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Abstract Accurately determining the mineralogical composition of rocks is essential for precise
assessments of key petrophysical properties like effective porosity, water saturation, clay volume, and
permeability. Mineral volume inversion is particularly critical in geological contexts characterized by
heterogeneity, such as in the Upper Rhine Graben (URG), where both carbonate and siliciclastic formations are
prevalent. The estimation of mineral volumes poses challenges that involve both linear and nonlinear
relationships associated with geophysical data. To address this complexity, our methodology strategically
integrates the robust insights from standard statistical approaches with three machine learning (ML) algorithms:
multi‐layer perceptron, random forest regression, and gradient boosting regression. Furthermore, we propose a
new hybrid ensemble model that incorporates a weighted average of multiple ML approaches to predict mineral
composition within the Muschelkalk and Buntsandstein formations of the URG. ML techniques for mineral
composition prediction in these formations exhibit robust predictive performance. The predicted mineral
volumes align closely with quantitative estimates derived fromX‐ray diffraction analysis. Additionally, they are
in good qualitative agreement with mineral descriptions obtained from cores and cuttings of the Muschelkalk
and Buntsandstein formations.

Plain Language Summary We conducted an assessment of subsurface rock mineral compositions
from their physical properties measured through logging tools, employing a combination of statistical and
machine learning techniques. The outcomes derived from these methodologies demonstrate their
complementary nature and robustness in elucidating the spatial distribution of minerals within Triassic rocks
from the Upper Rhine Graben in France. This approach helps in deciphering complex mineralogical
compositions and geological structures within subsurface geothermal reservoirs.

1. Introduction
Electricity and heat generation through enhanced geothermal system (EGS) technology hinge upon our ability to
understand and predict the characteristics of hydrothermal fluids and rock formations (Darnet et al., 2023). Many
conventional methods for assessing these properties are not cost‐effective, underscoring the significance of
relying on predictive techniques that can offer valuable insights during the early exploration stages. In the initial
stages of comprehending EGS, assessing petrophysical properties plays a crucial role. To fully evaluate the
petrophysical properties of EGS reservoirs or formations, it is very important to know as accurately as possible the
mineralogical composition for accurate estimation of rocks' effective porosity, water saturation, clay volume, and
permeability (Hosseini, 2018; Zhao et al., 2016).

The most comprehensive effort to characterize the mineralogical composition of the various formations within the
URG Basin was an extensive synthesis of geological outcrop samples, wireline gamma ray (GR) logs and core
descriptions from deep wells such as EPS‐1 drilled in the 1990s (Aichholzer et al., 2019; Duringer et al., 2019).
Among the major formations identified in their work, the Buntsandstein formation, predominantly composed of
sandstone with the presence of clays, and the Muschelkalk formation, characterized by calcite, dolomite, clays,
and anhydrite minerals (Aichholzer et al., 2016, 2019; Duringer et al., 2019). While the research by Aichholzer
et al. (2019) and Duringer et al. (2019) successfully delineated the primary facies descriptions of these formations
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and identified their major mineral constituents, a precise quantitative estimation of the volume of each mineral
constituent within the siliciclastic and carbonate formations is yet to be achieved.

There are several different approaches described in the literature for analyzing mineral compositions. Among
them, X‐ray diffraction (XRD) mineral analysis is recognized as the most precise means of mineral estimation
(Eberl, 2003; Heap et al., 2017, 2019; Hillier, 1999; Xiao et al., 2023). In the URG, limited quantitative bulk
mineral estimates from XRD analysis of samples from the Middle—LowerMuschelkalk and Buntsandstein along
EPS‐1 well were published by Heap et al. (2017) and Heap et al. (2019). Nevertheless, when it comes to well‐scale
applications, this approach does have its limitations, primarily stemming from challenges associated with the
unavailability of core samples along the entire well length, which are often constrained by cost considerations
(Pwavodi &Doan, 2023). Additionally, XRD analysis on borehole cutting samples is feasible; however, precision
in determining lithological intervals may be compromised. In fact, in certain drilling methods, like the riserless
drilling system, utilizing cuttings is not possible as they are completely lost to the seafloor and not returned to the
driller at the surface through riser pipes (Pwavodi, 2023). Consequently, characterizing the distribution of
minerals along the entire length of a well using this method can prove to be a challenging task. According to the
history of drilling for EGS in the Soultz‐sous‐Forêts and Rittershoffen sites of the URG, only the EPS‐1 well was
continuously cored along its length (Aichholzer et al., 2019; Genter & Traineau, 1991, 1996). Consequently,
alternative methods for estimating mineralogy in wells with limited or no core samples within the URG have
become necessary.

Savre (1963) proposed a simple compositional mathematical solution model to estimate the proportions of
minerals in rocks using a triangular coordinate graph approach. This method is further solved within an iterative
inversion linear‐log system, in which the well‐log response is calculated as the sum of the product between the
multiple minerals' (e.g., quartz, calcite, clay, dolomite, etc.) volumes and their average theoretical response values
(Amosu & Sun, 2018; Doveton, 2014). This linear system is written for different log responses such as bulk
density, photoelectric factor, acoustic slowness, or neutron porosity (Doveton, 2014). All the linear equations for
the different log responses are solved with a matrix inversion system with the vector of the unknown proportions
being estimated. This method looks indeed simple to implement, but several constraints need to be added to the
equation system to avoid resulting in negative volume values coming from the matrix inversion process,
instrumental errors, or poor well environment. Some of the well logs like the sonic compressional velocity cannot
be determined with linear systems, hence, a solution that factors in the nonlinearity of logs is needed during the
inversion.

Despite the effectiveness of these mineral volume estimation methods, there is a continuing need for a more
predictive and accurate approach to estimate mineral volumes in different stratigraphic lithologies along wells,
especially in the absence of cores, cuttings, or wireline logs. This approach should not be limited by prior
knowledge of theoretical individual mineral response values, tool errors, well conditions, optimization problems,
or other unknown constraints that may affect the accurate estimation of mineral volumes. In response to these
challenges, advances in artificial intelligence (AI) have been leveraged. In recent years, several investigations
have delved into diverse machine learning (ML) methodologies for mineral composition estimation. Hu
et al. (2023) devised a hybrid ML framework, amalgamating convolutional neural network architecture with
XGBoost, while Laalam et al. (2022) conducted a comparative analysis of the performance of linear regression
(LR), support vector regression, random forest regression (RFR), extra trees regression, K‐nearest neighbors, and
extreme gradient booster (XGBoost). Conversely, Lee and Lumley (2023) assessed the mineralogical brittleness
index of shaly formations employing a blend of statistical and ML techniques, including decision trees, en-
sembles, support vector machines, probabilistic neural network, and deep feedforward neural network. Deng
et al. (2019) proposed an optimized Bayesian inversion approach for estimating rock petrophysical and
compositional properties. Mustafa et al. (2022) estimated shale mineralogy and elastic properties using the
adaptive neuro‐fuzzy inference system and artificial neural networks.

However, there exists a significant opportunity to deepen our comprehension of the mineralogical composition of
both carbonate and siliciclastic sediments. Thus, in this study, we utilized four distinct methodologies to address
this knowledge gap. Specifically, we employed RFR, multi‐layer perceptron (MLP), gradient boosting regression
(GBR), and a hybrid ensemble approach. The choice of these algorithms for this work was driven by their
adaptability, scalability, and robustness in handling complex data sets and addressing nonlinear problems
(Bishop, 1995; Chen & Guestrin, 2016; Liaw & Wiener, 2002) such as mineral volume inversion. We show here
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that these AI‐based techniques represent a promising means to enhance the accuracy and the reliability of mineral
volume estimations in geological settings.

2. Geology of the Upper Rhine Graben, NE France
The URG was formed during the Late Eocene in response to the NNE‐trending Alpine compression (Illies, 1972;
Rotstein et al., 2006; Villemin & Bergerat, 1987; Villemin et al., 1986). It is a prominent complex asymmetrical
extensional graben approximately 300 km long and 30 km wide, on both the French and German sides of the
Rhine River (Rotstein et al., 2006). It is delineated by both eastern and western systems of major faults (Figure 1),
which separate the sediment‐filled graben (with up to 3.5 km of tertiary sediments) from the uplifted graben
shoulders (Vosges on the French and Black Forest on the German sides, respectively) (Duringer et al., 2019).
Additionally, the URG comprises several sub‐basins each with its own features (Duringer et al., 2019).

The URG has been identified as a major target for deep geothermal exploration thanks to the high geothermal
gradient that can locally reach more than 100°C/km, for example, under Soultz‐sous‐Forêts (Agemar et al., 2012;
Baillieux et al., 2013; Pribnow & Schellschmidt, 2000), and fault zones acting as potential fluid pathways
(Bächler et al., 2003; Duwiquet et al., 2021; Guillou‐Frottier et al., 2013). For over 30 years, it has been the object
of deep drilling to explore for geothermal resources, with a particular focus on the sites of Soultz‐sous‐Forêts and
Rittersoffen (Figure 1) (Duringer et al., 2019). While several wells have been drilled in these areas, our study
centers on four wells: EPS‐1 and GPK‐1 in Soultz‐sous‐Forêts, and GRT‐1 and OBR‐101 in Rittershoffen and
Oberroedern, as depicted in Figure 1 (Aichholzer et al., 2016, 2019; Genter & Traineau, 1992).

In Soultz‐sous‐Forêts, deep geothermal drilling started in 1987, with GPK‐1 as the first geothermal borehole
initially drilled to a depth of 2,000 m, intersecting the top of the granitic basement at the depth of 1,376 m (Genter
& Traineau, 1992, 1996). Subsequently, in 1992, it was further extended to a depth of 3,600 m (Genter &
Traineau, 1992, 1996). Nearby well EPS‐1 was originally drilled for hydrocarbon exploration, known by the
designation No. 4589. It was however extended and cored to the granitic section at a depth of about 2,227 m in
1990–1991 (Genter & Traineau, 1992).

GRT‐1 is the first geothermal borehole that was drilled in Rittershoffen in 2012. It was drilled to a depth of
2,580 m under the fractured granitic basement rock, and it is reported to have intersected the Rittershoffen fault at

Figure 1. Summary of the study area: at the top right corner of the picture presents the Map of France showing the location of the Bas‐Rhin (Lower Rhine) department of
Alsace (in red) (modified from Michael et al. (2019)). It also captures the locations of the heads of the wells discussed in this paper. These positions are within the
northwestern region of the Upper Rhine Graben (URG) (modified from Aichholzer et al. (2019)). The bottom left inset shows a schematic geological cross‐section
through the URG at the latitude of Rittershoffen and Soultz‐sous‐Forêts (adapted from Brun et al. (1992), Kappelmeyer et al. (1991)).
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a depth of 2,400 m (Baujard et al., 2017). The Oberroedern well (OBR‐101)
produced hydrocarbons throughout the 1970s and 1980s and also produced
significant amounts of hot salty water (Munck et al., 1979).

Critical to comprehending EGSs is the fact that the four wells in this study
intersect major lithologies at varying depths in the regional geologic
sequence. As evidenced by Baujard et al. (2017), Aichholzer et al. (2016,
2019), and Duringer et al. (2019) these lithologies include Triassic sediments
(Muschelkalk limestone and Buntsandstein sandstones), Permian clastic
sandstones, and a Paleozoic crystalline basement composed of hydrother-
mally altered and fractured granite within fresh granite.

3. Methodology
As stated above, our study focuses on four wells: OBR‐101 and GRT‐1 near Rittershoffen and EPS‐1 and GPK‐1
near Soultz‐sous‐Forêts. We adopted a two‐pronged approach to estimate mineral volumes

1. We employed a statistical method that centers on solving linear systems. This approach enables us to calculate
mineral volumes based on well‐log data and established relationships, particularly suited for well conditions
where linear assumptions are valid.

2. We leveraged the power of machine‐learning algorithms. These algorithms excel at solving nonlinear systems,
offering a more flexible and data‐driven alternative for estimating mineral volumes.

By integrating both linear and nonlinear methods, we aim to provide a comprehensive and accurate assessment of
mineral volumes at these well locations.

3.1. Mineral Volume Inversion Using Statistical Approach

We first solve the mineral volume using an industry software which is based on the statistical methodology
introduced by Mitchell and Nelson (1988). Its core functionality is solving linear systems, making it well‐suited
for mineral volume models, whether they are balanced, over‐determined, or under‐determined (Mitchell &
Nelson, 1988). The inversion process seeks to minimize the misfit between the model response to a set of volume
estimates and the observed normalized and reconstructed theoretical tool responses (Mitchell & Nelson, 1988).
The misfit estimation function Δ to minimize is as follows:

Δ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n
∑
n

i=1

(mi − fi)
2

τ2i + δ
2
i

√
√
√

(1)

where n is the number of tool response equations, mi is the actual measurement of tool i, fi is the theoretical
response of tool i (calculated from theoretical tool response equation), τ2i is the variance of the error of the
measurement of tool i, and δ2i is the variance of the error of the theoretical response of tool i. The theoretical
response of tool i is computed using the following equation.

fi =∑
m

j=1
eijVj (2)

where Vj is the fractional volume of mineral j,m is the number of minerals of interest, eij is the mineral endpoint of
tool i in mineral j (Table 1). To solve theoretical tool responses, as outlined in Equation 1, within a simple mineral
volume model, we estimate the proportions of various components in conjunction with porosity. This estimation
is derived from a system of equations based on the measured log responses. These linear equations establish a
connection between the log measurements and the properties of the mineral and fluid constituents:

CVj = L (3)

Table 1
Coupling Parameters Used in Modeling

Log response/minerals Calcite Clay Dolomite Anhydrite Quartz

ρ (kgm− 3) 2.710 2.680 2.870 2.950 2.650

Pe (barns cm− 3) 5.090 3.030 3.13 5.080 1.810

K (gAPI) 60.8 32.8 38.8 54.9 32.8

Vp (km/s) 6.457 4.740 6.943 6.096 4.689
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whereC is a matrix of the component petrophysical properties, and L is a vector of the well‐log responses over the
evaluated zone, which represent the bulk petrophysical properties of the rock formation. In this study, the primary
formations under consideration are the Muschelkalk (carbonate) and Buntsandstein (siliciclastic) formations. As
an initial step, the main mineral constituents of the Muschelkalk formations (calcite, dolomite, clay, anhydrite,
and quartz) are identified based on evidence obtained from core and field outcrop samples, as documented by
Aichholzer et al. (2016, 2019), and Duringer et al. (2019). For multiple mineral systems, Equation 3 can be
adapted for the different Muschelkalk minerals and solved using a linear system:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ρcalc ρClay ρdol ρanh ρqtz
Pecalc PeClay Pedol Peanh Peqtz
Kcalc KClay Kdol Kanh Δtqtz
Vpcalc VpClay Vpdol Vpanh Vpqtz

1 1 1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Vcalc
VClay
Vdol
Vanh
Vqtz
ϕ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ρlog
Pelog
Klog

Vplog
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4)

The different symbols in Equation 4 are explained in Table 2. The system of Equation 4 can be easily solved
(Penrose, 1955). To compare the theoretical response with the actual tool measurements (Figure 2), as described
in Equation 1, two constraints were added to ensure physically meaningful results: (a) the unity constraint, that is,
the sum of all mineral volumes must equal one and (b) the positivity constraint, that is, no individual mineral
volume can be allowed to be less than zero. For well‐logs exhibiting nonlinear behavior, such as VP, PEF, and
NPHI, a linearization step was necessary before implementing the equations. TheMuschelkalk depth interval was
divided into two parts for the equation: the upper part considered calcite, dolomite, clay, and anhydrite, with the
quartz volume initialized to zero. In the lower depth interval, only three minerals were considered: quartz,
dolomite, and clays with the volumes of calcite and anhydrite initialized to zero. This division was applied to
estimate mineral volumes for both the OBR‐101 and GRT‐1 wells. To handle these divisions within the equation,
depth constraints were incorporated into a loop workflow (Figure 2), facilitating the step‐by‐step solution of the
mineral volumes.

3.2. Mineral Volume Inversion Using Artificial Intelligence

Artificial neural networks are inspired by the structural and functional aspects of the human nervous system
(Aggarwal, 2018; McCulloch & Pitts, 1943; Rosenblatt, 1958). These networks comprise interconnected nodes,
or neurons, linked by synaptic connections. In our study, we employed the MLP, the RFR, and the GBR to model
and estimate the volume of minerals within the Muschelkalk and Buntsandstein formations (Figure 3). Addi-
tionally, we introduced a hybrid ensemble method that combines the results from MLP, GBR, and RFR using a
weighted averaging technique. The models were trained and tested using a data set consisting of well‐log data,
including parameters such as sonic travel‐time (DT), photoelectric factor (PEF), and GR gathered from three
distinct wells. In the initial stages of neural network modeling (Figure 3), a critical data cleaning process was
conducted to ensure the quality and reliability of the data set.

3.2.1. Data Preprocessing

Data exploration and preprocessing were done to remove unwanted data points (mostly negative values and
outliers) that could increase the bias of the model or its error bar. Simple moving average (SMA) was used to
reduce data scatter. It calculates the unweighted mean of the preceding k data points. The higher the value of k, the
smoother the curve, but less accurate the result. We compute the SMA if the data points are p1, p2, …, pn:

SMAk =
1
k

∑
n

i=n− k+1
pi (5)

In addition to SMA, we performed log conditioning, editing, depth shifts, and used computer vision technique to
extract legacy data that were only available on paper.
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3.2.2. Feature Selection

We initially used the Pearson correlation coefficient to assess the relationship
between input variables and identify multicollinearity. This metric assesses
the strength and direction of the linear relationship between two continuous
variables. Pearson's correlation coefficient, denoted as Px,y, ranges from − 1
(indicating a perfect negative linear relationship) to+1 (representing a perfect
positive linear relationship). Mathematically, Px,y is expressed as follows:

Px,y =
Cov(x,y)
dx dy

(6)

where Cov represents the covariance, and dx and dy are the standard de-
viations of input variables x and y, respectively. Upon analyzing the corre-
lation coefficients (Figure 4), we observed that the variable DT exhibited a
notably high negative correlation with Vp, with a Pearson correlation coef-
ficient of approximately − 0.95. Ideally, such high correlation might suggest
multicollinearity issues, prompting consideration for dropping one of the
variables to mitigate redundancy. However, in the context of data augmen-
tation, we opted to retain both DT and Vp as part of the input data set. This
decision was influenced by the lack of similar data sets across all wells used in
our study, highlighting the importance of maintaining comprehensive input
variables despite potential multicollinearity concerns.

Feature selection was executed using a stepwise bidirectional approach to
ascertain the individual contribution of each well‐log variable in enhancing
the efficacy of machine‐learning model training (Yu & Liu, 2003). This
approach systematically assesses the statistical significance of each inde-
pendent variable within a LR model (Siddiqi et al., 2022; Yu & Liu, 2003). It
harnesses the dual advantages of both forward selection and backward
regression elimination techniques to discard undesirable features (Siddiqi
et al., 2022; Yu & Liu, 2003). The forward regression method commences by
identifying the most influential well‐log variables, such as DT, and pro-
gressively augments the overall set of well‐logs (as illustrated in Figure 5a).
The criterion for determining the order of inclusion of these variables is the R‐
squared (R2) score, a metric that profoundly influences the process of intro-
ducing new entries and the ultimate selection of values:

R2 =
SSR
SST

= 1 −
∑n
i=1( ŷi − yi)

2

∑n
i=1( yi − ȳi)

2 (7)

where ŷi is the predicted well‐log data, that is, a well‐log data value on the
regression line, ȳi is the mean of the well‐log, y is the well‐log data, SST is the
sum of squares, and SSR is the sum of squares of residuals.

The backward regression is utilized to carry out deletion, which is also
referred to as backward elimination (Figure 5b). If the R2‐score value that is
being tested is the lowest possible, then the well‐log with the lowest R2‐score
is eliminated from the stack. The results of the forward selection and back-
ward regression elimination techniques were similar on the basis of their
degree of confidence based on their evaluation criterion (Figure 6 and
Table 3).

Table 2
List of Symbols and Notations

Symbol or acronym Meaning

ρcalc Matrix density of calcite in kg/m3

ρclay Matrix density of clay in kg/m3

ρdol Matrix density of dolomite in kg/m3

ρanhydrite Matrix density of calcite in kg/m3

ρqtz Matrix density of quartz in kg/m3

ϕ Porosity of the rock formation (pu)

Pecalc Photoelectric factor of the calcite matrix

Peclay Photoelectric factor of the clay matrix

Pedol Photoelectric factor of the dolomite
matrix

Peanhydrite Photoelectric factor of the calcite matrix

Peqtz Photoelectric factor of the quartz matrix

Δtcalc Sonic travel time response of the calcite
matrix

Δtclay Sonic travel time response of the clay
matrix

Δtdol Sonic travel time response of the
dolomite matrix

Δtanhydrite Sonic travel time response of the calcite
matrix

Δtqtz Sonic travel time response of the quartz
matrix

Vpcalc Sonic velocity response of the calcite
matrix

Vpclay Sonic velocity response of the clay
matrix

Vpdol Sonic velocity response of the dolomite
matrix

Vpanhydrite Sonic velocity response of the calcite
matrix

Vpqtz Sonic velocity response of the quartz
matrix

Vcalc Calcite volume

Vclay Clay volume

Vdol Dolomite volume

Vanhydrite Anhydrite volume

Vqtz Quartz volume

ρtlog Bulk density measured well log

Pelog Photoelectric factor measured well log

Δtlog Sonic transit measured well log

Vplog Sonic velocity measured well log
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3.2.3. Feature Scaling and Data Splitting

The data set was divided into distinct categories: independent and dependent variables. The independent variables
constitute a quintet of well‐log data sets, while the dependent variables are the mineral volumes to be ascertained
through the statistical approach. The data sets were further constrained within a finite range using the stan-
dardization technique: we computed the Z‐score (Zs) for each data point, that is, all attributes were centered with
respect to a mean value of zero and a standard deviation of one.

Zs =
Xlog − μlog

σ
(8)

where Xlog is the well log value, μlog is the mean value, and σ is the standard deviation. Following the trans-
formation of both independent and dependent variables, the data set was split into train, validation, and test data
sets. In this context, we consider the data set to be partitioned according to a specified proportion denoted as p,

Figure 2. The workflow describing the statistical approach (modified from Mitchell and Nelson (1988)).
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typically confined within the interval 0 < p < 1. This data set splitting results in the creation of two index sets,
namely Itraining and Itesting. The size of |Itraining| = [p.n] and |Itesting| = n − |Itrain|, where n is the data set's total size.
In this study, the neural network methodologies were trained using 80% of the data set, while the remaining 20%
was allocated for testing. Additionally, 10% of the training data set was dedicated for validation purposes.

3.2.4. Model Evaluation Metrics

All the outcomes generated by the ML models will be evaluated by four fundamental assessment metrics: mean
squared error (MSE), mean absolute error (MAE), R‐squared (R2‐score), and explained variance score (EVS).
The MSE quantifies the average of the squared differences between predicted and actual values. This metric is
particularly advantageous in regression tasks as it assists in fine‐tuning models and precisely assesses the
magnitude of errors.

MSE =
1
n
∑
n

i=1
( yi − ŷi)

2
(9)

where yi and ŷi are, respectively, the measured and predicted well‐log value i. In contrast, the MAE measures the
average of the absolute differences between predicted and actual values, offering greater resilience to outliers.

MAE =
1
n
∑
n

i=1
|yi − ŷi| (10)

The R2 score (Equation 7) reveals the proportion of the variance of the dependent variable that can be explained
using independent variables. EVS shares similarities with R2 and scores close to 1.0 are optimal. EVS comple-
ments R2 by providing insights into the predictive power of the model concerning the variance in the data

Figure 3. The overview of the Machine Learning Workflow used for mineral volume estimation in this study.
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EVS = 1 −
Var( yi − ŷi)

Var( yi)
(11)

3.2.5. Mineral Volume Inversion Using Multi‐Layer Perception (MLP)

MLP is a supervised learning algorithm that learns a function f(⋅): Rn→ Ry by training on a data set, where n is the
number of dimensions for input variables and y is the number of dimensions for output variables. MLP was first
proposed by Rosenblatt (1958) and later enhanced by incorporating nonlinearity through the utilization of sto-
chastic gradient descent for the purpose of classifying patterns (Amari, 1967; Ivakhnenko, 1967). Moreover, the
method underwent significant enhancements, resulting in the development of a backpropagation method. This
advancement was achieved through the incorporation of a supervised learning strategy based on the chain rule
(Rodriguez & Lopez Fernandez, 2010).

Figure 4. Pearson correlation coefficients of input variables.
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Leveraging the intrinsic capacity of MLP to tackle nonlinearity issues (Amari, 1967; Ivakhnenko, 1967;
Rodriguez & Lopez Fernandez, 2010), this study employed MLP to address the inherent nonlinear behaviors
observed in input well logs, such as sonic velocity (Vp), PEF and neutron porosity (NPHI). Unlike the statistical
approach discussed earlier, MLP can be effectively employed without the necessity for prior linearization of the
well logs. In this context, the set of well logs previously categorized as independent variables, denoted as X = x1,
x2, …xn, while the independent variables (mineral volumes) as the target (y) and the bias unit (b) were used. The
target (y) for a simple multi‐layered neural network can be estimated as the sum of the product of weights (wi) and
input well‐logs (xi) augmented by the bias term (b) (Rodriguez & Lopez Fernandez, 2010). This can be formally
expressed as follows:

y =∑
m

i=1
wixi + b (12)

To introduce nonlinearity into Equation 12, differentiating ML techniques from the multiple linear algebra
systems employed for mineral volume inversion (as illustrated in Equation 4), a nonlinear function, commonly
known as the activation function (denoted as σ), was introduced:

Figure 5. A schematic diagram showing the (a) stepwise forward regression and backward selection method used for well logs selection.
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y = σ(∑
m

i=1
wixi + b) (13)

The activation function σ here is the rectified linear unit:

σ = x+ = max(0,x) =
x + |x|

2
= {

0 if x> 0,

x otherwise.
(14)

Equation 13 accommodates a single hidden layer and it was adapted to represent the MLP architecture employed
in this study, characterized by a feedforward network encompassing a total of eight layers of nodes. This ar-
chitecture includes one input layer with five input independent variables, six fully connected hidden layers, and
ultimately, an output layer featuring four target dependent variables, as delineated in Figure 7. Each of the six
hidden layers contains a specific number of neurons, namely 10, 20, 40, 20, 10, and 5, respectively. The set of
equations that comprehensively characterizes the entire MLP architecture, as illustrated in Figure 7, and detailed
below:

Figure 6. Results from the feature selection methods highlight the influential factors of selected logging curves for evaluating
mineral volumes.

Table 3
R‐Squared Values During Bidirectional Selection

Input variables R2

DEPTH 0.8195

Vp 0.8191

DT 0.8005

PEF 0.7933

GR 0.7789
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h(1)i = σ(∑
5

j=1
w(1)ij xj + b

(1)
i ), i = 1,2,…,10

⇓

h(2)i = σ(∑
10

j=1
w(2)ij h

(1)
j + b(2)i ), i = 1,2,…,20

⇓

h(3)i = σ(∑
20

j=1
w(3)ij h

(2)
j + b(3)i ), i = 1,2,…,40

⇓

h(4)i = σ(∑
40

j=1
w(4)ij h

(3)
j + b(4)i ), i = 1,2,…,20

⇓

h(5)i = σ(∑
20

j=1
w(5)ij h

(4)
j + b(5)i ), i = 1,2,…,10

⇓

h(6)i = σ(∑
10

j=1
w(6)ij h

(5)
j + b(6)i ), i = 1,2,…,5

⇓

yi = σ(∑
5

j=1
w7
ij h

(6)
j + b(7)i ), i = 1,2,3,4

(15)

Figure 7. Multi‐layer perceptron architecture with 8 layers of nodes. Comprising an input layer with 12 input variables, 6 hidden layers, and an output layer with 4 target
variables.
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where, h(l)i represents the activation of the ith neuron in the hidden layer l (where l ranges from 1 to 7). w(l)ij
represents the weight connecting neuron i in layer l to neuron j in layer l + 1. The evaluation of the model
prediction is based on the evaluation metrics defined in Section 3.2.4.

3.2.5.1. Normalization of Predictions

As captured in general ML workflow (Figure 3), the results from the ML algorithms are further normalized by the
positivity and the unity constraints. Mathematically, the summation of minerals adheres to the general formula

Vnorm[i] =
Vi

∑n
i=1Vi

(16)

Here, Vnorm[i] signifies the normalized mineral volumes specific to the geological formations, Vi represents the
volumes of individual minerals, and n denotes the number of minerals considered within the intervals. In this
study, n = 4 for the Muschelkalk formations and n = 2 for the Buntsandstein formations. Drawing upon the
primary mineral description outlined by Aichholzer et al. (2016, 2019), Equation 16 has been adapted to aid the
determination of four minerals, namely calcite, dolomite, clay, and quartz, within the Muschelkalk formations. In
the case of the Buntsandstein formations, this adapted equation focuses on the estimation of two minerals, clay
and quartz.

3.2.6. Mineral Volume Inversion Using Random Forest Regression (RFR)

RFR is one of the most widely used ensemble supervised ML algorithms that combine multiple decision trees
(Figure 8) for performing regression tasks with continuous target variables (Biau, 2012; Breiman, 2001; Pwavodi
et al., 2023). Breiman (2001) proposed this ensemble method which independently builds each decision tree and
trained on a random subset

r̄(X,Dn) = EΘ [rn (X,Θ,Dn)] (17)

where X = (x1, x2, …, xn), Θ denotes a random subset of input features, Dn is the training data set and EΘ denotes
expectation with respect to the random parameter; it is introduced by selecting different subsets of features

Figure 8. The architecture describing the random forest regression model used for this study.
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(represented by Θ) and different data subsets (represented by rn(X, Θ, Dn)), rn represents the prediction made by
an individual decision tree within a random forest ensemble (Figure 8). In practice, the estimation of EΘ is
performed using Monte Carlo simulation (Biau, 2012). This involves generating a large number of random trees,
typically denoted asM and computing the average of the individual outcomes (Biau, 2012). Each of the generated
randomized trees rn(X, Θ) outputs the average over all targets (yi) (Figure 8) for which the corresponding vectors
Xi fall in the same cell of the random partition as X:

rn(X,Θ) =
∑n
i=1yi1[XiεAn(X,Θ)]

∑n
i=1 1[XiεAn(X,Θ)]

1εn(X,Θ) (18)

When the expectation (EΘ) is computed with respect to the random subset of input features (Θ) as shown in
Equation 17, a modified version of Equation 18 is derived to estimate the RFR model

r̄n(X) = EΘ [rn(X,Θ)] = EΘ[
∑n
i=1yi1[XiϵAn(X,Θ)]

∑n
i=1 1[XiϵAn(X,Θ)]

1ϵn(X,Θ)] (19)

where the event ɛn(X, Θ) in Equations 18 and 19 is defined using the following equation:

εn(X,Θ) = [∑

n

i=1
1[XiεAn(X,Θ)]≠ 0] (20)

Employing RFR for mineral volume estimation provides further insights into the interaction of variables. For
every decision tree model used in this study, bootstrapping was carried out to randomly perform row and feature
sampling. The choice of the best parameters for the RFR algorithm was done by a grid search tuning technique
that attempts to compute the optimum values of the hyperparameters. The max‐depth parameter for each of the
decision tree is set to maximum depth of 20 nodes, the maximum leaf nodes and the number of decision trees (n‐
estimator) is set to 200. The evaluation of the model prediction is based on the evaluation metrics defined in
Section 3.2.4. Subsequently, a parametric study was conducted to assess how the utilization of a greater depth of
trees could impact both the performance and computational capacity of the model.

3.2.7. Mineral Volume Inversion Using Gradient Boosting Regression

Gradient boosting regression is an ensemble learning technique that combines the predictions of multiple weak
learners, typically decision trees, to create a strong predictive model (Friedman, 2001, 2002). The governing
equations for GBR are centered around the minimization of a cost function, often the MSE (Equation 9), with
respect to the model's predictions (Friedman, 2001, 2002). The model starts with a single leaf and sums all the
residuals

F0(x) = argminγ(∑
n

i=1
L( yi,γ)) (21)

where F0(x) is the function of the input variable with (x) for the initial model, which we aim to improve iteratively,
arg minγ searches for the parameter γ that minimizes its argument, L(yi, γ) is the loss function applied to the target
value yi for the data points and the parameter γ. The loss function in Equation 21 quantifies how well the current
model predicts the target value for each data point. The loss function with respect to the current prediction is
calculated, representing the direction of steepest descent to minimize the loss.

L′ ( yi,F(xi)) =
∂L( yi,F(xi))
∂F(xi)

, for i = 1,…,n (22)

where L′(yi, F(xi)) quantifies the difference between the true target values (yi) and the current prediction F(xi).
GBR is designed in such a way that it trains on the decision trees in a sequential manner with the next tree taking
account of the residuals (ri) of the previous decision tree.
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ri = − [
∂L( yi,F(xi))
∂F(xi)

]
F(x)=Fm− 1(x)

, for i = 1,…,n (23)

A smaller learning rate is introduced to control the contribution of each tree to the final prediction of the model
(F(xi)new = F(xi)old + η ∗Ti(x)) . Finally to make the model's prediction more accurate, Equation 22 can be
rewritten accounting for the residuals (Equation 23), hence taking account of previous predictions.

γm = argminγ(∑
n

i=1
L( yi,Fm− 1 (xi) + γ)) (24)

where γm represents the optimal value of γ at the mth boosting iteration. GBR was also used for mineral volume
estimation because it is unbiased toward any specific feature type and can manage a high volume of features. The
evaluation of the model prediction is based on the evaluation metrics defined in Section 3.2.4.

3.2.8. Mineral Volume Inversion Using Hybrid Ensemble Method

Although the predicted results (in terms of MSE and R2‐score) from the MLP, RFR, and GBR are encouraging,
there is still room to improve the model's precision. Therefore, we propose a new weighted fusion process
(Figure 9) that makes the use of these earlier results, with the condition that the combination of the weights (wi)
must be unity. Introducing wi as the weight associated with the ith machine model, and yi as the target result
produced by that model

Figure 9. A hybrid ensemble model that combines proportions of multi‐layer perceptron, gradient boosting regression, and random forest regression results.
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∑
n

i=1
wi ⋅ yi (25)

The selection of weights in Equation 25 can be achieved through a parametric study, employing an automatic
random selection process within the range of 0–1. The quantity of samples (n) aligns with the number of target
models (yi) as defined in Equation 25. The normalization of weights ensures that their sum equals 1. To
normalize, we simply substitute Vi in Equation 26 with wi

wnorm[i] =
wi

∑n
i=1wi

(26)

Here, we are dealing with just the results from the three ML algorithms (MLP, RFR and GBR) discussed earlier.
In practice, we are combining Equations 13, 19 and 24,

yens1 = w1 ⋅ yMLP + w2 ⋅ yRFR (27)

yens2 = w1 ⋅ yRFR + w2 ⋅ yGBR (28)

yens3 = w1 ⋅ yMLP + w2 ⋅ yGBR (29)

where yensx is the final prediction from combining the three methods, yMLP, yRFR, and yGBR are the predicted results
obtained from Equations 13, 19, and 24 respectively. The determination of w1 and w2= 1 − w1 values were based
on the parametric study as discussed above, employing a random selection process to iteratively find the optimal
weighting parameters. This process involved generating up to 100 unique values, each time the simulation was
run. The algorithm is written in a way to automatically select the optimal n‐value for each iteration, based on the
model's performance metrics such as the highest R2 score and lowest MSE values. Subsequently, the models were
utilized to predict the blind wells, and Equation 26 was applied to normalize the final mineral volumes.

4. Results
The methodologies employed in this study have been designed to precisely characterize the distribution of
mineral volumes within the Muschelkalk and Buntsandstein formations. We present here the outcomes of both
statistical approaches employed for wells GRT‐1 and OBR‐101, and the ML methods applied to wells GPK‐1
(Muschelkalk formation) and EPS‐1 (Buntsandstein formation). The quantitative results derived from the ML
models, assessed through various evaluation metrics, are also systematically presented.

4.1. Muschelkalk Formation

4.1.1. Mineral Volume Distribution Using the Statistical Approach

The application of the statistical method for estimating mineral volumes was first applied to the OBR‐101 and
GRT‐1 wells. To ensure the method's accuracy and relevance, we took into account the mineral distribution
evidence derived from core samples, cuttings, and the gamma‐ray (GR) log descriptions as provided in the work
of Aichholzer et al. (2016, 2019). Figure 10 provides a visual representation of the mineral content within the
Muschelkalk formation of the OBR‐101 and GRT‐1 wells. Five distinct minerals were identified in this for-
mation: calcite, clay, dolomite, anhydrite, and quartz. In the upper and middle Muschelkalk layers (Figure 10),
four dominant minerals are observed: calcite, clay, dolomite, and anhydrite. In contrast, in the lowerMuschelkalk,
three primary minerals are dominant: dolomite, clay, and quartz.

For ease of reference, based on mineral volume distribution, we have reclassified the Muschelkalk into two main
intervals: the top Muschelkalk interval, encompassing the Upper and Middle Muschelkalk and the Lower
Muschelkalk. Proportional analysis indicates that calcite is the predominant mineral within the top Muschelkalk,
followed by the clay. A prominent feature in both wells is the presence of an anhydrite‐rich zone, recognized as
the “Marnes Barriolées” (Aichholzer et al., 2016, 2019). Within the Lower Muschelkalk, the mineral proportions
are generally characterized by a dominance of dolomite, clay, and quartz, respectively. The outcomes of the
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statistical method have yielded a credible estimate of mineral proportions within the Muschelkalk formations at
the OBR‐101 and GRT‐1 wells.

4.1.2. Mineral Volume Distribution Using Machine Learning

We attempt to predict the mineral volume distribution within the Muschelkalk formations along the GPK‐1 well
with ML models, using the results above from the OBR‐101 and GRT‐1 wells serving as dependent variables in
the training process. These models reveal the presence of four dominant minerals in the Muschelkalk formations
around GPK‐1: calcite, dolomite, clays, and quartz, as depicted in Figure 11. We observe a slight variation in the
mineral compositions between GPK‐1 and OBR‐101/GRT‐1 wells. The distinctive interval characterized by
anhydrite (Marnes Bariolées), observed in the OBR‐101 and GRT‐1 wells, is not observed in the GPK‐1 well,
aligning with the detailed lithological classifications conducted by Aichholzer et al. (2016, 2019) for GPK‐1.

Figure 11 shows that the TopMuschelkalk is predominantly composed of calcite, dolomite, and clays. In contrast,
the Lower Muschelkalk is dominated by dolomite and clay, followed by quartz, with a minimal fraction of calcite
at the top part of this interval. The assessment of the ML models' accuracy and performance is further elaborated
below, focusing on the four key evaluation metrics, as described in Section 3.2.4.

For the calcite mineral volume (Table 4), the RFRmodel exhibits superior performance, with the lowest MSE, the
highest R2 score and the lowest MAE values. Following closely is the GBR + RFR hybrid ensemble model. Both
RFR and GBR + RFR models demonstrate minimal bias, reflected in the lowest sum and mean of residuals,
indicating consistent predictions closely aligned with actual values. Overall, the evaluation metrics (Table 4)
document the superior performance of the RFR and GBR + RFR models, surpassing MLP, GBR, and
MLP+RFRmodels. Overall, the cross‐plots between the actual and predicted calcite volumes for all the methods
are close to a linear trend (Figure 12). However, for values smaller than 0.6, the predicted values from the MLP
and GBR algorithms tend to be overestimates. This observation suggests that while the models generally perform
well and align closely with the actual values, they may overpredict the calcite volume, particularly at lower
fractions.

Figure 10. Mineral volume estimates of calcite, dolomite, anhydrite, clay, and quartz within the Muschelkalk in GRT‐1 and OBR‐101 wells, using the statistical method.
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For clay volumes (Table 4). Here again, the GBR + RFR and RFR models show the best performance with the
lowest MSE, the highest R2‐scores, the lowest MAE values and the highest EVS values. These two models
consistently outperform the other models across all evaluated metrics, with exceptionally low prediction errors,
high predictive power, and outstanding accuracy in capturing the variance in the data. While other models, such as
MLP, also perform well, they exhibit slightly higher errors and slightly less predictive power compared to RFR
and GBR + RFR. Figure 12 shows a strong linear trend between the predicted and actual clay volumes for all the
methods.

For the dolomite, the results presented in Table 4 and Figure 12 demonstrate that the RFR and GBR + RFR
models exhibit superior performance. The cross‐plots of the observed versus predicted dolomite volumes show a
linear trend between them but again with some overestimates at small volume fractions. The conclusions for
quartz are the same as for dolomite (Figure 12): here again (Table 4), the RFR and GBR + RFR models offer
higher accuracy in their predictions and exhibit fewer errors when estimating the proportion of quartz. However in
Figure 12, we point out that all methods systematically underestimate the quartz volume when it is greater
than 0.4.

4.2. Buntsandstein

We apply the same workflow for the much simpler case of the Buntsandstein. Indeed, as stated above, there are
only twominerals of interest: quartz and clay (Figures 13 and 14). We use results fromwell GPK‐1 as training sets
for predicting mineral volumes within the Buntsandstein along EPS‐1. The metrics from the different ML models
used for the Buntsandstein formations are presented in Table 5. Similarly to what we observed in the
Muschelkalk, the RFR, GBR + RFR and MLP + RFR ensemble models consistently perform better, with the
lowest MSR and highest R2‐scores. The performance of the models in terms of the estimated mineral volumes is
further compared (Figure 13) with the ground truth information based on the XRD analysis of 15 samples along
the Buntsandstein formations (Heap et al., 2017, 2019).

Figure 11. The distribution of estimated minerals volume using the machine learning algorithms within the Muschelkalk interval along well GPK‐1.
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4.3. Model Performance Based on Parametric Study

4.3.1. RFR Architecture

In Section 3.2.6, the rationale behind choosing the RFR architecture was based on the outcomes of a grid‐search
tuning process that involved parameters such asmax‐depth, leaf nodes, and n‐estimators. Figure 15 sheds light on
the impact of varying max‐depth values from 1 to 400, with a constant number of decision trees (n‐estimators) set
at 200. The results indicate that the random forest ensemble emerges as a powerful and expressive model, adept at
capturing diverse patterns and generalizations within the data. Significantly, the analysis reveals that, for all
minerals, beyond a max‐depth of 20 (Figure 15), both the training and validation models tend to exhibit a slight
tendency to overfit or underfit. The training model stabilizes notably after reaching a max‐depth of 100
(Figure 15), while the behavior of the validation model varies for different minerals (Figure 15).

Specifically, the validation model for clays (Figure 15) remains stable between 100 and 300 before under‐
predicting, for calcite (Figure 15) stabilizes and then overfits (from a max‐depth of 300), while the validation
model for quartz displays over‐ or under‐predictions (Figure 15). In contrast, the validation model for Dolomite
appears relatively stable (Figure 15). Considering the overall observations derived from the evaluation metrics,
the RFR method consistently proves to be effective, demonstrating a robust performance across all four minerals.
However, careful consideration is needed to address potential challenges, such as the risk of overfitting associated
with excessive use of deeper trees and increased computational complexity during training and evaluation.
Achieving a balance through empirical experimentation and validation on separate data sets is imperative for
optimizing the model's performance and ensuring robust generalization to the test data.

Table 4
The Evaluation Metrics of the Calcite, Clay, Dolomite, and Quartz Minerals for All the Machine Learning Methods

Minerals Metrics MLP RFR GBR MLP + RFR GBR + RFR

Calcite MSE 0.04192 0.0124 0.0216 0.0027 0.0209

R2‐score 0.7096 0.8521 0.8503 0.8426 0.8554

MAE 0.1512 0.10019 0.0976 0.1048 0.0966

EVS 0.7102 0.8521 0.8506 0.8428 0.8556

Sum of residual 3.5420 0.5603 2.4127 0.9958 0.8332

Mean of residual 0.0088 0.0014 0.0060 0.0025 0.0021

Clay MSE 0.0038 0.00269 0.0023 0.0027 0.0023

r2‐score 0.887618 0.9214 0.9313 0.9225 0.9327

MAE 0.0419 0.0337 0.0318 0.0327 0.0315

EVS 0.8880 0.9213 0.9315 0.9225 0.9328

Sum of residual 1.4597 0.3632 0.7129 0.1015 0.3895

Mean of residual 0.0036 0.0009 0.0018 0.0003 0.0010

Dolomite MSE 0.0282 0.0189 0.0190 0.0184 0.0180

r2‐score 0.7029 0.8197 0.8008 0.8058 0.8105

MAE 0.1232 0.0995 0.0976 0.1000 0.0962

EVS 0.7040 0.8101 0.80090 0.8062 0.8105

Sum of residual 4.1415 2.0428 0.6858 2.2672 1.8241

Mean of residual 0.0103 0.0051 0.0017 0.0057 0.0045

Quartz MSE 0.0070 0.0046 0.0045 0.0047 0.0044

r2‐score 0.5670 0.7180 0.72052 0.7095 0.7278

MAE 0.0380 0.0244 0.0270 0.0256 0.0260

EVS 0.5691 0.7184 0.7211 0.7104 0.7285

Sum of residual 2.3540 0.9584 1.3417 1.0920 0.9139

Mean of residual 0.0058 0.0024 0.0033 0.0027 0.0023
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Figure 12. Cross‐plots of measured and predicted values of the four identified minerals within the Muschelkalk formations
(calcite mineral, clay, quartz, and dolomite mineral volumes) for each machine learning methodology.
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4.3.2. Hybrid Ensemble Architecture

The proposed hybrid ensemble model (Figure 9) introduces a weighted fusion process that combines the pre-
dictions of three machine‐learning algorithms (MLP, RFR, and GBR). One advantage of this hybrid ensemble
approach lies in its ability to allow for a transition between different weight configurations, facilitating adapt-
ability to the specific strengths and weaknesses of each algorithm and resulting in a more robust prediction. We
performed a parametric study by randomly varying the weights (Equations 27–29).

The findings for the MLP + RFR ensemble (Figure 16) demonstrate a significant pattern, especially in relation to
clay (Figure 16a), where the maximum R2 scores are achieved with ideal n‐values ranging from 0.82 to 0.86
(Figure 16a). We note (Figure 16a) that it is possible to improve the performance of the clay model by choosing n‐
values between 0.82 and 0.86 for RFR, while assigning the remaining to MLP. There is a strong bias toward RFR
when it comes to calcite, quartz, and dolomite (Figures 16b–16d), when the n‐value is close to 1. There is,
however, a general decline in model performance as the emphasis shifts toward MLP. Increasing the n‐values of
MLP does not yield significant improvement and tends to decrease the overall model performance. This
observation emphasizes the interplay between model components and underscores the importance of a sound
approach in achieving optimal performance. In general for theMLP+RFR ensemble with the right n‐value range,
the model performance can be improved.

For the GBR + RFR ensemble approach (Figure 17) the model performance for the four minerals exhibits a
parabolic shape. The vertex of the parabolic shape of the scatter model points (Figure 17) represents the most
optimal model (Figure 17), while along the arms of the parabolas, whether toward RFR or GBR, lower performing
models are observed (Figure 17). In Figure 17a, the best performing model for clay is biased toward GBR within
the n‐values range of 0.24–0.30. Beyond this range, higher n‐values introduce a bias toward RFR (Figure 17a), but
with a decline in overall model performance. On Figures 17a–17c, the model performance for calcite, quartz, and
dolomite minerals seems to be quite similar. The model with the best performance for calcite (Figure 17b) has n‐
values ranging from 0.37 to 0.53. The optimal range of n‐values for quartz is 0.45–0.55 (Figure 17c). In contrast,
for dolomite the best performing models are associated with n‐values in the range of 0.55–0.72 (Figure 17d).

Figure 13. The distribution of estimated mineral volume using the machine learning algorithms within the Buntsandstein formations along well EPS‐1. The red x symbol
represents the ratio of the clay minerals from X‐ray diffraction analysis from Heap et al. (2017), Heap et al. (2019).
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Qualitatively assessing the performance of the four minerals based on the spread of the parabolic height
(Figure 17), it appears that quartz (Figure 17c) stands out as the most enhanced model.

In Figures 16 and 17, we show that the optimal n‐values vary for each mineral within the multivariate regression
model. For example, the n‐value that yields the best model for clay differs from that of other minerals. Conse-
quently, the multivariate system that relies on a single n‐value for all minerals puts some of them at a

Figure 14. Cross‐plots of measured and predicted values of the two identified minerals within the Buntsandstein formations (quartz and clay volumes) for each machine
learning methodology.

Table 5
The Evaluation Metrics of Quartz and Clay for All the Machine Learning Methods Used Within the Buntsandstein

Minerals Metrics MLP RFR GBR GBR + RFR MLP + RFR

Clay MSE 0.0003 0.00011 0.00028 0.00011 0.00011

r2‐score 0.9333 0.9743 0.9350 0.9747 0.9744

MAE 0.0060 0.0032 0.0052 0.0032 0.0033

EVS 0.9344 0.9743 0.9354 0.9747 0.9744

Sum of residual 4.2919 0.2942 0.2739 0.342 0.2077

Mean of residual 0.0021 0.0001 0.0001 0.0002 0.0001

Quartz MSE 0.0004 0.0002 0.0004 0.0002 0.0002

r2‐score 0.9278 0.9551 0.9163 0.9553 0.9560

MAE 0.0062 0.0040 0.0062 0.0040 0.0041

EVS 0.9278 0.9551 0.9163 0.9553 0.9560

Sum of residual 0.7455 0.8522 0.3201 0.8044 0.4822

Mean of residual 0.0004 0.0004 0.0002 0.0004 0.0002
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Figure 15. (a) Outcome of Hyperparameter Tuning Experiment for a random forest regression Algorithm, Examining various max‐depth values and evaluating r2‐score
across different minerals (clay, calcite, quartz, and dolomite) within the Muschelkalk Formation along Well GPK‐1. (b) The top‐right subplot provides a zoomed‐in
view of a specific region of interest indicated by the red rectangle in the main figure.

Figure 16. Outcome of parametric study after randomly generating 100 n‐values for obtaining the most optimal multi‐layer perceptron+ random forest regression hybrid
ensemble for all four minerals (clay, calcite, quartz, and dolomite) within the Muschekalk formations along Well GPK‐1.
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disadvantage. To address this issue, we conducted an additional analysis employing a univariate regression
system. This involved considering unique n‐values that resulted in the best optimal model for each mineral, hence,
Equations 15, 19 and 24 were adapted for univariate regression, solving for different minerals individually. The
GBR + RFR model was tested within this univariate regressional system, and quantitatively, the results indicate
improved metrics in terms of R2‐score and MSE (Table 6 and Figure 18) for each mineral within the formations of
interest. This underscores the advantage of adopting a mineral‐specific approach in optimizing univariate
regression models as opposed to relying on a generalized multivariate regression system. Overall, the parametric
studies (Figures 16–18) highlight the relationship between n‐values, model performance, and the use of a uni-
variate regression system to solve individual minerals in the formations of interest. These implications emphasize
the trade‐off involved in making these choices. We will like to note that the above validation primarily focused on
the Muschelkalk formations due to their higher mineral diversity compared to the simpler Buntsandstein

Figure 17. Outcome of parametric study after randomly generating 100 n‐values as weights for obtaining the most optimal gradient boosting regression+ random forest
regression hybrid ensemble for all four minerals (clay, calcite, quartz, and dolomite) within the Muschekalk formations along Well GPK‐1.

Table 6
Comparison of the Mean Squared Error and R2‐Score Performance of the Multi‐Regression (MR) and Univariate Regression
(UR) Algorithms

Minerals Metrics GBR + RFR − MR GBR + RFR − UR Diff = UR − MR

Calcite MSE 0.02087 0.01811 − 0.00276

R2‐score 0.85541 0.87455 0.01914

Clay MSE 0.00230 0.00226 − 0.0004

R2‐score 0.93271 0.93384 0.00113

Dolomite MSE 0.01799 0.01628 − 0.00171

R2‐score 0.81046 0.82837 0.01791

Quartz MSE 0.00442 0.00439 − 0.00005

R2‐score 0.72779 0.72954 0.00175
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sandstone formations (two minerals), it's imperative to note that the hybrid method's technical application remains
applicable to both scenarios.

4.3.3. Sensitivity Analysis of the Input Parameters on the Machine Models Output

The sensitivity study of input parameters to the overall model performance of MLP, RFR, and GBR machine
algorithms is critical in determining their predictive dynamics. The first‐order Sobol index, which elucidates the
fraction of total output variation attributed to particular input parameters while keeping others constant, reveals
their relative importance. Observations reveal notable influences: for the MLP machine algorithm (Figure 19a),
the VP, DT, and GR have an impact on the clay volume ratio, while only the GR log retains a pronounced effect on
the clay and quartz volume across RFR and GBR models (Figures 19b and 19c). In contrast, Figures 19b and 19c
show that the Vp and DT have a minor influence on various minerals in GBR and MLP ML models.

5. Discussion
5.1. Mineral Volume Inversion: Statistical Approach Versus Machine Learning

In scrutinizing the mineralogical composition of the Muschelkalk formations, we observe a distinction between
its upper and lower intervals, as unveiled by both statistical methods and advanced ML algorithms (Figure 11).
Within the upper Muschelkalk, there is a pronounced prevalence of calcite, dolomite, and clay. In contrast, the
lowerMuschelkalk intervals contain dolomite, clay, and quartz. Interestingly, theML algorithms detected a minor
amount of calcite in the upper portion of the lowerMuschelkalk (Figure 11), a finding that was not observed in the
statistical analysis. This discrepancy may be attributed to the inherent differences in the methodologies employed.
The statistical approach relies on a priori geological knowledge, guided by the primary rocks of the interval,
alternating marls, marly dolomites, dolomites, shelly sandstone, and dolomitic sandstone interbedded with clayey
marl beds (Aichholzer et al., 2016, 2019; Duringer et al., 2019).

Conversely, the ML algorithms operate independently of such predefined geological constraints. Instead, their
functionality is governed by an ability to discern nonlinear relationships within diverse input data sets. The
variation in technique discussed above provides insight into the differences seen, highlighting how both meth-
odologies complement each other in understanding the complex mineralogical patterns within the Muschelkalk
formations. The accuracy of each method can only be verified by a comparison to XRD estimated mineralogical
composition of core samples. Unfortunately, there are no XRD analyses results for well GPK1's Muschelkalk
formations.

On the other hand, a thorough analysis was conducted on the eight subdivisions of the Buntsandstein formation in
well EPS1, as defined by Aichholzer et al. (2019), with particular emphasis on the evaluation of clay content and

Figure 18. Results of the gradient boosting regression + random forest regression univariate regression: cross‐plot of
measured and predicted values of the minerals.
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quartz properties. The objective of this first‐order assessment was to determine which of the five ML algorithms
(Table 5) effectively represents the mineralogical description in accordance with XRD analysis (Heap et al., 2017,
2019) and geological description (Aichholzer et al., 2019). Examining the findings illustrated in Figure 13 along
the stratigraphic sequence of Buntsandstein formations, specifically from the upper to the lower Buntsandstein
intervals, reveals consistent patterns across theMLmethodologies. Notably, thick sandstone intervals, as depicted
in Figure 13, are systematically interspersed with discontinuous centimetric to decametric clay layers. This
alignment notably corresponds to the detailed descriptions provided in cores and cuttings by Aichholzer
et al. (2019). Furthermore, in attempts to validate the accuracy of the ML models, the results obtained from XRD
analyses (Table 7) sourced from studies conducted by Heap et al. (2017, 2019) were meticulously compared with
the volume estimations of clay and quartz (red crosses in Figure 13).

A first‐order analysis indicates an agreement between the volumetric assessments of clay (Figure 13) derived
from various ML methods and the XRD data from the 15 core samples (Table 7). Upon delving deeper into the
methodological outcomes, a nuanced observation emerges regarding their mutual complementarity. For instance,
within the upper Buntsandstein interval (comprising Grès Voltzia, Couches intermédiaires, and Poudingue de
Sainte‐Odile) as well as the lower Buntsandstein interval (Grès d’Annweiler and Grès Ante d’Annweiler), the
RFR, MLP + RFR, and GBR + RFR models (Figures 13iii, 13v, and 13vi) demonstrate a reasonable fit with the

Figure 19. This histogram illustrates the comparison of first‐order Sobol indices for independent input variables. Each vertical bar represents the magnitude of the Sobol
index, indicating the relative importance of the corresponding item in explaining the variance of the model output. Four distinct colors represent the contribution of
different minerals: blue for clay, purple for calcite, violet for quartz, and black for dolomite.
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majority of the XRD data points, whereas the MLP algorithm appears to
exhibit better fit with the XRD analysis data points within the middle Bunt-
sandstein (Figure 13ii), particularly when compared to the other methods.
This investigation highlights the need of applying a wide variety of tech-
niques, each of which contributes to our comprehension of the mineral vol-
ume composition that is present within the Buntsandstein formations.
Therefore, based on the quantitative results and qualitative description of the
bulk mineral volume estimates within the Buntsandstein and Muschelkalk in
this study, ML algorithms could be reliable alternatives in the absence of core
samples for XRD analysis and generating a continuous description of mineral
volumes for formations along borehole intervals.

Notwithstanding the promising capabilities of ML algorithms, it is essential to
acknowledge their inherent limitations. Structural and mineralogical studies
done on core and cutting samples within the Buntsandstein formations indi-
cate the presence of many natural fractures filled with secondary hydrother-
mal minerals like barite (BaSO4) in EPS‐1 and anhydrite in GRT‐1 (Genter
et al., 1997; Vidal et al., 2018). For example, in EPS‐1, a fracture sealed with a
5‐cm‐thick barite was observed around 1,205 m deep. These sealed fractures,
filled with secondary minerals like barite and anhydrite within the Bunt-
sandstein, elude detection by ML approaches, leading to the non‐
identification of secondary minerals. To overcome this limitation and
ensure comprehensive mineral detection, we strongly recommend incorpo-
rating a broader spectrum of data sources, including petrophysical log data, as
well as XRD and X‐ray fluorescence (XRF) analyses as inputs for the ML
approach.

5.2. Recommendations

We have demonstrated the potential of both statistical and ML approaches for accurate mineral volume esti-
mation. Optimally, their validation relies on correlations with XRD analyses for bulk mineral volume estimation
from core samples. Our example for the simple case of the Buntsandstein sandstones shows that they yield
satisfactory estimates of mineral volume distributions. We point out the performance of ML algorithms that have
exhibited significant effectiveness. However, like for any sophisticated methodology, several steps must be taken
when applying them to data sets.

Several ML algorithms were applied in our study and a meticulous assessment was conducted to identify the
strengths and weaknesses inherent in each method when applied to different minerals within the siliciclastic and
carbonates. The analysis revealed variations in the performance of the algorithms: some provide realistic volume
predictions for specific minerals while others do not. For instance, the prediction accuracy for Quartz was notably
higher within the Buntsandstein formations (refer to Table 5) compared to the Muschelkalk formations (refer to
Table 4). This discrepancy can be attributed to the substantial variance in training set sizes, as the simple, two‐
mineral models of the Buntsandstein were not as penalized for lack of an extensive data set. Consequently, we
strongly recommend the utilization of a substantial number of data sets frommultiple wells to improve the overall
model accuracy. Furthermore, we assert that the accuracy of predictions for Muschelkalk and Buntsandstein
formations would have markedly improved with a more comprehensive data set representative of the study area,
surpassing the four boreholes considered in our analysis. It is therefore essential to tailor the selection of a ML
algorithm to the specific characteristics of the data set and the geological formations under investigation.

To comprehend the prediction capabilities of each ML method, quantitative results should be combined with
qualitative evidence from cores, cuttings, drilling masterlogs, and expert insights from existing literature.
Additionally, based on the results of the parametric analysis discussed above, we strongly recommend a thorough
analysis of each ML algorithm for mineral volume estimation.

Table 7
Quantitative Bulk Mineralogical Composition From X‐Ray Powder
Diffraction (X‐Ray Diffraction) Analysis of 15 Sandstone Samples
(Buntsandstein Formations) From Exploration Well EPS‐1 at the
Soultz‐Sous‐Forêts Geothermal Site (Alsace, France) Modified From Heap
et al. (2019) (First Three Values) and Heap et al. (2017) (Others)

TVD (m) Quartz (wt.%) Clay (wt.%)

1,001 58 29

1,005.5 66 18

1,006.5 46 35

1,008 74.5 ± 1.6 6.0 ± 2.9

1,022 78.9 ± 1.7 5.0 ± 2.5

1,069 89.2 ± 0.4 2.0 ± 0.8

1,107 89.0 ± 1.1 3.2 ± 1.3

1,151 90.7 ± 1.2 2.8 ± 1.3

1,197 83.4 ± 2.6 7.3 ± 3.2

1,239 87.8 ± 1.3 3.8 ± 1.5

1,290 86.7 ± 1.6 3.5 ± 2.1

1,336 82.3 ± 1.7 3.0 ± 1.8

1,376 73.3 ± 3.0 7.8 ± 3.9

1,386 70.6 ± 2.8 8.3 ± 4.5

1,414 66.4 ± 4.0 13.1 ± 6.0
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6. Conclusion
Estimating mineral volume quantities in the URG infill, which consists of carbonates and siliciclastic, is a
complex task due to the heterogeneous geological framework. This difficulty is also characterized by both linear
and nonlinear challenges associated with geophysical data relationships. To tackle this inherent complexity, our
methodology carefully combines the strong insights from traditional statistical methodologies with the latest
breakthroughs in ML and AI. Our analysis focuses on the Muschelkalk and Buntsandstein formations, which are
known to have a significant influence on geothermal fluid circulation. We employed three separate ML algo-
rithms and to improve the accuracy of our model, we developed a novel hybrid model that utilizes a weighted
average by concurrently integrating two distinct methods. The results of our investigation demonstrate a strong
and reliable ability to predict outcomes using all of the methods employed. Our findings unveil a robust predictive
performance across all methodologies used in this study. With strong consistency with qualitative mineral
description from cores, cuttings, and expert geological knowledge of Muschelkalk and Buntsandstein formations.
Lastly, The validity of the volume estimate methodologies must be assessed by a comparison with quantitative
(e.g., XRD analysis of cores and cuttings, XRF estimates) or qualitative (e.g., core descriptions, XRD analysis,
field observations, etc.) information.

Data Availability Statement
The research data utilized in this study have been supplied by ES‐Geothermie and are subject to specific re-
strictions, encompassing nondisclosure agreements, licensing conditions, and proprietary constraints, rendering
them unavailable to the general public. Should there be a desire to access this data, a formal request can be made to
ES‐Geothermie via geothermie@es.fr. It is important to note that the methods employed in this research are
designed for reproducibility using comparable data from other geological locations.
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