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A B S T R A C T

Broad consensus exists amongst mineral explorers that most outcropping mineral deposits have been found. The 
next generation of discoveries will rely on our ability to recognize the subtle or cryptic signals of deep-seated 
deposits. Exploration targeting under such conditions requires greater knowledge of the processes that formed 
the targeted mineral deposit types and new or improved exploration methods designed to effectively test for 
buried mineralization. Survival bias is a form of selection bias that is defined as the logical error resulting from 
neglecting data or information because of their “lack of visibility”. In this study, “lack of visibility” refers to 
situations where (i) mineral explorers ignore or overlook particular terrain because it lacks or contains only weak 
signals of a mineralizing system, and (ii) such areas are excluded from further exploration as the existing data or 
information neither confirm nor support the targeting model. Therefore, it is critical to more comprehensively 
analyze a search space to more confidentially determine whether a terrain without the desired targeting signals 
satisfies the criteria of a null or negative test. The idea for this study is based on the notion that if a buried 
mineral deposit was present in an overlooked terrain it would nevertheless comprise distinctive geological 
features and targeting signals to guide the explorer, although, more likely than not, these signals would be very 
weak. Here we used a porphyry copper (Cu) district in Iran to explain and illustrate the adaptation of the survival 
bias concept. More specifically, in this study we tested the usefulness of a recently proposed targeting criterion, 
namely sites of potential focused fluid flux, as an input to mineral prospectivity analysis and exploration tar
geting. The findings of our study have implications for the future development of regional- to global-scale 
exploration information systems (EIS), designed to improve the performance of mineral exploration targeting.

1. Introduction

Data analysis methods for exploration targeting of mineral deposits 

have been progressively developed mainly by the analysis of geospatial 
data (e.g., Carranza, 2008, 2017; Carranza and Sadeghi, 2010; McCuaig 
and Hronsky, 2000, 2014; Yousefi et al., 2021; Yousefi et al., 2024). 

* Corresponding author.
E-mail address: m.yousefi.eng@gmail.com (M. Yousefi). 

Contents lists available at ScienceDirect

Ore Geology Reviews

journal homepage: www.elsevier.com/locate/oregeorev

https://doi.org/10.1016/j.oregeorev.2024.106214
Received 24 February 2024; Received in revised form 20 August 2024; Accepted 20 August 2024  

mailto:m.yousefi.eng@gmail.com
www.sciencedirect.com/science/journal/01691368
https://www.elsevier.com/locate/oregeorev
https://doi.org/10.1016/j.oregeorev.2024.106214
https://doi.org/10.1016/j.oregeorev.2024.106214
http://creativecommons.org/licenses/by/4.0/


Ore Geology Reviews 172 (2024) 106214

2

Exploration geologists have attempted to introduce more robust data 
analysis methods to identify mineralization signals and to expand more- 
efficient weighting and integration approaches for prospectivity analysis 
of mineral deposits (e.g., Goodchild, 2009; Ford and McCuaig, 2010; 
Porwal et al., 2010, 2015; Hagemann et al., 2016; Zhang et al., 2016; 
Yousefi et al., 2019, 2021; Zuo et al., 2021). The foremost attention has 
been inclined toward working on the well-known geological features (e. 
g., fault, dyke, host lithology, alteration, etc.) and spatial proxies (e.g., 
geochemical and geophysical signals). However, given that exploration 
for mineral deposits is beginning to move from surface (or near surface) 
to greater depths, understanding the complicated geological processes 
and tracing the hints relevant to the processes become more difficult. 
Recent discoveries tend to be from deeper sources and thus require more 
capital to develop into a mine than the shallower mineral discoveries of 
the past (Wood, 2018). With respect to higher exploration and mining 
costs for deeper deposits, they need to be of high concentrations or 
volumes − compared to shallow deposits − to be economically viable.

The next generation of mineral deposits mainly occur at greater 
depths and may be different from the surface expression of known de
posits (Wood, 2018; Yousefi, 2022; Yousefi and Kreuzer, 2024). There 
are situations where although mineralization occurs at- or close to- the 
surface, less exhumation processes makes the deposits hard-to-discover. 
The next generation of mineral deposits may comprise undefined types 
(Davies et al., 2021) as well. Accordingly, future mineral deposits, due to 
their lack of visibility, may display poorer mineralization signals at the 
earth’s surface. Exploring for new mineral deposits is faced with chal
lenges and problems including a lack of exploration data, unknown or 
incompletely-known complex ore forming processes, and lack of visible 
features at the surface (Yousefi, 2022). Thus, exploration geologists 
attempt to develop methods and tools, for instance exploration infor
mation system (EIS), to improve the performance of mineral exploration 
targeting approaches (Yousefi et al., 2019, 2021), and it is a progressive 
field in outlook in terms of searching for new deposits (Yousefi and 
Hronsky, 2023). Such a lack of visibility at the surface and the charac
teristics above define the next generation of mineral deposits as blurred, 
which hereafter denoted as buried mineral deposits. Therefore, the re
gions, which have undiscovered buried mineral deposits, may be 

excluded from exploration programs. These regions may also suffer from 
lack of sufficient data that has been affected by survival bias concept. 
That is because, with the present state of geological knowledge, there is 
a lack of- well-known geological features and vectors to mineralization 
to highlight the buried deposits at the surface. Therefore, specific evo
lutions of exploration programs and technologies are needed to target 
such type of mineral deposits of the future. Consequently, analysis of the 
exploration search spaces in terms of Null (i.e., the available data cannot 
exclude the presence of mineralization at depth) or Negative (i.e., there 
is enough information indicating with confidence that a mineralized 
system is absent, even at depth) tests is a supportive practice.

Typically, prospectivity analysis for mineral exploration targeting 
has been conducted on regional to district scales (Partington, 2010; 
Partington and Sale, 2004; Nykänen, 2008; Nykänen et al., 2008; 
Nykänen and Salmirinne, 2007; Lisitsin et al., 2013; Harris and Grunsky, 
2015; Harris et al., 2015; Joly et al., 2015; Yousefi and Carranza, 2015a; 
Yousefi et al., 2024) rather than on target scales (e.g., Abedi et al., 2017) 
and this is due to the general availability of only regional scale data 
which makes it a challenge to predict buried deposits. The modern data 
gathering and storage technologies have seen a huge increase in data 
volumes allowing mineral prospectivity modelling to be conducted 
successfully at various stages of exploration (Niiranen et al., 2019). 
Manipulating the data into geologically meaningful information about 
ore-forming processes is a challenge especially when applied to target 
buried mineralization. As pointed out by Yousefi et al., (2019, 2021) 
advanced technologies are required to address the issue of targeting 
buried mineralization. This problem raises the questions of 1) how can 
we improve regional to district scale exploration targeting in terms of 
identifying buried mineralization? and 2) is there any geological/ 
geochemical signal that can be ascertained from buried deposits?

This paper aims to use exploration data for determining whether any 
signal or new geological feature representing undiscovered and buried 
mineral deposits could be identified. To face this challenge, we 
employed an adapted “survival bias” concept, a type of sampling error 
that results in neglecting possible events because of their “lack of visi
bility” or being less obvious. In the context of mineral exploration, 
especially in the field of prospectivity analysis as applied to exploration 
targeting, a “lack of visibility” may refer to situations where a target area 
lacks mappable spatial proxies or “mineralization signals”. Thus, we 
have adapted the survival bias concept for mineral exploration, and 
demonstrate its relevance to porphyry Cu deposits in the Urumieh- 
Dokhtar Volcanic Belt in Iran.

2. Study area and datasets

The study area (Fig. 1) covers a small part of the southern Uru
mieh–Dokhtar Volcanic Belt, Iran, and is the same studied by Yousefi 
et al. (2024). The belt was formed as a result of the subduction of the 
Arabian Plate beneath central Iran during the Alpine orogeny (Berberian 
and King, 1981; Hezarkhani, 2006a). Exploration practices over the belt 
demonstrate its great potential for hosting porphyry-Cu deposits (e.g., 
Hezarkhani, 2006a, 2006b; Ranjbar et al., 2004). In the study area 
(Fig. 1), Oligo-Miocene intrusive rocks and their surrounding volcanic 
rocks are genetically and spatially associated with porphyry Cu deposits. 
Geological details of the Urumieh–Dokhtar Volcanic Belt, the charac
teristics of the study area and the applied datasets are found, respec
tively, in Berberian et al. (1982) and Yousefi et al. (2024). Following 
Yousefi et al. (2024), we used 22 known porphyry Cu deposits as a set of 
test sites to evaluate the performance of the models generated. In 
addition, we used the same geochemical data of porphyry Cu deposits 
(collected and analyzed by Geological Survey of Iran) that were utilized 
by Yousefi et al. (2024).

Fig. 1. Simplified geological map of the study.
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3. Method and results

3.1. Survival bias concept

Survival bias is defined as the logical error that results in neglecting 
people or things, typically because of their lack of visibility (e.g., Wald, 
1943). It is a form of selection bias that can lead to overly optimistic 
beliefs because failures are ignored. For instance, failed companies that 
no longer exist are excluded from analyses of financial performance. It 
can also lead to the false belief that the successes in a group have some 
special property, rather than just coincidence (correlation “proves” 
causality). For example, if three of the five students with the best college 

grades went to the same high school, that can lead one to believe that the 
high school must offer an excellent education when, in fact, it may be 
just a much larger school. This can be better understood by looking at 
the grades of all the other students from that high school, not just the 
ones who made the top-five selection process. Another example of a 
distinct mode of survivorship bias would be thinking that an incident 
was not as dangerous as it was because everyone communicated with 
afterwards survived. Even if one knew that some people are dead, they 
would not have their voice to add to the conversation, leading to bias in 
the conversation.

A better example of survival bias that can be adapted for mineral 
exploration is the way damaged points on the aircrafts in World War II 
were analyzed (Wald, 1943; Januszczak, 2021). The returning planes, 
even though they were partially damaged, were still able to return 
home. However, only the aircrafts that had survived their missions were 
available for investigation and all planes that had been lost were un
available for assessment. This means the recorded damaged points of 
returning aircrafts were not critical. Conversely, other parts of the 
planes, between the recorded damaged points (e.g., engines, oil tank, 
nose, etc) should have been presumed as (if not more) significant and 
critical parts of the planes (Fig. 2).

3.2. From survival bias concept to undiscovered mineral deposit sites

Areas where there is a lack of or less mineralization evidence are 
commonly ignored and excluded from exploration. According to the 
survival bias concept, we believe such areas may show special patterns 
or trends and could be further investigated for finding possible miner
alization (or exploration features representing the mineralization). This 
helps us to define a strategy of how to minimize ignorance of ore forming 
events in exploration programs. Similar to the Fig. 2, we prepared Fig. 3
to illustrate and adapt the survival bias concepts to exploration for the 
next generation of mineral deposits that lack visible evidence at the 
earth’s surface and may be ignored during exploration. In Fig. 3, clusters 
of known mineral deposit locations and the areas between them corre
spond to the damaged points and the critical portions, respectively, in 
Fig. 2.

Fig. 2. Hypothetical data illustrating the survival bias concept taken from World War II combat aircraft and lack of visible evidence (modified after Wikipe
dia, 2021).

Fig. 3. Known mineral deposit locations/clusters and critical areas based on 
the survival bias concept. The arrow symbol represents the mineralization 
within critical areas that may show special patterns or trends.
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3.3. Critical areas defined according to the survival bias concept

Adaptation of the survival bias for mineral exploration focuses on the 
critical areas in Fig. 3. These areas can be investigated for evidence of 
mineralization, through weak signals from buried ore bodies. This could 
be called “negative control” meaning cross-examination of the areas that 
have been excluded from the search spaces. Subsequently, for this study 
we focused on the critical areas indicated in Fig. 3, and inspected them 
to determine whether geologic features of interest exist for exploration 
purposes (Fig. 4). According to the concept of survival bias, certain 
critical areas may not be recognized as prospective in a prospectivity 
analysis due to their lack of mineralization signals, especially areas that 
show lack of simultaneous presence of exploration features. Thus, whilst 
certain critical areas may have subtle expressions in various exploration 
datasets they may be excluded in prospectivity analyses.

Inspection of the features in Fig. 4 illustrates that there are faults, 
intrusive contacts, and fault intersections which exist in the study area. 

All these features are well-known and widely-used in prospectivity 
analysis for mineral exploration. These features can be seen in the 
critical areas that exist between the known deposits. There are many 
examples of exploration activities in which faults, intrusive contacts, 
and fault intersections have been used as predictors of mineralization 
and to delimit areas into smaller regions for further exploration (e.g., 
Austin and Blenkinsop, 2009; Micklethwaite et al., 2010; MamiKhalifani 
et al., 2019; Ghasemzadeh et al., 2022). We have noticed the same point 
feature, derived from the intersection of faults and intrusive contacts 
that has been recently reported by Yousefi and Hronsky, (2023) and 
represents a critical mineral system parameter. Thus, we further inves
tigate how important this newly-explored point feature is with respect to 
mineral system concepts in ore-forming processes. Furthermore, ac
cording to the survival bias concept we determine if there is a link be
tween the point and other mineralization evidence.

3.4. Intersection of faults and intrusive contacts

The zones around the intersection of faults and intrusions within the 
critical areas in Fig. 4, would provide the proper conditions for the 
simultaneous existence and operation of spaces and metalliferous fluids 
flux, providing a suitable environment for ore formation (Yousefi and 
Hronsky, 2023). Hydrothermal mineral systems involve the mobi
lisation of metals from a source by fluids and concentration of these 
metalliferous fluids in suitable geological trap sites. Therefore, if the 
fluids contain metal ions, the areas around the point feature are 
endowed with three physico-chemical subsystems crucial to the ore 
formation process including a) function of intrusions, b) spaces provided 
by faults and fractures, and c) chemical scrubbers (Yousefi and Hronsky, 
2023). Such areas can be a favourable pressure–temperature (P-T) 
window for ore deposition. Fig. 5 illustrates a possible P-T window 
providing conditions suitable for ore formation around the intersection 
between faults and intrusions explored in the critical areas identified in 
this study, according to the adaptation of survival bias concept.

Fluid flux requires an effective thermal engine and permeable 
structures for circulation (e.g., Sillitoe, 2000, 2010; Loucks, 2022). For 
our case study, porphyry Cu ore bodies are developed in the endo- and 
exo-contacts of the ore bearing intrusions and are controlled by frac
tures, constituting mineralization. Thus, there are clear close spatial and 

Fig. 4. Exploration features in the study area.

Fig. 5. A possible P-T window comprising three subsystems crucial to the ore- 
forming processes in hydrothermal mineral systems. Centre of the triangle can 
represent the areas around faults intersection with intrusions.

Fig. 6. Weighted map of intersection of faults and intrusive, the point feature 
explored in this study.

M. Yousefi et al.                                                                                                                                                                                                                                



Ore Geology Reviews 172 (2024) 106214

5

temporal relations between intrusions and hydrothermal mineraliza
tion, here porphyry Cu deposits. Metal anomalies in different media are 
geological expressions for the result of geochemical dispersion (e.g., 
Ghasemzadeh et al., 2019; Grunsky and de Caritat, 2020), indicating the 
presence of metalliferous components and operation of a chemical 
scrubber as a subsystem of ore-forming critical processes. Therefore, 
many deposit types are associated with geochemical anomalies. Conse
quently, the higher the amount and performance of the three crucial 
subsystems are, the more the suitable conditions of ore formation would 
be (Fig. 5), and that the areas around the intersection of faults with 
intrusions would provide a possible ore deposition zone.

3.5. Implementation of the adapted survival bias concept for target 
generation

To examine and evaluate the performance of fault intersections with 
intrusions, we first created an intersection proximity map and trans
formed the map values into [0–1] range using a fuzzy membership 
function (e.g., Almasi et al., 2017) (Fig. 6). Accordingly, the areas close 
to the point were assigned a larger membership value compared to the 

Fig. 7. Geochemical evidence layer, weighted Cu contents.

Fig. 8. Exploration targeting model generated through adaptation of survival 
bias concept and including the intersection of faults with intrusions.

Fig. 9. Map of high and moderate prospectivity values (a) and inspection of the 
exploration targets therein (b).
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distal areas.
The exploration evidence layer in Fig. 6 represents two of three of the 

conceptual subsystems (intrusion and permeable structures shown in 
Fig. 5). As illustrated in Fig. 5, presence of metal ions and metalliferous 
fluids are a cornerstone of the model representing the fertility of the 
intrusion and fluids. Models of geochemical anomalies act as chemical 
scrubbers depositing metals in trap sites. To incorporate this significant 
subsystem into the prospectivity modeling procedure, we used Cu con
tent in stream sediments and transformed the concentrations into [0–1] 
range using a fuzzy membership function (e.g., Almasi et al., 2017), 
Through this we created a Cu evidence map (Fig. 7) whereby high and 
low values of element contents assigned by large and small fuzzy 
memberships close to 1 and 0, respectively. In this model, we have used 
catchment basins to display Cu concentrations (e.g., Bonham-Carter and 
Goodfellow, 1986).

After generation of the two fuzzified evidence layers, corresponding 
to the three subsystems of ore forming processes in Fig. 5, they were 
integrated using a geometric average function (Yousefi and Carranza, 
2015a) as a multi-criteria decision-making approach to produce an 
exploration targeting model shown in Fig. 8. This function has the ability 
of combining fuzzified evidence layers and returns the nth root of the 
product of n variables (here n fuzzy memberships) as their geometric 
average for multi-criteria decision making problems, e.g., prospectivity 
analysis for mineral exploration targeting (Yousefi and Carranza, 2015a, 
b).

The values in the exploration targeting model in Fig. 8 were then 

classified into three categories representing high, moderate, and low 
prospectivity (Fig. 9a) using a natural break classification method 
(Jenks, 1967). On the classified map, six prospective zones (marked as 
1–6) were selected for further inspection (Fig. 9b). Given that the 
exploration targeting model in Fig. 8 was generated using the fault- 
intrusion intersections and Cu anomalies for further assessments of the 
prospective zones, we have evaluated the presence or absence of argillic 
and iron-oxide alteration as other evidence of mineralization. Interac
tion of metalliferous fluids in an intrusive contact zone and surrounding 
host rocks results in wall rock alteration and ore deposition. Therefore, 
syn- and post-mineralization alteration are evidence of prospective 
zones and are worthy of exploration follow-up.

3.6. Comparison of the proposed modeling approach and the existing 
prospectivity analysis methods

In mineral exploration targeting, it is common practice to apply fault 
density, proximity to faults, and fault intersections to model structural 
features as zones of fluid circulation and deposition. Similarly, prox
imity to intrusive contacts has been widely used as evidence layers in 
mineral prospectivty modeling (MPM) (e.g., Austin and Blenkinsop, 
2009; Micklethwaite et al., 2010; Yousefi and Nykänen, 2016). In 
contrast, the new point feature explored in this research, simultaneously 
models the function of both structure and intrusion in the process of ore 
formation. Thus, if an evidence layer of intersections between faults and 
intrusions is integrated with a model of geochemical anomalies, an 

Fig. 10. Fuzzified evidence layer of a) fault density, b) proximity to faults, c) fault intersections, and d) intrusive contacts.
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exploration targeting model is generated. Therefore, for making a 
comparison between our proposed approach in this study and existing 
MPM practices, we have generated three additional prospectivity 
models using three sorts of evidence maps comprising fuzzified layers of 
a) fault intersections, intrusive contacts, and geochemical anomalies, b) 
proximity to faults, intrusive contacts, and geochemical anomalies, and 
c) fault density, intrusive contacts, and geochemical anomalies using the 
same integration function (i.e., geometric average approach described 
above). The fuzzified evidence layers and the corresponding exploration 
targeting models are shown in Fig. 10 and Fig. 11.

3.7. Model effectiveness

The four exploration targeting models generated using the intersec
tion of faults with intrusive contacts proposed in this study (Fig. 8) and 
using existing modeling methods for the integration of faults and in
trusions (Fig. 11a-c), were compared. We applied prediction-area plot 
(Yousefi and Carranza 2015b) of the models to calculate normalized 
density (Mihalasky and Bonham-Carter, 2001), through which, the 
ability of the models in terms of predicting mineral deposit locations is 
evaluated while occupied areas of the exploration targets contribute in 
the evaluation procedure. Normalized density for a certain prospectivity 
class or an exploration targeting model is the ratio of rate of mineral 
deposits predicted by the prospectivity class or by exploration targeting 
model to occupied area of the class or targets (Mihalasky and Bonham- 
Carter, 2001; Yousefi and Carranza 2015b). Higher normalized density 
indicates a smaller area containing large a number of mineral deposits, 
so the prospectivity class or exploration model is more relevant for 
searching for undiscovered mineral deposits (Yousefi and Carranza 
2015b). Normalized density of the exploration targeting models have 
been given in Fig. 12 indicating that the exploration targeting model, 
generated using intersection of faults and intrusives, is stronger than 
other models.

Given that the prospectivity values in the exploration targeting 
models in Fig. 8 and Fig. 11 are continuous, to make the models usable in 
real-world exploration, the potential areas having high prospectivity 
values, should be highlighted for possible exploration follow-up. For 
this, all of the models were classified using the same geometrical interval 
method, and then, the highest prospectivity class for each of the four 
exploration targeting models were highlighted (Fig. 13). However, 
many classification methods can be used for categorization of pro
spectivity values, we applied the geometrical interval method (Frye, 
2007) because it provides an alternative to the equal interval, natural 
breaks and quantiles, and really any variance minimized classification 
method. It is a classification scheme for categorizing a range of values 
based on a geometric progression. This method is suitable to visualize 
continuous data that is not normally distributed, e.g., here nonlinear 
exploration geological data. An important issue is that all of the models 
should be classified by the same method, for comparison purposes. The 
normalized density was then calculated for every single model (Fig. 14). 
The exploration targeting model generated using the intersection of 
faults and intrusive is superior to the others. The new targets in Fig. 13a 
are those that have been recognized based on the adaptation of survival 
bias concept.

4. Discussion

Typically, regional scale data are available in 2D making it chal
lenging to predict those buried deposits that show less or a lack of 
mineralization signals at the surface. This is likely the reason that re
searchers have pointed out that there is a decline in mineral exploration 
success (Davies et al., 2021), especially when search spaces for finding 
mineralization are moving from the near-surface environments to 
greater depth. These issues flag the need of mineral exploration in
dustries for novel exploration strategies (e.g., Knox-Robinson and 
Wyborn, 1997; Lindsay et al., 2020, 2022; Yousefi, 2022; Yousefi and 

Fig. 11. Prospectivity model generated using well-known structural features of 
(a) faults density, (b) proximity to faults intersection, and (c) proximity 
to faults.
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Hronsky, 2023; Yousefi et al., 2024).
Prediction of undiscovered mineral deposit locations depends on 

data resolution, quality, and quantity. In this paper, we have explored 

the existence of an exploration point feature, i.e., intersection of faults 
and intrusions (Yousefi and Hronsky, 2023) in the critical areas recog
nized by the adaptation of survival bias concept. The point is applied as a 

Fig. 12. Normalized density for exploration targeting models, which have been generated using four types of fuzzified exploration evidence layers.

Fig. 13. First class of prospectivity for exploration targeting model generated using intersection of faults with intrusive contacts (a), proximity to faults intersections 
(b), proximity to faults (c), and fault density (d).
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criterion, exploration data, in prospectivity analysis for mineral explo
ration targeting. We have given an example how the point feature 
derived from the intersection of the faults and intrusive contacts works 
as a part of critical mineral systems and enhances delineation of new 
potential areas.

We should focus on new search spaces located away from the known 
deposit locations to discover deeper mineral deposits. MPM in new 
search spaces takes greater uncertainty, and in contrast, has greater 
opportunity to find new mineralization (Davies et al., 2021; Yousefi, 
2022). The discussions provided in this study dealing with survival bias 
have highlighted that excluding critical areas from the exploration pri
orities should be done with caution. According to the adaptation of the 
survival bias concept, a negative control, i.e., controlling the areas that 
due to less or lack of mineralization evidence have been excluded from 
the exploration programs, should be conducted to verify the presence or 
absence of mineralization features. A way to control the negative areas is 
to apply the same procedure proposed in this study and that was pre
sented by Yousefi and Hronsky (2023) dealing with the application of 
intersection of faults and intrusive in the prospectivity analysis.

Mineral exploration industry is now very much focusing on areas 
where there is no obvious near-surface evidence of the presence of 
mineralization. In terms of practical mineral exploration, there is a need 
for discussion on how to best deal with this problem. A good MPM will 
predict areas where known mineral deposits occur but also highlight 
prospective areas where no deposits are known to occur. In this paper, 
the exploration targeting model predicts known mineral deposits better 
than existing approaches, while it introduces new exploration targets, 
which is the focus of this paper. Given that in the new exploration targets 
recognized in this study, there are low and poor mineralization features, 
according to survival bias concept and its adaptation there may be 
mineral deposits at depth. Thus, further exploration programs (e.g., 
geophysical data acquisition) are recommended over the targets 
obtained.

According to the concept of exploration search space and following 
what have been discussed in this paper, it is necessary to do an analysis 
of the search space in order to determine if areas without significant 
mineralization represent Null or Negative tests. If they are Null tests – i. 
e., the available data cannot exclude the presence of mineralization at 
depth – then the concepts described in this paper can apply, for instance 
we look for evidence of a fluid upflow system (Yousefi and Hronsky, 
2023) that hosts a blind deposit. This typically occurs in areas concealed 
by post-mineral cover. However, in many cases, areas without signifi
cant mineralization actually represent Negative tests. This means we 
have enough information to say with confidence that it is unlikely that a 
mineralized system is present, even at depth. This occurs when either the 
prospective geological units are not present (perhaps they have been 
eroded away) or they are present without any evidence of related 
exploration features (e.g., hydrothermal alteration, geochemical 

anomalies, etc). Therefore, we should exclude such areas from the 
application of prospectivity analysis at the target scale. We generally 
tend to assume that non-favorable pixels are Negative, but it would be a 
great progress to identify those that could be Null. Consequently, 
including the ability of Null and Negative tests in EIS could improve the 
system’s ability in terms of targeting the next generation of mineral 
deposits, and help to more confidently discard any areas deemed non- 
prospective, which would be a very valuable information for explora
tion companies.

5. Concluding remarks

- The geological point feature, intersection of faults and intrusive 
bodies, was proposed as an ore-forming subsystem relating to the 
porphyry environment, which improves strategies in the search for 
the next generation of mineral deposits.

- These points are linked to mineralization in terms of spatial and 
genetic aspects rather than an alternative to the existing structural 
evidence criteria, i.e., fault density, proximity to faults, and faults 
intersection.

- Adaptation of survival bias may introduce exploration targets where 
there are less indicators of mineralization. However, the newly- 
introduced critical areas and exploration features in this paper lead 
to delimit search spaces.

- In the future, non-traditional features and proxies, similar to what 
have been given in this paper, may emerge to find signs of 
mineralization.

- The discussions given in this paper are seminal in the next-nascent 
strategies for searching for hard-to-explore mineral deposits those 
that show less or lack of evidence in the surface.
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