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A B S T R A C T

Estimates of extreme environments and responses of offshore structures for tropical cyclone conditions are
typically made using time-series of ocean environmental data, hence helping to ensure safe structural design.
However, estimates are often subject to large uncertainties because of the short length of available time-
series. We propose a methodology to characterise extreme multivariate time-series for tropical cyclones, by
extending the STM-E spatial extreme value model of Wada et al. (2018) to incorporate (a) storm peaks of
multiple metocean variables, using the conditional extremes model of Heffernan and Tawn (2004) (leading to
MSTM-E methodology), and additionally (b) time-series evolution around the storm peak, using a history-
matching approach (leading to MSTM-TE). We use both MSTM-E and MSTM-TE to estimate the return
values of multivariate extremes from synthetic cyclone data for a spatial neighbourhood of locations offshore
Guadeloupe (in the Lesser Antilles). The comparison of storm peak analysis using MSTM-E against single
location conditional model shows the benefit of MSTM-E in reducing return value variance without sacrificing
bias, in both marginal and joint extremes. Moreover, characteristics of multivariate time-series realisations
generated under fitted MSTM-TE models (with 200 years of data) are shown to be in good agreement with
those of the original time-series data used to fit the model (with 1000 years of data).
1. Introduction

A quantitative description of extreme environments and correspond-
ing structural responses is essential for design and reliability analysis;
for example, we might adopt the 𝑁-year structural response as ulti-
mate limit state for design, typically with 𝑁 = 10𝑚, 𝑚 = 2, 3, 4. In
ocean basins exposed to tropical cyclones (TCs), extreme responses are
produced by one or more of severe winds and waves. To establish a
good statistical model for extreme conditions, a reasonable amount
of representative data are needed. Since extreme tail behaviour of
winds and waves under cyclones is typically not strongly informed
by the behaviour of typical non-extreme winds and waves, only data
for extreme conditions are useful to characterise joint extremes (Wada
et al., 2016). Moreover, the frequency of TC events is low compared
to that of extra-tropical storms. In addition, the spatial extent of TCs
is smaller than that of extra-tropical storms (Jonathan and Ewans,
2007). It is apparent therefore that the size of relevant sample data for
empirical inference of extreme TC conditions is often limited, making
precise estimation of quantities such as return values challenging. For
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ocean basins with offshore oil and gas production, hindcast simulation
data of the ocean environment are sometimes available. The GOMOS
(Gulf of Mexico Oceanographic Study) hindcast for the Gulf of Mexico
is an exceptionally long example, covering the period of 1900–2008,
including 379 hurricane events (Cardone and Cox, 2013). However,
most ocean basins lack such long-duration hindcasts. Thus, design for
TC conditions typically requires characterisation of extreme events with
return periods longer that the period of available hindcasts or mea-
surements. This further motivates the use of extreme value models for
the tails of distributions. Estimation of univariate metocean extremes
using extreme value methods has been studied widely, for example
by Caires and Sterl (2005), Teena et al. (2012) and Wada et al. (2016).
The challenges of modelling TCs, and in particular the parameter
uncertainties from inference using small samples is noted by Jonathan
and Ewans (2007) and Wada and Waseda (2020). There are several
approaches to tackle the extrapolation problem for TCs. In the current
work, we simulate under an extreme value model for the tail of the
joint distribution of hindcast data. An alternative approach is so-called
vailable online 18 June 2024
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stochastic simulation. For example, Bloemendaal et al. (2020) generate
0,000 years of synthetic TCs from estimates of probability densities
or key parameters of TC evolution, such as direction, translation speed,
nd wind speed, derived empirically from historical storm track data.
he accuracy of the stochastic simulation depends on the adequacy of
he description of cyclone parameters, and whether fitted densities are
nformative for extreme cyclones.

Offshore structures in general are exposed to a range of environ-
ental phenomena, including waves, winds, currents, sea ice, etc.

tructural response is often driven by multiple environmental variables.
or example, the pitch of a vessel is known to depend on significant
ave height 𝐻𝑆 and period 𝑇 . Therefore, reliable quantification of

extreme structural responses requires a statistical model for the joint
variation of metocean drivers. Multivariate extreme value theory is
concerned with the characterisation, estimation and extrapolation of
tails of multidimensional distributions. Estimation of joint extremes is
more challenging than that of univariate extremes, requiring estimation
of all marginal extreme value distributions as well as the dependence
between variates (Jonathan and Ewans, 2013). We note the large
statistical literature on multivariate extremes (reviewed by Dutfoy,
2021; Walshaw, 2023) and spatial extremes (reviewed by Davison
et al., 2012; Tawn et al., 2018 and Huser and Wadsworth, 2022). Sta-
tistical modelling of multivariate and spatial extremes is complicated
by the fact that, in contrast to the univariate situation, no general
limiting distribution for extremes exists (e.g. Jonathan and Ewans,
2013). The key assumption of max-stability underpinning univariate
extreme value theory implies that the general form of the limiting
distribution for extreme values does not depend on the underlying
distribution from which the sample is drawn. A less general form of
max-stability motivates much of the existing methodology on multivari-
ate and spatial extremes, but the models generally require large samples
for fitting. Furthermore, it is not generally clear whether the restrictive
assumptions of the methodology are appropriate for the sample (Huser
et al., 2024), which potentially can lead to large bias in the estimation
of return values and related quantities. There are specific examples
of bivariate model fits to oceanographic data used for design using
𝐻𝑆 and peak period 𝑇𝑃 , including Haver (1987), Ferreira and Soares
(2002) and Dong et al. (2013). These studies are typically conducted in
non-cyclone dominated ocean basins; application to cyclone-dominated
regions would be more challenging. Tendijck et al. (2023b) attempts
to characterise such models asymptotically, and provide some justifi-
cation for their use. In this work we adopt the conditional extremes
model of Heffernan and Tawn (2004) to characterise the conditional
distribution of extremes of a multivariate quantity given that at least
one of its components takes an extreme value. The conditional extremes
model provides a pragmatic regression-type methodology for applied
multivariate extreme value analysis, and admits both asymptotic depen-
dence and asymptotic independence between variables. In particular,
its modelling assumptions are relatively easily confirmed using model
fit diagnostics.

Various approaches to utilise data from different spatial locations to
increase the effective sample size for statistical analysis have been dis-
cussed in the ocean engineering literature. A straightforward approach
is pooling of data from a neighbourhood of locations (Heideman and
Mitchell, 2009), assuming they all correspond to observations from the
location of interest (over an extended period of time), whilst ignoring
the spatial dependence present. Estimates of extreme quantiles and
their uncertainties from an extreme value model fit need to be carefully
interpreted, since the model wrongly assumes independent observa-
tions. There is a large statistical literature on spatial extremes, which
can as noted above be thought of as a particular extension of multivari-
ate extremes to accommodate spatially-dependent observations. These
models tend to be unwieldy: problematic to estimate reliably and hence
of limited practical use; Ross et al. (2017) presents one of the few appli-
cations of spatial extremes in ocean engineering. Another approach to
2

exploit spatial data, particularly for TCs, is track-shifting (Vickery et al.,
2000) or stochastic generation models (Bloemendaal et al., 2020). Here,
a large number of sample data sets are synthesised with shifted cyclone
tracks or random selections of storm features from past hurricanes.
Of course, the validity of the track-shifted or stochastic cyclone data
depends on the quality of the track modelling algorithms or stochastic
process employed. In this work, we extend the simple spatial model
(STM-E) for extreme waves in TC seas introduced by Wada et al. (2018)
to the multivariate context. The underpinning STM-E model assumes
that the spatial distribution of significant wave height data for a given
cyclone can be described in terms of two independent quantities: (a)
the peak severity or Spatio-Temporal Maximum (STM) of the cyclone,
and (b) the spatial Exposure (E) of the cyclone, which quantifies the
maximum influence of the cyclone at a given location, expressed as the
ratio of maximum significant wave height at that location (over the
period of the cyclone) to the STM. The assumption of independence
implies that the characteristics of Exposure do not change with STM.
If shown to be a reasonable assumption for a given sample of data,
we can then exchange STM and Exposure between different storms,
leading to a mechanism to simulate extreme storms over extended
periods. Using the conditional extreme model, we extend STM-E to
characterise extremes of multiple variables such as significant wave
height and wind speed. The resulting methodology is referred to as
MSTM-E (Multivariate Spatio-Temporal Maximum and Exposure).

Typically, extreme value models are fitted to observations assumed
conditionally independent in time. Therefore, it is usual to estimate
extreme value models for observations of maxima or peaks of storm
events, which can be considered approximately independent. Simula-
tions of time-series under such a model can then be achieved by first
simulating storm peak events, then coupling those events to time-series
(possibly adjusted, see Hansen et al., 2020) of historical storm evolution
for storms with similar peak characteristics to the simulated peak
events. In this way, we achieve simulations of extreme multivariate
time-series without explicitly adopting a model for time-series evolu-
tion. We again note the statistical literature of extremes of time-series
(reviewed by Chavez-Demoulin and Davison, 2012) and specific models
for multivariate time-series of serially-correlated extreme values, such
as those discussed by Tendijck et al. (2023a), but these are research
tools which have not yet been stress-tested for practical application. In
this work, we further extend the MSTM-E methodology outlined above
to the time-series context incorporating a history-matching approach
similar to that of Hansen et al., 2020, providing a method for simulating
coupled time-series of multiple oceanographic variables correspond-
ing to severe TC conditions. The extended approach is referred to
a MSTM-TE (Multivariate Spatio-Temporal Maximum and Temporal
Exposure).

The importance of capturing temporal evolution of storms for re-
liable design has been noted by Brown et al. (1984) and Anderson
et al. (2019) in the context of wind turbines and coastal defences
respectively. MSTM-TE thus extends MSTM-E to incorporate the tempo-
ral evolution of the multivariate environment throughout the extreme
event. Whereas MSTM-E considers the maximum value for each meto-
cean variable during the extreme event only, MSTM-TE considers the
full multivariate time-series for the extreme TC event. As a result,
MSTM-TE offers a number of advantages in estimating the extreme
response. Specifically, (a) the component maxima for an MSTM event
are typically not contemporaneous, whereas an MSTM-E analysis effec-
tively assumes that they are. Hence, return values and similar estimates
from an MSTM-E model may tend to be conservative relative to those
from MSTM-TE; and (b) TC duration (captured by MSTM-TE but not
MSTM-E) influences the maximum response observed (Mackay et al.,
2021).

Aims and outline

This paper seeks to improve the estimation of multivariate extreme
environmental conditions for TC conditions. By exploiting spatial in-

formation wisely, it has previously been demonstrated (Wada et al.,
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2018, 2022) that STM-E improves the precision of univariate return
value estimation, relative to site-specific estimation, without introduc-
ing bias. We anticipate that, by exploiting spatial information similarly,
the new multivariate models (MSTM-E, MSTM-TE, referred to together
as MSTM-(T)E) will provide better understanding of extremal depen-
dence between metocean variables, and hence more precise estimates of
return values, conditional return values and environmental design con-
tours, relative to site-specific estimation. When the design of a marine
structure requires knowledge of the multivariate temporal structure of
TCs, it is reasonable to expect that MSTM-TE will provide a better
basis for design, given that it can be well estimated from data. We
will quantify the relative performance of different models by comparing
estimates for extreme quantiles with known estimates from long-term
TC simulations over the Caribbean Sea.

The article is structured as follows. Section 2 introduces the moti-
vating application in the region of Guadeloupe in the Caribbean Sea.
Section 3 then outlines the multivariate spatial MSTM-E and MSTM-
TE methodology, including recommendations on diagnostics to support
good model fit. Section 4 then applies MSTM-E to the Caribbean data
together with the illustration of MSTM-TE application. Section 5 draws
conclusions and considers some of the wider implications of the work.
On-line Supplementary Material (referenced below with prefix ‘‘S’’)
provides supporting arguments and evidence; see the Acknowledge-
ments section for the appropriate hyperlink.

2. Motivating application

The study area (60.5–62.5W◦, 15.0N–17.0N◦) for the current work
s the French overseas region of Guadeloupe, an archipelago located
n the southern part of the Leeward Islands (see Fig. 1). This region
as been impacted by many devastating TCs in the past; Hugo in 1989
nd Maria in 2017 being the more damaging recent ones. Analysis
f the HURDAT database (Landsea and Franklin, 2013) reveals that
pproximately 0.6 cyclones per year passed within 300 km of the study
rea on average for the period 1970–2019.

For clarity of discussion in this work, we refer to four spatial do-
ains. The first is the Leeward region corresponding to the full domain

on which TCs are simulated, shown in the left hand panel of Fig. 1.
The second is the Guadeloupe region corresponding to the subdomain
of the Leeward region on which MSTM-(T)E models are developed,
shown in the right hand panel of Fig. 1. The third and fourth regions
are the west subregion and east subregion, lying to the west and east of
longitude 61.5W respectively, corresponding to a binary partition of
the Guadeloupe region. As will be explained later in Section 4.1, it will
also be convenient to identify cyclones whose maximum 𝐻𝑆 occurs at

location in the east (west) subregion. These will be referred to as east
luster (west cluster) events.

The data used in this study correspond to the output of a TC
imulator for the Guadeloupe region, available at https://carib-coast.
rgm.fr/, provided by the French Geological Survey (BRGM). The data
rovide time-series of significant wave height and wind speed in partic-
lar on a mesh of locations around Guadeloupe, corresponding to 685
Cs passing within 300 km of the islands over a period of 1000 years.

The wave simulator is based on data for key TC characteristics
track positions over time, and time evolution of radius, maximum
ind speed and central atmospheric pressure) from stochastically gen-
rated TCs (Bloemendaal et al., 2020). TC characteristics are translated
nto two-dimensional surface wind and pressure fields over the en-
ire cyclone course (Holland, 1980). These fields provide input to

Wavewatch 3 model (Tolman, 2014, henceforth WW3) generating
ffshore waves propagating to the Guadeloupe coastline. WW3 version
.18 with source term package described by Ardhuin et al. (2010)
s adopted, with discretisation into 32 wave frequencies and 36 di-
ections. The computational grid covers a large part of the Antilles
50.0–84.7W◦, 8.4–22.1N◦) with minimum resolution of about 300 m
t the coast and a maximum resolution of about 20 km offshore.
3

athymetry is computed from GEBCO (https://www.gebco.net), and
rom SHOM (https://data.shom.fr/donnees) for the French West Indies.

A brief exploratory analysis of the data, including plots of loca-
ions of STM events, histograms of STM magnitudes, and TC tracks is
rovided in section S.2 of the Supplementary Material.

. Methodology

This section describes the methodology underpinning MSTM-E and
STM-TE, both which can be thought of as extensions of the STM-
model of Wada et al. (2018), achieved by incorporation of the

onditional extremes model of Heffernan and Tawn (2004) (for multi-
ariate extremes in MSTM-E) and also a time-series history matching
rocedure (for multivariate time-series extremes in MSTM-TE). For
ompleteness, an outline of the original STM-E model is provided in
he Supplementary Material.

.1. Overview

The modelling procedure is described sequentially in the sub-
ections below. The first step is the isolation of so-called multivariate
patio-temporal maxima (MSTM) and exposure (denoted E; TE for
emporal exposure) sets for tropical cyclones; these entities are defined
n Section 3.2. In essense, the MSTM is a vector of maximum values
f metocean variables associated with a TC. The associated exposure
ets describe the spatial characteristics of the TC (e.g. in time and
pace) relative to its MSTM. The key assumption for both MSTM-E
nd MSTM-TE models, which must be carefully justified in application,
s that it is reasonable to characterise the distribution of (a) extreme
STM and (b) exposure sets independently of each other. Estimating

he distribution of extreme MSTM requires a multivariate extreme
alue model, since extremes of the metocean variables of which it is
omprised will be correlated in general. In the current work, we adopt
combination of marginal extreme value models and the conditional

xtremes model of Heffernan and Tawn (2004) to achieve this. These
re outlined in Section 3.3. The full modelling procedure is summarised
iagrammatically in Fig. 2. The modelling procedure is empirical in
ature. It is therefore critical to assess, for the application at hand,
hether modelling assumptions appear to be valid. Specifically, reason-
ble inference from extreme value models requires careful specification
f threshold values; we describe sensitivity analyses of inferences to
hreshold choice in Section 3.5. Another critical model assumption is
he independence of (M)STM and (T)E; in Section 3.6, we discuss the
ethods used to assess this. Once estimated, we use the fitted MSTM
odel to generate new realisations of MSTM vectors, which are then

ombined with historical occurrences of exposure sets to provide spatial
nd spatio-temporal realisations of TCs. Using these, we can estimate
he distributional characteristics of all metocean variables of interest,
ncluding marginal return values for individual metocean variables,
oint and conditional return values for multiple metocean variables
tc., whilst capturing the spatial and spatio-temporal dependence of
Cs in a pragmatic but principled manner. The procedure for merging
ealisations of MSTM with historical exposure sets is described in
ection 3.7.

The approach to assessing the performance of MSTM-E and MSTM-
E models against competitor models and long TC simulations, by
omparing estimates of return values and environmental contours, is
utlined in Section 3.8.

.2. Isolating MSTM and exposure sets

In general, consider a data sample for 𝐷 metocean variables describ-
ng the evolution of TCs in space and time. We refer to the observation
f variable 𝑑 (𝑑 = 1, 2,… , 𝐷) for cyclone 𝑛 (𝑛 = 1, 2,… , 𝑁) at location
(𝑚 = 1, 2,… ,𝑀) and relative time point 𝑡 (𝑡 = 1, 2,… , 𝐿𝑛) as 𝑥̃𝑑𝑛,𝑚(𝑡)

with ‘‘tilde notation’’ always reserved for functions of time). Note that

https://carib-coast.brgm.fr/
https://carib-coast.brgm.fr/
https://carib-coast.brgm.fr/
https://www.gebco.net
https://data.shom.fr/donnees
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Fig. 1. Leeward Islands and Guadeloupe. Left: the full spatial domain of the Leeward Islands (referred to for clarity as the Leeward region), with red box highlighting the
Guadeloupe region of interest. Two tracks from cyclone events used for Fig. 3 are also plotted; note that the Leeward region on which cyclones are simulated, is larger that the
Guadeloupe region of interest in this work. Right: magnified view of the Guadeloupe region including the islands of Guadeloupe, with simulation grid locations (black dots) and five
locations (red crosses) to be considered in detail. In order, the latitude–longitude coordinates of Locations 1 to 5 are (61.87W◦,15.96N◦), (61.07W◦,16.51N◦), (61.06W◦,15.98N◦),
(61.86W◦,16.51N◦), (61.47W◦,16.07N◦). The vertical blue line at longitude 61.5W is used to partition the set of cyclones into west and east clusters.
Fig. 2. A diagrammatic overview of MSTM-E and MSTM-TE estimation procedures. Red boxes are actions, and blue boxes are data. Blue text denotes actions or data for the
MSTM-TE procedure.
a relative time indicator 𝑡 is adopted such that the first observation
of each TC occurs at 𝑡 = 1, and 𝐿𝑛 differs for each event. Further,
applications in Section 4 below will consider the case 𝐷 = 2, for
variables 𝐻𝑆 and 𝑈10. Temporal maxima 𝑥𝑑𝑛,𝑚, and spatio-temporal
maxima (STM) 𝑠𝑑𝑛 for each dimension 𝑑, are defined by

𝑥𝑑𝑛,𝑚 = max
𝑡=1,…,𝐿𝑛

𝑥̃𝑑𝑛,𝑚(𝑡) for 𝑛 = 1, 2,… , 𝑁,𝑚 = 1, 2,… ,𝑀 and 𝑑 = 1,… , 𝐷

(1)

and

𝑠𝑑𝑛 = max
𝑚=1,…,𝑀

𝑥𝑑𝑛,𝑚 for 𝑛 = 1, 2,… , 𝑁 and 𝑑 = 1,… , 𝐷. (2)

That is, a temporal maximum is the maximum observed value of a
variable at a location for a given TC, and the STM is the maximum
observed value of a variable over all locations for a given TC. For the
TC indexed by 𝑛, the set of 𝐷 STMs {𝑠𝑑𝑛}

𝐷
𝑑=1 is referred to collectively as

a multivariate spatio-temporal maximum (MSTM) vector. Furthermore,
we define the exposure (E) at location 𝑚 relative to STM 𝑠𝑑𝑛 as

𝑒𝑑𝑛,𝑚 = max
𝑡=1,…,𝐿𝑛

𝑒𝑑𝑛,𝑚(𝑡) for 𝑛 = 1,… , 𝑁,𝑚 = 1, 2,… ,𝑀 and 𝑑 = 1,… , 𝐷

(3)
4

where 𝑒𝑑𝑛,𝑚(𝑡) is the temporal exposure (TE) defined by

𝑒𝑑𝑛,𝑚(𝑡) =
𝑥̃𝑑𝑛,𝑚(𝑡)

𝑠𝑑𝑛
for 𝑛 = 1,… , 𝑁,𝑚 = 1, 2,… ,𝑀,

𝑡 = 1, 2,… , 𝐿𝑛 and 𝑑 = 1,… , 𝐷. (4)

For TC 𝑛, the set of Es {𝑒𝑑𝑛,𝑚}
𝐷
𝑑=1 or TEs {𝑒𝑑𝑛,𝑚(𝑡)}

𝐷,𝐿𝑛
𝑑=1,𝑡=1 over the 𝐷

variables are referred to as exposure sets. Exposure sets will also show
dependence between constituent variables in general.

Using these definitions, we isolate MSTM and exposure sets for each
of 𝑁 TCs in the sample. Illustrations of MSTM and temporal exposure
sets for the two TCs illustrated in Fig. 1 are shown and described
in Fig. 3. STMs of the 𝐷 different variables do not necessarily occur
contemporaneously within a TC. Further, since our interest lies in
characterising the behaviour of extreme TCs, we include only cyclones
with STM values above some threshold, the choice of which is discussed
in Section 3.6.

3.3. A model for MSTM

We require a model for the MSTM vector 𝐒 with components 𝑆𝑑
(𝑑 = 1, 2,… , 𝐷), when at least one of its components is large. We use
the sample of 𝑁 MSTM vectors {𝑠𝑑}𝐷 (𝑛 = 1, 2,… , 𝑁) to estimate
𝑛 𝑑=1
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Fig. 3. Examples of TC events to aid in understanding MSTM-E and MSTM-TE. Each row of panels correspond to a cyclone event, the track of which is given in Fig. 1, with the
upper (lower) panel corresponding to the cyclone track in red (orange) in Fig. 1. Left to right: the corresponding MSTM (panel 1), TE at location 2 (see Fig. 1, panel 2), and the
corresponding observed timeseries of (𝐻𝑆 , 𝑈10) in time (panel 3) and jointly (panel 4). Note that the maximum TE with respect to 𝐻𝑆 and 𝑈10 for both cyclones is strictly <1,
ndicating that location 2 is not the location of the STM for any combination of metocean variable and cyclone. Note further that TE (panel 2) multiplied by MSTM (panel 1)
ives observed time-series (panel 3).
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his. The conditional extremes model of Heffernan and Tawn (2004)
s an appropriate model to adopt, since it is theoretically well-founded,
elatively easy to estimate, and has been used in applications in various
ields. Estimation of the conditional extremes model is performed in
wo stages, involving (a) estimation of marginal models for each 𝑆𝑑 in-
ependently, followed by transformation to standard marginal Laplace
cale, (b) estimation of 𝐷×(𝐷−1) pairwise conditional extremes models
or 𝑆𝑑′ |𝑆𝑑 (𝑑, 𝑑′ = 1, 2,… , 𝐷, 𝑑′ ≠ 𝑑). These stages are described in

Sections 3.3.1 and 3.3.2 respectively below.

3.3.1. Modelling margins
The marginal distribution of each of the 𝐷 components of MSTM is

estimated independently. For component 𝑆𝑑 (𝑑 = 1, 2,… , 𝐷) of MSTM,
we assume that sample values {𝑠𝑑𝑛}

𝑁
𝑛=1 are independently and identically

distributed. Moreover, we assume that the conditional distribution
of excesses of 𝑆𝑑 above some threshold 𝑢𝑑 is the generalised Pareto
istribution in Eq. (5), where 𝑢𝑑 is the marginal threshold referred to
n Fig. 2.

(𝑆𝑑 ≤ 𝑥|𝑆𝑑 > 𝑢𝑑 ) =

⎧

⎪

⎨

⎪

⎩

1 −
(

1 + 𝜉𝑑 (𝑥−𝑢𝑑 )
𝜎𝑑

)−1∕𝜉𝑑
for 𝜉𝑑 ≠ 0,

1 − exp
(

− 𝑥−𝑢𝑑
𝜎𝑑

)

for 𝜉𝑑 = 0
(5)

for shape parameter 𝜉𝑑 ∈ R and scale parameter 𝜎𝑑 > 0. When 𝜉𝑑 < 0,
he upper bound for 𝑆𝑑 is restricted to 𝑢𝑑 − 𝜎𝑑∕𝜉𝑑 , otherwise 𝑆𝑑 ∈ R.
he distribution 𝐹 ∗

𝑑 of 𝑆𝑑 below threshold 𝑢𝑑 is estimated empirically
rom observed data. The full unconditional distribution 𝐹𝑑 of 𝑆𝑑 is thus

𝑑 (𝑥) =

⎧

⎪

⎨

⎪

⎩

1 −
{

𝐹 ∗
𝑑 (𝑢𝑑 )

}

{

1 +
𝜉𝑑 (𝑥 − 𝑢𝑑 )

𝜎𝑑

}−1∕𝜉𝑑
for 𝑥 ≥ 𝑢𝑑 ,

𝐹 ∗
𝑑 (𝑥) for 𝑥 < 𝑢𝑑 .

(6)

The estimated marginal distribution is then used to transform the
sample of values for 𝑆𝑑 to the standard Laplace scale variables 𝑆𝐿𝑑 (with
superscript 𝐿 used to notate STM variables on Laplace scale), for each
𝑑 = 1, 2,… , 𝐷, using

𝑆𝐿𝑑 =

⎧

⎪

⎨

⎪

log
(

2𝐹𝑑 (𝑆𝑑 )
)

for 𝐹𝑑 (𝑆𝑑 ) <
1
2 ,

− log
(

2(1 − 𝐹𝑑 (𝑆𝑑 ))
)

for 𝐹𝑑 (𝑆𝑑 ) ≥
1 .

(7)
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3.3.2. Modelling dependence
Suppose that 𝐘 = (𝑌1, 𝑌2,… , 𝑌𝐷) is a 𝐷-dimensional random vector

on standard Laplace margins. The conditional extremes model provides
a means to describe the joint distribution of 𝐷 − 1 of these variables,
conditional on the value of the remaining variable being large. For
𝐷-vector 𝐯, writing 𝐯−𝑑 as the (𝐷 − 1)-vector consisting of all but
omponent 𝑑, we can describe the conditional extremes model as
ollows. We write

−𝑑 ∶=
(

𝐘−𝑑 − 𝐚−𝑑𝑌𝑑
)

∕ 𝑌 𝐛−𝑑
𝑑 (8)

here component-wise operations are assumed. That is, 𝐙−𝑑 is a
ransformed form of 𝐘−𝑑 , using normalisation (𝐷 − 1)-vectors 𝐚−𝑑 ∈
−1, 1](𝐷−1) and 𝐛−𝑑 ∈ (−∞, 1](𝐷−1). The conditional extremes model
ssumes that vectors 𝐚−𝑑 and 𝐛−𝑑 can be found such that the conditional
istribution of 𝐙−𝑑 given 𝑌𝑑 = 𝑦 converges to an unknown non-
egenerate (𝐷 − 1)-dimensional limiting distribution 𝐆−𝑑 for values
> 𝜓𝑑 , as the value 𝜓𝑑 increases. This motivates the statistical model

(

𝑌𝑑′ |
(

𝑌𝑑 = 𝑦
))

= 𝑎𝑑′|𝑑 𝑦 + 𝑦𝑏𝑑′ |𝑑 𝑍𝑑′|𝑑 for 𝑦 > 𝜓𝑑 ,

and 𝑑, 𝑑′ = 1, 2,… , 𝐷, 𝑑′ ≠ 𝑑 (9)

or each pair of variables (𝑌𝑑 , 𝑌𝑑′ ), with parameters 𝑎𝑑′|𝑑 ∈ [−1, 1]
nd 𝑏𝑑′|𝑑 ∈ (−∞, 1] to be estimated. Since the distribution of 𝑍𝑑′|𝑑
s not specified by theory, for model fitting purposes it is assumed
aussian with mean 𝜇𝑑′|𝑑 ∈ R and standard deviation 𝜅𝑑′|𝑑 > 0.
odel fitting is thus performed over a partition of a sub-domain of the

ull 𝐷-dimensional Laplace-scale domain into sets 𝐶𝑑 (𝑑 = 1, 2,… , 𝐷),
ith set 𝐶𝑑 defined as the region of the space in which 𝑌𝑑 > 𝜓𝑑 and
ax{𝐘−𝑑} < 𝑌𝑑 ; that is, in set 𝐶𝑑 , component 𝑌𝑑 of 𝐘 exceeds 𝜓𝑑 , and
𝑑 is also more extreme than any of the other components. Following
odel fitting, the set of empirical (𝐷 − 1)-dimensional residuals 𝑑

rom model fits for 𝐘−𝑑 |(𝑌𝑑 = 𝑦) is adopted as a sample from the joint
istribution of 𝐙−𝑑 , which can be sampled at random with replacement
or subsequent simulations under the model.

.4. Uncertainty quantification for marginal and conditional extreme value
odels

A bootstrap resampling scheme is used to quantify the uncertainty
f estimated model parameters, for both marginal and conditional
xtreme value models. In the scheme, for a given model of interest,
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𝑁 different model variants are estimated, each based on a differ-
ent bootstrap resample of the input data for modelling. Uncertainty
in parameter estimation is then represented by the set of bootstrap
parameter estimates. The bootstrap procedure is used to aid threshold
selections in Section 3.5 in particular. We use 𝑁 = 1000 for marginal
models, and 𝑁 = 100 for conditional extremes models.

In the current work, we choose not to propagate uncertainty through
the chain of inferences of which MSTM-(T)E is comprised, but rather
to adopt bootstrap mean model parameter estimates at each stage as
the best models for subsequent inferences. Overall MSTM-(T)E model
performance is quantified by estimating return values for long return
periods from random subsamples of data corresponding to shorter
periods of observation, as explained in Section 3.8.

3.5. Threshold selection

From a practical perspective, a critical aspect of marginal and
dependence modelling is the reasonable choice of threshold. Choice of
marginal thresholds {𝑢𝑑}𝐷𝑑=1 influences the estimation of each marginal
istribution, and hence also the conditional extremes model and the
dentification of Es and TEs. In this work, as illustrated in Section 4,
e examine threshold stability plots for 𝜉𝑑 (e.g. Coles, 2001) (figs. S.3.1

and S.3.2 in the Supplementary Material) to make informed selections
of marginal thresholds, using the bootstrap scheme of Section 3.4 for
uncertainty quantification. The values of marginal thresholds are fixed
prior to attempting dependence modelling.

The choice of dependency thresholds {𝜓𝑑}𝐷𝑑=1 determines which
events are considered extreme, affecting the inferred conditional ex-
tremes models, and whether exposure appears to be correlated with
MSTM. In the notation of Section 3.3.2, for simplicity and in the ab-
sence of strong evidence against the reasonableness of the assumption,
it was decided to adopt a common value 𝜓𝑑 = 𝜓 (𝑑 = 1, 2,… , 𝐷),
typically selected to be larger than max𝑑=1,2,…,𝐷 𝐹𝑑 (𝑢𝑑 ), so that the
conditional extremes threshold can be viewed as more extreme than
any marginal threshold. To assess the sensitivity of inference to the
choice of {𝜓𝑑}𝐷𝑑=1, we evaluate the convex hull of parameter pairs
(𝑎𝑑′|𝑑 , 𝑏


𝑑′|𝑑 ) under bootstrap resampling (specified with the superscript

) of the Laplace-scale input data for conditional extremes modelling,
for difference choices of 𝑑, 𝑑′ (𝑑, 𝑑′ = 1, 2,… , 𝐷, 𝑑′ ≠ 𝑑), over a range
of dependency thresholds. Illustrations of typical findings are given in
Section 4.

3.6. Assessing the independence of MSTM and (T)E

The basic STM-E methodology introduced by Wada et al. (2018)
assumes that STM and E are approximately independent. In the current
context, the corresponding assumption is that occurrences of MSTM
and (T)E can be considered approximately independent. That is, an
occurrence of MSTM can be validly associated with any occurrence of
(T)E. To apply the MSTM-(T)E models reasonably therefore, it is critical
to assess whether this assumption is valid for the samples of MSTM and
(T)E observed in the current work.

To achieve this, we use Kendall’s rank correlation coefficient test,
also known as Kendall’s tau test. This is a non-parametric statistical
hypothesis test to determine whether two variables are statistically
dependent. Details of how the test is applied for MSTM-E and MSTM-
TE are provided in Sections 3.6.1 and 3.6.2 respectively, and the results
can be found in section S.4 of the Supplementary Material.

3.6.1. MSTM-E
In the notation of Section 3.2, Kendall’s rank correlation coefficient

𝜏𝑑𝑚 for component 𝑑 (𝑑 = 1, 2,… , 𝐷) and location 𝑚 (𝑚 = 1, 2,… ,𝑀) is
given by

𝜏𝑑𝑚 = 1
𝑁(𝑁 − 1)

∑

sgn(𝑠𝑑𝑛 − 𝑠
𝑑
𝑛′ )sgn(𝑒𝑑𝑛,𝑚 − 𝑒𝑑𝑛′ ,𝑚) (10)
6

𝑛′≠𝑛
where 𝑁 is the total number of TC events present, and sgn(𝑥) = 1
or 𝑥 > 0, = 0 for 𝑥 = 0 and = −1 for 𝑥 < 0. If the value of 𝜏𝑑𝑚 is
lose to zero, then the rank correlation between STM and E is small. In
ractice, we state that STM and E are independent when the value of
𝑑
𝑚 lies within the 2.5% and 97.5% percentiles of the null distribution
f the test statistics under independence, for sample size 𝑁 . We can
hen generate spatial maps for each component 𝑑 of the environment,
ndicating locations where the rank correlation of STM and E appears
on-negligible. For the Guadeloupe application, results of Kendall’s
au tests are summarised in Section 4. In particular, in Section 4.1
e discuss interesting findings regarding non-negligible levels of rank

orrelation between STM and E, associated with differences between
C characteristics to the west and east of Guadeloupe. Notice also that
e only consider the marginal dependence between STM and E per TC

omponent, and do not consider cross-dependence between STM and E
or different TC components (although this could also be incorporated).

.6.2. MSTM-TE
In the notation of Section 3.2, the TE 𝑒𝑑𝑛,𝑚(𝑡) for component 𝑑 (𝑑 =

, 2,… , 𝐷) of TC 𝑛 (𝑛 = 1, 2,… , 𝑁) at location 𝑚 (𝑚 = 1, 2,… ,𝑀) is a
ime-series for 𝑡 ∈ [1, 2,… , 𝐿𝑛], the length 𝐿𝑛 of which varies with TC.
s such, the Kendall’s tau test cannot be directly applied to STM and
E without some adaptation. Specifically, we need to estimate a scalar
ummary statistic, which be reasonably used to represent the overall
haracteristics of each of 𝑁 TEs at location 𝑚 and component 𝑑. To
otivate this choice of summary statistic, Fig. 4 illustrates two TEs for

n arbitrary choice of TC and location for the Guadeloupe application.
e are interested in how the characteristics of TE change as STM

ncreases, and therefore specify a metric which measures the relative
issimilarity of two trajectories of the temporal exposure, referred to
s the trajectory distance.

For computational simplicity, we first impose a regular partition
f the TE space [0, 1]𝐷, assuming 𝑃 cells per dimension 𝑑, resulting
n a total of 𝑃𝐷 hypercube cells. For example, in the case of 𝐷 = 2
ith 𝑃 = 10 illustrated in Fig. 4, the TE space is partitioned into
02 = 100 cells with square shapes, indexed using 𝑖1 (for 𝐻𝑆 ) and 𝑖2
for 𝑈10). We then count the number of times that TE 𝑛 enters each of
he cells, and store this as 𝛾𝑚𝑛 (𝑖1, 𝑖2). This quantity therefore summarises
he distribution of TE 𝑛 in the 𝐷-dimensional TE space at location 𝑚.
ore generally, we estimate the trajectory distances
𝑚
𝑛 (𝑖1, 𝑖2,… , 𝑖𝐷) for 𝑖𝑑 = 1, 2,… , 𝑃 , 𝑛 = 1, 2,… , 𝑁,

= 1, 2,… ,𝑀, 𝑑 = 1, 2,… , 𝐷 (11)

nd use these to calculate the average trajectory distance between a TE 𝑛
nd the remaining 𝑁−1 other TEs at location 𝑚. The average trajectory
istance is calculated as

𝑚
𝑛 = 1

𝑁

𝑁
∑

𝑛′≠𝑛

∑

𝑖1 ,𝑖2 ,…,𝑖𝐷

|

|

|

𝛾𝑚𝑛 (𝑖1, 𝑖2,… , 𝑖𝐷) − 𝛾𝑚𝑛′ (𝑖1, 𝑖2,… , 𝑖𝐷)
|

|

|

for 𝑛 = 1, 2,… , 𝑁, 𝑚 = 1, 2,… ,𝑀. (12)

The average trajectory distance 𝛿𝑚𝑛 for TC 𝑛 at location 𝑚 therefore pro-
vides a univariate summary of multivariate TE characteristics, which
can be used in Eq. (10) to calculate Kendall’s tau statistic. In practice,
we estimate the rank correlation coefficient between the average tra-
jectory distance and each component of the MSTM per location. Results
of applying this analysis for the Guadeloupe study are discussed in
Section 4.4.

3.7. Simulation of tropical cyclones using fitted models

We use the procedure given in Algorithm 1 to generate realisations
of MSTM from the set of estimated conditional models. In brief, the
procedure requires us to first generate a realisation of MSTM using a
combination of the marginal and conditional extreme value models.
This realisation is then combined with a random drawing of a historical
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Fig. 4. Left: example of a temporal exposure (TE, in red) for an arbitrary choice of TC 𝑛 and location, in 𝑒𝐻𝑆 -𝑒𝑈10 space. The cells represent the values of 𝛾𝑚𝑛 (𝑖1 , 𝑖2), with 𝑖1 and 𝑖2
indicating cell location in discretised 𝐻𝑆 and 𝑈10 respectively. Right: example of TEs (in red and orange) at one location for two TCs 𝑛 and 𝑛′. The cells now represent the values
of |

|

|

𝛾𝑚𝑛 (𝑖, 𝑗) − 𝛾
𝑚
𝑛′ (𝑖, 𝑗)

|

|

|

used in Eq. (12). Note that the maximum of TEs (red and orange) for each of 𝐻𝑆 and 𝑈10 correspond to exposure E in the corresponding MSTM-E model.
E or TE to generate a realisation of a TC temporal maximum (from
MSTM-E) or TC multivariate time-series (form MSTM-TE). These steps
are repeated until 𝑁∗ realisations have been generated, sufficient to
perform reliable structural risk assessment.

As mentioned in Section 3.3.2, the algorithm could also be used with
modified marginal and conditional extreme models estimated using
bootstrap-resampled data (see Section 3.4), as an alternative means to
estimate uncertainties associated with model inferences.

3.8. Performance assessment

A number of different approaches can be used to assess the perfor-
mance of inferences using MSTM-(T)E models. These are outlined here,
and illustrated in Section 4 in application to the Guadeloupe study.

3.8.1. Environmental contours for MSTM and MSTM-E
For MSTM and MSTM-E models, realisations from the simulation

procedure in Algorithm 1 can be used to estimate various forms of
environmental contours corresponding to some long return period 𝑇
years, provided that the number of realisations 𝑁∗ generated is large.
For the Guadeloupe study, a comparison of 𝑇 = 100 and 𝑇 = 300-year
environmental contours estimated from observed data (corresponding
to a period 𝑇0 = 1000 years) and from simulation (using MSTM-E
models fitted to a subsample corresponding to 𝑇𝑆 = 200 years) is
made. The contour estimate takes the form of the curve (𝑤1(𝜃), 𝑤2(𝜃))
in 𝐻𝑆 -𝑈10 space, for angle 𝜃 ∈ [0, 𝜋∕2), where

P(𝐻𝑆 > 𝑤1(𝜃), 𝑈10 > 𝑤2(𝜃)) =
1

𝑇 𝑝𝑎𝑝𝑒
. (13)

Here, in addition to the return period 𝑇 of interest in years, 𝑝𝑎 is the
annual rate of occurrence of TCs (estimated from the TC data to be 0.6).
Further, parameter 𝑝𝑒 is the probability of a TC being incorporated in
the sample used to estimate the contour. For contours estimated using
data simulated under MSTM-E, this corresponds to the probability that
the common Laplace-scale threshold 𝜓 for the conditional extremes
model in Section 3 is exceeded. For contours estimates using the full
original sample of data, 𝑝𝑒 = 1, since all TCs are included.

In Section 4, we also assess the variability of estimates of the 𝑇 =
1000 year environmental contour using MSTM-E. We achieve this by
estimating MSTM-E models, and hence environmental contours, for
random sub-samples (corresponding to a period 𝑇𝑆 = 200 years) of the
full TC data (corresponding to a period of 1000 years). An arbitrary
number of environmental contours can be estimated in this way, and
7

the distributional characteristics of their (𝑤1(𝜃), 𝑤2(𝜃)) curve estimated
as a function of 𝜃 ∈ [0, 𝜋∕2). These MSTM-E contours can then be
compared with a direct empirical estimate of the 𝑇 = 1000-year contour
obtained using the full TC data set.

3.8.2. Location-specific estimates for MSTM-E
It is also useful to assess estimates from MSTM-E for specific loca-

tions of interest, and to compare these with estimates obtained using
location-specific estimation (LSE). The LSE estimate for location 𝑚 is
obtained by fitting marginal and conditional extremes models to the
set of temporal maxima {𝑥𝑑𝑛,𝑚}

𝐷
𝑑=1. Since MSTM-E exploits information

from all 𝑀 locations in the spatial domain, we might expect estimates
from MSTM-E for a specific location to be less variable than those from
an LSE for that location; however, if MSTM-E modelling assumptions
are not appropriate, it might be that MSTM-E estimates are also more
biased that LSEs. Choice of marginal and dependence thresholds is of
course also an important consideration for LSE. In the comparisons
reported in Section 4, both marginal and dependence thresholds were
set to the 70% percentile of the corresponding distributions.

In a similar fashion to environmental contours in Section 3.8.1, we
can also estimate multiple marginal and conditional extremes models
for random subsets of temporal maxima corresponding to periods of
𝑇𝑆 = 200-years at the location. In this way, as discussed in Section 4,
we can quantify the variability of LSE estimates for locations of interest.

3.8.3. Location-specific joint distributions of TC variables for MSTM-TE
TC time-series simulated under MSTM-TE models are realisations

of complex multi-dimensional objects. Assessment of the extent of
agreement between historical TC time-series and those generate under
MSTM-TE models is therefore also complex. In the current work, we
choose to assess the performance of MSTM-TE in estimating location-
specific joint distributions of observed TC variables (𝐻𝑆 and 𝑈10 in the
case of Guadeloupe) from simulation under MSTM-TE, with empirical
estimates from the full TC data set. In the comparisons in Section 4.4,
we are careful to ensure a fair comparison, by only including extreme
TCs (i.e. exceeding dependence thresholds with non-exceedance proba-
bility (𝜓) for conditional extremes in the empirical estimates from the
full TC data set, where  is the cumulative distribution function of the
standard Laplace distribution). We then compare the two estimates as
contour plots exploiting Gaussian kernels for smoothing, using Scott’s
rule (Scott, 2015) for bandwidth selection.
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Algorithm 1: Simulating realisations of TC temporal maxima
and time-series using MSTM-(T)E

Input : Marginal model parameters {𝑢𝑑 , 𝜉𝑑 , 𝜎𝑑}𝐷𝑑=1 for
extremes of each of 𝐷 variables

Input : Conditional extremes model parameters and residuals
{𝜓𝑑 , 𝐚−𝑑 ,𝐛−𝑑 ,𝑑}𝐷𝑑=1

Input : Empirically estimated rates of occurrence {𝜌𝑑}𝐷𝑑=1 of
MSTM over partition {𝐶𝑑}𝐷𝑑=1 of MSTM space

Input : For MSTM-E, exposure set of Es {𝑒𝑑𝑛,𝑚}
𝑁,𝑀,𝐷
𝑛=1,𝑚=1,𝑑=1

Input : For MSTM-TE, exposure set of TEs
{𝑒𝑑𝑛,𝑚(𝑡)}

𝑁,𝑀,𝐷,𝐿𝑛
𝑛=1,𝑚=1,𝑑=1,𝑡=1

STEP 1: Simulate realisation 𝑛∗ of MSTM, {𝑠𝑑𝑛∗}
𝐷
𝑑=1

for partition 𝐶𝑑′ , 𝑑′ = 1, 2, ..., 𝐷 of environmental space do
for conditioning variate 𝑑 = 1, 2, ..., 𝐷 do

Simulate a realisation of the Laplace-scale conditioning
variable 𝑑 given rate of occurrence 𝜌𝑑 and dependence
threshold 𝜓𝑑

Simulate a realisation of the conditioned variables using
the conditional extremes model in Eq. (8)

Reject any realisations which generate conditioned
values greater than the conditioning value

Transform realisation from Laplace to physical scale
using estimated marginal cumulative distribution
functions in Eq. (6)

end
end

STEP 2: Sample realisation 𝑛∗ of E or TE
For MSTM-E, sample a historical E at random, and call this
{𝑒𝑑𝑛∗ ,𝑚}

𝑀,𝐷
𝑚=1,𝑑=1

For MSTM-TE, sample a historical TE at random, can call
this {𝑒𝑑𝑛∗ ,𝑚(𝑡)}

𝑀,𝐷,𝑇𝑛∗
𝑚=1,𝑑=1,𝑡=1

Note that the same historical (T)E is sampled for all
locations and variables, preserving dependence in space
and between variables

STEP 3: Combine MSTM and (T)E realisations (see Section 3.2)
For MSTM-E, generate a realisation of TC temporal maxima
𝑥𝑑𝑛∗ ,𝑚 = 𝑠𝑑𝑛∗ × 𝑒

𝑑
𝑛∗ ,𝑚 for each component 𝑑 (𝑑 = 1, 2, ..., 𝐷) at

each location 𝑚 (𝑚 = 1, 2, ...,𝑀)
For MSTM-TE, generate a realisation of TC time-series
𝑥̃𝑑𝑛∗ ,𝑚(𝑡) = 𝑠𝑑𝑛∗ × 𝑒

𝑑
𝑛∗ ,𝑚(𝑡) for each component 𝑑 at each

location 𝑚, for 𝑡 = 1, 2, ..., 𝑇𝑛∗

STEP 4: Repeat Step 1–3 until a sufficient number 𝑁∗ of
realisations is generated

Output: For MSTM-E, a set of 𝑁∗ realisations of TC temporal
maxima {𝑥𝑑𝑛∗ ,𝑚}

𝑁∗ ,𝑀,𝐷
𝑛∗=1,𝑚=1,𝑑=1

Output: For MSTM-TE, a set of 𝑁∗ realisations of TC
time-series {𝑥̃𝑑𝑛∗ ,𝑚(𝑡)}

𝑁∗ ,𝑀,𝐷,𝑇𝑛∗
𝑛∗=1,𝑚=1,𝑑=1,𝑡=1

4. Application of MSTM-(T)E to Guadeloupe region

Now we apply the MSTM-(T)E methodology introduced in Section 3
to the wind and wave data introduced in Section 2 using case studies
that focus on joint extremal behaviour at the five locations illustrated in
Fig. 1. We estimate MSTM, MSTM-E, and MSTM-TE using subsamples
of the original data set, each corresponding to a period of 200 years of
observation. We then assess the performance of the estimated models
in predicting return values, using the full 1000-year synthetic data
set which serves as ground truth when the estimated return period is
shorter than 1000 years. By repeatedly subsampling 200 years worth
of data at random for estimation, we are able to quantify the bias and
8

variance characteristics of MSTM-(T)E estimates.
The layout of the section is as follows. In Section 4.2, we char-
acterise the joint extreme value structure for the 𝐻𝑆 -𝑈10 MSTM, a
common element of the MSTM-(T)E methodologies (see Fig. 2). Specif-
ically, we discuss the estimation of marginal extreme value models
for the components 𝐻𝑆 and 𝑈10 of MSTM, and conditional extreme
value models to describe the extremal dependence between 𝐻𝑆 and
𝑈10. We emphasise the importance of sensible threshold selection for
both marginal and conditional extreme value models. Environmental
contours for the 𝐻𝑆 -𝑈10 MSTM corresponding to a return period of
100 year are also illustrated. In Section 4.3, we discuss the estimation
of the MSTM-E model, and test for dependence between MSTM and
exposure. Environmental contours corresponding to 100-year and 300-
year return values are estimated for each of the 5 locations given in
Fig. 1. We also compare contours with those from location-specific
estimation (LSE, described in Section 3.8.2). Finally, in Section 4.4, we
discuss the application of MSTM-TE, comparing model-based estimates
of joint evolutions of time-series for 𝐻𝑆 and 𝑈10 with those from
location-specific estimation. First however, in Section 4.1, we motivate
and explain the partitioning of the spatial domain around Guadeloupe
into west and east clusters, found necessary to account for different
physical behaviours of extreme events in the two regions.

4.1. Initial analysis and partitioning of the Guadeloupe region

During preliminary data analysis, statistical testing indicated that
it was not reasonable to assume that MSTM and exposure sets can be
considered independent for the Guadeloupe region. Specifically, the
test provided evidence for non-negligible levels of dependence between
MSTM and exposure, associated with differences between TC charac-
teristics to the west and east of Guadeloupe. To mitigate this finding,
the set of TC events was partitioned into ‘‘clusters’’ of ‘‘east’’ TCs and
‘‘west’’ TCs based on the location of occurrence of the maximum of
𝐻𝑆 for the TC event, relative to longitude 61.5W. This partitions the
set of 685 TCs into 467 TCs for the east cluster and 218 for the west
cluster. MSTM-(T)E models are then developed independently for the
east and west clusters. Notably, for each cluster, dependence between
MSTM and exposure sets is shown to be low, as discussed in Section 4.2.
The choice of longitude 61.5W as partition boundary is supported by
evidence of bimodality in the distribution of MSTM components for the
full Leeward region (see fig. S.2.3 in the Supplementary Material), in
particular for 𝑈10. This suggests the existence of mixed populations of
TCs. We note however that this bimodal structure is not as clear when
we consider TCs in the Guadeloupe region alone. There is also evidence
of wave blocking and shadowing of the islands on the distribution of
exposure. The method of clustering by STM location was ultimately
motivated by the results of Kendall’s tau test, presented in Section 4.3.

Note that partitioning of TCs into east and west clusters is performed
based on the location of occurrence of the maximum of 𝐻𝑆 for each
TC event. This does not mean that TC data for a given cluster is
limited spatially to the east of west subregions of the Guadeloupe
region. Indeed, data from either east or west clusters typically provide a
means to estimate exposure for the full Guadeloupe region, not just for
the subregion corresponding to the cluster itself. As a result, we can
estimate MSTM-(T)E models for the full Guadeloupe region using TC
data for either east or west clusters. The performance of these models
is assessed in Sections 4.3 and 4.4.

4.2. Estimation of MSTM

Here we assess critical features of the estimation of the 𝐻𝑆 -𝑈10
MSTM model, the methodology of which is described in Section 3.3.
We estimate parameters for extreme marginal and dependence mod-
els, based on results of diagnostic tests to ensure sensible marginal
and dependence threshold selection. This is followed by estimation of
environmental contours for MSTM (as opposed to MSTM-(T)E). Model
fitting is illustrated for a typical random sample of TC data for the
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Table 1
Bootstrap mean parameter estimates of marginal GP models, over 𝑁 = 1000 bootstrap
esamples, for the east and west clusters, with parameters 𝑢 (threshold), 𝜎 (scale) and
𝜉 (shape). Corresponding bootstrap standard deviations are given in parentheses.

Cluster Variable 𝑢̂ 𝜎̂ 𝜉

East 𝐻𝑆 10.327(0.026) 6.389(0.634) −0.387(0.062)
𝑈10 33.222(0.125) 15.226(1.650) −0.523(0.058)

West 𝐻𝑆 6.995(0.052) 4.796(0.683) −0.368(0.112)
𝑈10 26.140(0.097) 13.499(2.062) −0.393(0.118)

Table 2
Bootstrap mean parameter estimates of the conditional extremes model parameters, over
𝑁 = 100 bootstrap resamples, for the east and west clusters, with linear parameter
, power parameter 𝑏 and residual mean parameter 𝜇. Bootstrap standard deviations
re shown in parentheses. Bootstrap mean parameter estimates are used for simulation.
tandard deviation in parentheses.
Cluster Model form 𝑎̂ 𝑏̂ 𝜇̂

East 𝑈𝐿
10|𝐻

𝐿
𝑆 0.182(0.150) 0.184(0.309) 1.044(0.411)

𝐻𝐿
𝑆 |𝑈

𝐿
10 0.024(0.250) 0.256(0.325) 1.511(0.826)

West 𝑈𝐿
10|𝐻

𝐿
𝑆 0.542(0.246) 0.647(0.216) 0.513(0.311)

𝐻𝐿
𝑆 |𝑈

𝐿
10 0.601(0.219) 0.445(0.225) 0.506(0.307)

east cluster of the Guadeloupe region, corresponding to a period of
observation of 200 years. We use the bootstrap scheme of Section 3.4 to
quantify model uncertainty, and report estimated parameters in terms
of bootstrap means and standard deviations. Then, assuming bootstrap
mean model parameters for simulation, multiple model fits to differ-
ent 200-year random samples are used to estimate the environmental
contour for 𝐻𝑆 -𝑈10 MSTM and its uncertainties. We first examine the
stability of estimated models for 𝐻𝑆 -𝑈10 MSTM against marginal and
dependence threshold choice, and then report parameter estimates for
both marginal and dependence models.

Marginal extreme value models. First, threshold selection for marginal
extreme value models for both 𝐻𝑆 and 𝑈10 is considered, for both
west and east clusters. A non-exceedance probability of 0.60 was
chosen as the marginal threshold for both clusters, corresponding to
(7.00 m, 26.36 m/s) for the west cluster and (10.35 m, 33.30 m/s) for
the east cluster. Details are given in fig. S.3.1 and fig. S.3.2 of section
S.3.1 of the Supplementary Material. With this threshold, estimated GP
parameters are summarised in Table 1. The results suggest short-tailed
distributions (𝜉 ≪ 0), for both 𝐻𝑆 and 𝑈10 in both regions.

Conditional extreme value models. Next, we choose an appropriate
threshold for conditional extremes models by assessing the stability of
bootstrap estimates for model parameters 𝑎 and 𝑏 with respect to differ-
ent combinations of marginal and dependency thresholds. Results are
illustrated in fig. S.3.5, fig. S.3.6 fig. S.3.7, and fig. S.3.8 of section S.3.1
of the Supplementary Material. Dependence threshold non-exceedance
probabilities of 0.70 and 0.90 were selected for west and east clusters
respectively. This choice was driven in part by the lower rate of
occurrence of TCs in the west cluster. For the selected dependency
thresholds, samples of parameter estimates from bootstrap analysis
are illustrated in fig. S.5.1 and fig. S.5.2 of section S.3.2. Note that
bootstrap mean parameter estimates are used for subsequent estimation
of the model residual distribution 𝑍 (see Eq. (8) in Section 3.3.2), and
hence simulation under fitted MSTM-(T)E models. In the notation of
Section 3.3.2, we also examine scatter plots of 𝑍−𝑑 against large 𝑌𝑑
to confirm no clear evidence of strong dependence; see fig. S.3.9, fig.
S.3.10, and fig. S.3.11 in section S.3.2. Finally, estimated conditional
model parameters are given in Table 2. It is interesting to note that
estimates for linear (or slope) parameter 𝑎 are considerably larger in
the west sector that the east, but that this effect is mitigated by larger
values of residual mean 𝜇 for the east. Estimates for power parameter
𝑏 are larger in the west sector also.

The fitted conditional extreme value models for the east cluster are
9

illustrated in Fig. 5, on Laplace scale (left) and physical scale (right).
In the right hand panel, the apparent ‘‘rays’’ or ‘‘streaks’’ in realisations
under fitted models (shown as yellow and blue points) are the result
of sampling randomly from a small residual set  (see Section 3.3.2),
itself the result of the relative small sample of extreme TCs available
for analysis. Corresponding figures for the west cluster are given in fig.
S.6.1 in section S.6.

We next compare the environmental contour corresponding to a
𝑇 = 100-year return period, estimated with bootstrap means under
the MSTM model, to that estimated empirically from the full original
𝑇𝑜 = 1000-year simulated TC data set. To quantify uncertainty in
the location of the environmental contour in the 𝐻𝑆 -𝑈10 environment
space, MSTM models are estimated independently for a total of 1000
randomly-selected TC data sets, each corresponding to a period of
observation 𝑇𝑆 = 200 years, from the full TC data set. We then follow
the procedure described in Section 3.8.1 to estimate the mean contour
and its 95% uncertainty interval. Resulting environmental contours
for the east cluster are provided in Fig. 6 (with the corresponding
estimate for the west cluster given in fig. S.6.2 of section S.6). For
both clusters, the empirical environmental contour agrees well with the
mean MSTM contour, suggesting that the bias in the MSTM estimate is
small. Moreover, the empirical contour falls well within the uncertainty
band for the MSTM contour.

4.3. Estimation of MSTM-E

Using the MSTM model with bootstrap mean parameters and corre-
sponding sets  of residuals, we now estimate 𝐻𝑆 -𝑈10 MSTM-E models
which characterise temporal maxima of extreme TC events in space
(only). The key elements of the MSTM-E model are MSTM and (tem-
poral maximum exposure) E. We proceed as follows. First, following
Section 3.6 we test the assumption of independence of MSTM and E
for the 𝐻𝑆 and 𝑈10 components of the environment. Then we focus on
developing estimates for environmental contours corresponding to 𝑇 =
100-year and 300-year return periods, at the five reference locations
(see Fig. 1), and comparing these with estimates obtained empirically
for the full 𝑇0 = 1000-year data set. The procedure for simulating under
the MSTM-E model is outlined in Algorithm 1.

The statistical independence of MSTM and E is quantified using
rank correlation following the procedure of Section 3.6.1. For each of
𝐻𝑆 and 𝑈10 independently, and each of the west and east sectors, we
identify the spatial locations at which the rank correlation between
STM and E lies beyond the central 95% band under the assumption
of independence. The percentage of locations with non-negligible rank
correlation is summarised in Fig. 7 for dependence thresholds 𝜇 with
non-exceedance probabilities ∈ [0.6, 0.9]. For the selected dependence
thresholds, corresponding to non-exceedance probabilities of 0.7 in the
west cluster and 0.9 in the east cluster, the percentage of locations
with non-negligible rank correlation is below 5% for both 𝐻𝑆 and 𝑈10
in the west cluster, and for 𝐻𝑆 in the east cluster, and just slightly
above 5% for 𝑈10 in the east cluster. Spatial maps of non-negligible
rank correlations for the selected dependence thresholds are given
in fig. S.4.1 and fig. S.4.2 of Supplementary Material section S.4.
We conclude, given wise choice of dependence thresholds, that the
assumption of independence of STM and E is not obviously violated
for TCs in Guadeloupe region, provided that region is considered as
the union of west and east clusters of TCs with somewhat different
characteristics.

We use the fitted MSTM-E models to estimate environmental con-
tours at the five reference locations corresponding to return periods
of 𝑇 = 100 and 𝑇 = 300 years. To quantify uncertainty in the
location of the environmental contour, we follow the sampling proce-
dure described in Section 4.2 for MSTM, using 1000 MSTM-E models
from randomly-sampled data sets, each corresponding to a period of
observation of 𝑇𝑆 = 200 years. Also as in Section 4.2 for MSTM, we
compare the MSTM-E contour with that estimated empirically from

the full 𝑇0 = 1000-year TC data set. For further comparison, we also
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Fig. 5. Conditional extreme values models for MSTM in east cluster. Left: conditional models on standard Laplace scale, for 𝑈𝐿
10|𝐻

𝐿
𝑆 (yellow) and 𝐻𝐿

𝑆 |𝑈
𝐿
10 (blue). Solid lines

represent models with bootstrap mean parameter estimates for 𝑎, 𝑏 and 𝜇. Dashed lines represent 95% uncertainty bands for predictions, estimated using the 2.5% and 97.5%
quantiles of the set empirical  of model residuals 𝑍. Right: conditional model on physical scale. Coloured points represent realisations of MSTM sampled under the fitted models
for 𝑈10|𝐻𝑆 (yellow) and 𝐻𝑆 |𝑈10 (blue), together with the original sample (black).
m

Fig. 6. Environmental contours for 𝐻𝑆 -𝑈10 MSTM of in the east cluster, corresponding
o a return period of 𝑇 = 100 years. The contour estimated under multiple MSTM
odels given random samples of length 𝑇𝑆 = 200 years is shown in red, as a mean

contour and its central 95% uncertainty band. The contour shown in black is estimated
empirically using the full 𝑇𝑜 = 1000 years of simulated TC data. The full underlying TC
dataset for the east cluster is also shown as black dots.

estimate a location-specific estimate (LSE) of the contour, using data
only from that location following the procedure of Section 3.8.2; it was
found that dependency thresholds with non-exceedance probabilities of
0.6 for the west cluster and 0.7 in the west were suitable. Uncertainty
in the LSE-based contour was assessed in the same manner as that for
the MSTM-E-based estimate.

Estimated environmental contours with 100-year return period, for
the five reference locations, based on TCs from the east cluster only,
are shown in Fig. 8 (and in ig. S.6.3 of section S.6 for the west cluster).
There is good agreement between the median MSTM-E estimate (solid
blue line) and the empirical ground truth estimate (solid black line)
using the full 𝑇0 = 1000 years of east cluster TC data for the location di-
rectly. Moreover, the empirical estimate is contained within the central
95% uncertainty interval (dashed blue line) for the MSTM-E estimate
at all locations. Compared with the LSE estimates (orange), MSTM-
E provides lower estimated contour bias and variance. Corresponding
estimated contours for a 300-year return period are shown in Fig. 9
(and in fig. S.6.4 of section S.6 for the west cluster). The general
characteristics of the figure are similar to those of Fig. 8, except perhaps
that the uncertainties are greater in Fig. 9 due to the fact that we are
10

i

extrapolating further into the joint tail of 𝐻𝑆 and 𝑈10. The LSE (orange)
is particularly uncertain at the 300-year level. Again, the empirical
ground truth estimate (solid black line) is contained within the central
95% uncertainty interval (dashed blue line) for the MSTM-E estimate
at all locations, and the median MSTM-E (solid orange line) is in good
general agreement with the empirical estimate. Note that Figs. 8 and
9 of the main text for the east cluster make use of TC data for the
east cluster exclusively, whereas fig. S.6.3 and fig. S.6.4 of section S.6
make use of TC data for the west cluster. Hence, for example, empirical
ground truth estimates of the 100-year environmental contour for
reference location 3 are expected to be different based on east and west
cluster data in Fig. 8 and fig. S.6.3 respectively.

As a further quantification of the performance of MSTM-E and
LSE relative to the empirical ground truth estimate, we compare the
location on each contour where the marginal quantile values are equal.
This is achieved by transforming the contour to standard Laplace 𝐻𝐿

𝑆 -
𝑈𝐿
10 scale, using the appropriate marginal models, and then measuring

the distance from the origin of coordinates to the point of intersection
of the contour along the line 𝑈𝐿

10 = 𝐻𝐿
𝑆 . This distance is referred to as

the ‘‘contour distance’’ below, for each of discussion. The comparison
is illustrated in Fig. 10 as box-whisker representations of the distribu-
tions of contour distances for MSTM-E (blue) and LSE (orange). The
empirical ground truth estimate is given as a thick black horizontal line.
Again, it can be seen that the bias of MSTM-E estimates is generally
lower than that of LSE, and that the variance of MSTM-E estimates
is considerably lower than that of LSE. We note that numerous other
comparisons of this form are possible, and that the current comparison
of contour distances is included as an illustration. Results of Fig. 10 are
summarised in table S.1–table S.4 in section S.9 of the Supplementary
Material.

The MSTM-E analysis requires the practitioner to make a number
of choices of tuning parameter prior to analysis. Clearly, the user
must ensure that inferences made are not overly sensitive to these
choices. In section S.7, we explore the effect of reducing the size of
the Guadeloupe region on the estimation of environmental contours.
Our cautious conclusion is that a reasonable choice of region does not
materially alter the performance of the MSTM-E model.

4.4. Estimation of MSTM-TE

Using the MSTM model with bootstrap mean parameters and cor-
responding sets  of residuals, we now estimate 𝐻𝑆 -𝑈10 MSTM-TE

odels which characterise the temporal evolution of extreme TC events

n space and time. The key elements of the MSTM-TE model are
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Fig. 7. Percentage of locations with non-negligible rank correlations between STM and E for 𝐻𝑆 (left) and 𝑈10 (right), in the west cluster (triangle) and the east cluster (circle),
as a function of the non-exceedance probability of the dependence threshold.

Fig. 8. Environmental contours for return period 𝑇 = 100 years at each of reference locations 1–5, using east cluster data. In each panel, black points represent temporal maxima
for TCs at the location. Coloured lines correspond to contours estimated empirically (black), using MSTM-E (blue), and using LSE (orange) respectively. Solid lines give median
contours over random selections of 200 years of training data (see Section 3.8.1), and dashed lines corresponding central 95% uncertainty intervals. Empirical ground truth estimates
are obtained from the full 1000 years of east cluster TC data for the location of interest.

Fig. 9. Environmental contours for return period 𝑇 = 300 years at each of reference locations 1–5, using east cluster data. For full description, see Fig. 8.
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Fig. 10. Box-whisker plots comparing contour distances for MSTM-E (blue) and LSE (orange) with empirical ground truth estimates (thick black), for contour return periods
𝑇 = 100 years (left) and 300 years (right) using east cluster data. The colour scheme follows Fig. 8.
Fig. 11. Examples of TC events simulated using MSTM-TE at Location 2. Each line drawn represents the trajectory of a single event, with 3 events coloured (red, green, blue) to
illustrate specific instances of the joint evolution of 𝐻𝑆 and 𝑈10. The left and middle panels show marginal time-series plots of 𝐻𝑆 and 𝑈10 per event, and the right hand panel
shows a scatter plot of the joint time-series trajectory in 𝐻𝑆 − 𝑈10 space. Note that events were selected based on MSTM-E (rather than MSTM-TE) 𝐻𝑆 , 𝑈10 values having joint
return periods in the interval of 95–105 years. Note further, in the right hand panel, that the boundary created by the set of event trajectories in 𝐻𝑆 − 𝑈10 space resembles the
isocontour lines in Fig. 8.
MSTM and temporal exposure TE. The TE for a TC is simply the
set of time-series for 𝐻𝑆 and 𝑈10 for all locations of interest on the
spatial domain, corresponding to the time period of the TC. As can
be seen from Eq. (3) in Section 3, TE is the precursor for calculation
of (temporal maximum) exposure 𝐸. It is again critical to establish
the approximate independence of MSTM and TE for the 𝐻𝑆 and 𝑈10
omponents of the environment, in order that the MSTM-TE model
an be used with confidence. This was achieved using the procedure
xplained in Section 3.6.2, the results illustrated in fig. S.8.1 of section
.8 of the Supplementary Material. It was found that p-values for
endall’s tau tests were ≥0.05 for less than 5% of the locations for
oth 𝐻𝑆 and 𝑈10. Hence the assumption of approximate independence
s deemed to be valid for each of the east and west clusters of TCs.

Examples of the TC events simulated under the MSTM-TE model
t Location 2 are illustrated in Fig. 11. These examples of TC events
ave MSTM-E (not MSTM-TE) 𝐻𝑆 , 𝑈10 values with joint return period
n the interval of 95–105 years. The interval is introduced to increase
he population of obtaining MSTM-E samples. One hundred time series
re presented, and 3 events are highlighted in colour to better illustrate
he relationship between time series of 𝐻𝑆 and 𝑈10 (right panel). The

boundary created by the set of event trajectories in 𝐻𝑆 − 𝑈10 space
esembles the isocontour lines in Fig. 8.

The MSTM-TE model combines a multivariate extreme value model
or MSTM with multivariate spatial time-series model for temporal
volution of a TC over a spatial domain. Assessing the performance of
MSTM-TE model is therefore also multi-faceted. In the current work,
e choose to assess the performance of the MSTM-TE in simulating

ime-series of sea-state 𝐻 and 𝑈 with realistic joint distributions at
12

𝑆 10
each of the five reference locations. As explained in Section 3.8.3, we
choose to do this by comparing gridded estimates of joint probability
density functions of sea-state 𝐻𝑆 and 𝑈10 estimated under the MSTM-
TE model, with the ground truth estimate obtained empirically from
the full 𝑇0 = 1000 years of simulated TC data.

Fig. 12 illustrates the comparison for reference location 1. Com-
paring the left hand and centre plots, regions of high probability
density are similar, at least visually. Inspection of estimates for other
locations in figs. S.8.2 to S.8.5 of section S.8 confirms a similar level
of agreement for the other reference locations. The right-hand panel
compares contours derived from the two densities, and again suggests
reasonable agreement, particularly at shorter return periods. Contours
of low probability density in the empirical estimate are noisy due to
small sample size; corresponding estimates from the MSTM-TE model
are smoother. Similar findings have been observed for multiple other
sets of subsampled cyclones. We conclude that the MSTM-TE model
estimated using 𝑇𝑆 = 200 years of data produces a good representation
of the empirical density estimated using 𝑇0 = 1000 years of data.

5. Discussion and conclusion

In this article, we propose a straightforward statistical model to
characterise the spatio-temporal evolution of extreme tropical cyclones
(TCs). The approach can be thought of as an extension of the STM-E
methodology of Wada et al. (2018). STM-E assumes it is reasonable
to describe the spatial statistical properties of a TC in terms of those
of its spatio-temporal maxima (STM) and the spatial exposure (E) of
the TC relative to its STM. Here, we extend STM-E to incorporate joint
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Fig. 12. Joint density of sea-state 𝐻𝑆 and 𝑈10 within an extreme tropical cyclone, at reference location 1. The left-hand panel gives the ground truth estimate obtained empirically
from the full 𝑇0 = 1000 years of east cluster TC data for the location. The centre panel shows the estimate obtained under multiple MSTM-TE models, each generated from
(randomly-selected) 𝑇𝑆 = 200 years of east cluster TC data. The right-hand panel provides a contour plot comparing the empirical ground truth estimate (solid lines) with the
MSTM-TE estimates (dashed lines).
extremes of multiple environmental variables (like significant wave
height 𝐻𝑆 and wind speed 𝑈10) and a history matching procedure to
capture time-series evolution of environmental variables within TC.
Joint extremes of STMs of environmental variables are characterised
using the conditional extremes model of Heffernan and Tawn (2004).
Two variants of the methodology are considered: MSTM-E describes
the spatial distribution of temporal maxima of TCs, ignoring time-series
evolution; and MSTM-TE describes the full spatio-temporal evolution.

We demonstrate the usefulness of the MSTM-(T)E models in ap-
plication to a data set of synthetic TCs in the Guadeloupe region of
the Leeward Islands in the Caribbean. A set of simulated TC data
corresponding to 1000 years of observations was used as ground truth
to assess the performance of MSTM-(T)E models based on subsets of
the full data, corresponding typically to a period of observation of
200 years.

The motivation for STM-E and MSTM-(T)E models is the provision
of a pragmatic but principled approach to offshore design from small
samples of metocean data. A critical assumption of all the models is that
the spatial exposure 𝐸 of a TC is independent of its STM. The models
can therefore only be applied reasonably when this assumption can be
justified; here, we use an approach based on Kendall’s rank correlation
test to quantify this. For the Guadeloupe region, we find it is necessary
to develop separate models for TCs with maximum severities to the east
and west of Guadeloupe.

The key results of this work are (a) demonstration that MSTM-E pro-
duces estimates of environmental design contours at a location which
have low bias and variance compared to estimates made using data for
just the location of interest, and (b) demonstration that MSTM-TE is
able to generate spatial time-series of multiple metocean variables, the
joint statistical characteristics of which reflect the ground truth.

Marginal generalised Pareto models for extremes of STMs for 𝐻𝑆
and 𝑈10 from the synthetic TCs both indicate a negative shape param-
eter, and hence a finite upper end point to the marginal distribution.
This is particularly clear in the data for 𝑈10, and is reflected in simu-
lations under MSTM-(T)E models. Conditional extremes models for 𝐻𝑆
given large values of 𝑈10 (and vice versa) indicate positive dependence
between the variables (with model slope parameter 𝑎 estimated to be
>0). However, we also find 𝑎 < 1 in all cases, suggesting asymptotic
independence between 𝐻𝑆 and 𝑈10; that is, the very largest values of
one metocean variable do not typically coincide with the very largest
values of the other. This may align with other studies into the effect
of extended fetch in hurricanes (Young, 2003) or the saturation of
drag coefficient under high winds (Donelan, 2018; Powell et al., 2003;
Takagaki et al., 2016), all of which suggest is a non-linear relationship
between extreme wind and wave, especially in cyclonic conditions.
More discussion on the conditional model parameters can be found
in section S.5 of the Supplementary Material. It is also interesting
13
that different marginal threshold choices were found appropriate for
inference on east and west cluster TCs, but this can be explained at
least in part by the different rate of occurrence of TCs to the east and
west of Guadeloupe.

There are many aspects of the MSTM-(T)E that require further study,
but we think that we have already established that the methodologies
are useful. For the Guadeloupe region, the prior partitioning of TCs
to those with maximum severities to the east and west of Guadeloupe
suggests the possibility of adopting a mixture model for MSTM-(T)E,
within which the effects of TCs from both the east and west clus-
ters of TCs would be captured. The specific partitioning employed,
using longitude 61.5W as boundary, is motivated by physical intuition.
However, we do not claim that this partitioning is optimal, but it is
simple. The conditional extremes model has proved a useful approach
to quantifying the extremal dependence between metocean variables.
It would be interesting to consider to what extent the characteristics
of multivariate extreme events simulated under conditional extremes
models preserve known or anticipated physical constraints.

MSTM-TE generates coupled time-series of multiple metocean vari-
ables across a spatial domain, the statistical characteristics of which
are complex. To date, we have demonstrated that the approach is
capable of capturing the joint distribution of sea-state 𝐻𝑆 and 𝑈10 for
an extreme tropical TC at a location. There are many other diagnostic
analyses which might supplement this, in order to more fully assess
the relative characteristics of MSTM-TE estimates of the ground truth.
Specifically, it would be interesting to summarise the full multivariate
spatio-temporal MSTM-TE output in terms of one or two summary
‘‘structure variables’’, such as an approximate environmental 𝐻𝑆 -𝑈10
load on an offshore structure (Masoomi et al., 2019). Practically, better
quantification of bias and the variance of estimates for marginal and
joint extremes corresponding to longer return periods from limited data
is necessary to assess the usefulness of MSTM-TE. We can generate
multiple MSTM-TE models from random 200-year subsamples of the
full TC data, as we did in MSTM and MSTM-E validation. However, the
full 1000 years of synthetic TC data is insufficient to characterise the
ground truth in this case. Given the limitation of 1000 years of ground
truth data, one possible study would be to assess the usefulness of TC
models based on samples corresponding to much shorter periods of time
(e.g. 20 years) in estimating extreme sets with return periods of around
100 years.
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