
wave spectra are presented, and a review of the machine learning
techniques used is given.

3.1. Problem statement

We make use of the incident and reflected wave spectra as inputs
to our models, representing an input of size 1024. The ratio and the
difference between these two spectra were also tested as input because
these operations divide the input size by two, and because it was
thought that the essential information lay in the comparison between
the incident and reflected spectra. To further reduce the input size, we
also tested resampling the spectra to fewer frequencies (32,64,128 or
256). We normalize all inputs and outputs using Z-score normalization.

We study two different formulations of the problem of bathymetry
estimation: we consider the prediction of either the bathymetry pro-
file directly, or the bathymetry features, i.e. slope, curve, number
of sandbars, sandbar height, sandbar width, and sandbar position.
The first approach is a regression task that returns the 1001 val-
ues of the bathymetry profile (Section 4.1). The second approach
allows to recover bathymetry by using the predicted values in the
bathymetry generation formulas detailed in Section 2.1. However, the
second approach requires separate cases with and without sandbars.
We considered two solutions to this problem. The first solution is
to consider the sandbar height, width, and position parameters as 0
for all data without sandbars (Section 4.2). This could introduce bias
into the data, so we also explore the use of a two-model prediction
scheme. We consider the prediction of the number of sandbars as a
classification task (Section 4.3), then train two separate models for
feature prediction. One model performs a regression task on no-bar data
3 
to predict slope and curve (Section 4.4). The other model performs a
regression task on one-bar data to predict slope, curve, sandbar height,
sandbar width, and sandbar position (Section 4.5).

3.2. Learning methods

A number of ML algorithms have been applied in previous stud-
ies for water depth estimation from observation data. In particular,
ANN’s (Sandidge and Holyer, 1998; Liu et al., 2015, 2018; Lumban-
Gaol et al., 2021; Collins et al., 2021), and Random Forests (Manessa
et al., 2016; Sagawa et al., 2019; Tonion et al., 2020; Mudiyanselage
et al., 2022) have been commonly applied in similar studies and have
generally shown promising performances. While we explore using both
algorithms, our analysis focuses on ANN’s as these have consistently
outperformed their RF alternatives in our tests. We use the well-known
Scikit-learn library (Pedregosa et al., 2011) for all models and training.

Neural networks are particularly well-suited for tasks involving a
large number of inputs and multiple outputs due to their intrinsic
properties and ability to learn complex patterns from data. For our
models, we tested different three layer architectures, represented as
(first layer size, second layer size, third layer size). Considering the
input sizes, which are 1024 when taking both incident and reflected
spectra and 512 when taking their ratio or difference, we tested the
following layer sizes: (1024, 512, 256), (512, 256, 128), (256, 128, 64),
and (128, 64, 32). For all architectures, we used the ReLU activation
function and the Adam optimization method (Kingma and Ba, 2014).
We used a grid search to find optimization hyperparameters, such as
the L2 regularization parameter 𝛼 and the learning rate.

In the following, we evaluate our models according to two separate
metrics for classification and regression tasks. For classification, model
accuracy is computed as the proportion of correctly predicted samples
among the complete dataset, according to:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑛𝑇𝑃 + 𝑛𝑇𝑁 )

(4)

(𝑛𝑇𝑃 + 𝑛𝑇𝑁 + 𝑛𝐹𝑃 + 𝑛𝐹𝑁 )
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Fig. 2. Average of incident and reflected spectra ratios for data with low and large feature values.
where 𝑛𝑇𝑃 and 𝑛𝑇𝑁 correspond to the number of True Positives and
True Negatives, and 𝑛𝐹𝑃 and 𝑛𝐹𝑁 to the numbers of False Positives and
False Negatives, respectively. While the coefficient of determination
(also known as R2 score) is used to evaluate the models over regression
tasks, and is computed according to:

𝑅2 = 1 −
∑𝑁

𝑖 (𝑦𝑖 − 𝑚𝑖)
2

∑𝑁
𝑖 (𝑦𝑖 − 𝑦)

2
(5)

where 𝑁 is the number of samples, 𝑦𝑖 corresponds to the target variable,
𝑦 is the mean of the target variable over the full dataset, and 𝑚𝑖
corresponds to model predictions.

4. Results

This section presents our results on bathymetry and bathymetric
feature prediction using ANN’s. The different problem formulations
4 
presented in Section 3 are examined and we highlight the problem
formulations that yielded the most accurate predictions. A summary
of results is also provided to compare the different approaches.

4.1. Coastal bathymetry profile estimation

We first consider the task of directly predicting the full bathymetry
profile from the spectral data. These bathymetry profile prediction
results were obtained with an ANN of 3 hidden layers of sizes (128,64,
32), 𝛼 = 0.0001, and a learning rate of 0.001. Default settings were
used for the other hyperparameters. Incident and reflected wave spectra
were taken as network input. This model obtained an 𝑅2 score of 0.90
on the test data.

In the predicted bathymetry profiles in Fig. 3, we note that the
neural network predicts the curve and slope fairly well, but not the
sandbars. We therefore explore the second approach which consists in
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Fig. 3. Representative examples of Neural Network bathymetry predictions among the test set.
predicting bathymetry features, meaning slope, curve, number of sand-
bars, their height, width, and position, with the idea of reconstructing
bathymetry from these feature values.

4.2. Bathymetry features estimation on all data

We first examine the prediction of the bathymetry features de-
scribed in Section 2.1 for all generated profiles, those with and without
a sandbar. In order to represent the sandbar features 𝑆𝑥, 𝑆ℎ, and 𝑆𝑤,
we set the value of each feature to 0 for all data where no sandbar is
present.

The ANN architecture used for this prediction of these 5 features
was 3 hidden layers of sizes (1024,512,256), 𝛼 = 0.0001, and a learning
rate of 0.001. We obtain on the test set an 𝑅2 correlation of 0.80 for
slope, 0.87 for curve, 0.83 for sandbar position, 0.89 for sandbar height,
and 0.69 for sandbar width prediction.

While the correlation scores are high, we note in Fig. 4 that the
predicted sandbar features are not close to zero for profiles with no
sandbar. Consequently, the algorithm often predicts a sandbar when it
should not. We see and example in Fig. 5 for profile 840. For this case,
we also notice that the predicted curve and slope are less accurate. We
therefore consider splitting the problem into two separate predictions:
the number of sandbars, and the features for the two separate sets of
data, those with and those without a sandbar.

4.3. Sandbar number classification

We first consider the ability of the model to predict whether or
not there is a sandbar based on spectral data, without predicting the
features of the sandbar or bathymetry. These sandbar number classi-
fication results were obtained with an ANN architecture of 3 hidden
layers of sizes (128,64,32), 𝛼 = 0.0001, and a learning rate of 0.001.
Incident and reflected wave spectra were taken as network input.

We obtained on the test set an accuracy score of 0.94. A confusion
matrix over the test set is presented in Table 1. We note that, while
the model has a slight bias towards predicting a sandbar when none
is present, it is able to reliably predict the presence of a sandbar. We
consider that the bias towards false positives may be in the use of a
threshold on sandbar depth 𝑆𝑑 to consider if a sandbar is present or
not, as described in Section 2.1 (Eq. (3)).
5 
Table 1
Confusion matrix of the number of bar classification for 0 and 1 bar data using Neural
Network.

Number of bars Measured 0 Measured 1

Predicted 0 717 51
Predicted 1 56 975

4.4. Bathymetry features estimation on 0-bar data

Given that we can reliably predict if a sandbar is present or not,
we next consider separate models trained on data with and without
sandbars. We first consider the case of bathymetry feature estimation
for profiles where no sandbar is present. For this case, we therefore
only need to predict two bathymetry features: the curve 𝑐 and slope 𝑠.
The ANN architecture used for the prediction of these 2 features was
3 hidden layers of sizes (1024, 512, 256), 𝛼 = 0.0001, and a learning
rate of 0.001. The reflected/incident spectra ratio was taken as network
input. We obtained an 𝑅2 score of 0.89 for slope and 0.95 for curve
prediction on the test set (see Figs. 6 and 7).

4.5. Bathymetry features estimation on 1-bar data

We next consider the case of predicting bathymetry features for
profiles with a sandbar. For these profiles, we need to predict the
sandbar features (height, width, position), in addition to the slope and
curve. The ANN architecture used for the prediction of these 5 features
was 3 hidden layers of sizes (1024,512,256), 𝛼 = 0.0001, and a learning
rate of 0.001. We obtained an 𝑅2 score of 0.80 for slope, 0.82 for curve,
0.74 for sandbar position, 0.89 for sandbar height, and 0.71 for sandbar
width prediction (see Figs. 8 and 9).

4.6. Summary of results

The results of the main experiments conducted are summarized in
Table 2. As input, we examined the use of incident and reflected wave
spectra, denoted in the table as ‘‘spectra’’, or the ratio between reflected
and incident spectra, denoted as ‘‘ratio’’. Table 2 specifies whether the
experiment was conducted on profiles with no sandbar, profiles with a
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Fig. 4. Predicted versus measured features when using an ANN on all data with 0 values for no sandbar profiles.

Fig. 5. Bathymetry reconstruction from ANN feature predictions on 6 example profiles.

Fig. 6. Predicted versus measured slopes and curves for no-bar data using an ANN.

Environmental Modelling and Software 183 (2025) 106221 

6 



E. Disdier et al. Environmental Modelling and Software 183 (2025) 106221 
Fig. 7. Bathymetry reconstruction from ANN feature prediction on 6 test profiles with no sandbar.
Fig. 8. Predicted versus measured features for one-bar data using an ANN.
sandbar, or all data combined. We note that utilizing spectra as input
tends to result in higher prediction scores in most instances compared
to the use of the spectral ratio as input, except in the case of feature
prediction for data with no sandbar.

5. Analysis

We next test the proposed models on 4 in-situ bathymetry measure-
ments collected using echo-sounder in diverse beach types worldwide.
Specifically, we study Truc Vert (2008 ECORS experiment, case 1, Al-
mar et al., 2010), Saint Louis (Senegal, case 2, Ndour et al., 2020),
Narrabeen (Australia, case 3, Turner et al., 2016) and Grand Popo
(Benin, case 4, Abessolo et al., 2020; Almar et al., 2014a) with associ-
ated representative wave conditions obtained during field experiments.
7 
We employ the FUNWAVE model, similar to the approach used with the
simulated bathymetries (Section 2.1), to generate waves and extract
their incident and reflected spectra. The typical values of 𝐻𝑠 (signif-
icant height of offshore waves) and 𝐹𝑝 (frequency peak of incident
waves) for each coast were used for the simulation. Consequently, these
are semi-real data, as the bathymetries are measured in-situ, but the
spectra are simulated.

For each real case, we use the bathymetry and the spectra of
incident and reflected waves, in the same shape as the simulated data,
so that we can apply the models trained on simulated data. We test
the predictions using ANN models from two problem formulations. In
Fig. 10, we show results from the ANN model which directly predicts
the full bathymetry profile over all data (Section 4.1). In Fig. 11,
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Fig. 9. Bathymetry reconstruction from ANN feature predictions on 4 test profiles with a sandbar.
Table 2
Regression (𝑅2) and classification (accuracy †) scores for all models. Bold indicates
highest performance.

Data Problem formulation Neural Network

Output Input Spectra Ratio

No sandbar Features Slope 0.77 0.89
Curve 0.86 0.95

Sandbar Features

Slope 0.80 0.74
Curve 0.82 0.80
Position 0.74 0.56
Height 0.89 0.80
Width 0.71 0.55

All data

Bathymetry 0.90 0.87
Number of bars 0.94† 0.89†

Features

Slope 0.80 0.82
Curve 0.87 0.87
Position 0.83 0.77
Height 0.89 0.81
Width 0.69 0.56

we show results from the ANN model trained on single-bar data that
predicts slope, curve and sandbar features (Section 4.5).

We first note that the real bathymetry profiles, shown in Fig. 10,
can differ from the simulated profiles by being more complex. We
therefore expect the model to have more difficulty in reconstructing the
bathymetry. We note in Fig. 10 that the model which directly predicts
bathymetry generates far more noise than in the simulated cases.
In addition, the predicted bathymetry does not match the measured
bathymetry as closely as in the simulated cases. However, we observe
that the average trend of the bathymetry is captured well, leading to a
high overall 𝑅2, such as in the third profile shown in Fig. 10.

In Fig. 11, we note that the prediction of bathymetry features also
leads to a strong prediction of the average profile trend and is less noisy
than the direct profile prediction shown in Fig. 10. However, it is still
less consistent with measured bathymetry than it is in simulated cases.
In addition, the model tends to predict sandbars where there are none,
as for profile 4, or in a form that does not correspond to reality, as for
profile 2. In future work, we plan on modifying the sandbar generation
process, detailed in Eq. (2), in order to allow for a wider and more
realistic variety of sandbar features.
8 
6. Discussion

6.1. Input selection

With the aim of reducing the input size and obtaining better re-
sults, multiple inputs were tested as explained in Section 3.1. We first
explored the use of the ratio or the difference of the spectra in order
to divide the input size by two, using as input the ratio of the incident
and reflected wave. We also consider downsampling the spectral data
to further reduce the input size.

The use of the spectral ratio showed prediction performances close
to those obtained with the two full spectra. This is in contrast to the
use of spectral difference as input, which did not result in any accurate
models. Using the current experimental setup and model architecture,
the use of the raw incident and reflected wave spectra leads to the
best prediction scores, except for the feature prediction task using 0-bar
data, as presented in Section 4.4.

Moreover, resampling the spectra on fewer frequencies showed
to reduce performance. Indeed, the more we reduced the number of
frequencies used, the lower the prediction scores. However, reducing
the size of the input space allowed us to have smaller inputs and
therefore shorter computation times. While much of the work pre-
sented here makes use of the full spectra as inputs, future work should
further explore the use of resampled spectra in order to reduce the
computational cost of model training and application.

6.2. Difficulties in the sandbar prediction

This work made use of a dataset of synthetic bathymetry profiles as
well as simulated wave conditions in order to study the ability of ML
to estimate bathymetric features based on wave incidence and reflec-
tion spectra. The development of this dataset went through multiple
stages which are not presented in this work, and was informed by the
empirical results obtained using each dataset setup. The final dataset
used to train and test the models presented in this work was composed
of bathymetry profiles with either a single sandbar or none, where the
sandbars are generated such that they would impact the simulated wave
signatures by causing wave breaking. While the development of this
dataset is not detailed in this work, we briefly discuss these steps in this
section in order to highlight different directions for future work, which
we believe would enhance the real-world applicability of the methods
presented here even further.
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Fig. 10. Bathymetry predictions on real data when directly predicting the full profile with an ANN.
Fig. 11. Bathymetry predictions on real data when predicting profile features with an ANN.
Much of the work on the design of this dataset was focused on the
impact of sandbars on final model performance. We tested including
multiple sandbars (up to 3 in a single bathymetry profile) and found
that the model was able to accurately predict the bathymetry profile
slope and curve (𝑅2 scores near 0.90), while the sandbar feature
predictions were inaccurate and led to negative 𝑅2 scores. Limiting
the number of possible sandbars to a maximum of one improved the
model’s ability to estimate sandbar height, width, and position (𝑅2 ≃
0.40). We further examined the impact of constraining the sandbar
generation to single sandbars which cause clear impact on the wave
signature through wave breaking (criterion given by (3)). Using this
dataset to train the models, we find large improvements in model
performance across all tasks. Future development of the methodology
presented here should further explore expanding the synthetic dataset
to include additional and more realistic morphological configurations.

While we studied the use of real bathymetry profiles, throughout
this work we use synthetic spectral data. We believe that the method
and overall results will apply to observational spectral data, revealing
a link between the spectral data and bathymetry. However, such a
model will require training on observational data and corresponding
9 
bathymetry; such a dataset does not currently exist, to our knowledge.
With this work, we hope to demonstrate that the collection of such
spectral data for bathymetry study is of use, and a future direction is
to train a machine learning model on this data.

7. Conclusion

This work presents an empirical study on the use of Machine
Learning to estimate the near-shore bathymetry and morphological
features (i.e., sandbars) based on simulated coastal wave incidence
and reflection spectra. Furthermore, the problem was studied from two
different perspectives. ANNs were first used to directly estimate the
bathymetry profile using spectral inputs and were found to achieve
significant estimation accuracy (𝑅2 ≃ 0.90). However, the model was
unable to reconstruct low-level features such as the existence and
characteristics of sandbars in the target data. Our second approach
aimed at indirectly reconstructing the bathymetry profile by training
the model to estimate the low-level features individually, rather than
the complete bathymetry profile. Using this configuration, the model
achieves significant 𝑅2 scores of 0.9 when predicting the bathymetry
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profile slope and curve, and 𝑅2 scores of 0.89, 0.74, and 0.71 for
sandbar height, position, and width, respectively.

Finally, this work presents the first steps towards the development
of a novel technique for bathymetry inversion based on wave incidence
and reflection spectra, which are measured off-shore. Such a tech-
nique can be used to create systematic measurements of bathymetry
profiles at low cost and in areas where the application of current
satellite-derived bathymetry techniques is limited by data-related issues
(e.g. near-shore turbidity, clouds). Here, we made use of synthetic
bathymetry profiles and the FUNWAVE simulator in order to create a
synthetic dataset for model training and validation. To maximize the
real-world applicability of the method presented here, future works
should further develop the synthetic bathymetry generation proce-
dure to produce more representative and realistic data, which would
facilitate the transfer of the model to real data. Overall, the method-
ology presented here shows great promise for enhancing our ability to
effectively monitor coastal evolution.
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