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Abstract 35 

Modeling variable-density flow in unconfined aquifers is a challenging task because of the 36 

nonlinear coupling between variably saturated flow and contaminant transport. This results in 37 

a highly nonlinear system since the strongly nonlinear Richards flow equation is, in addition, 38 

coupled to the advection-dispersion transport equation by viscosity and density variation. The 39 

solution of such a nonlinear system is often subject to convergence issues and can be very 40 

expansive in terms of computational time, especially for large-scale problems. Conventional 41 

numerical algorithms based on the sequential approach and the classical finite difference or 42 

finite element methods with the first-order backward Euler time integration scheme are 43 

generally inefficient and/or do not provide satisfactory results. In this work, we develop a new 44 

efficient and accurate 2D numerical model for the transport of dense contaminants in 45 

unsaturated porous media that allows for the simulation of large-scale problems. This research 46 

describes a new model that combines advanced spatial discretization methods (mixed hybrid 47 

finite element method, discontinuous Galerkin finite element method, and multipoint flux 48 

approximation method) with higher-order time integration techniques via the method of lines 49 

(MOL). The latter allows one to adapt the time step’s size and the order of the time 50 

integration to improve the computational efficiency while maintaining accuracy. The 51 

robustness and accuracy of the new model are shown by comparison against a widely used 52 

commercial code based on the standard finite element method. The applicability of the 53 

developed model to a large-scale problem is then investigated by simulating saltwater 54 

intrusion under a climate change projection and long-term pumping regimes for the Akkar 55 

coastal aquifer in Lebanon using a simplified 2D conceptual model. 56 

Key words: unsaturated flow, variable-density flow, mixed finite element method, 57 

discontinuous finite element method, multi-Point flux approximation, method of lines, field 58 

simulation. 59 
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1. Introduction 60 

Many saturated-unsaturated aquifer systems are subject to the pollution of soils and 61 

groundwater resources by dense contaminants such as leachates derived from waste disposal 62 

sites, agricultural activity, or sanitary landfills. Contamination by saltwater is a major 63 

environmental issue that occurs, for instance, with the leakage of brine beneath the salt lakes, 64 

flooding of coastal areas by seawater, saltwater intrusion in coastal aquifers due to over-65 

pumping, tidal effects or sea-level rise. For such situations, fluid flow and solute transport 66 

equations are coupled by the fluid density.  67 

Several studies have focused on variable-density flow in saturated porous media [1-4] since 68 

the effect of density variations on the flow behavior in the saturated zone is much more 69 

significant than in the unsaturated zone. Indeed, in the unsaturated zone, the density variation 70 

in the liquid phase is much less important than the density variation between the liquid and 71 

the air phase (about three orders of magnitude). Simmons et al. [5] investigated the migration 72 

of a dense contaminant plume through the unsaturated zone using laboratory experiments. 73 

They showed that the unsaturated zone and position of the water table must be considered in 74 

contamination studies in order to predict the migration pathways, rates and the ultimate fate of 75 

dense contaminant plumes [5]. Oostrom et al. [6] and Dane et al. [7] investigated saturated 76 

variable-density flow with a narrow unsaturated zone in their physical models. They showed 77 

that the development of plume instabilities depends on the density difference between the 78 

plume and groundwater, the horizontal Darcy velocity, the contaminant leakage rates, the 79 

source dimensions, the hydrodynamic dispersion and the permeability of the porous media. 80 

Ouyang and Zheng [8] numerically showed that density-driven transport is significant for 81 

dissolved chemicals through unsaturated sandy soils. Using numerical simulations, Boufadel 82 

et al. [9] showed that concentration-dependent viscosity effects below dry salt lakes are 83 
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significant under fully saturated conditions, but have minor effects under unsaturated flow 84 

conditions.  85 

Considering both saturated and unsaturated zones for coupled flow and transport processes 86 

can improve the representativeness of simulations when investigating evaporation and salt 87 

accumulation effects on riparian freshwater lenses [10] or when investigating the effect of 88 

water table salinization [11-14] or the effect of the slope of the seaward boundary on saltwater 89 

intrusion [15-17].  90 

Including the unsaturated zone when modeling variable-density flow problems requires the 91 

solution of a coupled flow-transport nonlinear system. In such a system, the flow is ruled by 92 

the Richards’ equation (RE), which uses nonlinear constitutive relationships between 93 

hydraulic conductivity, water content, and pressure head [18, 19]. Because of these 94 

nonlinearities, providing an accurate solution of RE is challenging due to convergence issues 95 

and high time consumption, particularly in the presence of sharp wetting fronts, as when 96 

simulating infiltration into initially dry soils [20]. These difficulties are increased in the case 97 

of a dense contaminant because of additional nonlinearities induced by density variations 98 

which require coupling between the RE and the advection-dispersion transport equation. 99 

Because of nonlinearities and the absence of analytical solutions, numerical models are 100 

valuable tools for solving these complex problems and for understanding and predicting the 101 

propagation of contaminations in the aquifers. However, most of the existing numerical 102 

models do not provide satisfactory results when applied to unsaturated variable-density flow 103 

problems, essentially because: 104 

• Classical spatial discretization methods such as finite element (FE) or finite difference 105 

(FD) methods may not provide an accurate velocity field, especially in the case of 106 

highly heterogeneous and/or anisotropic domains [21, 22]. 107 
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• When applied to the transport equation, the classical methods provide results with 108 

significant unphysical oscillations for advection-dominated transport. If combined 109 

with first-order upstream techniques, they suffer from excessive numerical dispersion 110 

[23]. 111 

• Temporal discretization is often based on the first-order backward Euler scheme, 112 

which does not allow large time steps and, as a consequence, induces excessive 113 

computational time.  114 

• Coupling between flow and transport equations is usually performed via a sequential 115 

approach with an empirical time-stepping technique without any control over the 116 

temporal truncation error, which may lead to inaccurate results [24]. 117 

To overcome these difficulties, in this work, we combine advanced spatial and temporal 118 

approximation methods. The flow equation is solved using the mixed hybrid finite element 119 

(MHFE) method [25]. This method simultaneously approximates both pressure and fluxes 120 

with the same order of convergence. The MHFE method is (i) locally conservative, (ii) well 121 

adapted for general unstructured meshes, and (iii) can easily handle full permeability tensors. 122 

The unknowns with the hybrid formulation are the traces of the pressure at edges/faces [26]. 123 

The lumped form of the MHFE method proposed in [27] is employed in this work to avoid 124 

spurious oscillations encountered with transient simulations in the case of sharp wetting fronts 125 

[28].  126 

For the transport equation, the discontinuous Galerkin (DG) method is used to discretize the 127 

advection equation and combined with the multi-point flux approximation (MPFA) method 128 

for the discretization of the dispersion equation [29]. The DG method is strictly conservative 129 

at the element level. It yields accurate results for problems involving sharp fronts [30]. DG is 130 

used with an implicit time discretization that avoids (i) time-step limitation caused by the 131 
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Courant–Friedrichs–Lewy (CFL) condition of explicit schemes and (ii) the use of a slope-132 

limiting procedure to ensure the stability of the results [29]. A discontinuous linear 133 

approximation is used for the concentration at each element of the mesh. Often, the DG 134 

degrees of freedom (DOFs) correspond to the discontinuous concentration at the nodes inside 135 

each element (see, for instance, [31, 32]). The DOFs used here are the mean concentration and 136 

the horizontal and vertical components of the concentration gradient at each element [29]. 137 

This choice allows one to imitate the upwind finite volume (FV) method when only the first 138 

equation corresponding to the mean concentration value is kept. Further, this choice of DOFs 139 

allows one to combine the DG method with MPFA for the approximation of dispersion 140 

without any operator splitting [29]. The classical methods, like FD or FV, based on two-point 141 

flux approximation (TPFA) to compute the flux between two adjacent elements, may not 142 

converge unless the grid is K-orthogonal [33]. The MPFA method calculates the flux at an 143 

element boundary using multiple surrounding elements; therefore, it is well adapted for 144 

general grids and full dispersion tensors [34].  145 

The spatial discretization (MHFE_DG_MPFA) based upon the combination of MHFE, DG, 146 

and MPFA methods was shown to be robust and accurate for modeling variable-density flow 147 

in saturated porous media [35] and is extended in this work for unsaturated flow.  148 

Higher-order time integration methods are used via the method of lines (MOL) to allow large 149 

time steps and improve the efficiency of the model. The flow and transport equations are 150 

solved simultaneously in a single step, which avoids slow convergence encountered with the 151 

sequential approach. The MOL allows one to adapt the time step’s length and the order of the 152 

temporal discretization (up to 5 using the Backward Difference Formulas) in order to reduce 153 

the computational time while maintaining accuracy. The MOL is effective for the solution of 154 

the RE in the unsaturated zone [36] as well as for variable-density flow in saturated porous 155 

media [37]. In this work, the MOL is used for the first time for dense contaminant transport in 156 
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unsaturated porous media. Variable-order and variable-step size time integration are 157 

performed using the DASPK [38] time solver. 158 

2. Governing Equations 159 

Dense contaminant transport in unsaturated porous media is governed by the Darcy-160 

Buckingham’s law, the mass conservation of the fluid and the advection-dispersion transport 161 

equation. Assuming the Boussinesq approximation is valid, the flow in the unsaturated zone 162 

can be written in terms of equivalent freshwater head, as follows: 163 

 ( ) ( )
S S

S

h H
c h S q

t t

θθ
θ

 ∂ ∂= + = −∇ ⋅ + ∂ ∂ 
q  (1) 164 

 0

0
rk H zq K

ρ ρ
ρ

 −= − ∇ + ∇ 
 

 (2) 165 

where ( )c h hθ= ∂ ∂  is the specific moisture capacity [L−1], 
S

S  the specific mass storativity 166 

related to head changes [L-1], θ  the current water content [L3L−3], 
S

θ  the saturated water 167 

content [L3L−3], H h z= +  the equivalent freshwater head [L], 
0

P
h

gρ
=  the pressure head, P  168 

the pressure [Pa], z the upward vertical coordinate [L], t the time [T], q  the Darcy’s velocity 169 

[LT-1], Sq  the sink term [T-1], rk  the relative conductivity [-], 0gρ
µ

=K k  the hydraulic 170 

conductivity tensor [LT-1], 0ρ  the density of the displaced fluid [ML-3], g  the gravity 171 

acceleration [LT-2], µ  the fluid dynamic viscosity [ML-1T-1], k  the permeability tensor 172 

dependent only on the porous medium [L2], and ρ  the fluid density [ML-3]. 173 

The solute transport in the unsaturated zone is ruled by the advection-dispersion equation: 174 
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( ) ( ) ( ) S

C
. C . C q C

t

∂ θ
∂

+ ∇ − ∇ ∇ =q D  (3) 175 

where C  [-] is the scaled concentration and D  the dispersion tensor given by: 176 

 ( )D I q q q q Im L T TD /α α α= + − ⊗ +  (4) 177 

with 
L

α  and 
T

α  the longitudinal and transverse dispersivities [L], 
m

D  the pore water 178 

diffusion coefficient [L2T-1], and I  the unit tensor.  179 

We use the standard van Genuchten [39] model to define the relation between water content 180 

and pressure head: 181 

 
( ) ( )( )

1
      0

1

1                         0

m
nr

e

s r

h
h

hS

h

θ θ
α

θ θ

 <−  += = − 
≥

 (5) 182 

where α  [L-1] and n  [-] are the van Genuchten parameters, 1 1m n= − , 
e

S  [-] the effective 183 

saturation, and 
r

θ  the residual water content [L3L−3].  184 

The conductivity-saturation relationship is analytically derived from the Mualem [40] model, 185 

as proposed by van Genuchten [39]:  186 

 ( )
2

1/2 1/1 1
m

m

r e ek S S = − −  
. (6) 187 

Darcy velocity q  in equation (2) depends on both the pressure head h  and the concentration 188 

C. 189 

The flow and transport equations are coupled by the state equations. In the case of salt 190 

contamination, we can use the polynomial approximations given in [1]:  191 
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 ( )0 1 0 ,Cρ ρ ρ ρ= + −  and  2 3
0 (1.0 0.4819 0.2774 0.7814 )C C Cµ µ= + − +  (7) 192 

where 0ρ  and 1ρ  are densities of freshwater and saltwater and 0µ  the freshwater viscosity. 193 

Different state equations may be used for density or viscosity [1]. 194 

3. The numerical model 195 

The system of nonlinear equations (1)–(7), valid in 3D domains, is solved hereafter for 2D 196 

vertical domains using adapted advanced numerical methods that allow an accurate estimation 197 

of the velocity and concentration distributions for heterogeneous domains and unstructured 198 

meshes. The main stages to form the final system to be solved are summarized hereafter for a 199 

general triangular mesh. 200 

3.1 The lumped MHFE method for modeling fluid flow  201 

With the classical standard FE method, the head is approximated linearly inside each element 202 

using standard chapeau functions, and hence, the velocity is constant at the element level. 203 

With the MHFE method, we assume a linear approximation for the velocity q  inside each 204 

triangle E  using the linear Raviart-Thomas basis functions: 205 

 
3

1

E E

j j

j

Q
=

=∑q w  (8) 206 

where E

jQ  is the flux across the edge j  of E  and E

jw  is the Raviart-Thomas basis function 207 

[41]. 208 

The mass lumping procedure is used to avoid over- and undershoots observed for transient 209 

simulations with small time steps [27, 28]. The basic idea of this procedure is to consider 210 
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steady-state flow (the mean head at the element E  is ( )1 2 3 3E E E

E
H TH TH TH= + + ), and then 211 

the transient component is directly added to the expression of the flux [35]: 212 

 0

0 3 3

E E
E E E EE i S
i ij j j E

j

E dTH Q
Q N TH z r

dt

ρ ρ
ρ

 −= + − + 
 

∑  (9) 213 

where E

i
TH  (resp. E

i
z ) is the mean head (resp. mean elevation) of the edge i  of E  with 214 

i i i
TH Th z= + , 

i
Th  is the mean pressure head, j  is an edge of E , N  is a local matrix of 215 

coefficients 
( ) 1EE E T

ij r i E j

det
N k . .

E

K
r K r−= −  where r

i
 is the edge vector face to the vertex i  of 216 

the element E  (see Younes et al. [42] for more details), E  is the area of E , 217 

( ) ( )E E S E Sr c h S hθ θ= +  is the accumulation term in Richards’ equation, 
E

h  is the mean 218 

pressure head at E , and 
E

S S

E

Q q= ∫  is the sink term on E . 219 

The final flow system is formed by imposing continuity of heads ( )E E

i i
TH TH

′=  and fluxes 220 

( )0E E

i i
Q Q

′+ =  between the adjacent elements E and E’ having a common edge i : 221 

0 0

0 0

0
3 3 3 3

E E E
E E E E E EE E i S S
ij j j ij j j E E

j j

E E dTH Q Q
N TH z N TH z r r

dt

ρ ρ ρ ρ
ρ ρ

′
′ ′ ′′

′

′    − −+ + + − + + + =    
     

∑ ∑222 

 (10) 223 

The indices i  and j  are global, and the system is solved for the mean heads at edges 
i

TH .  224 

In the case of a Dirichlet condition with a prescribed head 
imp

H  at the boundary edge i, 225 

equation (10) is replaced by 
i imp

TH H= . If the boundary edge i has a prescribed flux 
imp

Q  226 

(Neumann boundary condition), equation (10) is replaced by 0E

i impQ Q+ = .  227 
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Note that the system of equations (10) is highly nonlinear since (i) the local matrix N  and the 228 

accumulation term r  depend on the pressure head and (ii) the hydraulic conductivity and the 229 

buoyancy term depend on the concentration.  230 

3.2 The DG-MPFA method for modeling solute transport  231 

Using the mass conservation of the fluid, given by equation (1), the transport equation (3) 232 

simplifies to: 233 

 0
D

C
C .

t

∂θ
∂

+ ∇ + ∇ =q q . (11) 234 

With 
D

C= − ∇q D , the dispersive flux, assumed to have a constant divergence over the 235 

element E: 236 

 
1 E

D i

i

. Qd
E

∇ = ∑q  (12) 237 

where E

i
Qd  is the dispersive flux across the edge i of E . 238 

The concentration inside the element E is approximated with linear discontinuous functions:  239 

 
3

1

E

E ,i E ,i

i

C C φ
=

=∑  (13) 240 

with 
E ,i

φ being the interpolation function and i a local index that refers to the ith DOF 
E ,i

C  of 241 

the concentration inside the element E. 242 

In the literature, the DOFs are often chosen (see, for instance, [43]) to be the concentration at 243 

the nodes and 
E ,i

φ , the classical chapeau functions. In this work, the DOFs are the mean 244 
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concentration 1E ,
C  and the components of the concentration gradient 2E ,

C  and 3E ,
C , with the 245 

corresponding interpolation functions: 246 

 ( ) ( ),1 ,2 ,31, ,E E E E Ex x z zφ φ φ= = − = − , 247 

where x  and z  are horizontal and vertical coordinates, and 
E

x  and 
E

z  are the coordinates of 248 

the center of the element E . Thus, the polynomial approximation of the concentration inside 249 

the element E  is ( ) ( )1 2 3
E

E , E , E E , EC C C x x C z z= + − + − . 250 

The variational formulation of Eq (11) using the test function 
E ,i

φ  is: 251 

 ( ) ( ) 0
E ,i E ,i E ,i E ,i D

E E E E

C
C . . C .

t

∂θ φ φ φ φ
∂

− ∇ + ∇ + ∇ =∫ ∫ ∫ ∫q q q . (14) 252 

Using Green’s formula and Eq (12) and Eq (13), we obtain: 253 

 ( ) 0E , j * E E

E E , j E ,i E , j E , j E ,i j E ,i j j E ,i

j j j jE E j E

dC
C . C . Qd

dt
θ φ φ φ φ φ φ− ∇ + + =∑ ∑ ∑ ∑∫ ∫ ∫ ∫q q η  (15) 254 

where *

jC  is the upstream concentration at the edge j , E

jη  is the unit outward normal vector 255 

to the edge j  of E , and q  is the velocity obtained by substituting equation (9) into equation 256 

(8). 257 

Equation (15) is written for the three test functions 
E ,i

φ  ( )1, 2,3i =  for each element E . The 258 

index j  ( )1,2,3j =  refers to the j th DOF of the concentration in the element E  in the two 259 

first terms of Eq (15) and to the j th edge of E  for the last two terms in equation (15). 260 

The upstream concentration *

jC  at the edge j  can be written as follows:  261 
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 ( )* '1E E E E

j j j j j
C C Cτ τ= + −  (16) 262 

with 1E

jτ =  for an outward flux ( )0E

j
≥q.η , else 0E

jτ = . 263 

Thus, *

jC  corresponds to E

jC , the concentration at the edge j  calculated using the polynomial 264 

approximation of the concentration at the element E , or 'E

jC , the concentration at j  265 

calculated using the polynomial approximation of the concentration at the element E’, sharing 266 

the edge j  with E .  267 

Equation (15) yields three equations for each element E  having 3 adjacent elements 268 

( )1 2 3E ,E ,E : 269 

 [ ] [ ]

,1

,1 ,1 ,13
,2 0

,2 ,2 ,2
1

,3 ,3 ,3
,3

0

0
=

 
   
         
            = − − −            
                    
 

∑

∑
l

l

l

l

l

E
E

j

jE E E

E

E E E

E E E

E

dC

Qddt
C C C

dC
A B C M C M C

dt
C C C

dC

dt

 (17) 270 

with: 271 

( )

( )
, , , , , ,

0
, , , , , ,

.

1

i j E E j E i i j E j E i

E E

E E E E

i j E i E j i j E i E j

A B

M M

θ φ φ φ φ

τ φ φ τ φ φ

= = ∇

= = −

∫ ∫

∑ ∫ ∫

q

q.η q.ηl

l l l l l

l l l

. 272 

To avoid operator splitting between advection and dispersion, the dispersive flux E

jQd  in 273 

equation (17) is approximated using the MPFA method. The latter has similar properties to 274 

the MFE method since both are locally conservative and can handle unstructured meshes and 275 

anisotropic and heterogeneous domains. The two methods can be equivalent for some specific 276 

situations [34, 44]. However, contrary to the MHFE method, which uses the concentration at 277 
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the edges as DOFs, MPFA uses the mean concentration at each element as DOFs. Hence, the 278 

discrete approximation of E

jQd  can be directly added to the system of equations (17), which 279 

avoids the necessary operator splitting if the MHFE method is used for dispersion, as in [30]. 280 

 281 

Figure 1. A triangular element divided into three subcells, with linear concentration 282 
approximation on each subcell. 283 

To calculate E

jQd  with the MPFA method, we assume that the concentration inside the sub-284 

cell ( )1 2O,F ,G,F  formed by the node O , the center G , and the mid-edges 1F  and 2F  (gray 285 

area in the Figure 1) is linear. Hence, it can be approximated using ,1E
C , 1λ  and 2λ  the 286 

concentrations at respectively G  and the two continuity points 1f  and 2f  located at 287 

1 2

1 2

2

3

Of Of

OF OF
= = .  288 

Therefore, ( )1 2O, f ,G, f  is a parallelogram, and the half-edge fluxes 289 

1 2

1 2and
F F

O O

O O

Qd C Qd C
 

= − ∇ = − ∇  
 

∫ ∫D D  are  290 

 

1
1 11 1 1 2

2
2 1

1 2 2 2

3 E ,O

E ,O

COF . .OF OF . .OFQd

CEQd OF . .OF OF . .OF

λ
λ

⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥

  −−   
 =   −    − 

uuur uuur uuur uuuur

uuur uuuur uuuur uuuur
E E

E E

D D

D D

 (18) 291 

O  

G  2f  

1f  

1
O

Qd  

2
O

Qd  

 

2F  

1F  

R  

P  
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where ED  is the dispersion tensor of the element E , given by equation (4) and using the 292 

velocity at the center of E  from equations (8) and (9). 293 

Equation (18) is written for all elements sharing the vertex O. Then, imposing continuity of 294 

half-edge fluxes and continuity of the concentration at the continuity points gives a local 295 

system, which we invert to obtain explicitly the concentration at each continuity point as a 296 

function of the concentration at all elements sharing the node O. The latter is then replaced in 297 

equation (18), and the summation of all half-edge fluxes is then substituted into equation (17) 298 

(see [29] for more details). Therefore, the first line of the system (17) contains the 299 

contribution of all elements sharing at least one node of the element E . The second and third 300 

equations of (17) contain the contribution of adjacent elements sharing an edge with E . Note 301 

that, because of the judicious choice of DOFs, the DG_MPFA scheme reduces to an upwind 302 

FV_MPFA scheme by removing the second and third equations of (17) for all mesh elements. 303 

The final vector of residuals for the global flow-transport nonlinear system is formed by the 304 

system of equations (10), written for the unknown pressure head 
i

TH  at the edges, followed 305 

by the system of equations (17), written for the three unknown DOFs of the concentration at 306 

each element. 307 

3.3 The temporal discretization  308 

The coupled nonlinear flow equation (10) and transport equation (17) are written in a single 309 

implicit system of ordinary differential equations (ODEs) or differential algebraic equations 310 

(DAEs) of the general form:  311 

 ( ) 0F t, , ′ =y y  (19) 312 

where ( ) ( )1 2 31 1i E , E , E ,i ,..,nb _ edges E ,..,nb _elements
TH , C ,C ,C

= =
 =
 

y  is the vector of unknowns formed 313 
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by (i) the head traces at all the edges of the mesh (except Dirichlet boundary edges) and (ii) 314 

the three DOFs for the concentration at each element of the mesh. This vector reduces to 315 

( ) ( )11 1i E ,i ,..,nb _ edges E ,..,nb _ elements
TH , C

= =
 =
 

y  with only one DOF per element for the 316 

concentration in the case of FV (instead of DG) formulation. 317 

The system (19) is solved in time using higher-order methods, which are known to be more 318 

efficient than lowest-order methods. Indeed, higher-order methods allow larger time steps and 319 

less effort in the nonlinear solver compared with the lowest-order methods [45]. Furthermore, 320 

higher-order methods are often combined with an efficient automatic time-stepping scheme, 321 

which improves the computational efficiency. The time-step size management is optimized to 322 

maintain a given temporal discretization error [36, 45-47].  323 

Among the integration methods, the Backward Difference Formula (BDF) has good stability 324 

properties and is well adapted for time integration of stiff problems [48]. The Fixed Leading 325 

Coefficient Backward Difference Formula (FLCBDF) is used in this work via the DASPK 326 

solver. The basic idea of the kth-order FLCBDF method is to convert the system 327 

( ) 0n n nF t , , ′ =y y  at a given time 1n n
t t h−= +  with solution history 1n n k

,...,− −y y  to the system 328 

( ) 0
n n n

ˆˆF t , ,a + =y y b  where â  and b̂  depend on the step size h , the order k , and the solution 329 

history (see [49] for more details). 330 

The main advantages of the FLCBDF method are: (i) it avoids the unstable behavior of the 331 

interpolated fixed-step methods and (ii) the Newton iteration matrix can be reused for more 332 

steps than in a fully variable-step approach [38, 50].  333 

The Jacobian matrix is evaluated numerically using finite difference approximation. The same 334 

Jacobian matrix is used for several time steps to improve efficiency. Furthermore, to reduce 335 

drastically the computational time required for the calculation of the Jacobian, sparsity and 336 



 17 

structure of J  are provided and the variables are perturbed by group using the column 337 

grouping technique (see [51, 52]).  338 

The order (up to the fifth-order) of BDF, as well as the time step’s size, are optimized to 339 

reduce the computational effort while maintaining a small temporal truncation error. The 340 

latter is estimated using a predictor-corrector scheme. Both absolute and relative convergence 341 

criteria are fixed to 10-5 in this work.  342 

In this work, we use the DASPK time solver with the preconditioned Krylov iterative method 343 

to solve the linear systems arising at each time step. 344 

4. Numerical experiments 345 

Three test cases are investigated to show the efficiency and accuracy of the developed 346 

numerical model. The first test case is inspired by the laboratory experiment performed by 347 

Vauclin et al. [53]. It deals with the infiltration, under  constant flux, of a dense contaminant 348 

into an unsaturated-saturated porous medium. This test, which is relatively simple from a 349 

computational point of view, is used to validate the developed code against a standard finite 350 

element solution obtained using COMSOL Multiphysics®. The second test case, inspired by 351 

the work of Forsyth and Kropinski [54], deals with the infiltration of a dense contaminant in a 352 

heterogeneous initially dry soil. The simulated moving sharp front induces high nonlinearity, 353 

which makes this computational test cases very challenging. It is used to highlight the 354 

efficiency of our newly developed model and to assess the advantages of combining high-355 

performance numerical methods compared with classical ones implemented in COMSOL. 356 

The last test case is investigated to show the applicability of the new model to large-scale 357 

problems. In this test case, the developed numerical tool is used to simulate a simplified 358 

conceptual 2D model of saltwater intrusion under climate change for the Akkar coastal 359 

aquifer in Lebanon. 360 
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4.1 Infiltration of a dense contaminant in an unsaturated-saturated porous medium 361 

Vauclin et al. [53] performed laboratory experiments to investigate the transient position of 362 

the water table under artificial recharge. The problem is extended here by including the 363 

infiltration from the surface of a dense contaminant and used for the validation of the new 364 

model by comparison with COMSOL results. The domain is a rectangular sandbox of 600 cm 365 

× 200 cm, with the water table located at 65 cm from the bottom. The initial conditions 366 

correspond to hydrostatic pressure distribution with a domain free from pollutants. Infiltration 367 

of a contaminant under a constant flux of 86.4 cm/day is then applied over 200 cm in the 368 

center of the soil surface. A Dirichlet boundary condition with a head of 65 cm is fixed below 369 

the water table. A no-flow boundary is prescribed for the bottom and top surface, except for 370 

the infiltration zone. Owing to the symmetry of this problem, only the right-hand side of the 371 

domain is modeled with a no-flow boundary imposed along the axis of symmetry. The 372 

material properties are given in Table 1. 373 

 374 

 375 

 376 

 377 

 378 

 379 

Table 1. Simulation parameters for the first test case inspired from Vauclin et al. [53]. 380 

Parameters  

r
θ  0.01 
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s
θ  0.3 

1( )cmα −  0.033 
n  4.1 

( )1.K cm s−  210−   

( )1
s

S cm−  1010−   

( )L cmα  1 

( )T cmα  0.1 

( )2
m

D m s  910−  

( )3
0 kg mρ  1000 

( )3
1 kg mρ  1000 or 1100 

( )1 1kgm sµ − −  0.001 

 381 

The simulation is performed for 80 hours using a triangular mesh formed by 4273 triangular 382 

elements. Two configurations are investigated: in the first one, the injected contaminant is a 383 

tracer ( )3
1 1000kg mρ = , whereas in the second, the contaminant has a higher density 384 

( )3
1 1100kg mρ = . 385 

The evolution of the contaminant plume during the time for both situations is shown in Figure 386 

2. Before reaching the water table (initially at z = 65 cm), the tracer and dense contaminant 387 

plumes are almost the same (see results at t = 15 h). Indeed, density variation seems to have 388 

no effect during the transport through the unsaturated zone. The main reasons for this 389 

similarity are that (i) a fixed flux is used at the surface and hence the same quantity of 390 

contaminant is intruded in the system for both situations and (ii) the density variation in the 391 

liquid phase (10%) is much less important than the density variation between the liquid and 392 

air phase, which is about three orders of magnitude. This last reason is no longer valid once 393 

the plume reaches the water table. As a consequence, due to density effects, the dense 394 

contaminant moves downward in the saturated domain, creating a recirculation zone (vortex) 395 

near the water table interface (see results of Figure 2, at t = 30 h), whereas the tracer 396 
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contaminant remains near the water table. The velocity distribution in the unsaturated zone is 397 

quite similar for the tracer and dense contaminant situations, whereas strong differences can 398 

be observed in the saturated zone. For the tracer contamination, the velocity is not affected by 399 

the evolution of the contaminant and remains mainly horizontal. However, in the case of the 400 

dense contaminant, strong vertical velocities appear due to density effects, which bring the 401 

contaminant down to the bottom. As a consequence, the results in terms of velocity field and 402 

contaminant distribution at t = 80 h for the dense and tracer situations are completely 403 

different. The tracer moves mainly horizontally at the upper part of the saturated zone with a 404 

maximum displacement near the water table, whereas the dense contaminant moves toward 405 

the substratum and then horizontally in the lower part of the domain. The vortex remains near 406 

the water table interface (see results of Figure 2 at t = 80 h). 407 

The validity of the new model is investigated by comparing the obtained results against those 408 

of the popular COMSOL model. The same spatial discretization was used to allow for a 409 

comparison between COMSOL and our newly developed model, and the solution was also 410 

checked on a fine mesh since no analytical solution is available. The results of the two models 411 

are almost similar, which demonstrates the validity of the developed model (Figure 3). Notice 412 

that the non-dimensional mass injected from the upper boundary during the simulation is 413 

0.288. With the new numerical model, the total mass in the domain at 80h is 0.28815, whereas 414 

it is 0.2820 with COMSOL. Hence, the mass balance error with COMSOL is around 0.021, 415 

whereas it is around 5×10-4 with the new model. Therefore, the very small difference 416 

observed in Figure 3 between the isocontour levels of the new model and COMSOL is 417 

probably due to the loss of mass observed with COMSOL. 418 

Both COMSOL and the new model were used with the MOL and a variable high-order (up to 419 

5) time integration BDF method. The evolution of the time step’s length with the new model 420 

during the simulation of the tracer and the dense contaminant infiltration situations are 421 
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depicted in Figure 4. The tracer simulation required 51s of CPU time, for a total number of 422 

1128 time steps. The time step starts at 10-4 s and increases to 1655 s in almost a monotonic 423 

way (see Figure 4a). Only 37 Jacobian evaluations are required during the 1128 time steps. 424 

The simulation of the dense contaminant required more CPU time (70 s) and needed more 425 

time steps (1751). In this case, smaller time steps are used (the maximum is 389 s), and the 426 

time step size is no longer monotonic (Figure 4b), probably because of the more complex 427 

occurring physics. Note that the evolution of the time step’s size remains quite similar before 428 

the wetting front reaches the saturated zone. The same Jacobian is maintained for several time 429 

steps since the number of evaluations of the Jacobian remains small (only 40 evaluations), 430 

which shows the efficiency of the new model. 431 

As a comparison, the simulation of the dense contaminant with COMSOL requires 1452 time 432 

steps. The evolutions of the time step’s length with both models are similar. However, the 433 

new model was around 10 times more efficient than COMSOL. Indeed, the new model spent 434 

only 70 seconds of CPU time, whereas COMSOL required 720 seconds for the whole 435 

simulation. In fact, COMSOL was very slow in the early stages of simulation, probably due to 436 

the significant oscillating pressure and concentration values observed in the neighborhood of 437 

the infiltration front. These unphysical oscillations affect the convergence of the nonlinear 438 

solver and increase the number of nonlinear iterations per time step. 439 

 440 

 441 

 442 

 443 
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 Tracer contaminant Dense contaminant 
t=

15
h 

t=
30

h 
t=

80
h 

 444 

Figure 2. velocity field and contaminant distributions for the infiltration of a tracer and a 445 
dense contaminant in an unsaturated-saturated system. 446 

 447 
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 448 
Figure 3. Concentration distribution at t = 80h for the dense contaminant infiltration: Results 449 
of the new model (contours) versus COMSOL results (dashed-lines) 450 
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 452 
Figure 4. Time step evolution for the tracer (a) and dense (b) contaminant infiltration 453 
simulated with the new model. 454 



 24 

4.2 Infiltration of a dense contaminant in a heterogeneous initially dry soil 455 

Simulating infiltration into dry soils is known to be a challenging task. Indeed, for very dry 456 

conditions, the head gradient becomes extremely large at the wetting front, which can lead to 457 

large computational times and unphysical oscillations [20]. To investigate the efficiency of 458 

the developed model for such situations, we simulate the infiltration problem given in [36]. 459 

The problem is inspired from Huang et al. [55] and involves infiltration under a constant head 460 

boundary condition into a heterogeneous dry soil. The domain has a rectangular shape of 125 461 

cm width and 230 cm depth and contains two horizontal layers. The surface layer of 40 cm 462 

thickness is formed by a clayey soil. The subsurface layer is a sandy soil of 190 cm thickness. 463 

The properties of the two soil layers are depicted in Table 2. A Dirichlet boundary condition 464 

is prescribed in the strip 0 20cmx≤ ≤  at the surface with a fixed pressure head of -10 cm. A 465 

fixed pressure head of -104 cm is maintained at the bottom of the domain. The other sides are 466 

impervious. A constant initial pressure head of -104 cm is considered for the entire domain, 467 

which corresponds to an initial water content of 0.059 cm3.cm-3 and 0.045 cm3.cm-3, 468 

respectively, in the upper and lower layer. The infiltrated contaminant has a density of 469 

1025kg.m-3, which corresponds to seawater density. A triangular mesh of 3505 elements is 470 

used for the spatial discretization, and the final simulation time is 7 days. 471 

 472 

 473 

 474 

 475 

 476 
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Table 2. Simulation parameters for the problem of contaminant infiltration in a heterogeneous 477 
initial dry soil. 478 

Parameters Upper Layer Lower Layer 

r
θ  0.0001 0.045 

s
θ  0.40 0.43 

1( )cmα −  0.0174 0.145 
n  1.37 2.68 

( )4 110 .K cm s− −×  3.5 82.5 

( )10 110
s

S cm− −×  1 1 

( )L cmα  0.5 0.5 

( )T cmα  0.1 0.1 

( )2
m

D m s  910−  910−  

( )3
0 kg mρ  1000 1000 

( )3
1 kg mρ  1025 1025 

( )1 1kgm sµ − −  0.001 0.001 

The obtained pressure and concentration distributions are shown in Figure 5. In this figure, 479 

the pressure shows a sharp front, reflecting a very high gradient caused by the dry initial 480 

conditions (-100 m).  481 

 482 
Figure 5. (a) Pressure distribution (in m) with COMSOL, (b) pressure and (c) concentration 483 
distributions with the new model at t = 7 days for the problem of contaminant infiltration in a 484 
heterogeneous initial dry soil. Dashed lines represent results of upwind first order FV instead 485 
of DG for advection. 486 
 487 
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The sharp pressure front cannot be accurately simulated with COMSOL. Indeed, the 488 

simulation of this test case with COMSOL using the same mesh failed to converge because of 489 

unphysical oscillations generated near the wetting interface. Convergence problems have been 490 

also encountered when changing the initial (and bottom) conditions from -100 m to -1 m. The 491 

only way to obtain a convergent solution with COMSOL was to use a finer mesh of about 492 

14,000 elements and an initial pressure head of -1 m instead of -100 m. And, even for such a 493 

situation, the results of COMSOL are inaccurate since the obtained pressure head is between -494 

1.4 m and -0.1 m instead of -1 m and -0.1 m. Besides, the solution contains strong unphysical 495 

oscillations near the wetting interface (Figure 5a). These unphysical oscillations are avoided 496 

with the new code, thanks to the used advanced numerical methods and, especially, the mass 497 

lumping procedure, which avoids unphysical oscillations in the case of transient simulations 498 

with sharp wetting fronts [27, 28]. 499 

Figure 5c shows the final concentration distribution at t = 7 days. The results of a simplified 500 

version of the numerical code using the upwind first-order FV scheme instead of DG are also 501 

depicted (dashed lines) in Figure 5c. This figure shows that a large numerical diffusion is 502 

generated using the upwind first-order FV method. To quantify the difference between the 503 

two methods, the spread of the concentration 0.9 0.1S
L X X= − , corresponding to the distance 504 

between the 10% and 90% isochlors at the left vertical side of the domain, is measured for the 505 

FV and DG simulations. The spread with FV is 0.4FV

S
L = , whereas with DG, it is 506 

0.24DG

S
L = . Hence, due to numerical diffusion, the spread with the FV method is around 507 

170% that of DG. This shows clearly that DG is well-adapted for advective-dominated 508 

transport and generates limited numerical diffusion compared with the upwind first-order FV 509 

method. 510 

It is worth noting that, in the first test case, the contaminant distribution in the unsaturated 511 
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region was not affected by the density of the contaminant, since the infiltration occurred under 512 

a constant flux boundary condition. For the current test case, the concentration distribution is 513 

sensitive to the density of the contaminant because of the Dirichlet boundary condition used at 514 

the surface infiltration boundary (results are not shown in the paper). The pollutant infiltration 515 

is slightly more pronounced with the dense contaminant than with the tracer contaminant. The 516 

total mass in the system at t = 7 days is 0.64 kg with the tracer, whereas it is 0.66 kg if the 517 

contaminant has a density of  1025 kg.m-3. This total mass can increase up to 0.76 kg in the 518 

case of a contaminant with a density of 1200 kg.m-3 (brine contamination). 519 

Finally, to highlight the benefit of the higher-order time integration for the investigated 520 

challenging infiltration problem, we compare the efficiency of the model when used with a 521 

first-order and with a variable high-order (up to 5) time integration with the BDF method. 522 

Table 3. Performance statistics for the first-order and variable order methods implemented in 523 
the advanced developed model for the simulation of the second test case. 524 

Time integration  

method 

CPU Nb  

time steps 

Nb  

Jacobian  

Max  

time step 

Mean 

time step  

First-order 896 28871 115 45 21 

Variable-order 
(up to 5) 

128 4322 138 378 140 

 525 

The results of Table 3 show that the high-order method requires more Jacobian evaluations, 526 

but allows much larger time steps and needs fewer calculations compared with the classical 527 

first-order method. The variable high-order method is around 7 times more efficient than the 528 

first-order method for the investigated problem. 529 

4.3 Large-scale simulation of SWI under climate change  530 

The developed numerical tool is used to simulate a large-scale contamination problem with 531 

large spatial and temporal ranges that occurs in the Akkar unconfined coastal aquifer, located 532 
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in the north of Lebanon (Figure 6a). The plain is cultivated with market gardening and cereals 533 

crops and the aquifer underwent a significant increase in pumping water, both for irrigation 534 

and domestic consumption, notably because of the massive arrival of Syrian refugees in the 535 

region. As a consequence, some pumping wells suffer from salinization caused by the 536 

overexploitation of the aquifer.  537 

Because of the lack of data (infiltration rates, piezometric heads, etc) and of precise 538 

knowledge of initial and boundary conditions, a full 3D simulation of the above-described 539 

problem has not been considered. A representative 2D vertical cross-section is designed to 540 

investigate saltwater intrusion under climate change projection and long-term pumping 541 

regimes. 542 

 543 

 544 

 545 

 546 

 547 

 548 

 549 

 550 
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Figure 6. (a) Location of the Akkar aquifer, (b) conceptual representation of the aquifer with 551 
a lognormal permeability field and the boundary conditions (c) the recharge data until 2019 552 
and projections under climate change between 2020 and 2099 and (d) pumping rates in 553 
production wells. 554 
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The shore-perpendicular section has an extension of 2 km offshore and 6 km onshore [56]. 555 

The depth of the Akkar basin varies between 100 m and 170 m from the surface and is formed 556 

by fluvial deposits. In the conceptual model (Figure 6b), the permeability field was generated 557 

assuming a lognormal distribution with a variance of 1.0 m4 and a geometric average 558 

conductivity of 0.945 10-11 m2. An exponential correlation function was used with horizontal 559 

and vertical correlation lengths of 1000 m and 10 m, respectively. The bottom is formed by 560 

clays and marls and is considered impermeable. The left vertical side corresponds to the sea 561 

boundary, which has a prescribed concentration of C = 35 g.l-1 and a vertical hydrostatic 562 

pressure distribution. The recharge, depicted in Figure 6c, corresponds to observed data for 563 

the period between 1962 and 2020 and a projection for the period 2020–2099, obtained from 564 

the IPSL_CM5 Global Climate Model (GCM) [57]. A weak regional flow is assumed at the 565 

right land boundary. Although radial upconing around wells have necessarily 3D 566 

configurations, two wells are assumed to represent the different pumping activities in the 567 

Akkar aquifer [58]. The wells are located at, respectively, 1500 m and 3000 m from the 568 

shoreline at, respectively, a depth of 45 m and 30 m. The rates for the two pumping wells 569 

(Figure 6d) are assumed to represent the observed rates for the period 1962–2020 and 570 

expected rates (with increasing water demand) for 2020–2099. Note that pumping was 571 

stopped for Well 1 (the closest to the sea) in 2020 because of salinization. The pumping rate 572 

of Well 1 was transferred to Well 2. 573 

 574 

 575 

 576 

 577 

 578 
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Table 4. Properties of the soil and the water for the simulation of the simplified conceptual 579 
Akkar aquifer. 580 

Parameter Value 

Freshwater density ( )3
0 .kg mρ −  1,000  

Seawater density ( )3
1 .kg mρ −  1,025  

Gravity 
2( . )g m s

−
 9.81 

Viscosity 1 1( . . )kg m sµ − −  310−  
Anisotropy ratio ( )

k z x
r k k=  0.1 

Porosity ε  0.39 

Storage coefficient 1( )
s

S m
−  45 10−×  

Molecular diffusion 2 1( . )
m

D m s
−  91.0 10−×  

1( )cmα −
 0.01 

n  1.75 

s
θ  0.39 

r
θ  0.1 

( )L
mα  5 

( )T
mα  0.5 

Right boundary condition: Regional 

flow/ unit width 2 1( . )
d

q m s
−

 

76 10−×  

 581 

The domain is discretized with approximately 75K triangular elements with an almost equal 582 

area of 15 m2. The simulation is, at first, performed for a long time with the yearly average 583 

recharge of pre-1962, without pumping to mimic the natural equilibrium conditions (Figure 584 

7a). The value of recharge for this period is taken uniformly and equal to 90 mm.y-1. Next, 585 

two periods are simulated: (i) the 1962–2020 period, which leads to the current situation of 586 

the coastal aquifer (Figure 7b), and (ii) the 2020–2099 period, which corresponds to the future 587 

response of the aquifer to the impact of a climate change projection and estimated pumping 588 

regime (Figure 7c).  589 

The problem is solved for 333,031 DOFs (unknowns) on a computer with a single Intel i7-590 

7700 processor 3.6 GHz and 16 Go of RAM (i.e. Random Access Memory). The whole 591 

simulation (138 years) required around 9h of CPU time.  592 



 32 

 593 

 594 

 595 

 596 

Figure 7. Spatial salinity distribution in the aquifer and water table position: (a) at 1962 (state 597 
of equilibrium), (b) currently at 2020 and (c) predictions for 2099.  598 
 599 

Figure 7a shows that, without any pumping, the natural equilibrium situation of 1962 shows a 600 

moderate saltwater intrusion. The concentration profile shows a small dispersion. The aquifer 601 

is only contaminated near the bottom, for a distance of around 400 m from the shoreline. 602 

Because of pumping, the concentration distribution at 2020 shows a more significant saltwater 603 

intrusion. In Figure 7b, Well 1, located 1500 m from the shoreline, is reached by salt 604 

contamination, which is in agreement with the field observations. The breakthrough curves of 605 

salt concentration at the two wells are depicted in Figure 8. In this figure, a small inflection is 606 

observed in 2020 when pumping is stopped at Well 1. Then, the concentration continues to 607 

increase because of the advancement of the salt front caused by the pumping in Well 2. The 608 

final concentration in Well 1 is very high and reaches 30 g.l-1. Well 2, located 3000 m from 609 
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the shoreline, starts to be salinized at around 2060. Then, the concentration continues to 610 

increase significantly, with a high rate of salinization, which makes the well unusable in 2070 611 

and onward. 612 
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 613 

Figure 8. Dimensionless concentration (concentration/seawater concentration) at the two 614 
pumping wells. 615 
 616 
Figure 7b shows that the water table slightly falls in 2020 due to pumping. The major part of 617 

the aquifer is contaminated by salt in 2100 (Figure 7c) because of (i) the reduced recharge 618 

caused by climate change and (ii) the increase of the pumping rate of Well 2 due to the 619 

expected increase of water demand. The progress of saltwater intrusion inside the aquifer is 620 

relatively fast, as can be observed in Figure 9, which depicts the evolution of Ltoe (i.e. the 621 

maximum horizontal distance between the shoreline and the 50% salt concentration contour 622 

line). The evolution of Ltoe is almost linear until 2070. The saltwater intrusion is significant 623 

and fast. From Figure 9, the salt front invades the domain, with an almost constant velocity of 624 

25 m.y-1. 625 
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Figure 9.  Evolution of Ltoe (the maximum horizontal distance between the shoreline and the 627 
50% salt concentration contour). 628 
 629 
Finally, note that the predicted state in 2100 (Figure 7c) shows that a significant water table 630 

falls more than 20 m, which warrants the use of that saturated-unsaturated model to 631 

investigate problems of density-driven flow in unconfined coastal aquifers. 632 

5. Conclusion  633 

Unsaturated–saturated aquifer systems can be subject to pollution by dense contaminants such 634 

as SWI in coastal unconfined aquifers. Modeling such problems requires the solution of a 635 

highly nonlinear system combining the nonlinear Richards’ equation with the advection-636 

dispersion transport equation. The solution of such a nonlinear system can be hampered by 637 

convergence issues and excessive computational time, especially for regional-scale problems. 638 

A new model has been developed in this work based on advanced spatial discretization 639 

methods (lumped MHFE, implicit DG and MPFA methods) and higher-order time integration 640 

techniques via the method of lines. 641 

The efficiency and accuracy of the new model have been investigated for three test cases. The 642 

first test case deals with the infiltration of a contaminant in an unsaturated-saturated 643 
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rectangular sandbox. This test case served as a benchmark to validate the numerical model. 644 

The results of simulations are similar to those obtained with COMSOL. Tracer and dense 645 

contaminants yielded similar plumes in the unsaturated zone. However, when the water table 646 

is reached, the dense contaminant moves downward, creating a recirculation zone, whereas 647 

the tracer moves horizontally along the water table. The test case shows that the new model is 648 

highly efficient since it uses large time steps and maintains the same Jacobian for several 649 

calculations.  650 

The second test case deals with the challenging problem of infiltration into a heterogeneous 651 

and initially very dry soil. For this problem, COMSOL failed to reproduce the sharp pressure 652 

front and generated strong unphysical oscillations. The new model gives accurate results, and 653 

the higher-order integration method is around 7 times more efficient than the classical first-654 

order method.  655 

Finally, the developed model has been used to simulate a simplified 2D conceptual model of 656 

SWI in the Akkar unconfined aquifer, under climate change and long-term pumping regimes. 657 

The purpose of this last test case was to show the applicability of the newly developed model 658 

in simulating large-scale regional problems under dynamic conditions. The results show that 659 

SWI was moderate in the case of natural equilibrium (in 1962). Then, because of the pumping 660 

undergone in the past decades, a significant SWI occurred and salinization reached the 661 

pumping well at 1500 m. Simulations until 2100 show that the reduced recharge caused by 662 

climate change and the increase in pumping due to the evolution of water demand induce 663 

significant salinization of the aquifer, with a salt front advancing inland at an average speed of 664 

25 m.y-1 and an important water table fall. Note that these preliminary results must be taken 665 

with caution since the simulations were performed on a simplified 2D conceptual model 666 

without any calibration because of the lack of data. 667 
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This study points out that the newly developed numerical model is an interesting tool to assess 668 

environmental issues. Efficient and robust numerical models are useful for applications at 669 

large scales, involving repetitive simulations, as in model calibration, sensitivity/uncertainty 670 

analysis, and scenario-based studies. 671 
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