Paper title	Quantitative assessment of the state of the cross border Rhine aquifer based
I aper the	on groundwater level signals
Paper ID	107667
Submitted by	
	Elodie Giuglaris
Authors	1. E. Giuglaris ¹ Presenter
	2. L. Baulon ¹
	3. <i>M. Lincker</i> ¹
	4. <i>M. Ohmer</i> ²
	5. T. Liesch ²
	6. J. Manceau ¹
	7. V. Laurent ¹
	8. <i>M. Laurencelle</i> ¹
	9. <i>C. Bouvier</i> ¹
	10. M. Wingering ³
	11. F. Toulet ⁴
	12. S. Schomburgk ¹
	1. ¹ BRGM (French Geological Survey)
	2. ² KIT - Karlsruhe Institute of Technology
	3. ³ LUBW - Landesanstalt für Umwelt Baden-Württemberg
	4. ⁴ APRONA - Observatoire de la Nappe d'Alsace
	4. AI KONA - Observatorie de la tyappe d'Aisace
Form of	Oral
	Oral
presentation	4. Sector in the Course devices Decourses Management
Topics	• 4. Sustainable Groundwater Resources Management
	• 4.07. Approaches to sustainable groundwater management in
	a changing world
Abstract text	The Upper Rhine aquifer, located on both sides of the Franco-German border
	in the Rhine graben, is one of the largest transboundary alluvial groundwater
	resources in Western Europe. The shallow position of the groundwater level
	in the alluvial deposits implies a high connectivity with the hydrographic
	network, resulting in a multitude of links with surface and sub-surface
	ecosystems as well as with the functioning of watercourses. Human
	activities, such as river management and infrastructure developments along
	the Rhine, have strongly influenced its hydrodynamic behaviour. More
	recently, artificial low-flow supports for rivers, ecological functionalities
	restoration works of rivers have again modified hydrodynamics.
	Since 2015, climate change has put additional pressure on the groundwater
	resources. The most notable example is the drying up of watercourses fed by
	baseflows from the Rhine aquifer in the central Alsace plain. However, the
	impact extends to all wetlands and rivers, without a clear quantification.
	In order to enable sustainable management of the groundwater resources, a
	transboundary diagnosis of the quantitative situation is being carried out.
	This requires elements of understanding of the Upper Rhine aquifer system.
	Using classical and advanced statistical methods, the aquifer is divided into
	homogeneous zones, enabling improved understanding of the
	hydrodynamics and interactions with the surface. At the same time, variables
	influencing or having influenced piezometry are sought at different temporal
	and spatial scales (e.g., climate, water withdrawals, Rhine infrastructure,

rivers). The search for trends in groundwater level and explanatory factors is
carried out in a highly anthropised context, requiring the classic analysis
tools to be adapted.
This work will make it possible to evaluate and implement predictive
models. It will also serve as a basis to assist in future river and wetland
restoration or preservation efforts.