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Abstract. This paper focuses on the numerical simulation of geothermal systems in complex geological settings. The
physical model is based on two-phase Darcy flows coupling the mass conservation of the water component with the
energy conservation and the liquid-vapor thermodynamical equilibrium. The discretization exploits the flexibility of
unstructured meshes to model complex geology including conductive faults as well as complex wells. The polytopal
and essentially nodal Vertex Approximate Gradient scheme is used for the approximation of the Darcy and Fourier
fluxes combined with a Control Volume approach for the transport of mass and energy. Particular attention is
paid to the faults which are modelled as two-dimensional interfaces defined as a collection of faces of the mesh
and to the flow inside deviated or multi-branch wells defined as a collection of edges of the mesh with rooted tree
data structure. By using an explicit pressure drop calculation, the well model reduces to a single equation based
on complementarity constraints and only one well unknown, the bottom hole pressure, implicitly coupled to the
reservoir unknowns. The coupled systems are solved at each time step using efficient nonlinear and linear solvers
on parallel distributed architectures. The convergence of the discrete model is investigated numerically on a simple
test case with a Cartesian geometry and a single vertical producer well. Then, the ability of our approach to deal
efficiently with realistic test cases is assessed on a high energy faulted geothermal reservoir operated using a doublet
of two deviated wells.
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1. Introduction

Deep geothermal systems are often located in complex geological settings, including faults or fractures.
These geological discontinuities not only control fluid flow and heat transfer, but also provide feed
zones for production wells. Modeling the operation of geothermal fields and the exchange of fluids and
heat in the rock mass during production requires explicitly taking into account objects of different
characteristic sizes such as the reservoir itself, faults and fractures, which have a small thickness
compared to the characteristic size of geological formations and wells (whose radius is of the order of
a few tens of centimeters).

This paper focuses on the liquid-vapor single water component non-isothermal Darcy flow model
based on mass and energy conservation equations coupled with thermodynamical equilibrium and
volume balance. The simulation of such geothermal models in complex geology including faults and
wells raises several challenges both in terms of geometrical discretization and in terms of numerical
algorithms for the simulation of the nonlinear system of Partial Differential Equations. The strategy
developed in this work to account for complex geometries is based on tetrahedral meshes which are
particulary adapted to discretize complex geological features like faults defined as a collection of faces
and slanted or multi-branch wells defined as a collection of edges with rooted tree structure.

In terms of numerical algorithms for the dynamical model, the challenges result from the strong
nonlinear couplings induced by the nonlinear thermodynamical properties and by the phase transi-
tions, as well as from the highly contrasted time and space scales resulting from the heterogeneous
petrophysical properties and spatial dimensions.

A common way to account for these highly contrasted spatial scales is based on a reduction of
dimension both for the fault/fracture and the well models. Following [5, 6, 12, 13, 16, 24, 26, 29,
30, 34, 37, 41] faults/fractures will be represented as co-dimension one manifolds coupled with the
surrounding matrix domain leading to the so-called hybrid-dimensional or Discrete Fracture Matrix
(DFM) models. This reduction of dimension is obtained by averaging both the equations and unknowns
across the fracture width and using appropriate transmission conditions at matrix fracture interfaces.
In our case, the faults/fractures will be assumed to be conductive both in terms of permeability and
thermal conductivity in such a way that pressure and temperature continuity can be assumed as matrix
fracture transmission conditions [5, 12, 41]. This setting has been extended to two-phase Darcy flows
in [14, 15] and to multi-phase compositional non-isothermal Darcy flows in [48].

The discretization of liquid-vapor geothermal models is usually performed using a two-point flux
finite volume scheme with cell-centered unknowns [40]. Thanks to its monotonicity, this type of scheme
has very good robustness properties. On the other hand, it is limited to simple, mostly Cartesian,
geometries due to the requirement of orthogonality of the mesh to guarantee the consistency of the
discretization. Alternatively, the consistent discretization of hybrid-dimensional Darcy flow models
on general polyhedral meshes has been the object of many research works using cell-centered Finite
Volume schemes with Multi Point Flux Approximations (MPFA) [3, 4, 27, 42, 46], Mixed (Hybrid)
Finite Element methods [5, 29, 34], Hybrid Mimetic Mixed Methods [7, 13, 16, 23], Hybrid High-
Order schemes [19, 20] and nodal schemes such as Control Volume Finite Element methods (CVFE)
[12, 27, 35, 36, 41] or the Vertex Approximate Gradient (VAG) scheme [13, 14, 16, 17, 18, 48, 49].

As opposed to nodal approaches, cell-centered methods like MPFA or face-based methods like
Mixed, Mixed Hybrid or Mimetic discretizations include a large number of degrees of freedom on
tetrahedral meshes leading to costly solutions of large nonlinear and linear systems. This is particularly
the case when applied to nonlinear strongly coupled models with implicit time integration as is the
case for the geothermal model considered here. This motivates our choice of the mixed-dimensional
VAG scheme using nodal and fracture face unknowns in addition to the cell unknowns which can be
eliminated without any fill-in. Thanks to its essentially nodal nature, it leads to a sparse discretization
on tetrahedral meshes. Compared with other nodal approaches such as CVFE methods, the VAG
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scheme avoids the mixing of the control volumes at the matrix fracture interfaces, which is a key
feature for its coupling with a transport model [14].

The well will be modelled as a line source defined by a 1D graph with tree structure. It will be
coupled to the 3D matrix domain and to the 2D faults/fractures possibly intersecting the well using
Peaceman’s approach. It is a widely used approach in reservoir simulation for which the Darcy or
Fourier fluxes between the reservoir and the well are discretized by a two-point flux approximation
with a transmissivity accounting for the unresolved pressure or temperature singularity. This leads
to the concept of well or Peaceman’s index defined at the discrete level and depending on the type
of cell, on the well radius and geometry and on the scheme used for the discretization. Let us refer
to [38] for its introduction in the framework of a two-point cell-centered finite volume scheme on square
cells, to [39] for its extension to non square cells and anisotropic permeability field and to [1, 21, 47]
for extensions to more general well geometries and different discretizations. The coupling with the
faults/fractures is considered in [10]. Let us also refer to [25] for a related approach also based on a
removal of the singularity induced by the well line source but at the continuous level.

The non-isothermal two-phase flow along the well is a simplified version of the drift flux model [33,
45] neglecting transient terms, thermal losses and cross flow in the sense that, all along the well, the
well behaves either as a production or an injection well. It results that using an explicit approximation
of the mixture density along the well, the well model can be reduced to a single unknown, the so-called
bottom hole pressure, implicitly coupled to the reservoir.

The main objective of this work is to show the ability of the VAG scheme combined with flexible
tetrahedral meshes and parallel nonlinear and linear solvers to simulate efficiently on distributed par-
allel architectures realistic high energy geothermal production scenarios on complex geology including
faults, injection and production thermal wells. To this end, starting from our previous works [10, 48],
the thermal well model is discretized on subsets of edges of the mesh with rooted tree data structure,
accounting for complex well geometries such as slanted and multi-branch wells. To allow for time steps
at the reservoir scale, the well bottom hole pressure is implicitly coupled to the geothermal conserva-
tion equations and strategies are developed to solve efficiently on distributed parallel architectures the
nonlinear systems coupling the discrete mass and energy conservation equations, the well equations
and the thermodynamical equilibrium.

The remainder of this paper is organized as follows. Section 2 presents the physical model describing
the flow and transport in the matrix domain coupled to the fracture/fault network in the hybrid-
dimensional setting. Section 3 presents the mixed-dimensional VAG discretization of this liquid-vapor
non-isothermal hybrid-dimensional model. It is based on a Control Volume formulation of the mass
and energy conservation equations combining the VAG discretization of the Darcy and Fourier fluxes
with a Phase Potential Upwind approximation of the phase mobilities and enthalpies. The notations
for the space and time discretizations are recalled in Subsection 3.1 and the definitions of the VAG
fluxes and control volumes are recalled in Subsection 3.2. Then, the well modelling, which is the main
new development of this work, is addressed in Subsection 3.3 starting with the description of the well
geometry as a collection of edges defining a rooted tree data structure. The source terms connecting
the well to the reservoir at each well node are based on two-point fluxes with transmissivities defined
by Peaceman’s indexes. The derivation of the simplified well model is detailed both for production
and injection wells starting from the drift flux model. Subsection 3.4 provides a detailed description
of the algorithms used to solve on distributed parallel architectures the stiff nonlinear and linear
systems coupling the conservation, well and thermodynamical equilibrium equations at each time step
of the simulation. Finally, to demonstrate the efficiency of our approach, we present in Section 4 two
numerical tests. The first test case checks in Subsection 4.1 the numerical convergence of the model
for a vertical production well connected to a homogeneous reservoir on a family of refined Cartesian
meshes. The second test case presented in Subsection 4.2 simulates the development plan of a high
enthalpy faulted geothermal reservoir with slanted production and injection wells.
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2. Hybrid-dimensional non-isothermal two-phase Discrete Fracture Model

This section recalls, in the particular case of a non-isothermal single-component two-phase Darcy flow
model, the hybrid-dimensional model introduced in [48].

2.1. Discrete Fracture Network

Let Ω denote a bounded domain of R3 assumed to be polyhedral. Following [5, 13, 16, 24, 34] the
fractures are represented as interfaces of codimension 1. Let J be a finite set of indexes and let
Γ =

⋃
j∈J Γj and its interior Γ = Γ \ ∂Γ denote the network of fractures Γj ⊂ Ω, j ∈ J , such that each

Γj is a planar polygonal simply connected open domain included in a plane of R3. The fracture width

Figure 2.1. Example of a 2D domain with 3 intersecting fractures Γ1, Γ2, Γ3.

is denoted by df and is such that 0 < df ≤ df (x) ≤ df for all x ∈ Γ. We can define, for each fracture
j ∈ J , its two sides + and −. For scalar functions on Ω, possibly discontinuous at the interface Γ
(typically in H1(Ω \ Γ)), we denote by γ± the trace operators on the side ± of Γ. Continuous scalar
functions u at the interface Γ (typically in H1(Ω)) are such that γ+u = γ−u and we denote by γ the
trace operator on Γ for such functions. At almost every point of the fracture network, we denote by
n± the unit normal vector oriented outward to the side ± of Γ such that n+ + n− = 0. For vector
fields on Ω, possibly discontinuous at the interface Γ (typically in Hdiv(Ω \ Γ), we denote by γ±

n the
normal trace operator on the side ± of Γ oriented w.r.t. n±.

The gradient operator in the matrix domain Ω \ Γ is denoted by ∇ and the tangential gradient
operator on the fracture network is denoted by ∇τ such that

∇τ u = ∇u − (∇u · n+)n+.

We also denote by divτ the tangential divergence operator on the fracture network, and by dτ(x) the
Lebesgue measure on Γ.

We denote by Σ the dimension 1 open set defined by the intersection of the fractures excluding the
boundary of the domain Ω, i.e. the interior of

⋃
{(j,j′)∈J×J | j ̸=j′} ∂Γj ∩ ∂Γj′ \ ∂Ω.

For the matrix domain, Dirichlet (subscript D) and Neumann (subscript N) boundary conditions
are imposed on the two-dimensional open sets ∂ΩD and ∂ΩN respectively where ∂ΩD ∩ ∂ΩN = ∅,
∂Ω = ∂ΩD ∪∂ΩN . Similarly for the fracture network, the Dirichlet and Neumann boundary conditions
are imposed on the one-dimensional open sets ∂ΓD and ∂ΓN respectively where ∂ΓD ∩ ∂ΓN = ∅,
∂Γ ∩ ∂Ω = ∂ΓD ∪ ∂ΓN .
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2.2. Non-isothermal two-phase flow model

We consider in this work a two-phase liquid-gas, single water component, and non-isothermal Darcy
flow model. The liquid (ℓ) and gas (g) phases are described by their pressure p (neglecting capillary
effects), temperature T and pore volume fractions or saturations sα, α ∈ {ℓ, g}. In order to express the
model with a unique set of persistent variables independent on the set of present phases, it is convenient
to view the model as a two-phase compositional model with a single component. Consequently, let
us also introduce the mass fraction cα of the water component in phase α, equal to 1 for a present
phase α but lower than 1 for an absent phase. Following [2, 11], it will be used below to express the
thermodynamical equilibrium as complementary constraints.

For each phase α, we denote by ρα(p, T ) its mass density, by µα(p, T ) its dynamic viscosity, by
eα(p, T ) its specific internal energy, and by hα(p, T ) its specific enthalpy. The rock energy density is
denoted by Er(p, T ).

The reduction of dimension in the fractures leading to the hybrid-dimensional model is obtained by
integration of the conservation equations along the width of the fractures complemented by transmis-
sion conditions at both sides of the matrix fracture interfaces (see [48]). In the following, pm, Tm, sα

m, cα
m

denote the pressure, temperature, saturations, and mass fractions in the matrix domain Ω \ Γ, and
pf , Tf , sα

f , cα
f are the pressure, temperature, saturations and mass fractions in the fractures averaged

along the width of the fractures. The permeability tensor is denoted by Km in the matrix domain and
we denote by Kf the tangential permeability tensor in the fractures (average value along the fracture
width assuming that the permeability tensor in the fracture has the normal as principal direction).
The porosity (resp. thermal conductivity of the rock and fluid mixture) is denoted by ϕm (resp. λm) in
the matrix domain and by ϕf (resp. λf ) along the fracture network (average values along the fracture
width). The relative permeability of phase α as a function of the phase saturation is denoted by kα

r,m

in the matrix and by kα
r,f in the fracture network. The gravity acceleration vector is denoted by g.

The following set of equations couples the mass, energy and volume balance equations in the matrix



ϕm ∂t

( ∑
α∈{ℓ,g}

ρα(pm, Tm)sα
mcα

m

)
+ div(qh2o

m ) = 0,

ϕm ∂t

( ∑
α∈{ℓ,g}

ρα(pm, Tm)eα(pm, Tm)sα
mcα

m

)
+ (1 − ϕm)∂tE

r(pm, Tm) + div(qe
m) = 0,

∑
α∈{ℓ,g}

sα
m = 1,

(2.1)

in the fracture network



df ϕf ∂t

( ∑
α∈{ℓ,g}

ρα(pf , Tf )sα
f cα

f

)
+ divτ (qh2o

f ) − γ+
n qh2o

m − γ−
n qh2o

m = 0,

df ϕf ∂t

( ∑
α∈{ℓ,g}

ρα(pf , Tf )eα(pf , Tf )sα
f cα

f

)
+ df (1 − ϕf )∂tE

r(pf , Tf )

+ divτ (qe
f ) − γ+

n qe
m − γ−

n qe
m = 0,∑

α∈{ℓ,g}
sα

f = 1,

(2.2)
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with the thermodynamical equilibrium for i = m, f
cg

i pi − psat(Ti)cℓ
i = 0,

min
(
sℓ

i , 1 − cℓ
i

)
= 0,

min
(
sg

i , 1 − cg
i

)
= 0,

(2.3)

where psat(T ) is the vapor saturated pressure as a function of the temperature T .
The Darcy and Fourier laws provide the mass and energy fluxes in the matrix

qh2o
m =

∑
α∈{ℓ,g}

qα
m,

qα
m = cα

m

ρα(pm, Tm)
µα(pm, Tm)kα

r,m(sα
m)Vα

m,

qe
m =

∑
α∈{ℓ,g}

hα(pm, Tm)qα
m − λm∇Tm,

(2.4)

and in the fracture network
qh2o

f =
∑

α∈{ℓ,g}
qα

f ,

qα
f = cα

f

ρα(pf , Tf )
µα(pf , Tf )kα

r,f (sα
f )Vα

f ,

qe
f =

∑
α∈{ℓ,g}

hα(pf , Tf )qα
f − df λf ∇τ Tf ,

(2.5)

where
Vα

m = −Km

(
∇pm − ρα(pm, Tm)g

)
, Vα

f = −df Kf

(
∇τ pf − ρα(pf , Tf )gτ

)
,

and gτ = g − (g · n+)n+.
The system (2.1)-(2.2)-(2.4)-(2.5) is closed with transmission conditions at the matrix fracture

interface Γ. These conditions state the continuity of the pressure and temperature at the matrix
fracture interface assuming that the fractures do not act as barriers neither for the Darcy flow nor for
the thermal conductivity (see [5, 24, 34, 48]).

γ+pm = γ−pm = γpm = pf ,

γ+Tm = γ−Tm = γTm = Tf .
(2.6)

At fracture intersections Σ, note that we assume mass and energy flux conservation as well as the
continuity of the pressure pf and temperature Tf . Homogeneous Neumann boundary conditions are
applied for the mass qh2o

f and energy qe
f fluxes at the fracture tips ∂Γ \ ∂Ω which corresponds to a

vanishing aperture (or small aperture compared to the fracture lengh) assumption at the tips.

3. VAG Finite Volume Discretization

3.1. Space and time discretizations

The VAG discretization of hybrid-dimensional two-phase Darcy flows introduced in [14] considers
generalized polyhedral meshes of Ω in the spirit of [22]. Let M be the set of cells that are disjoint open
polyhedral subsets of Ω such that

⋃
K∈M K = Ω, for all K ∈ M, xK denotes the so-called “center”

of the cell K under the assumption that K is star-shaped with respect to xK . The set of faces of the
mesh is denoted by F and FK is the set of faces of the cell K ∈ M. The set of edges of the mesh is
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denoted by E and Eσ is the set of edges of the face σ ∈ F . The set of vertices of the mesh is denoted by
V and for each vertex s ∈ V, xs is the coordinates of s. The subset Vσ ⊂ V denotes the set of vertices
of the face σ, and for each K ∈ M we define VK =

⋃
σ∈FK

Vσ.
The faces are not necessarily planar. It is just assumed that for each face σ ∈ F , there exists a

so-called “center” of the face xσ ∈ σ \
⋃

a∈Eσ
a such that xσ =

∑
s∈Vσ

βσ,s xs, with
∑

s∈Vσ
βσ,s = 1,

and βσ,s ≥ 0 for all s ∈ Vσ; moreover the face σ is assumed to be defined by the union of the triangles
Tσ,a defined by the face center xσ and each edge a ∈ Eσ. The mesh is also supposed to be conforming
w.r.t. the fracture network Γ in the sense that for each j ∈ J there exists a subset FΓj of F such that

Γj =
⋃

σ∈FΓj

σ.

We will denote by FΓ the set of fracture faces

FΓ =
⋃
j∈J

FΓj ,

and by
VΓ =

⋃
σ∈FΓ

Vσ,

the set of fracture nodes. This geometrical discretization of Ω and Γ is denoted in the following by D.
In addition, the following notations will be used

Ms = {K ∈ M | s ∈ VK}, Mσ = {K ∈ M | σ ∈ FK},

and
FΓ,s = {σ ∈ FΓ | s ∈ Vσ}.

For Ntf
∈ N∗, let us consider the time discretization t0 = 0 < t1 < · · · < tn−1 < tn · · · < tNtf = tf

of the time interval [0, tf ]. We denote the time steps by ∆tn = tn − tn−1 for all n = 1, · · · , Ntf
.

3.2. VAG fluxes and control volumes

The VAG discretization is introduced in [22] for diffusive problems on heterogeneous anisotropic media.
Its extension to the hybrid-dimensional Darcy flow model is proposed in [14] based upon the following
vector space of degrees of freedom:

VD = {vK , vs, vσ ∈ R, K ∈ M, s ∈ V, σ ∈ FΓ}.

The degrees of freedom are illustrated in Figure 3.1 for a given cell K with one fracture face σ in bold.
The matrix degrees of freedom are defined by the set of cells M and by the set of nodes V \ VΓ

excluding the nodes at the matrix fracture interface Γ. The fracture faces FΓ and the fracture nodes
VΓ are shared between the matrix and the fractures but the control volumes associated with these
degrees of freedom will belong to the fracture network (see Figure 3.2). The degrees of freedom at the
fracture intersection Σ are defined by the set of nodes VΣ ⊂ VΓ located on Σ. The set of nodes at the
Dirichlet boundaries ∂ΩD and ∂ΓD is denoted by VD.

The VAG scheme is a control volume scheme in the sense that it results, for each non-Dirichlet
degree of freedom, in a mass or energy balance equation. The two main ingredients are therefore the
conservative fluxes and the control volumes. The VAG matrix and fracture fluxes are illustrated in
Figure 3.1. For uD ∈ VD, the matrix fluxes FK,ν(uD) connect the cell K ∈ M to the degrees of freedom
located at the boundary of K, namely ν ∈ ΞK = VK ∪(FK ∩FΓ). The fracture fluxes Fσ,s(uD) connect
each fracture face σ ∈ FΓ to its nodes s ∈ Vσ. These discrete fluxes will be used for the discretization
of the diffusive part of the continuous fluxes, corresponding to the terms −Km∇pm and −λm∇Tm

in the matrix and to −df Kf ∇τ pf and −df λf ∇τ Tf along the fractures. The expression of the matrix
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(resp. the fracture) fluxes is linear and local to the cell (resp. fracture face). More precisely, the matrix
fluxes are given by

FK,ν(uD) =
∑

ν′∈ΞK

T ν,ν′

K (uK − uν′),

with a symmetric positive definite transmissibility matrix TK = (T ν,ν′

K )(ν,ν′)∈ΞK×ΞK
. This transmissi-

bility depends only on the cell K geometry (including the choices of xK and of xσ, σ ∈ FK) and on
the cell matrix diffusion tensor corresponding to the permeability Km for the Darcy fluxes and to the
thermal conductivity λm for the Fourier fluxes. The fracture fluxes are given by

Fσ,s(uD) =
∑

s∈Vσ

T s,s′
σ (uσ − us′),

with a symmetric positive definite transmissibility matrix Tσ = (T s,s′
σ )(s,s′)∈Vσ×Vσ

depending only on
the fracture face σ geometry (including the choice of xσ) and on the fracture tangential diffusion
tensor. This diffusion tensor corresponds to df Kf for the Darcy fluxes and to df λf for the Fourier
fluxes. Let us refer to [14] for a more detailed presentation and for the definition of TK and Tσ.

Figure 3.1. For a cell K and a fracture face σ (in bold), examples of VAG degrees of
freedom uK , us, uσ, us′ and VAG fluxes FK,σ, FK,s, FK,s′ , Fσ,s.

The construction of the control volumes at each degree of freedom is based on partitions of the cells
and of the fracture faces. These partitions are respectively denoted, for all K ∈ M, by

K = ωK

⋃  ⋃
s∈VK\VD

ωK,s

 ,

and, for all σ ∈ FΓ, by

σ = Σσ

⋃  ⋃
s∈Vσ\VD

Σσ,s

 .

The practical implementation of the scheme does not require building the geometry of these partitions
explicitly but just defining the matrix volume fractions

αK,s =
∫

ωK,s
dx∫

K dx , s ∈ VK \ (VD ∪ VΓ), K ∈ M,
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constrained to satisfy αK,ν ≥ 0, and
∑

s∈VK\(VD∪VΓ) αK,s ≤ 1, as well as the fracture volume fractions

ασ,s =
∫

Σσ,s
df (x)dτ(x)∫

σ df (x)dτ(x) , s ∈ Vσ \ VD, σ ∈ FΓ,

constrained to satisfy ασ,s ≥ 0, and
∑

s∈Vσ\VD
ασ,s ≤ 1, where we denote by dτ(x) the two-dimensional

Lebesgue measure on Γ. Let us also set

ϕK = (1 −
∑

s∈VK\(VD∪VΓ)
αK,s)

∫
K

ϕm(x)dx for K ∈ M,

and
ϕσ = (1 −

∑
s∈Vσ\VD

ασ,s)
∫

σ
ϕf (x)df (x)dτ(x) for σ ∈ FΓ,

as well as
ϕs =

∑
K∈Ms

αK,s

∫
K

ϕm(x)dx for s ∈ V \ (VD ∪ VΓ),

and
ϕs =

∑
σ∈FΓ,s

ασ,s

∫
σ

ϕf (x)df (x)dτ(x) for s ∈ VΓ \ VD,

which correspond to the porous volumes distributed to the degrees of freedom excluding the Dirichlet
nodes. The rock complementary volume in each control volume ν ∈ M ∪ FΓ ∪ (V \ VD) is denoted by
ϕ̄ν .

As shown in [14], the flexibility in the choice of the control volumes is a crucial asset compared
with usual CVFE approaches and allows to significantly improve the accuracy of the scheme when
the permeability field is highly heterogeneous. As exhibited in Figure 3.2, as opposed to usual CVFE
approaches, this flexibility allows to define the control volumes in the fractures with no contribution
from the matrix in order to avoid to artificially enlarge the flow path in the fractures.

Figure 3.2. Example of control volumes at cells, fracture face, and nodes, in the case
of two cells K and L separated by one fracture face σ (the width of the fracture is
enlarged in this figure). The control volumes are chosen to avoid mixing fracture and
matrix rocktypes.

A rocktype is assigned to each cell, node and fracture face. In our case, for cells and for nodes
not located along the fractures, the matrix rocktype is assigned. For fracture nodes and faces at the
interface between the matrix and the fracture rocktypes, the fracture rocktype is assigned correspond-
ing to the most pervious rock type consistently with the choice of the control volumes (see [14]). For
convenience’s sake, in the following, we will denote by kα

r,ν the corresponding relative permeability
function for ν ∈ M ∪ V ∪ FΓ.
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In the following, we will keep the notation FK,s, FK,σ, Fσ,s for the VAG Darcy fluxes defined with the
cellwise constant matrix permeability Km and the facewise constant fracture width df and tangential
permeability Kf . Since the rock properties are fixed, the VAG Darcy fluxes transmissibility matrices
TK and Tσ are computed only once.

The VAG Fourier fluxes are denoted in the following by GK,s, GK,σ, Gσ,s. They are obtained with
the isotropic matrix and fracture thermal conductivities averaged in each cell and in each fracture face
using the previous time step fluid properties. Hence VAG Fourier fluxes transmissibility matrices need
to be recomputed at each time step.

3.3. Multi-branch non-isothermal well model

Let W denote the set of wells. Each multi-branch well ω ∈ W is defined by a set of oriented edges of
the mesh assumed to define a rooted tree oriented away from the root. This orientation corresponds to
the drilling direction of the well. The set of nodes of a well ω ∈ W is denoted by Vω ⊂ V and its root
node is denoted by sω. A partial ordering is defined on the set of vertices Vω with s <

ω
s′ if and only if

the unique path from the root sω to s′ passes through s. The set of edges of the well ω is denoted by
Eω and for each edge a ∈ Eω we set a = ss′ with s <

ω
s′ (i.e. s is the parent node of s′, see Figure 3.3).

It is assumed that Vω1 ∩ Vω2 = ∅ for any ω1, ω2 ∈ W such that ω1 ̸= ω2.
We focus on the part of the well that is connected to the reservoir through open hole, production

liners or perforations. In this section, exchanges with the reservoir are dominated by convection and
we decided to neglect heat losses as a first step. The latest shall be taken into account when modeling
the wellbore flow up to the surface. It is assumed that the radius rω of each well ω ∈ W is small
compared to the cell sizes in the neighborhood of the well. It results that the Darcy flux between the
reservoir and the well at a given well node s ∈ Vω is obtained using the Two Point Flux Approximation

V ω
s = WIs(ps − pω

s ),
where ps is the reservoir pressure at node s and pω

s is the well pressure at node s. The Well Index
WIs is typically computed using Peaceman’s approach (see [21, 38, 39]) and takes into account the
unresolved singularity of the pressure solution in the neighborhood of the well. Fourier fluxes between
the reservoir and the well could also be discretized using such Two Point Flux Approximation but
they are assumed to be small compared with thermal convective fluxes and will be neglected in the
following well model. At each well node s ∈ Vω the temperature inside the well is denoted by T ω

s and
the volume fractions by sα

s,ω, α ∈ {ℓ, g}. The temperature in the reservoir at node s is denoted by Ts,
the saturations by sα

s , and the phase mass fractions by cα
s for α ∈ {ℓ, g}.

For any a ∈ R, let us define a+ = max(a, 0) and a− = min(a, 0). The mass flow rates between
the reservoir and the well ω at a given node s ∈ Vω are defined by the following phase based upwind
approximation of the mobilities:

qr→ω
s,α = βinj

ω

ρα(pω
s , T ω

s )
µα(pω

s , T ω
s )kα

r,s(sα
s,ω)(V ω

s )− + βprod
ω cα

s
ρα(ps, Ts)
µα(ps, Ts)

kα
r,s(sα

s )(V ω
s )+,

qr→ω
s,h2o =

∑
α∈{ℓ,g}

qr→ω
s,α ,

(3.1)

and the energy flow rate is defined similarly by
qr→ω

s,e =
∑

α∈{ℓ,g}
hα(pω

s , T ω
s )(qr→ω

s,α )− + hα(ps, Ts)(qr→ω
s,α )+. (3.2)

The well coefficients βinj
ω and βprod

ω are used to impose specific well behavior. The general case
corresponds to βinj

ω = βprod
ω = 1. Yet, for an injection well, it will be convenient as explained in

Subsection 3.3.2, to impose that the mass flow rates qr→ω
s,h2o are non positive for all nodes s ∈ Vω
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corresponding to set βinj
ω = 1 and βprod

ω = 0. Likewise, for a production well, it will be convenient
as explained in Subsection 3.3.3, to set βinj

ω = 0 and βprod
ω = 1 which corresponds to assume that

the mass flow rates qr→ω
s,h2o are non negative for all nodes s ∈ Vω. These simplifying options currently

prevent the modeling of cross flows where injection and production occur in different places of the
same well, as it sometimes happens in geothermal wells, typically in closed wells.

3.3.1. Well physical model

Our conceptual model inside the well assumes that the flow is quasi static at the reservoir time
scale along with perfect mixing and thermal equilibrium. The Fourier fluxes and the wall friction are
neglected and the pressure distribution is assumed hydrostatic along the well.

For the sake of simplicity, the flow rate between the reservoir and the well is considered concentrated
at each node s of the well. For each edge a ∈ Eω, let us denote by qα

a the mass flow rate of phase α
along the edge a oriented positively from s′ to s with a = ss′ (let us recall that s is the parent node
of s′).

Let α ∈ {ℓ, g}, the set of well unknowns is defined at each node s ∈ Vω by the well pressure pω
s ,

the well temperature T ω
s , the well saturations sα

s,ω, and at each edge a ∈ Eω by the mass flow rates
qα
a . These well unknowns are complemented by the well mass flow rates qα

ω which are non negative for
production wells and non positive for injection wells (see Figure 3.3).

Figure 3.3. Example of multi-branch well ω with its root node sω, one edge a = ss′

and the main physical quantities: the well mass flow rates qα
ω , the mass and energy

flow rates between the reservoir and the well qr→ω
s,h2o, qr→ω

s,e , the well node pressure,
temperature and saturations pω

s , T ω
s , sα

s,ω, and the edge mass flow rates qα
a .

For each edge a = ss′ ∈ Eω, and each phase α, let us define the following phase based upwind
approximations of the specific enthalpy, mass density and saturation

hα
a =

{
hα(pω

s′ , T ω
s′ ) if qα

a ≥ 0,

hα(pω
s , T ω

s ) if qα
a < 0.

ρα
a =

{
ρα(pω

s′ , T ω
s′ ) if qα

a ≥ 0,

ρα(pω
s , T ω

s ) if qα
a < 0.

sα
a =

{
sα

s′,ω if qα
a ≥ 0,

sα
s,ω if qα

a < 0.
(3.3)
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For all ss′ = a ∈ Eω, let us set κa,s′ = −1 and κa,s = 1. The well equations account for the mass and
energy conservations at each node of the well combined with the sum to one of the saturations and
the thermodynamical equilibrium. Let Eω

s ⊂ Eω denote the set of well edges sharing the node s ∈ Vω,
then for all s ∈ Vω we obtain the equations

qr→ω
s,h2o +

∑
a∈Eω

s

∑
α∈{ℓ,g} κa,sq

α
a = δsω

s
∑

α∈{ℓ,g} qα
ω ,

qr→ω
s,e +

∑
a∈Eω

s

∑
α∈{ℓ,g} hα

a κa,sq
α
a = δsω

s
∑

α∈{ℓ,g}

(
h̄α

ω(qα
ω)− + hα(pω

s , T ω
s )(qα

ω)+
)

,

sℓ
s,ω + sg

s,ω = 1,

pω
s


= psat(T ω

s ) if sg
s,ω > 0 and sℓ

s,ω > 0,

≥ psat(T ω
s ) if sg

s,ω = 0,

≤ psat(T ω
s ) if sℓ

s,ω = 1,

(3.4)

where δ stands for the Kronecker symbol, and h̄α
ω for prescribed specific enthalpies in the case of

injection wells. Inside the well, the hypothesis of hydrostatic pressure distribution implies that
pω

s − pω
s′ + ρag(zs − zs′) = 0, (3.5)

for each edge ss′ = a ∈ Eω, where ρa is the mass density of the liquid-vapor mixture. The system is
completed by a slip closure law expressing the slip between the liquid velocity uℓ

a and the gas velocity
ug
a at each edge a ∈ Eω with

qα
a = πr2

ωρα
a sα

a uα
a .

In the following simplified well models developed in Subsections 3.3.2 and 3.3.3, a zero slip law will
be assumed for simplicity in such a way that uℓ

a = ug
a. Note that these simplified well models could be

easily extended to account for non-zero slip laws as well as for an explicit approximation of the wall
friction along the wells. The two fundamental assumptions to obtain these simplified well models are

(i) prescribed sign of the mass flow rates qr→ω
s,α , s ∈ Vω, forced to be all non-negative for production

wells and all non-positive for injection wells,

(ii) neglected Fourier fluxes compared with thermal convection fluxes.

The well boundary conditions prescribe a limit total mass flow rate q̄ω and a limit bottom hole
pressure p̄ω. Using the notations

pω = pω
sω

and qω =
∑

α∈{ℓ,g}
qα

ω ,

the well monitoring conditions prescribe complementary constraints between qω − q̄ω and pω − p̄ω.
More precisely, the conditions

(qω − q̄ω)(pω − p̄ω) = 0, qω − q̄ω ≥ 0, pω − p̄ω ≤ 0,

are imposed for injection wells (with q̄ω ≤ 0), and
(qω − q̄ω)(pω − p̄ω) = 0, qω − q̄ω ≤ 0, pω − p̄ω ≥ 0,

for production wells (with q̄ω ≥ 0).
In the following subsections, we consider the particular case of injection wells assuming a pure

liquid phase, and the case of production wells. The flow rates are enforced to be non positive (resp.
non negative) at all well nodes for injection wells (resp. production wells). It corresponds to setting
βinj

ω = 1, βprod
ω = 0 for an injection well and βinj

ω = 0, βprod
ω = 1 for a production well. The limit

bottom hole pressure p̄ω is a maximum (resp. minimum) pressure and the limit total mass flow rate
q̄ω is a minimum non positive (resp. maximum non negative) flow rate for injection (resp. production)
wells.
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In both cases, using an explicit computation of the hydrostatic pressure drop, the well model will
be reduced to a single equation and a single implicit unknown corresponding to the well reference
pressure pω (see e.g. [8]).

3.3.2. Liquid injection wells

The injection well model sets βinj
ω = 1, βprod

ω = 0 and prescribes the minimum well total mass flow
rate q̄ω ≤ 0, the well maximum bottom hole pressure p̄ω and the well specific liquid enthalpy h̄ℓ

ω. It
is assumed that the injection is in liquid phase and that no gas will appear in the well during the
simulation as it is usually the case in geothermal systems.

Since βinj
ω = 1 and βprod

ω = 0, the mass flow rates qα
a are enforced to be non negative. Let us show

that together with the assumption that the gas phase does not appear in the well, it implies that
hℓ(pω

s , T ω
s ) = h̄ℓ

ω for all s ∈ Vω. Using the mass and energy conservation equations (3.4) at the head
node, we obtain that

hℓ(pω
sω

, T ω
sω

)
(

qr→ω
sω ,h2o +

∑
a∈Eω

sω

qα
a

)
︸ ︷︷ ︸

qω from the mass conservation

= h̄ℓ
ωqω,

from which we derive hℓ(pω
sω

, T ω
sω

) = h̄ℓ
ω. Then, assuming that the property holds for a parent node, it

propagates similarly to all its sons, and hence to all nodes s ∈ Vω by induction.
Given the previous time step well reference pressure pn−1

ω = pω,n−1
sω , we first compute the pressures

along the well solving the equations

pω
s − pω

s′ + ρag(zs − zs′) = 0 for all a = ss′ ∈ Eω,

pω
sω

= pω,n−1
sω

,

ρa = ρℓ(pω
s , T ω

s ) for all a = ss′ ∈ Eω,

hℓ(pω
s , T ω

s ) = h̄ℓ
ω for all s ∈ Vω.

We deduce the explicit pressure drops

∆pω,n−1
s = pω

s − pn−1
ω ,

which provide for all s ∈ Vω the pressures pω,n
s and temperatures T ω,n

s along the well at the current
time step n such that

pω,n
s = pn

ω + ∆pω,n−1
s ,

hℓ(pω,n
s , T ω,n

s ) = h̄ℓ
ω.

The mass and energy flow rates at each node s ∈ Vω between the reservoir and the well are defined
by (3.1)-(3.2) with βinj

ω = 1 and βprod
ω = 0 and depend only on the implicit unknowns pn

ω and pn
s . They

are respectively denoted by qr→ω
s,h2o(pn

s , pn
ω) and qr→ω

s,e (pn
s , pn

ω).
The well equation at the current time step is defined by the following complementary constraints

between the prescribed minimum well total mass flow rate and the prescribed maximum bottom hole
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pressure 

( ∑
s∈Vω

qr→ω
s,h2o(pn

s , pn
ω) − q̄ω

)(
p̄ω − pn

ω

)
= 0,

∑
s∈Vω

qr→ω
s,h2o(pn

s , pn
ω) − q̄ω ≥ 0,

p̄ω − pn
ω ≥ 0.

(3.6)

3.3.3. Production wells

The production well model sets βinj
ω = 0, βprod

ω = 1 and prescribes the maximum well total mass flow
rate q̄ω ≥ 0 and the well minimum bottom hole pressure p̄ω.

The solution at the previous time step n−1 provides the pressure drop ∆pω,n−1
s at each node s ∈ Vω.

This computation based on thermodynamical equilibrium is detailed below. As for the injection well,
we deduce the well pressures using the bottom well pressure at the current time step n

pω,n
s = pn

ω + ∆pω,n−1
s .

The mass and energy flow rates at each node s ∈ Vω between the reservoir and the well are defined
by (3.1)-(3.2) with βinj

ω = 0 and βprod
ω = 1 and depend only on the implicit reservoir unknowns Xn

s
setting

Xs =
(
Ps, Ts, sℓ

s, sg
s , cℓ

s, cg
s

)
,

and on the implicit well unknown pn
ω. They are respectively denoted by qr→ω

s,h2o(Xn
s , pn

ω) and
qr→ω

s,e (Xn
s , pn

ω).
The well equation at the current time step is defined by the following complementary constraints

between the prescribed maximum well total mass flow rate and the prescribed minimum bottom hole
pressure 

(
q̄ω −

∑
s∈Vω

qr→ω
s,h2o(Xn

s , pn
ω)
)(

pn
ω − p̄ω

)
= 0,

q̄ω −
∑

s∈Vω

qr→ω
s,h2o(Xn

s , pn
ω) ≥ 0,

pn
ω − p̄ω ≥ 0.

(3.7)

Let us now detail the computation of the pressure drop at each node s ∈ Vω using the previous time
step solution n − 1 consisting of the reservoir unknowns and the well pressures. We first compute the
well temperature T ω,n−1

s and saturations sα,n−1
s,ω at each node s using equations (3.4). Summing the

mass and energy equations of (3.4) over all nodes s′′ ≥
ω

s, we obtain for all a = s′s ∈ Eω that∑
α∈{ℓ,g}

Qα,n−1
a =

∑
s′′∈Vω |s′′≥

ω
s
qr→ω

s′′,h2o(Xn−1
s′′ , pn−1

ω ) = Qω
s,h2o,

∑
α∈{ℓ,g}

hα(pω,n−1
s , T ω,n−1

s )Qα,n−1
a =

∑
s′∈Vω |s′′≥

ω
s
qr→ω

s′,e (Xn−1
s′′ , pn−1

ω ) = Qω
s,e,

with
Qα,n−1

a = πr2
ωρα(pω,n−1

s , T ω,n−1
s )sα,n−1

s,ω uα,n−1
a , α ∈ {ℓ, g}.

It results that the thermodynamical equilibrium at fixed well pressure pω,n−1
s , mass Qω

s,h2o and energy
Qω

s,e provides the well temperature T ω,n−1
s and the well saturations sα,n−1

s,ω at node s as follows. Let
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us set p = pω,n−1
s . We first assume that both phases are present which implies that Tsat = (psat)−1(p)

and that the liquid mass fraction is given by

cℓ =
hg(p, Tsat) − Qω

s,e

Qω
s,h2o

hg(p, Tsat) − hℓ(p, Tsat)
.

The following alternatives are checked:

Two-phase state: if 0 < cℓ < 1, the two-phase state is confirmed. Using the zero slip assump-
tion, we obtain

T ω,n−1
s = Tsat and sℓ,n−1

s,ω = 1 − sg,n−1
s,ω =

cℓ

ρℓ(p,Tsat)
cℓ

ρℓ(p,Tsat) + 1−cℓ

ρg(p,Tsat)
.

Liquid state: if cℓ ≥ 1, then only the liquid phase is present, we set sℓ,n−1
s,ω = 1, sg,n−1

s,ω = 0, and
T ω,n−1

s is the solution T of
hℓ(p, T ) =

Qω
s,e

Qω
s,h2o

.

Gas state: if cℓ ≤ 0, then only the gas phase is present, we set sℓ,n−1
s,ω = 0, sg,n−1

s,ω = 1, and
T ω,n−1

s is the solution T of
hg(p, T ) =

Qω
s,e

Qω
s,h2o

.

Then, the explicit pressure drop
∆pω,n−1

s = pω
s − pn−1

ω ,

is obtained from
pω

s − pω
s′ + ρag(zs − zs′) = 0 for all a = ss′ ∈ Eω,

pω
sω

= pω,n−1
sω

,

ρa =
∑

α∈{ℓ,g}
sα,n−1

s,ω ρα(pω,n−1
s , T ω,n−1

s ) for all a = ss′ ∈ Eω.

3.4. Discretization of the hybrid-dimensional non-isothermal two-phase flow model

The time integration is based on a semi-implicit Euler scheme. As discussed above, the mixture density
along the well and the mean thermal conductivities are approximated explicitly. All the other terms are
approximated implicitly in order to avoid severe restrictions on the time steps due to the small volumes
and high velocities in the fractures. A phase based upwind scheme is used for the approximation of
the mobilities in the mass and energy fluxes (see e.g. [9]). At the matrix fracture interfaces, we avoid
mixing matrix and fracture rocktypes by choosing appropriate control volumes for σ ∈ FΓ and s ∈ VΓ
(see Figure 3.2). In order to avoid tiny control volumes at the nodes s ∈ VΣ located at the fracture
intersection, the volume is distributed to such a node s from all the fracture faces containing the
node s.

For each ν ∈ M ∪ FΓ ∪ V the set of reservoir pressure, temperature, saturations and mass frac-
tions unknowns is denoted by Xν = (Pν , Tν , sℓ

ν , sg
ν , cℓ

ν , cg
ν), where cα

ν is the mass fraction of the water
component in phase α used to express the thermodynamical equilibrium. We denote by XD the set of
reservoir unknowns

XD = {Xν , ν ∈ M ∪ FΓ ∪ V},
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and similarly by PD and TD the sets of reservoir pressures and temperatures. The set of well bottom
hole pressures is denoted by PW = {pω, ω ∈ W}.

The Darcy fluxes taking into account the gravity term are defined by{
V α

K,ν(XD) = FK,ν(PD) − ρα(pK ,TK)+ρα(pν ,Tν)
2 FK,ν(GD), ν ∈ ΞK , K ∈ M,

V α
σ,s(XD) = Fσ,s(PD) − ρα(pσ ,Tσ)+ρα(ps,Ts)

2 Fσ,s(GD), s ∈ Vσ, σ ∈ FΓ,
(3.8)

where GD denotes the vector (g · xν)ν∈M∪FΓ∪V .
For each Darcy flux, let us define the upwind control volume cvα

µ,ν such that

cvα
K,ν =

{
K if V α

K,ν(XD) ⩾ 0
ν if V α

K,ν(XD) < 0
for ν ∈ ΞK , K ∈ M,

for the matrix fluxes, and such that

cvα
σ,s =

{
σ if V α

σ,s(XD) ⩾ 0
s if V α

σ,s(XD) < 0
for s ∈ Vσ, σ ∈ FΓ,

for fracture fluxes. Using this upwinding, the mass and energy fluxes are given by

qα
ν,ν′(XD) = cα

cvα
ν,ν′

ρα(pcvα
ν,ν′ , Tcvα

ν,ν′ )
µα(pcvα

ν,ν′ , Tcvα
ν,ν′ )

kα
r,cvα

ν,ν′
(sα

cvα
ν,ν′

)V α
ν,ν′(XD),

qh2o
ν,ν′(XD) =

∑
α∈{ℓ,g}

qα
ν,ν′(XD),

qe
ν,ν′(XD) =

∑
α∈{ℓ,g}

hα(pcvα
ν,ν′ , Tcvα

ν,ν′ )q
α
ν,ν′(XD) + Gν,ν′(TD).

In each control volume ν ∈ M ∪ FΓ ∪ V, the mass and energy accumulations are denoted by
Aα,ν(Xν) = ϕνρα(pν , Tν)sα

ν cα
ν ,

Ah2o,ν(Xν) =
∑

α∈{ℓ,g}
Aα,ν(Xν),

Ae,ν(Xν) =
∑

α∈{ℓ,g}
eα(pν , Tν)Aα,ν(Xν) + ϕ̄νEr(pν , Tν).

We can now state the system of discrete equations at each time step n = 1, . . . , Ntf
which accounts

for the mass (i = h2o) and energy (i = e) conservation equations in each cell K ∈ M:

RK,i(Xn
D) := Ai,K(Xn

K) − Ai,K(Xn−1
K )

∆tn
+
∑

s∈VK

qi
K,s(Xn

D) +
∑

σ∈FΓ∩FK

qi
K,σ(Xn

D) = 0, (3.9)

in each fracture face σ ∈ FΓ:

Rσ,i(Xn
D) := Ai,σ(Xn

σ ) − Ai,σ(Xn−1
σ )

∆tn
+
∑

s∈Vσ

qi
σ,s(Xn

D) +
∑

K∈Mσ

−qi
K,σ(Xn

D) = 0, (3.10)

and at each node s ∈ V \ VD:

Rs,i(Xn
D, P n

W) := Ai,s(Xn
s ) − Ai,s(Xn−1

s )
∆tn

+
∑

σ∈FΓ,s

−qi
σ,s(Xn

D) +
∑

K∈Ms

−qi
K,s(Xn

D)

+
∑

ω∈W|s∈Vω

qr→ω
s,i (Xn

s , pω,n
s ) = 0. (3.11)
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It is coupled with the well equations for the injection wells ω ∈ Winj

Rω(Xn
D, P n

W) := − min
(∑

s∈Vω

qr→ω
s,h2o(Xn

s , pn
ω) − q̄ω, p̄ω − pn

ω

)
= 0, (3.12)

and for the production wells ω ∈ Wprod

Rω(Xn
D, P n

W) := min
(

q̄ω −
∑

s∈Vω

qr→ω
s,h2o(Xn

s , pn
ω), pn

ω − p̄ω

)
= 0, (3.13)

reformulating respectively (3.6) and (3.7) using the min function.
The system is closed with thermodynamical equilibrium and the sum to one of the saturations

R1(Xn
ν ) := cg,n

ν pn
ν − psat(T n

ν )cℓ,n
ν = 0,

R2(Xn
ν ) := min(sℓ,n

ν , 1 − cℓ,n
ν ) = 0,

R3(Xn
ν ) := min(sg,n

ν , 1 − cg,n
ν ) = 0,

R4(Xn
ν ) := sℓ,n

ν + sg,n
ν − 1 = 0,

(3.14)

at all control volumes ν ∈ M ∪ FΓ ∪ V \ VD as well as the Dirichlet boundary conditions

Xn
s = Xs,D,

for all s ∈ VD.
Let us denote by Rν the vector (Rν,i, i ∈ {h2o, e}, Rj(Xν), j ∈ {1, . . . , 4}

)
, and let us rewrite the

conservation and closure equations (3.9), (3.10), (3.11), (3.12), (3.13), (3.14) as well as the Dirichlet
boundary conditions in vector form defining the following nonlinear system at each time step n =
1, 2, . . . , Ntf

0 = R(XD, PW) :=


Rs(XD, PW), s ∈ V,

Rσ(XD), σ ∈ FΓ,

RK(XD), K ∈ M,

Rω(XD, PW), ω ∈ W,

(3.15)

where the superscript n is dropped to simplify the notations and where the Dirichlet boundary condi-
tions have been included at each Dirichlet node s ∈ VD in order to obtain a system size independent
of the boundary conditions.

The nonlinear system R(XD, PW) = 0 is solved by a Newton-min algorithm [31]. Our implementa-
tion is based on an active set method both for the well equations and the thermodynamical equilibrium.

For the well equations, we enforce either the total mass flow rate or the bottom hole pressure at
each Newton iterate and use the remaining inequality constraint to switch from prescribed total mass
flow rate to prescribed bottom hole pressure and vice versa.

For the thermodynamical equilibrium equations (3.14), the active set method is based on the set of
present phases In

ν = {α ∈ {ℓ, g} | sα
ν > 0}. Hence we distinguish a two-phase state In

ν = {ℓ, g}, a liquid
state In

ν = {ℓ}, and a gas state In
ν = {g}, for which the system (3.14) reduces to Hν(Xν) = 0 with

Hν(Xν) =


T n

ν − (psat)−1(pn
ν ),

cℓ,n
ν − 1,

cg,n
ν − 1,

sℓ,n
ν + sg,n

ν − 1,

if In
ν = {ℓ, g}, (3.16)
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Hν(Xν) =


cℓ,n

ν − 1,

cg,n
ν − psat(T n

ν )
pn

ν
,

sℓ,n
ν − 1,

sg,n
ν ,

if In
ν = {ℓ}, Hν(Xν) =


cℓ,n

ν − pn
ν

psat(T n
ν ) ,

cg,n
ν − 1,

sℓ,n
ν ,

sg,n
ν − 1,

if In
ν = {g}. (3.17)

In order to reduce the size of the linear system to be solved at each Newton iteration, subsets Yν of
two primary unknowns and Zν of four secondary unknowns with Xν = (Yν , Zν), are selected in such a
way that ∂Hν

∂Zν
(Yν , Zν) is non singular. In practice the following choice is implemented which depends

only on the phase state In
ν :

• Yν = (pn
ν , sg,n

ν ), Zν = (T n
ν , cℓ,n

ν , cg,n
ν , sℓ,n

ν ) for In
ν = {ℓ, g},

• Yν = (pn
ν , T n

ν ), Zν = (cℓ,n
ν , cg,n

ν , sℓ,n
ν , sg,n

ν ) for In
ν = {ℓ} or In

ν = {g}.

The secondary unknowns Zν are directly eliminated from the nonlinear system using (3.16)-(3.17).
The inequality constraints are then used to switch from two-phase state to a one phase state and

vice versa. Let
YD = {Yν , ν ∈ M ∪ FΓ ∪ V},

the Jacobian system at each Newton-min iteration is assembled w.r.t. the primary unknowns YD, PW
and the mass and energy conservation equations (3.9), (3.10), (3.11), (3.12), (3.13). The cell primary
unknowns YK , K ∈ M are locally eliminated without any additional fill-in before solving the linear
system using the GMRES iterative solver preconditioned by a CPR-AMG preconditioner introduced
in [32, 43]. This preconditioner combines multiplicatively a parallel algebraic multigrid preconditioner
(AMG) [28] for a pressure block of the linear system with a block Jacobi ILU0 preconditioner for the
full system. In our case, the columns of the pressure block are defined by the node, the fracture face
and the well pressure unknowns, and its lines by the node and the fracture face mass conservation
equations as well as the well equations.

The parallel implementation is described in [48] and [10]. Let us recall that the distribution of wells
to each MPI process p is such that any well with a node belonging to the set of own nodes of p belongs
to the set of own and ghost wells of p. Then, the set of own and ghost nodes of p is extended to include
all the nodes belonging to the own and ghost wells of p. These definitions ensure that (i) the local
linearized systems can be assembled locally on each process without communication as in [48], and (ii)
the pressure drops of the wells can be computed locally on each process without communication. This
last property is convenient since the pressure drop is a sequential computation along the well rooted
tree. This parallelization strategy of the well model is based on the assumption that the number of
additional ghost nodes resulting from the connectivity of the wells remains very small compared with
the number of own nodes of the process.

4. Numerical results

4.1. Numerical convergence for a diphasic vertical well in an homogeneous reservoir

Let us consider the geothermal reservoir defined by the domain Ω = (−H, H)2 × (0, Hz) where H =
1000 m and Hz = 200 m, including one vertical producer well along the line {(x, y, z) ∈ Ω | x = y = 0}
of radius rω = 0.1 m. The reservoir is assumed homogeneous with isotropic permeability Km =
kmI, km = 5×10−14 m2 and porosity ϕm = 0.15. It is assumed to be initially saturated with pure water
in liquid phase. The internal energy, mass density and viscosity of water in the liquid and gas phases
are given from [44] by analytical laws as functions of the pressure and temperature. Note that, in both
test cases of Subsections 4.1 and 4.2, we make the approximation hα ∼ eα. The vapour pressure Psat(T )
is given in Pa by the Clausius-Clapeyron equation psat(T ) = 100 exp

(
46.784− 6435

T −3.868 log(T )
)
. The
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thermal conductivity is fixed to λm = 2 W.m−1.K−1, and the rock volumetric heat capacity is given
by Cr = 1.6 MJ.K−1.m−3 with Er(p, T ) = CrT . The relative permeabilities are set to kα

r,m(sα) = (sα)2

for both phases α ∈ {ℓ, g}. The gravity vector is as usual g = (0, 0, −gz) with gz = 9.81 m.s−2.
The simulation consists in two stages both run on a family of refined uniform Cartesian meshes of

size nx × ny × nz of the domain Ω with
(nx, ny, nz) ∈ {(10, 10, 5), (20, 20, 10), (40, 40, 20), (80, 80, 40)}.

These meshes are labeled as {h1, . . . , h4} respectively. The well indexes are computed at each node of
the well following [10].

At the first stage, the well is closed and a Dirichlet boundary condition is imposed at the top of the
domain prescribing the pressure and the temperature equal to pm = 4 MPa and Tm = (psat)−1(pm) −
1 K; respectively, and homogeneous Neumann boundary conditions are set at the bottom and at
the sides of the domain. The choice of the initial temperature Tm just below the saturated vapor
temperature is made in order to make the gas phase appear at the beginning of the production during
the second stage. This stage is run until the simulation reaches a stationary state with the liquid phase
only, a constant temperature and an hydrostatic pressure depending only on the vertical coordinate.

For the second stage, homogeneous Neumann boundary conditions are prescribed at the bottom
and at the top of the domain Ω, but Dirichlet boundary conditions for the pressure and temperature
are fixed at the sides of the domain to the ones at the end of stage one. The well is set in an open state,
i.e., it can produce, and its monitoring conditions are defined by the minimum bottom hole pressure
p̄ω = 1 bar (never reached in practice) and the maximum total mass flow rate q̄ω = 200 ton.hour−1.
The second stage is run on the time interval (0, tf ) with tf = 30 days.

Figures 4.1, 4.2, and 4.3 exhibit, for the family of refined meshes, the pressure, the temperature and
the gas saturation along the well; respectively, at final time tf . The solutions are pretty close for all
meshes and exhibit a good convergence behavior.

Figures 4.4, and 4.5 show a close look of the pressure and of the temperature inside the reservoir;
respectively, for all meshes at final time tf . It illustrates the cone shaped bubble of gas along the well
at the top of the reservoir and demontrates again the good convergence behavior of the discrete model.
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Figure 4.1. Pressure in Pa along the well at final time on the different meshes.
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Figure 4.2. Temperature in ◦C along the well at final time on the different meshes.
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Figure 4.3. Gas saturation along the well at final time on the different meshes.

At each time step, the nonlinear system is solved using a Newton algorithm. The GMRES stopping
criterion on the relative residual is fixed to 10−8. The Newton solver is convergent if the relative
residual is lower than 10−8 as well.

Table 4.1 shows the numerical efficiency of the proposed scheme for all meshes for the second stage
of the simulation. We denote by N∆t the number of successful time steps, by NNewton the average
number of Newton iterations per successful time step, and by NGMRES the average number of GMRES
iterations per Newton iteration. It exhibits a very good robustness of the Newton solver on the family
of refined meshes and a moderate increase of the number of GMRES iterations with the mesh size.
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(a) Mesh size h1. (b) Mesh size h2.

(c) Mesh size h3. (d) Mesh size h4.

Figure 4.4. Clip and close look of the gas saturation inside the reservoir at final time
for all meshes (cell values).

(a) Mesh size h1. (b) Mesh size h2.

(c) Mesh size h3. (d) Mesh size h4.

Figure 4.5. Clip and close look of the temperature in ◦C inside the reservoir at final
time for all meshes (cell values).

Finally, we present in Figure 4.6 the total computational time in hours obtained with the finest
mesh h4 for different numbers of MPI processes Np = 8, 16, 32, 64. As usual for this type of simulations,
the strong scalability is limited by the AMG preconditioner of the pressure block which requires a
sufficiently high number of unknowns per processor to keep a good scalability, corresponding to roughly
speaking 4 104. This explains the good speed up obtained between 8 and 32 processors whereas the
speed up becomes very small between 32 and 64 processors.
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Table 4.1. Numerical behavior of the second stage of the simulation for different
mesh sizes. N∆t is the number of successful time steps, NNewton the average number
of Newton iterations per successful time step, and NGMRES is the average number of
GMRES iterations per Newton iteration.

Mesh #M N∆t NNewton NGMRES
h1 4000 134 1.99 8.59
h2 32000 134 1.74 9.93
h3 256000 134 1.92 11.75
h4 1848320 133 2.22 15.91
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Figure 4.6. Total computational time vs. number of MPI processes for the second
stage simulation on the finest mesh h4.

4.2. Study of a high enthalpy reservoir

In this section, we consider a more realistic case built from geological and production data of a field
in a volcanic area. The field is a convective dominated system initially in liquid phase, that is crossed
by a major normal fault. The reservoir (in blue in Figure 4.7a) is about 500 m thick; it is covered by
a weakly permeable clay caprock (in yellow) of 250 m thick, which outcrops at the surface. Below the
reservoir is the basement layer (also in yellow).

Figure 4.7b gives the tetrahedral mesh of the domain. The VAG finite volume discretization makes it
possible to deal with complex geology including faults and complex well trajectories. The unstructured
mesh of 700 000 tetrahedral elements draws on geological horizons. The fault is meshed as a two-
dimensional (2D) surface, where the triangular elements are interconnected with the surrounding
matrix using conformal meshing. The (one-dimensional) wells are discretized by a set of edges as
shown in Figure 4.7b.
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(a) Domain modelled. (b) Mesh and wells location.

Figure 4.7. Geometry, mesh and wells data for the second numerical test.

The geothermal field is operated using a doublet of two deviated wells, a producer (in green) and
an injector (in blue), both of which cross the major fault as shown in Figure 4.7b. The reservoir is
assumed homogeneous with an isotropic permeability Km = kmI, km = 10−14 m2 and a porosity
ϕm = 0.05, while the faulted area has a thickness df = 10 m, an isotropic permeability Kf = kf I,
kf = 5.10−14 m2 and a porosity ϕf = 0.05. The caprock and the basement layer are assumed weakly
permeable with km = 10−19 m2. The matrix and fracture thermal conductivities are set to λm =
λf = 3 W.K−1.m−1 and the rock energy density is homogeneous for the whole rock mass such that
Er(p, T ) = ρr cr

p T with cr
p = 1000 J.kg−1.K−1 and ρr = 2600 kg.m−3. The relative permeabilities are

set to kα
r,m(sα) = kα

r,f (sα) = (sα)2 for both phases α ∈ {ℓ, g}.

Figure 4.8. Initial state dominated by convention. Isotemperature surfaces.

As the previous numerical test, this simulation consists in two stages. The first one acts as a
preliminary step where the initial state of the geothermal system, which is already dynamic, is achieved
by performing a simulation over a long period (here 105 years) from an hydrostatic pressure state (with
1 bar at the top of the model), and a temperature field increasing linearly with depth (between 30 ◦C
at the top to 280 ◦C at the bottom). Dirichlet boundary conditions for temperature and pressure are
thus imposed at the top and bottom boundaries. No flow and Dirichlet temperature conditions are
applied on the lateral boundaries. The initial state obtained is convective; the fluid in the reservoir is
in liquid state with a low fraction of gas near the top of the reservoir. Iso-temperature contours are
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Figure 4.9. Temperature and saturation after 5 years of production - cells with a gas
saturation greater than 0.1 are filled in yellow - the temperature is represented in the
fault plane

Figure 4.10. Temperature and saturation after 10 years of production with reinjection
during the last 5 years - cells with a gas saturation greater than 0.1 are filled in yellow
- the temperature is represented in the fault plane
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represented in Figure 4.8 and show the development of convection cells and the influence of the fault,
which is a more permeable zone.

Then the second stage begins where the reservoir production starts with steam production at the
producer well-head: a flow rate of 250 ton.hr−1 is imposed at the well-head for five years. The same
boundary conditions are imposed as in the initial state determination, but the temperature imposed
on the lateral boundaries is now given by the average temperature distribution in the rock mass at
this initial state. The depletion occuring near the producer well favors the development of a steam
cap in the reservoir as well as in the fault zone. Figure 4.9 shows this steam cap: faces in the fault
and cells in the reservoir with a gas saturation greater than 0.1 are filled in yellow, while temperature
field is also represented on the other faces of the fault plane.

After five years of production and reservoir depletion, half of the fluid produced is reinjected at
the injector with a wellhead temperature of 110 ◦C. During the injection, vapor around the injector
condenses and the steam cap generated around the producer is considerably reduced (Figure 4.10).

Figures 4.11a and 4.11b show at a given depth of 455 m respectively the evolution of pressure in the
reservoir and in the well and the saturation evolution in the well. Reservoir pressure decreases during
the first five years of production, while reinjection of half of the fluid produced during the next five
years leads to a pressure build-up in the reservoir (the model is not hydraulically closed). Well pressure
follows the same trends. Whereas gas saturation was around 80% during the depletion phase in the
well at 455 m depth, injection results in a reduced gas saturation in the well down to approximatley
50% at 455 m depth (Figure 4.11b).
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Figure 4.11. (a) Pressure evolution in the reservoir (red dashed line) and in the well
(green line) at 455 m depth. Saturation pressure in the well at 455 m depth is given by
the black dotted line. (b): Saturation evolution in the well at 455 m depth.

Table 4.2 shows the numerical efficiency of the proposed scheme for both stages of the simulation
and different numbers of MPI processes Np = 4, 8, 16. We use the same notations as in the previous
test case and report in addition the total simulation time in hours. These results exhibit the very
good robustness of the linear and nonlinear solvers w.r.t. the number of MPI processes. A very good
speedup is obtained up to 16 MPI processes verifying that parallel computing makes it possible to
have reasonable computation times to model industrial cases such as the one presented in this section.
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Table 4.2. Numerical behavior of both stages of the simulation for different number
of processors. N∆t is the number of successful time steps, NNewton the average number
of Newton iterations per successful time step, NGMRES the average number of GMRES
iterations per Newton iteration, and Time (hrs) is the total simulation time in hours.

Stage Np N∆t NNewton NGMRES Time (hrs)

1
4 1515 4.6 29.3 98.2
8 1507 4.6 29.4 31.9
16 1526 4.6 30.0 17.8

2
4 1395 7.3 7.7 65.9
8 1367 7.2 7.6 20.2
16 1320 7.2 7.9 10.1

5. Conclusion

This paper focuses on the numerical modelling of geothermal systems in complex geological settings.
The proposed approach is based on unstructured meshes to model complex features such as faults
and deviated wells. It solves liquid-vapor two-phase Darcy flows coupled with energy transfers and
thermodynamical equilibrium. The use of the hybrid-dimensional polytopal VAG scheme allows to
treat physically complex cases, while respecting geometrical constraints. It is thus possible to model
explicitly the flows in geological discontinuities, that condition the behavior of most deep geothermal
reservoirs during operation. We particularly focus on the well modelling with deviated or multi-branch
wells defined as a collection of edges of the mesh with rooted tree data structure. The well-reservoir
connection is taken into account by a Peacemann index both for the faults and the rock mass and thus
describes the presence of feed zones in injection and production wells. By using an explicit calculation
of the mean density in the pressure drop, the well model reduces to a single equation with only one
well implicit unknown, the bottom hole pressure, implicitly coupled to the reservoir system.

The robustness of this approach in the case of liquid-vapor flow is illustrated by two test cases. We
first present a numerical convergence test of a two-phase vertical production well model in a simplified
reservoir geometry. Then, we study the behavior of a high enthalpy faulted reservoir using a doublet of
two deviated wells crossing the fault. The use of efficient linear and nonlinear parallel solvers ensures
acceptable computation times on real case studies.

An improved model of cross flows between the well and the reservoir will be investigated in the near
future. Industrial studies of high and medium enthalpy geothermal reservoirs are currently under way
with the approach proposed in this paper.
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