Steve Liang

Tania Khalafbeigi

Hylke Van Der Schaaf

FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL

Table of Contents

Table of Tables

Keywords

The following are keywords to be used by search engines and document catalogues. ogcdoc, ogc document, iot, internet of things, sensor things, sensors, swe, sensor webs, sensor web enablement, sensor networks

Preface

The OGC SensorThings API provides an open, geospatial-enabled and unified way to interconnect the Internet of Things devices, data, and applications over the web. The OGC SensorThings API is an open Standard, and that means it is non-proprietary, platform-independent, and perpetually royalty-free. Although it is a new Standard, it builds on a rich set of proven-working and widelyadopted open standards, such as the web protocols and the OGC Sensor Web Enablement (SWE) Standards, including the OGC/ISO Observation and Measurement data model [OGC 10-004r3 and ISO 19156:2011]. That also means the OGC SensorThings API is extensible and can be applied to not only simple but also complex use cases.

At a high level the OGC SensorThings API provides two main functionalities and each function is handled by a part. The two parts are the Part I -Sensing and the Part II -Tasking. The Sensing part provides a standard way to manage and retrieve observations and metadata from heterogeneous IoT sensor systems. The Tasking part provides a standard way for parameterizing -also called tasking -of task-able IoT devices, such as sensors or actuators.

The Sensing part provides functions similar to the OGC Sensor Observation Service (SOS) and the Tasking part provides functions similar to the OGC Sensor Planning Service (SPS). The main difference between the SensorThings API and the OGC SOS and SPS is that the SensorThings API is designed specifically for the resource-constrained IoT devices and the web developer community.

As a result, the SensorThings API follows the REST principles, the use of an efficient JSON encoding, the use of MQTT protocol, and the use of the flexible OASIS OData protocol and URL conventions.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any or all such patent rights.

recipients of this document are requested to submit, with their comments, notification of any relevant patent claims or other intellectual property rights of which they may be aware that might be infringed by any implementation of the standard set forth in this document, and to provide supporting documentation.

Changes in version 1.1

Version 1.1 of the SensorThings API is an update to version 1.0 that is (mostly) backwards compatible with version 1.0. Besides the many small clarifications, the main changes are as follows.

• All entities (except for HistoricalLocation) now have a field of the type JSON Object, named properties or parameters. In version 1.0 such a field already existed for the Thing entity (named properties), and for the Observation entity (named parameters). These fields proved to be extremely useful for storing additional structured meta data used in many domains, that could also be used in filters. Now, all entities except for HistoricalLocation have such a very useful property, whereby in the Observation entity it retains the name parameters.

• The service root page now shows the requirements that the server implements and allows extensions to expose additional settings. This allows users to easily see exactly which extensions and optional features a server implements. The MQTT extension can now list the MQTT endpoints on the root page, so that a user can discover those endpoints.

• MQTT topics now must start with the version number of the specification. There were differences between server implementations, with some requiring the version number prefix and others not. This change will fix those incompatibilities from this version on.

The first two changes add extra fields to the JSON returned by the server and should not influence clients made for version 1.0, as most client will ignore any fields they do not know. The second change may cause some minor issues for some clients that are not using the version prefix in MQTT topics, but those clients would already have issues connecting to any server that does use the version prefix in MQTT topics.

This version supersedes the previous version of the OGC SensorThings API Part 1: Sensing (OGC 15-078r6).

Submitting organizations

The following organizations submitted this document to the Open Geospatial Consortium (OGC):

Chapter 2. Conformance

Conformance with this Standard shall be checked using all the relevant tests specified in annex a (normative) of this document. The framework, concepts, and methodology for testing, and the criteria to be achieved to claim conformance are specified in the OGC Compliance Testing Policies and Procedures and the OGC Compliance Testing web site1.

All requirements-classes and conformance-classes described in this document are owned by the standard(s) identified.

The following table list the requirements classes defined by this Standard.

NOTE

The text in the Requirements class id and Requirements columns in the following

Chapter 3. References

The following normative documents contain provisions that, through reference in this text, constitute provisions of this document. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. For undated references, the latest edition of the normative document referred to applies.

Chapter 4. Terms and Definitions

This document uses the terms defined in Sub-clause 5.3 of [OGC 06-121r8], which is based on the ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards. In particular, the word "shall" (not "must") is the verb form used to indicate a requirement to be strictly followed to conform to this standard.

For the purposes of this document, the following additional terms and definitions apply.

Collection

Entity sets

REST

The Representational State Transfer (REST) style is an abstraction of the architectural elements within a distributed hypermedia system. REST focuses on the roles of components, the constraints upon their interaction with other components, and their interpretation of significant data elements.

It encompasses the fundamental constraints upon components, connectors, and data that define the basis of the Web architecture, and thus the essence of its behavior as a network-based application.

An API that conforms to the REST architectural principles/constraints is called a RESTful API.

Sensor

An entity capable of observing a phenomenon and returning an observed value. Type of observation procedure that provides the estimated value of an observed property at its output.

[OGC 12-000]

Chapter 5. Conventions

This sections provides details and examples for any conventions used in the document. Examples of conventions are symbols, abbreviations, use of XML schema, or special notes regarding how to read the document.

Presentation of Requirements and Recommendations

Requirements are presented using the following style:

Req [number]
<requirement text> <requirement id> <number> is a unique number within the document.

<requirement text> is the requirement itself. Normative verbs like SHALL are written in capitals.

The text at the bottom of the box <requirement id> is the path and it provides the URI of the requirement which can be used to unambiguously identify the requirement.

Identifiers

The IoT device manufacturers can also use OGC SensorThings API as the API can be embedded within various IoT hardware and software platforms, so that the various IoT devices can effortlessly connect with the OGC Standard-compliant servers around the world. In summary, the OGC SensorThings API is transforming the numerous disjointed IoT systems into a fully connected platform where complex tasks can be synchronized and performed.

Benefits of the OGC SensorThings API

In today's world, most IoT devices (e.g., sensors and actuators) have proprietary software interfaces defined by their manufacturers and used selectively. New APIs are often required and developed on an as-needed basis, often in an environment with resource limitations and associated risks. This situation requires significant investment on the part of developers for each new sensor or project involving multiple systems and on the part of the providers of sensors, gateways, and portals or services where observations and measurements are required.

As a standardized data model and interface for sensors in the WoT and IoT2, the OGC SensorThings API offers the following benefits: (1) it permits the proliferation of new high value services with lower overhead of development and wider reach, (2) it lowers the risks, time and cost across a full IoT product cycle, and (3) it simplifies the connections between devices-to-devices and devices-toapplications.

SensorThings API Overview

The OGC SensorThings API data model consists of two parts: [START_REF]The GeoJSON Format Specification[END_REF]

SensorThings API and ISO/OGC Observations and Measurements

Managing and retrieving observations and metadata from IoT sensor systems is one of the most common use cases. As a result, SensorThings API's sensing part is designed based on the O&M model. O&M defines models for the exchange of information describing observation acts, their results as well as the feature involved in sampling when making observations.

SensorThings API defines eight entities for the IoT sensing applications. base lists each component and its relationship with O&M. Low-cost and simple sensors are key enablers for the vision of IoT.

As a result, SensorThings API uses the term of Sensor to describe the procedure that is used in making an Observation, instead of using O&M's term of procedure.

SensorThings API and Security

Things A service instance that implements security related extensions can notify clients of this by way of the serverSettings section of the document returned at the service root URI, as described in section Section 9.2.1. Security related extensions can also use this section to announce any security requirements to the clients.

Chapter 8. The SensorThings API Sensing Entities

This chapter describes the SensorThings API data model. All data model requirements classes are grouped in the following requirements class:

Requirements Class

Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/entity-controlinformation/common-control-information Req 1: datamodel/entity-control-information/common-control-information Each entity SHALL have the following common control information listed in Table 2.

http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/entity-control-information/common-

control-information

In SensorThings control information is represented as annotations whose names start with iot followed by a dot (.). Annotations are name/value pairs that have a dot (.) as part of the name.

When annotating a name/value pair for which the value is represented as a JSON object, each annotation is placed within the object and represented as a single name/value pair. In SensorThings the name always starts with the "at" sign (@), followed by the namespace iot, followed by a dot (.), followed by the name of the term (e.g., "@iot.id":1).

When annotating a name/value pair for which the value is represented as a JSON array or primitive value, each annotation that applies to this name/value pair is placed next to the annotated name/value pair and represented as a single name/value pair. The name is the same as the name of the name/value pair being annotated, followed by the "at" sign (@), followed by the namespace iot, followed by a dot (.), followed by the name of the term.

(e.g., "Locations@iot.navigationLink":"http://example.org/v1.1/Things(1)/Locations")

The Sensing Entities

The SensorThings API Sensing part's Entities are depicted in Figure 2. In this section, we explain the properties in each entity type and the direct relation to the other entity types. In addition, for each entity type, we show an example of the associated JSON encoding.

Thing

Entity type

Relation Description

HistoricalLocation One mandatory to many optional

A Thing has zero-to-many HistoricalLocations. A HistoricalLocation has one-and-only-one Thing.

Datastream One mandatory to many optional

A Thing MAY have zero-to-many Datastreams.

Example 1 an example of a Thing entity:

{ "@iot.id": 1, "@iot.selfLink": "http://example.org/v1.1/Things(1)", "Locations@iot.navigationLink": "Things(1)/Locations", "Datastreams@iot.navigationLink": "Things(1)/Datastreams", "HistoricalLocations@iot.navigationLink": "Things(1)/HistoricalLocations", "name": "Oven", "description": "This thing is an oven.", "properties": { "owner": "Noah Liang", "color": "Black" } } One HistoricalLocation SHALL have one or many Locations.

Location

Example 2 an example of a Location entity:

{ "@iot.id": 1, "@iot.selfLink": "http://example.org/v1.1/Locations(1)", "Things@iot.navigationLink": "Locations(1)/Things", "HistoricalLocations@iot.navigationLink": "Locations(1)/HistoricalLocations", "name": "CCIT", "description": "Calgary Center for Innvative Technologies", "encodingType": "application/geo+json", "location": { "type": "Feature", "geometry":{ "type": "Point", "coordinates": [-114.06,51.05] } } } { "value": [{ "@iot.id": 1, "@iot.selfLink": "http://example.org/v1.1/HistoricalLocations(1)", "Locations@iot.navigationLink": "HistoricalLocations(1)/Locations", "Thing@iot.navigationLink": "HistoricalLocations(1)/Thing", "time": "2015-01-25T12:00:00-07:00" }, { "@iot.id": 2, "@iot.selfLink": "http://example.org/v1.1/HistoricalLocations(2)", "Locations@iot.navigationLink": "HistoricalLocations(2)/Locations", "Thing@iot.navigationLink": "HistoricalLocations(2)/Thing", "time": "2015-01-25T13:00:00-07:00" }], "@iot.nextLink" :"http://example.org/v1.1/Things(1)/HistoricalLocations?$skip=2&$top=2" } Example 4: A Datastream entity example { "@iot.id": 1, "@iot.selfLink": "http://example.org/v1.1/Datastreams(1)", "Thing@iot.navigationLink": "HistoricalLocations(1)/Thing", "Sensor@iot.navigationLink": "Datastreams(1)/Sensor", "ObservedProperty@iot.navigationLink": "Datastreams(1)/ObservedProperty", "Observations@iot.navigationLink": "Datastreams(1)/Observations", "name": "oven temperature", "description": "This is a datastream measuring the air temperature in an oven.", "unitOfMeasurement": { "name": "degree Celsius", "symbol": "°C", "definition": "http://unitsofmeasure.org/ucum.html#para-30" }, "observationType": "http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_Measurement", "observedArea": { "type": "Polygon", "coordinates": { "@iot.id": 1, "@iot.selfLink": "http://example.org/v1.1/ObservedProperties(1)", "Datastreams@iot.navigationLink": "ObservedProperties(1)/Datastreams", "description": "The dewpoint temperature is the temperature to which the air must be cooled, at constant pressure, for dew to form. As the grass and other objects near the ground cool to the dewpoint, some of the water vapor in the atmosphere condenses into liquid water on the objects.", "name": "DewPoint Temperature", "definition": "http://dbpedia.org/page/Dew_point" } { "@iot.id": 1, "@iot.selfLink": "http://example.org/v1.1/Observations(1)", "FeatureOfInterest@iot.navigationLink": "Observations(1)/FeatureOfInterest", "Datastream@iot.navigationLink":"Observations(1)/Datastream", "phenomenonTime": "2014-12-31T11:59:59.00+08:00", "resultTime": "2014-12-31T11:59:59.00+08:00", "result": 70.

Datastream

JSON Object Zero-to-One

Chapter 9. SensorThings Service Interface

An OGC SensorThings API service exposes a service document resources that describe its data model. The service document lists the entity sets that can be CRUD. SensorThings API clients can use the service document to navigate the available entities in a hypermedia-driven fashion.

URI Components

The OGC SensorThings API service groups the same types of entities into entity sets.Each entity has a unique identifier and one-to-many properties. Also, in the case of an entity holding a relationship with entities in other entity sets, this type of relationship is expressed with navigation properties (i.e., navigationLink and associationLink).

Therefore, in order to perform CRUD actions on the resources, the first step is to address to the target resource(s) through URI. There are three major URI components used here, namely (1) the service root URI, (2) the resource path, and (3) the query options. In addition, the service root URI consists of two parts: [START_REF]The GeoJSON Format Specification[END_REF] Object describing the features the server supports that can not easily be detected by querying the service.

Each element of the value array SHALL be a JSON object with at least two name/value pairs, one with name name containing the name of the entity set (e.g., Things, Locations, Datastreams, Observations, ObservedProperties and Sensors) and one with name url containing the URL of the entity set, which may be an absolute or a relative URL.

[Adapted from OData 4.0-JSON-Format section 5]

The serverSettings object SHALL contain the property conformance of the type Array, containing the URIs of all requirements from this specification and any extensions that the service implements. If a service implements all requirements from a requirements class, it only needs to list the requirements class id.

Security extensions can modify the list of requirements to only show those requirements that the user is allowed to use. For example, if a user is not allowed to delete entities, the security extension can hide the create-update-delete/delete-entity requirement. In the most extreme case, a security extension would hide all requirements for a user that is not authenticated, except its own requirement and the instructions on how to authenticate.

Extensions that need to expose additional server settings may do so in a property of the serverSettings object that is named after the conformance class URI of the requirement that defines this setting.

Example 10: a SensorThings request with no resource path "url": "http://example.org/v1.1/Things" }, { "name": "Locations", "url": "http://example.org/v1.1/Locations" }, { "name": "Datastreams", "url": "http://example.org/v1.1/Datastreams" }, { "name": "Sensors", "url": "http://example.org/v1.1/Sensors" }, { "name": "Observations", "url": "http://example.org/v1.1/Observations" }, { "name": "ObservedProperties", "url": "http://example.org/v1.1/ObservedProperties" }, { "name": "FeaturesOfInterest", "url": "http://example.org/v1.1/FeaturesOfInterest" }] }

Usage 2: address to a collection of entities

To address to an entity set, users can simply put the entity set name after the service root URI. The service returns a JSON object with a property of value. The value of the property SHALL be a list of the entities in the specified entity set.

URI Pattern: SERVICE_ROOT_URI/ENTITY_SET_NAME

Response: A list of all entities (with all the properties) in the specified entity set when there is no service-driven pagination imposed. The response is represented as a JSON object containing a name/value pair named value. The value of the value name/value pair is a JSON array where each element is representation of an entity or a representation of an entity reference. An empty collection is represented as an empty JSON array.

The count annotation represents the number of entities in the collection. If present, it comes before the value name/value pair.

When there is service-driven pagination imposed, the nextLink annotation is included in a response that represents a partial result.

Prior to applying any server-driven pagination:

• $filter • $count • $orderby • $skip • $top
After applying any server-driven pagination:

• $select • $expand

Specifying Properties to Return

The $select and $expand system query options enable the client to specify the set of properties to be included in a response.

$expand

Req 23: request-data/expand The $expand system query option indicates the related entities to be represented inline. The value of the $expand query option SHALL be a comma separated list of navigation property names.

Additionally, each navigation property can be followed by a forward slash and another navigation property to enable identifying a multi-level relationship. The $count system query option with a value of true specifies that the total count of items within a collection matching the request SHALL be returned along with the result. A $count query option with a value of false (or not specified) hints that the service SHALL not return a count.

The service SHALL return an HTTP Status code of 400 Bad Request if a value other than true or false is specified. The $count system query option SHALL ignore any $top, $skip, or $expand query options, and SHALL return the total count of results across all pages including only those results matching any specified $filter. Clients should be aware that the count returned inline may not exactly equal the actual number of items returned, due to latency between calculating the count and enumerating the last value or due to inexact calculations on the service.

[Adapted from OData 4.0-Protocol 11.2.5.5] http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/count

Example 23: examples of $count query option

Example Request 1: http://example.org/v1.1/Things?$count=true returns, along with the results, the total number of Things in the collection.

Example Response:

{ "@iot.count": 2, "value": [{…}, {…}] }

$filter

Req 29: request-data/filter http://example.org/v1.1/Things?$expand=Datastreams/Observations/FeatureOfInterest&$fil ter=Datastreams/Observations/FeatureOfInterest/id eq 'FOI_1' and Datastreams/Observations/resultTime ge 2010-06-01T00:00:00Z and Datastreams/Observations/resultTime le 2010-07-01T00:00:00Z returns Things that have any observations of a feature of interest with a unique identifier equals to 'FOI_1' in June 2010.

Built-in filter operations

The OGC SensorThings API supports a set of built-in filter operations, as described in the following table. These built-in filter operator usages and definitions follow the [OData Specification Section Req 30: request-data/built-in-filter-operations

The built-in filter operators SHALL be as defined in Table 22. http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/built-in-filter-operations The OGC SensorThings API supports a set of functions that can be used with the $filter or $orderby query operations. The following table lists the available functions and they follows the OData is the default input geometry for these nine functions.

Req 31: request-data/built-in-query-functions

The built-in query functions SHALL be as defined in Table 23.

http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/built-in-query-functions Key and other non-updatable properties that are not tied to key properties of the principal entity, can be omitted from the request. If the request contains a value for one of these properties, the service SHALL ignore that value when applying the update.

The service ignores the entity id in the payload when applying the update.

The entity SHALL NOT contain related entities as inline content. It MAY contain binding information for navigation properties. For single-valued navigation properties this replaces the relationship. For collection-valued navigation properties this adds to the relationship.

On success, the response SHALL be a valid success response.

Services MAY additionally support JSON PATCH format [RFC6902] to express a sequence of operations to apply to a SensorThings entity.

[Adapted from OData () < > @ , ; : / " [] ? =

Batch request body example

The following example shows a Batch Request that contains the following operations in the order listed:

• A query request

• Change Set that contains the following requests:

• Insert entity (with Content-ID = 1)

• Update request (with Content-ID = 2)

• A second query request Note: For brevity, in the example, request bodies are excluded in favor of English descriptions inside <> brackets.

Note also that the two empty lines after the Host header of the GET request are necessary: the first is part of the GET request header; the second is the empty body of the GET request, followed by a { "@iot.id": 1, "@iot.selfLink": "http://example.org/v1.1/MultiDatastreams(1)", "Thing@iot.navigationLink": "MultiDatastreams(1)/Thing", "Sensor@iot.navigationLink": "MultiDatastreams(1)/Sensor", "ObservedProperty@iot.navigationLink": "MultiDatastreams(1)/ObservedProperties", "Observations@iot.navigationLink": "MultiDatastreams/Observations", "name": "temperature, RH, visibility", "description": "This is a MultiDatastream from a simple weather station measuring air temperature, relative humidity and visibility", "observationType": "http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_ComplexObservation", "multiObservationDataTypes": ["http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_Measurement", "http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_Measurement", "http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_CategoryObservation"], "unitOfMeasurements": [{ "name": "degree Celsius", "symbol": "°C", "definition": "http://unitsofmeasure.org/ucum.html#para-30" }, { "name": "percent", "symbol": "%", "definition": "http://unitsofmeasure.org/ucum.html#para-29" }, { "name": "null", "symbol": "null", "definition": "null" }], "observedArea": { "type": "Polygon", "coordinates": { "@iot.id": 1, "@iot.selfLink": "http://example.org/v1.1/Observations(1)", "FeatureOfInterest@iot.navigationLink": "Observations(1)/FeatureOfInterest", "MultiDatastream@iot.navigationLink": "Observations(1)/MultiDatastream", "phenomenonTime": "2014-12-31T11:59:59.00+08:00", "resultTime": "2014-12-31T11:59:59.00+08:00", "result": [25, 65, "clear"] }

Response

The response Observations in dataArray format contains the following properties.

Create Observation entities with dataArray

Besides creating Observation entities one by one with multiple HTTP POST requests, there is a need to create multiple Observation entities with a lighter message body in a single HTTP request. In this case, a sensing system can buffer multiple Observations and send them to a SensorThings service in one HTTP request. Here we propose an Action operation CreateObservations.

Request

Users can invoke the CreateObservations action by sending a HTTP POST request to the SERVICE_ROOT_URL/CreateObservations.

Response

Upon successful completion the service SHALL respond with 201 Created. The response message body SHALL contain the URLs of the created Observation entities, where the order of URLs must match with the order of Observations in the dataArray from the request. In the case of the service having exceptions when creating individual observation entities, instead of responding with URLs, the service must specify "error" in the corresponding array element. Response:When a property of the subscribed entity is updated, the service returns a complete JSON representation of the updated entity.

Test purpose

Check if the service supports the creation of entities as defined in this specification.

Test method

For each SensorThings entity type creates an entity instance by following the integrity constraints of Table 24 and creating the related entities with a single request (i.e., deep insert), check if the entity instance is successfully created and the server responds as defined in this specification.

Create an entity instance and its related entities with a deep insert request that does not conform to the specification (e.g., missing a mandatory property), check if the service fails the request without creating any entity within the deep insert request and responds the appropriate HTTP status code.

For each SensorThings entity type issue an entity creation request that does not follow the integrity constraints of Table 24 with deep insert, check if the service fails the request without creating any entity within the deep insert request and responds the appropriate HTTP status code.

For each SensorThings entity type creates an entity instance by linking to existing entities with a single request, check if the server responds as defined in this specification.

For each SensorThings entity type creates an entity instance that does not follow the integrity constraints of

 .Table of Tables. .

•

 Requirement -datamodel/entity-control-information/common-control-information • Requirement -datamodel/thing/properties • Requirement -datamodel/thing/relations • Requirement -datamodel/location/properties • Requirement -datamodel/location/relations • Requirement -datamodel/historical-location/properties • Requirement -datamodel/historical-location/relations • Requirement -create-update-delete/historical-location-auto-creation • Requirement -datamodel/datastream/properties • Requirement -datamodel/datastream/relations • Requirement -datamodel/sensor/properties • Requirement -datamodel/sensor/relations • Requirement -datamodel/observed-property/properties • Requirement -datamodel/observed-property/relations • Requirement -datamodel/observation/properties • Requirement -datamodel/observation/relations • Requirement -datamodel/feature-of-interest/properties • Requirement -datamodel/feature-of-interest/relations • Requirement -resource-path/resource-path-to-entities • Requirement -request-data/status-code • Requirement -request-data/query-status-code • Requirement -request-data/order • Requirement -request-data/expand • Requirement -request-data/select • Requirement -request-data/orderby • Requirement -request-data/top • Requirement -request-data/skip • Requirement -request-data/count • Requirement -request-data/filter • Requirement -request-data/built-in-filter-operations • Requirement -request-data/built-in-query-functions • Requirement -request-data/pagination • Requirement -create-update-delete/create-entity • Requirement -create-update-delete/link-to-existing-entities • Requirement -create-update-delete/deep-insert • Requirement -create-update-delete/deep-insert-status-code • Requirement -create-update-delete/update-entity • Requirement -create-update-delete/delete-entity • Requirement -batch-request/batch-request • Requirement -multi-datastream/properties • Requirement -multi-datastream/relations • Requirement -multi-datastream/constraints • Requirement -data-array/data-array • Requirement -create-observations-via-mqtt/observations-creation • Requirement -receive-updates-via-mqtt/receive-updates • Requirement -create-update-delete/historical-location-manual-creation • Requirement -create-update-delete/update-entity-put • Requirement -create-update-delete/update-entity-jsonpatch

 in the Internet of Things are connected to the network. Such ubiquitous network connectivity results in significant security threats. In the IoT reference model defined by ITU-T [ITU-T Y.2060] IoT security capabilities are not an independent layer but must be associated with all layers. The following figure shows the ITU-T IoT reference model. The reference model has four layers, namely (1) Applications Layer, (2) Service Support and Application Support Layer, (3) Network Layer, and (4) Device Layer. And security capabilities are a cross-layer component that is associated with the four layers. Based on the IoT reference model, SensorThings API falls into the scope of the Service Support and Application Support Layer and the security issues should be addressed by the cross-cutting security capabilities. As a result, SensorThings API does not define specific security capabilities. Instead SensorThings API is designed to leverage the existing and future IoT security capabilities.

Figure 1 .

 1 Figure 1. IoT Reference Model (adapted from [ITU-T Y.2060])

Figure 2 .

 2 Figure 2. Sensing Entities

 containing three key-value pairs. The name property presents the full name of the unitOfMeasurement; the symbol property shows the textual form of the unit symbol; and the definition

A

 Thing has zero-to-many Datastreams. A Datastream entity SHALL only link to a Thing as a collection of Observations. Sensor Many optional to one mandatory The Observations in a Datastream are performed by oneand-only-one Sensor. One Sensor MAY produce zero-tomany Observations in different Datastreams. ObservedProperty Many optional to one mandatory The Observations of a Datastream SHALL observe the same ObservedProperty. The Observations of different Datastreams MAY observe the same ObservedProperty.

 [[[100,0],[101,0],[101,1],[100,1],[100,0]]] }, "phenomenonTime": "2014-03-01T13:00:00Z/2015-05-11T15:30:00Z", "resultTime": "2014-03-01T13:00:00Z/2015-05-11T15:30:00Z" } The observationType defines the result types for specialized observations [OGC 10-004r3 and ISO 19156:2011 Table 3]. The following table shows some of the valueCodes that maps the UML classes in O&M v2.0 [OGC 10-004r3 and ISO 19156:2011] to observationType names and observation result types.

 use phenomenonTime The time instant or period of when the Observation happens. Note: Many resource-constrained sensing devices do not have a clock. As a result, resource-constrained sensing devices do not have a clock. As a result, a client may omit resultTime when POST new Observations, even though resultTime is a mandatory property. When a SensorThings service receives a POST Observations without resultTime, the service SHALL assign a null value to the

 http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/expand Example 18: examples of $expand query option Example Request 1: http://example.org/v1.1/Things?$expand=Datastreams returns the entity set of Things as well as each of the Datastreams associated with each Thing entity. Example Request 1 Response:

11. 2

 2 .5.1.1] and [OData Version 4.0 ABNF]. The operator precedence is described in [OData Version 4.0 Part 2: URL Conventions Section 5.1.1.8].

 Canonical function definitions listed in Section 5.1.1.4 of the [OData Version 4.0 Part 2: URL Conventions] and the syntax rules for these functions are defined in [OData Version 4.0 ABNF]. In order to support spatial relationship functions, SensorThings API defines nine additional geospatial functions based on the spatial relationship between two geometry objects. The spatial relationship functions are defined in the OGC Simple Feature Access specification [OGC 06-104r4 part 1, clause 6.1.2.3]. The names of these nine functions start with a prefix st_ following the OGC Simple Feature Access specification [OGC 06-104r4]. In addition, the Well-Known Text (WKT) format

CRLF according to [RFC2046]. Example 31- 2 :

 2 a Batch Request body example POST /v1.1/$batch HTTP/1.1 Host: host Content-Type: multipart/mixed;boundary=batch_36522ad7-fc75-4b56-8c71-56071383e77b Content-Length: ### --batch_36522ad7-fc75-4b56-8c71-56071383e77b Content-Type: application/http GET /v1.1/Things(1) Host: host

Figure 3 .

 3 Figure 3. MultiDatastream Extension Entities

 : "2014-03-01T13:00:00Z/2015-05-11T15:30:00Z", "resultTime": "2014-03-01T13:00:00Z/2015-05-11T15:30:00Z" } Example 33: an example ObservedProperties collection of the above MultiDatastream: Please note that the order of the elements in the value array match the order of the related Observations/result array as well as the order of the related unitOfMeasurements array. Observation(id)/MultiDatastream(id)/multiObservationDataTypes).

 For example, http://example.org/v1.1/CreateObservations. The message body aggregates Observations by Datastreams, which means all the Observations linked to one Datastream SHALL be aggregated in one JSON object. The parameters of each JSON object are shown in the following table.

 As an Observation links to one FeatureOfInterest, to establish the link between an Observation and a FeatureOfInterest, users should include the FeatureOfInterest ids in the dataArray. If no FeatureOfInterest id presented, the FeatureOfInterest will be created based on the Location entities of the linked Thing entity by default.

Example 38 :

 38 an example of a response of creating Observation entities with dataArray POST /v1.1/CreateObservations HTTP/1.1 201 Created Host: example.org Content-Type: application/json ["http://examples.org/v1.1/Observations(1)", "error", "http://examples.org/v1.1/Observations(2)"]To receive notifications from a SensorThings service when some entities updated, a client can send a MQTT Subscribe request to the SensorThings service. SensorThings API defined the following four MQTT subscription use cases. Figure5contains the sequence diagram of receiving updates using MQTT Subscribe.

Figure 5 . 14 . 2 . 2 .

 51422 Figure 5. Sequence diagram for receiving updates using MQTT subscribe

 Table of Figures. . .

Table 12 -

 12 • Table -SensorThings API Sensing entities and equivalent concepts in O&M 2.0 • Table -Common control information • Table -Properties of a Thing entity • Table -Direct relation between a Thing entity and other entity types • Table -Properties of a Location entity • Table -Direct relation between a Location entity and other entity types • Table 7 -List of some code values used for identifying types for the encodingType of the Location and FeatureOfInterest entity • Table -Properties of a HistoricalLocation entity • Table -Direct relation between an HistoricalLocation entity and other entity types • Table -Properties of a Datastream entity • Table -Direct relation between a Datastream entity and other entity types • List of some code values used for identifying types defined in the O&M conceptual model (OGC 10-004r3 and ISO 19156:2011 Clause 8.2.2) • Table -Properties of a Sensor entity • Table -Direct relation between a Sensor entity and other entity types • Table -List of some code values used for identifying types for the encodingType of the Sensor entity • Table -Properties of an ObservedProperty entity • Table -Direct relation between an ObservedProperty entity and other entity types • Table -Properties of an Observation entity • Table -Direct relation between an Observation entity and other entity types • Table -Properties of a FeatureOfInterest entity • Table -Direct relation between a FeatureOfInterest entity and other entity types • Table -Built-in Filter Operators • Table -Built-in Query Functions • Table -Integrity constraints when creating an entity • Table -Integrity constraints when deleting an entity • Table -Properties of a MultiDatastream entity • Table -Direct relation between a MultiDatastream entity and other entity types • Table 28 -Direct relation between an MultiDatastream's Observation entity and other entity types

Table of Requirements

 of

 All questions regarding this submission should be directed to the editors or the submitters:The OGC SensorThings API provides an open Standard-based and geospatial-enabled framework to interconnect the Internet of Things devices, data, and applications over the web.

	Submitters Chapter 1. Scope	
	University of Calgary, Canada Name Representing	OGC
	SensorUp Inc., Canada	Member
	CGI Group Inc., USA Steve Liang University of Calgary, Canada / SensorUp Inc. Yes
	Keys, USA Tania Khalafbeigi	University of Calgary, Canada / SensorUp Inc. Yes
	DataCove e.U., Austria Hylke van der Schaaf Fraunhofer, Germany	Yes
	Fraunhofer-Gesellschaft, Germany Brian Miles CGI Federal	Yes
	Katharina Schleidt	DataCove e.U.	Yes
	Sylvain Grellet	BRGM, France	Yes
	Mickael Beaufils	BRGM, France	Yes
	Marcus Alzona	Keys	Yes

 table is the path fragment that, when appended to the URI: http://www.opengis.net/spec/iot_sensing/1.1/, provides the URI that can be used to unambiguously identify the requirement and the conformance class.

	Requirements class id Requirements Requirements class id Requirements	Description Description
	req/datamodel/entity-req/batch-request	• req/datamodel/entity-control-• req/batch-request/batch-request	Entities' common Processing multiple
	control-information	information/common-control-information	control information requests with a single
			request
	req/resource-path req/multi-datastream	• req/resource-path/resource-path-to-entities • req/multi-datastream/properties • req/multi-datastream/relations • req/multi-datastream/constraints	Addressing to the Handling complex entities of the SensorThings API service observations with complex results, especially when the
	req/request-data	• req/request-data/order	Requesting data with result is an array.
	req/data-array req/create-observations-via-mqtt	• req/data-array/data-array • req/request-data/expand • req/request-data/select • req/request-data/status-code • req/create-observations-via-• req/request-data/query-status-code mqtt/observations-creation	system query options Serving Observations with the efficient data array encoding creating observations through MQTT
	Requirements class id Requirements req/datamodel/thing • req/datamodel/thing/properties • req/request-data/orderby req/receive-updates-• req/receive-updates-via-mqtt/receive-• req/request-data/top • req/request-data/skip via-mqtt updates	Description Thing entity Receiving updates through MQTT
		• req/datamodel/thing/relations	
	req/datamodel/location	• req/datamodel/location/properties	Location entity
		• req/datamodel/location/relations	
	req/datamodel/historic	• req/datamodel/historical-location/properties	HistoricalLocation
	al-location req/create-update-	• req/datamodel/historical-location/relations	entity Creating, updating, and
	req/datamodel/datastre	• req/datamodel/datastream/properties	Datastream entity deleting entities
	am	• req/datamodel/datastream/relations	
	req/datamodel/sensor	• req/datamodel/sensor/properties	Sensor Entity
		• req/datamodel/sensor/relations code	
		• req/create-update-delete/update-entity	
	req/datamodel/observe d-property	• req/datamodel/observed-property/properties • req/datamodel/observed-property/relations • req/create-update-delete/delete-entity • req/create-update-delete/historical-location-	ObservedProperty entity
	req/datamodel/observa tion	• req/datamodel/observation/properties auto-creation • req/create-update-delete/update-entity-put • req/datamodel/observation/relations • req/create-update-delete/update-entity-	Observation entity
	req/datamodel/feature-	jsonpatch	FeatureOfInterest
	of-interest		entity

• req/datamodel/feature-of-interest/properties • req/datamodel/feature-of-interest/relations • req/request-data/count • req/request-data/filter • req/request-data/built-in-filter-operations • req/request-data/built-in-query-functions • req/request-data/pagination delete • req/create-update-delete/create-entity • req/create-update-delete/link-to-existingentities • req/create-update-delete/deep-insert • req/create-update-delete/deep-insert-status-

4.4. (Internet of) Thing

	4.8. Resource
	A network-accessible data object or service identified by an URI, as defined in [RFC 2616]
	An entity's key uniquely identifies the entity within an entity set. Entity sets provide entry points
	into an OGC SensorThings API service. [OASIS OData Version 4.0 Part 1: Protocol Plus Errata 02]
	A thing is an object of the physical world (physical things) or the information world (virtual things)
	that is capable of being identified and integrated into communication networks. [ITU-T Y.2060]
	4.5. Measurement
	A set of operations having the object of determining the value of a quantity. [OGC 10-004r3 / ISO
	19156:2011]
	4.6. Observation
	Act of measuring or otherwise determining the value of a property. [OGC 10-004r3 / ISO 19156:2011]
	4.7. Observation Result
	Estimate of the value of a property determined through a known observation procedure. [OGC 10-
	004r3 / ISO 19156:2011]

Entity sets are named collections of entities (e.g., Sensors is an entity set containing Sensor entities).

conformance tests that appear in this document are denoted by partial URIs which are relative to this base. Chapter 6. Symbols (and abbreviated terms) API

	SOS
	Sensor Observation Service
	normative provisions in this specification are denoted by the URI http://www.opengis.net/spec/iot_sensing/1.1/ CS-W Catalog Service Web CRUD Create, Read, Update, and Delete GML Geography Markup Language HTML HyperText Markup Language IoT Internet of Things ISO International Organization for Standardization JSON JavaScript Object Notation OData the Open Data Protocol SPS Sensor Planning Service SWE Sensor Web Enablement UCUM Unified Code for Units of Measure UML Unified Modeling Language WoT Web of Things All requirements and Application Programming Interface HTTP XML Hypertext Transfer Protocol eXtensible Markup Language
	OGC
	Open Geospatial Consortium
	OWS
	OGC Web Services
	O&M
	Observations and Measurements
	REST
	REpresentational State Transfer
	SensorML
	Sensor Model Language

Chapter 7. SensorThings API overview 7.1. Who should use the OGC SensorThings API

	Organizations that need web-based platforms to manage, store, share, and analyze IoT-based
	sensor observation data should use the OGC SensorThings API. The OGC SensorThings API
	simplifies and accelerates the development of IoT applications. Application developers can use this
	open Standard to connect to various IoT devices and create innovative applications without
	worrying the daunting heterogeneous protocols of the different IoT devices, gateways and services.

Table 1 .

 1 SensorThings API Sensing entities and equivalent concepts in O&M 2.0

	SensorThings API Entities	O&M 2.0 Concepts
	Thing (and Locations, HistoricalLocations)	-
	Datastream	-
	Sensor	Procedure
	Observation	Observation
	ObservedProperty	Observed Property
	FeatureOfInterest	Feature-Of-Interest

7.5. SensorThings API and OASIS OData

 Please note that SensorThings API's Key-Value Pair (KVP) encoding is different from many existing OGC service implementation standards, such as SOS or Web Map Service (WMS). The main reason is that OData offers a complete set of KVP encodings (see Clause 9.3.3.6) that is designed specifically for RESTful web services, while OGC baseline currently does not have common KVP encodings for the RESTful binding. As a result, OGC SensorThings API version 1.1 chooses to use OData KVP encodings only. It is our future work to support OGC KVP encodings as an extension once a common OGC RESTful binding is available.

SensorThings API follows OData's specification for requesting entities. That means the entity control information, resource path usages, query options, the relevant JSON encodings, and batchprocessing request follow OData 4.0. By using OData's standard ways for requesting entities, developers who are familiar with OData can create SensorThings applications easily. However, SensorThings API does not follow the OData Common Schema Definition Language and as a result does not follow its metadata service entity model. Thus, SensorThings API should not be seen as an OData compliant API. SensorThings API's future work will explore possible harmonization between SensorThings API and OData.

7.6. SensorThings API and OGC Key-Value Pair (KVP) Encodings

Table 2 . Common control information Name Definition Data type Multiplicity and use id

 2

	Any	One
		(mandatory)

id is the system-generated identifier of an entity. id is unique among the entities of the same entity type in a SensorThings service.

Table 3 .

 3 Properties of a Thing entity

	Name	Definition	Data type	Multiplicity
				and use
	name	A property provides a label for Thing	CharacterString	One
		entity, commonly a descriptive name.		(mandatory)
	description	This is a short description of the	CharacterString	One
		corresponding Thing entity.		(mandatory)

Requirements Class http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/thing Target Type Web Service Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/thing/properti es Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/thing/relation s Dependency http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/entity-controlinformation/common-control-information The OGC SensorThings API follows the ITU-T definition, i.e., with regard to the Internet of Things, a thing is an object of the physical world (physical things) or the information world (virtual things) that is capable of being identified and integrated into communication networks [ITU-T Y.2060]. Req 2: datamodel/thing/properties Each Thing entity SHALL have the mandatory properties and MAY have the optional properties listed in Table 3. http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/thing/properties properties A JSON Object containing user-annotated properties as key-value pairs. JSON Object Zero-to-one Req 3: datamodel/thing/relations Each Thing entity SHALL have the direct relation between a Thing entity and other entity types listed in Table 4. http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/thing/relations

Table 4 .

 4 Direct relation between a Thing entity and other entity types

	Entity type	Relation	Description
	Location	Many optional to	
		many optional	

The Location entity locates the Thing. Multiple Things MAY be located at the same Location. A Thing MAY not have a Location. A Thing SHOULD have only one Location. However, in some complex use cases, a Thing MAY have more than one Location representations. In such case, the Thing MAY have more than one Locations. These Locations SHALL have different encodingTypes and the encodingTypes SHOULD be in different spaces (e.g., one encodingType in Geometrical space and one encodingType in Topological space).

Table 5 .

 5 For example, the location of interest of a wifi-connected thermostat should be the building or the room in which the smart thermostat is located. And the FeatureOfInterest of the Observations made by the thermostat (e.g., room temperature readings) should also be the building or the room. In this case, the content of the smart thermostat's location should be the same as the content of the temperature readings' feature of interest.However, the ultimate location of interest of a Thing is not always the location of the Thing (e.g., in the case of remote sensing). In those use cases, the content of a Thing's Location is different from Properties of a Location entity

	Requirements Class	
	http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/location
	Target Type	Web Service
	Requirement	http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/location/prop
		erties
	Requirement	http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/location/relati
		ons
	Dependency	http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/entity-control-
		information/common-control-information

The Location entity locates the Thing or the Things it associated with. A Thing's Location entity is defined as the last known location of the Thing. A Thing's Location may be identical to the Thing's Observations' FeatureOfInterest. In the context of the IoT, the principle location of interest is usually associated with the location of the Thing, especially for in-situ sensing applications.

Each Location entity SHALL have the direct relation between a Location entity and other entity types listed in Table

6

. http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/location/relations

Table 6 .

 6 Direct relation between a Location entity and other entity types

	Entity type	Relation	Description
	Thing	Many optional to	Multiple Things MAY locate at the same Location. A Thing
		many optional	MAY not have a Location.
	HistoricalLocation Many mandatory	A Location can have zero-to-many HistoricalLocations.
		to many optional	

Table 7 .

 7 List of some code values used for identifying types for the encodingType of the Location and Thing has a new Location, a new HistoricalLocation SHALL be created and added to the Thing automatically by the service. The current Location of the Thing SHALL only be added to this autogenerated HistoricalLocation automatically by the service, and SHALL not be created as HistoricalLocation directly by user. http://www.opengis.net/spec/iot_sensing/1.1/req/create-update-delete/historical-location-autocreation The HistoricalLocation can also be created, updated and deleted. One use case is to migrate historical observation data from an existing observation data management system to a SensorThings API system. Another use case is to track the Location of a Thing, when a permanent network connection is not available. If the Location of a Thing is changed at a later time, when a network connection is available again, then the auto-generated Time of the HistoricalLocation entity would not reflect the time when the Thing was actually at the set Location, but only the time at which the change was sent to the server. To resolve this, the Location of a Thing can also be changed by adding a HistoricalLocation. If the time of a manually created HistoricalLocation is later than the time of all existing HistoricalLocations, then the Location of the Thing is updated to the Location of this manually created HistoricalLocation.

	FeatureOfInterest entity	
	Location encodingType	ValueCode Value
	GeoJSON	application/geo+json
	A thing can be geo-referenced in different spaces. For example, for some applications it is more
	suitable to use a topological space model (e.g., IndoorGML) to describe an indoor things' location
	rather than using a geographic space model (e.g., GeoJSON). Currently GeoJSON is the only Location
	encodingType of the SensorThings API. In the future we expect to extend SensorThings API's

capabilities by adding additional encodingType to the code values listed in the above table. For example, one potential new Location encodingType can be a JSON encoding for IndoorGML. When a Req 46: create-update-delete/historical-location-manual-creation When a user directly adds new HistoricalLocation, and the time of this new HistoricalLocation is later than the latest HistoricalLocation for the Thing, then the Locations of the Thing are changed to the Locations of this new HistoricalLocation. http://www.opengis.net/spec/iot_sensing/1.1/req/create-update-delete/historical-location-manualcreation

Table 8 .

 8 Properties of a HistoricalLocation entity

	Name	Definition	Data type	Multiplicity
				and use
	time	The time when the Thing is known at the	TM_Instant (ISO-	One
		Location.	8601 Time String)	(mandatory)

Table 9 .

 9 Direct relation between an HistoricalLocation entity and other entity types

	Entity type	Relation	Description
	Location	Many optional to	A Location can have zero-to-many HistoricalLocations.
		many mandatory	One HistoricalLocation SHALL have one or many
			Locations.
	Thing	Many optional to	
		one mandatory	

A HistoricalLocation has one-and-only-one Thing. One Thing MAY have zero-to-many HistoricalLocations. Example 3: An example of a HistoricalLocations entity set (e.g., Things(1)/HistoricalLocations)

Table 10 .

 10 Each Datastream entity SHALL have the mandatory properties and MAY have the optional properties listed in Table 10. http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/datastream/properties Req 10: datamodel/datastream/relations Each Datastream entity SHALL have the direct relation between a Datastream entity and other entity types listed in Table 11. http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/datastream/relations Properties of a Datastream entity

	Requirements Class	
	http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/datastream
	Target Type	Web Service
	Requirement	http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/datastream/pr
		operties
	Requirement	http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/datastream/re
		lations
	Dependency	http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/entity-control-
		information/common-control-information
	Dependency	urn:iso:dis:iso:19156:clause:8.2.2

A Datastream groups a collection of Observations measuring the same ObservedProperty and produced by the same Sensor. Req 9: datamodel/datastream/properties

Table 11 .

 11 Direct relation between a Datastream entity and other entity types

Table 12 .

 12 List of some code values used for identifying types defined in the O&M conceptual model (OGC 10-

	004r3 and ISO 19156:2011 Clause 8.2.2)

O&M 2.0 Value Code Value (observationType names) Content of result

	O&M 2.0	Value Code Value (observationType names)	Content of
			result
	OM_TruthObservation	http://www.opengis.net/def/observationType/OGC-	boolean
		OM/2.0/OM_TruthObservation	
	8.2.5. Sensor		
	Requirements Class		
	http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/sensor	
	Target Type	Web Service	
	Requirement	http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/sensor/proper
	OM_CategoryObservation Req 12: datamodel/sensor/relations http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_CategoryObservation	URI
	OM_CountObservation Each Sensor entity SHALL have the direct relation between a Sensor entity and other entity types http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_CountObservation integer listed in Table 14.
	OM_Measurement http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/sensor/relations http://www.opengis.net/def/observationType/OGC-	double
		OM/2.0/OM_Measurement	
	OM_Observation	http://www.opengis.net/def/observationType/OGC-	Any
		OM/2.0/OM_Observation	

ties Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/sensor/relatio ns Dependency http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/entity-controlinformation/common-control-information A Sensor is an instrument that observes a property or phenomenon with the goal of producing an estimate of the value of the property3. Req 11: datamodel/sensor/properties Each Sensor entity SHALL have the mandatory properties and MAY have the optional properties listed in Table 13. http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/sensor/properties

Table 13 .

 13 Properties of a Sensor entity

	Name	Definition	Data type	Multiplicity
					and use
	name	A property provides a label for Sensor	CharacterString	One
		entity, commonly a descriptive name.			(mandatory)
	description	The description of the Sensor entity.	CharacterString	One
					(mandatory)
	encodingType	The encoding type of the metadata	ValueCode	One
		property. Its value is one of the ValueCode			(mandatory)
		enumeration (see Table 15 for the available			
		ValueCode).			
	metadata	The detailed description of the Sensor or	Any	(depending	One
		system. The metadata type is defined by	on the value of the	(mandatory)
		encodingType.	encodingType)	
	properties	A JSON Object containing user-annotated	JSON Object	Zero-to-one
		properties as key-value pairs.			

Table 14 .

 14 Direct relation between a Sensor entity and other entity types

	Entity type	Relation	Description
	Datastream	One mandatory to	The Observations of a Datastream are measured with the
		many optional	same Sensor. One Sensor MAY produce zero-to-many
			Observations in different Datastreams.

Table 15 .

 15 List of some code values used for identifying types for the encodingType of the Sensor entity

	Sensor encodingType	ValueCode Value
	PDF	application/pdf
	SensorML	http://www.opengis.net/doc/IS/SensorML/2.0
	HTML	text/html
	The Sensor encodingType allows clients to know how to interpret metadata's value. Currently
	SensorThings API defines three common Sensor metadata encodingTypes. Most sensor
	manufacturers provide their sensor datasheets in a PDF format. As a result, PDF is a Sensor
	encodingType supported by SensorThings API. The second Sensor encodingType is SensorML.
	Lastly, some sensor datasheets are HTML documents rather than PDFs. Other encodingTypes are
	permitted (e.g., text/plain). Note that the metadata property may contain either a URL to metadata

content (e.g., an https://, ftp://, etc. link to a PDF, SensorML, or HTML document) or the metadata content itself (in the case of text/plain or other encodingTypes that can be represented as valid JSON). It is up to clients to perform string parsing necessary to properly handle metadata content. http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/observed-property/relations

Table 16 .

 16 Properties of an ObservedProperty entity

	Name	Definition	Data type	Multiplicity
				and use
	name	A property provides a label for	CharacterString	One
		ObservedProperty entity, commonly a		(mandatory)
		descriptive name.		
	definition	The URI of the ObservedProperty.	URI	One
		Dereferencing this URI SHOULD result in a		(mandatory)
		representation of the definition of the		
		ObservedProperty.		
	description	A description about the ObservedProperty. CharacterString	One
				(mandatory)
	properties	A JSON Object containing user-annotated	JSON Object	Zero-to-one
		properties as key-value pairs.		

Table 17 .

 17 Direct relation between an ObservedProperty entity and other entity types

	Entity type	Relation	Description
	Datastream	One mandatory to	The Observations of a Datastream observe the same
		many optional	ObservedProperty. The Observations of different
			Datastreams MAY observe the same ObservedProperty.

Example 6: an example ObservedProperty entity

Table 19 .

 19 Direct relation between an Observation entity and other entity types

	Entity type	Relation	Description		
	Datastream	Many optional to	A Datastream can have zero-to-many Observations. One
		one mandatory	Observation	SHALL	occur	in	one-and-only-one
			Datastream.		
	FeatureOfInterest Many optional to	An	Observation	observes	on	one-and-only-one
		one mandatory	FeatureOfInterest. One FeatureOfInterest could be
			observed by zero-to-many Observations.
	Example 7 An Observation entity example -The following example shows an Observation whose
	Datastream has an ObservationType of OM_Measurement. A result's data type is defined by the
	observationType.					

Table 20 .

 20 For example, the FeatureOfInterest of a wifi-connect thermostat can be the Location of the thermostat (i.e., the living room where the thermostat is located in). In the case of remote sensing, the FeatureOfInterest can be the geographical area or volume that is being sensed. Properties of a FeatureOfInterest entity

	4	
	}	
	8.2.8. FeatureOfInterest
	Requirements Class	
	http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/feature-of-interest
	Target Type	Web Service
	Requirement	http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/feature-of-
		interest/properties
	Requirement	http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/feature-of-
		interest/relations
	Dependency	http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/entity-control-
		information/common-control-information

An Observation results in a value being assigned to a phenomenon. The phenomenon is a property of a feature, the latter being the FeatureOfInterest of the Observation

[OGC and ISO 19156:2011]

. In the context of the Internet of Things, many Observations' FeatureOfInterest can be the Location of the Thing. http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/feature-of-interest/relations

Table 21 .

 21 Direct relation between a FeatureOfInterest entity and other entity types

	Entity type	Relation	Description			
	Observation	One mandatory to	An	Observation	observes	on	one-and-only-one
		many optional	FeatureOfInterest. One FeatureOfInterest could be
			observed by zero-to-many Observations.	
	Example 8: an example of a FeatureOfInterest entity			
	{						
	"@iot.id": 1,						
	"@iot.selfLink": "http://example.org/v1.1/FeaturesOfInterest(1)",	
	"Observations@iot.navigationLink": "FeaturesOfInterest(1)/Observations",
	"name": "Weather Station YYC.",					
	"description": "This is a weather station located at the Calgary Airport.",
	"encodingType": "application/geo+json",			
	"feature": {						
	"type": "Feature",					
	"geometry":{						
	"type": "Point",					
	"coordinates": [-114.06,51.05]				
	}						
	}						
	}						

 the location of the SensorThings service and (2) the version number. The version number follows the format indicated below: Dependency The resource path comes right after the service root URI and can be used to address to different resources. The following lists the usages of the resource path.

	Req 19: resource-path/resource-path-to-entities	
	An OGC SensorThings API service SHALL support all the resource path usages listed in Section 9.2.
	http://www.opengis.net/spec/iot_sensing/1.1/req/resource-path/resource-path-to-entities
	9.2.1. Usage 1: no resource path	
	"v"majorversionnumber + "." + minorversionnumber
	Example 9: complete URI example	
	http://example.org/v1.1/Observations?$orderby=ID&$top=10
	_______________________/___________/___________________/
	|	|	|
	service root URI	resource path query options
	9.2. Resource Path	
	Requirements Class		
	http://www.opengis.net/spec/iot_sensing/1.1/req/resource-path
	Target Type	Web Service	
	Requirement		

By attaching the resource path after the service root URI, clients can address to different types of resources such as an entity set, an entity, a property, or a navigation property. Finally, clients can apply query options after the resource path to further process the addressed resources, such as sorting by properties or filtering with criteria. http://www.opengis.net/spec/iot_sensing/1.1/req/resource-path/resourcepath-to-entities

Requirements Class

URI Pattern: SERVICE_ROOT_URI

Response: A JSON object with a property named value and a property named serverSettings. The value of the property named value SHALL be a JSON Array containing one element for each entity set of the SensorThings Service. The value of the property named serverSettings SHALL be a JSON

Table 22 .

 22 Built-in Filter Operators

	Operator	Description	Example
	Comparison Operators	
	eq	Equal	/Datastreams?$filter=unitOfMeasurement/name eq 'degree Celsius'
	ne	Not equal	/Datastreams?$filter=unitOfMeasurement/name ne 'degree Celsius'
	gt	Greater than	/Observations?$filter=result gt 20.0
	ge	Greater than or equal	/Observations?$filter=result ge 20.0
	lt	Less than	/Observations?$filter=result lt 100
	le	Less than or equal	/Observations?$filter=result le 100
	Logical Operators	
	and	Logical and	/Observations?$filter=result le 3.5 and FeatureOfInterest/id eq 1
	or	Logical or	/Observations?$filter=result gt 20 or result le 3.5
	not	Logical negation	/Things?$filter=not startswith(description,'test')
	Arithmetic Operators	
	add	Addition	/Observations?$filter=result add 5 gt 10
	sub	Subtraction	/Observations?$filter=result sub 5 gt 10
	mul	Multiplication	/Observations?$filter=result mul 2 gt 2000

Table 23 .

 23 Built-in Query FunctionsResponses that include only a partial set of the items identified by the request URL SHALL contain a link that allows retrieving the next partial set of items. This link is called a nextLink; its representation is format-specific. The final partial set of items SHALL NOT contain a nextLink.The nextLink annotation indicates that a response is only a subset of the requested collection of entities or collection of entity references. It contains a URL that allows retrieving the next subset of the requested collection.SensorThings clients SHALL treat the URL of the nextLink as opaque, and SHALL NOT append system query options to the URL of a next link. Services may not allow a change of format on requests for subsequent pages using the next link. a subset of the Thing entities of requested collection of Things. The nextLink contains a link allowing retrieving the next partial set of items.As many IoT devices are resource-constrained, the SensorThings API adopts the efficient REST web service style. That means the Create, Update, Delete actions can be performed on the SensorThings entity types. The following subsection explains the Create, Update, and Delete protocol.The semantics of PATCH, as defined in [RFC5789], are to merge the content in the request payload with the entity's current state, applying the update only to those components specified in the request body. The properties provided in the payload corresponding to updatable properties SHALL replace the value of the corresponding property in the entity. Missing properties of the containing entity or complex property SHALL NOT be directly altered.Services MAY additionally support PUT, but should be aware of the potential for data-loss in roundtripping properties that the client may not know about in advance, such as open or added properties, or properties not specified in metadata. Services that do not support PUT SHALL respond with an HTTP code 501 Not Implemented.

	Function	Example
	String Functions	
	bool substringof(string p0, string p1)	substringof('Sensor Things',description)
	bool endswith(string p0, string p1)	endswith(description,'Things')
	bool startswith(string p0, string p1)	startswith(description,'Sensor')
	int length(string p0)	length(description) eq 13
	int indexof(string p0, string p1)	indexof(description,'Sensor') eq 1
	string substring(string p0, int p1)	substring(description,1) eq 'ensor Things'
	string substring(string p0, int p1, int	substring(description,2,4) eq 'nsor'
	p2)	
	string tolower(string p0)	tolower(description) eq 'sensor things'
	string toupper(string p0)	toupper(description) eq 'SENSOR THINGS'
	string trim(string p0)	trim(description) eq 'Sensor Things'

[Adapted from OData 4.0-Protocol 11.2.5.7] http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/pagination Example 25: http://example.org/v1.1/Things returns

 4.0-Protocol 11.4.3] Batch requests are submitted as a single HTTP POST request to the batch endpoint of a service, located at the URL $batch relative to the service root (e.g., example.org/v1.1/$batch). Note: In the example, request bodies are excluded in favor of English descriptions inside <> brackets to simplify the example.

	Example 31-1: A Batch Request header example
	POST /v1.1/$batch HTTP/1.1
	Host: example.org
	Content-Type: multipart/mixed;boundary=batch_36522ad7-fc75-4b56-8c71-56071383e77b
	<BATCH_REQUEST_BODY>
	Note: The batch request boundary must be quoted if it contains any of the following special
	characters:
	11.1. Introduction
	The SensorThings service interface provides interfaces for users to perform CRUD actions on
	resources through different HTTP methods. However, as many IoT devices are resource-
	constrained, handling a large number of communications may not be practical. This section
	describes how a SensorThings service can support executing multiple operations sent in a single
	HTTP request through the use of batch processing. This section covers both how batch operations
	are represented and processed. SensorThings batch request extension is adapted from [OData 4.0
	Protocol 11.7] and all subsections. The only difference is that the OData-Version header SHOULD be
	omitted in SensorThings. Readers are encouraged to read the OData specification section 11.7
	before reading the examples below.
	11.2. Batch-processing request
	A batch request is represented as a Multipart MIME v1.0 message [RFC2046], a standard format
	allowing the representation of multiple parts, each of which may have a different content type,
	within a single request.
	The example below shows a GUID as a boundary and example.org/v1.1/ for the URI of the service.
	HTTP Method
	PATCH or PUT

Table 26

 26

	.
	http://www.opengis.net/spec/iot_sensing/1.1/req/multi-datastream/properties
	Req 41: multi-datastream/relations
	Each MultiDatastream entity SHALL have the direct relation between a MultiDatastream entity
	and other entity types listed in Table 27.
	http://www.opengis.net/spec/iot_sensing/1.1/req/multi-datastream/relations

Table 26 .

 26 Properties of a MultiDatastream entity

	Name	Definition	Data type	Multiplicity
				and use
	name	A property provides a label for Datastream	CharacterString	One
		entity, commonly a descriptive name.		(mandatory)

Table 27 .

 27 Direct relation between a MultiDatastream entity and other entity types

	Entity type	Relation	Description			
	Thing	Many optional to	A Thing has zero-to-many MultiDatastream. A
		one mandatory	MultiDatastream entity SHALL only link to a Thing as a
			collection of Observations.	
	Sensor	Many optional to	The Observations in a MultiDatastream are performed by
		one mandatory	one-and-only-one Sensor. One Sensor MAY produce zero-
			to-many Observations in different MultiDatastreams.
	ObservedProperty Many optional to	The Observations of a MultiDatastream SHALL observe
		many mandatory	the same ObservedProperties entity set.
	Observation	One mandatory to	A MultiDatastream has zero-to-many Observations. One
		many optional	Observation	SHALL	occur	in	one-and-only-one
			MultiDatastream.		

Table 28 .

 28 Direct relation between an MultiDatastream's Observation entity and other entity types

	Entity type	Relation	Description		
	MultiDatastream Many optional to	A MultiDatastream can have zero-to-many Observations.
		one mandatory	One Observation SHALL occur in one-and-only-one
			MultiDatastream.		
	FeatureOfInterest Many optional to	An	Observation	observes	on	one-and-only-one
		one mandatory	FeatureOfInterst. One FeatureOfInterest could be
			observed by one-to-many Observations.
	Req 42: multi-datastream/constraints				

Table 29 .

 29 Properties of getting Observation entities in dataArray

	Name		Definition	Data type	Multiplicity
						and use
	Datastream	or	The navigationLink of the Datastream or	navigationLink	One
	MultiDatastream	the MultiDatastream entity used to group			(mandatory)
			Observation entities in the dataArray.		
	components		An ordered array of Observation property	An ordered array	One
			names whose matched values are included	of	Observation	(mandatory)
			in the dataArray.	property names
	dataArray		A JSON Array containing Observation	JSON Array	One
			entities. Each Observation entity is			(mandatory)
			represented by the ordered property		
			values, which match with the ordered		
			property names in components.		
	Example 35:				

an example of getting Observation entities from a Datastream in dataArray result format:

	GET /v1.1/Datastreams(1)/Observations?$resultFormat=dataArray
	HTTP/1.1 200 OK
	Host: www.example.org
	Content-Type: application/json
	{
	"@iot.nextLink":
	"http://example.org/v1.1/Datastreams(1)/Observations?$resultFormat=dataArray&$skip=3",
	"@iot.count": 42,
	"value": [
	{
	"Datastream@iot.navigationLink": "http://example.org/v1.1/Datastreams(1)",
	"components": [
	"id",
	"phenomenonTime",
	"resultTime",
	"result"
],
	"dataArray": [
	[
	1,
	"2005-08-05T12:21:13Z",
	"2005-08-05T12:21:13Z",
	20
],
	[
	2,
	"2005-08-05T12:22:08Z",
	"2005-08-05T12:21:13Z",
	30
],
	[
	3,
	"2005-08-05T12:22:54Z",
	"2005-08-05T12:21:13Z",
	0
]
]
	}
]
	}
	Example 36:

an example of getting Observation entities from a MultiDatastream in dataArray result format

	{
	"@iot.nextLink":
	"http://example.org/v1.1/MultiDatastreams(1)/Observations?$resultFormat=dataArray&$ski
	p=3",
	"@iot.count": 42,
	"value": [
	{
	"MultiDatastream@iot.navigationLink":
	"http://example.org/v1.1/MultiDatastreams(1)",
	"components": [
	"id",
	"phenomenonTime",
	"resultTime",
	"result"
],
	"dataArray": [
	[
	1,
	"2010-12-23T11:20:00-0700",
	"2010-12-23T11:20:00-0700",
	[
	10.2,
	65,
	"clear"
]
],
	[
	2,
	"2010-12-23T11:22:08-0700",
	"2010-12-23T11:20:00-0700",
	[
	11.3,
	63,
	"clear"
]
],
	[
	3,
	"2010-12-23T11:22:54-0700",
	"2010-12-23T11:20:00-0700",
	[
	9.8,
	67,
	"clear"
]
]
	GET /v1.1/MultiDatastreams(1)/Observations?$resultFormat=dataArray]
	HTTP/1.1 200 OK }
	Host: www.example.org]
	Content-Type: **application/json }

Table 30 .

 30 Properties of creating Observation entities with dataArray

	Name	Definition					Data type	Multiplicity
								and use
	Datastream	The unique identifier of the Datasteam	The	unique	One
		linking to the group of Observation entities	identifier of a	(mandatory)
		in the dataArray.				Datastream
	components	An ordered array of Observation property	An ordered array	One
		names whose matched values are included	of	Observation	(mandatory)
		in	the	dataArray.	At	least	the	property names
		phenomenonTime and result properties
		SHALL be included. To establish the link
		between	an	Observation	and	a
		FeatureOfInterest, the component name is
		"FeatureOfInterest/id"	and	the
		FeatureOfInterest ids should be included in
		the dataArray array. If no FeatureOfInterest
		id is presented, the FeatureOfInterest will
		be created based on the Location entities of
		the linked Thing entity by default.

 Table 24 by linking to existing entities with a single request, check if the server responds as defined in this specification. Create an Observation entity for a Datastream without any Observations and the Observation creation request does not create a new or linking to an existing FeatureOfInterest, check if the service creates a new FeatureOfInterest for the created Observation with the location property of the Thing's Location entity. Create an Observation entity for a Datastream that already has Observations and the Observation creation request does not create a new or linking to an existing FeatureOfInterest, check if the service automatically links the newly created Observation with an existing FeatureOfInterest whose location property is from the Thing's Location entity. Create an Observation entity and the Observation creation request does not include resultTime, check if the resultTime property is created with a null value. Create a Location for a Thing entity, check if the Thing has a HistoricalLocation created by the service according to the Location entity.

	Date	Release	Author	Paragraph modified	Description
	2019-08-22 1.1	Hylke van	13. SensorThings Data	Explain query parameters when
			der Schaaf	Array Extension	used with dataArray extension;
					Changed examples to use absolute
					navigation links; Add @iot.nextLink
					and @iot.count to the examples;
					Fixed wording of test method; Fixed
					incorrect relative navigation link;
					Removed unexplained
					dataArray@iot.count elements from
					examples.
	2019-08-22 1.1	Hylke van	2. Conformance	Grouped data model related
			der Schaaf		requirements and conformance
					classes into a datamodel class.
	2019-09-09 1.1	Brian Miles 8.2.5. Sensor	Expand the Sensor encodingType
					with a ValueCode for
					webpages/URLs.
	2019-10-22 1.1	Hylke van	11. Batch Requests	Clarified batch-processing
			der Schaaf		referencing mechanisms; Remove
					example request headers: If-Match,
					Content-Transfer-Encoding.
	2019-12-04 1.1	Hylke van	7.7. SensorThings API	Added implications of conformance
			der Schaaf	and Security	class list for security extensions.
	2020-11-03 1.1	Hylke van	8.2. The Sensing	Fixed images; HistoricalLocation →
			der Schaaf	Entities; 12.	Thing relation name should be
				SensorThings	singular.
				MultiDatastream	
				extension	
	2020-11-11 1.1	Hylke van	9.3. Requesting Data	Corrected order of system query
			der Schaaf		options; Expanded items are
					implicitly selected.

//www.opengis.net/doc/is/sensorthings/1.https://docs.ogc.org/is/18-088/18-088.html

Requirements Class http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel Target Type Web Service Requirements class http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/entity-controlinformation Requirements class http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/thing Requirements class http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/location Requirements class http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/historicallocation Requirements class http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/datastream Requirements class http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/sensor Requirements class http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/observedproperty Requirements class http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/observation Requirements class http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/feature-ofinterest 8.1. Common Control Information Requirements Class http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/entity-control-information Target Type Web Service 8.2.7. Observation Requirements Class http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/observation Target Type Web Service Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/observation/p roperties Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/observation/r elations Dependency http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/entity-controlinformation/common-control-information Dependency urn:iso:dis:iso:19156:clause:7.2.2 An Observation is the act of measuring or otherwise determining the value of a property [OGC 10-004r3 and ISO 19156:2011] Req 15: datamodel/observation/properties Each Observation entity SHALL have the mandatory properties and MAY have the optional properties listed in Table 18. http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/observation/properties Req 16: datamodel/observation/relations Each Observation entity SHALL have the direct relation between an Observation entity and other entity types listed in Table 19. http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel/observation/relations Table 18. Properties of an Observation entity Example Request: http://example.org/v1.1/ Example Response: { "serverSettings": { "conformance": ["http://www.opengis.net/spec/iot_sensing/1.1/req/datamodel", "http://www.opengis.net/spec/iot_sensing/1.1/req/resource-path/resource-pathto-entities", "http://www.opengis.net/spec/iot_sensing/1.1/req/request-data", "http://www.opengis.net/spec/iot_sensing/1.1/req/create-update-delete/createentity", "http://www.opengis.net/spec/iot_sensing/1.1/req/create-update-delete/link-toexisting-entities", "http://www.opengis.net/spec/iot_sensing/1.1/req/create-update-delete/deepinsert", "http://www.opengis.net/spec/iot_sensing/1.1/req/create-update-delete/deepinsert-status-code", "http://www.opengis.net/spec/iot_sensing/1.1/req/create-update-delete/updateentity", "http://www.opengis.net/spec/iot_sensing/1.1/req/create-update-delete/deleteentity", "http://www.opengis.net/spec/iot_sensing/1.1/req/create-updatedelete/historical-location-auto-creation", "http://www.opengis.net/spec/iot_sensing/1.1/req/create-observations-viamqtt/observations-creation", "http://www.opengis.net/spec/iot_sensing/1.1/req/receive-updates-viamqtt/receive-updates"], "http://www.opengis.net/spec/iot_sensing/1.1/req/receive-updates-via-mqtt/receiveupdates": { "endpoints": ["mqtt://server.example.com:1833", "ws://server.example.com/sensorThings",] }, "http://www.opengis.net/spec/iot_sensing/1.1/req/create-observations-viamqtt/observations-creation": { "endpoints": ["mqtts://server.example.com:8883", "wss://server.example.com:443/sensorThings"] } }, "value": [{ "name": "Things", Requirements Class Target Type Web Service Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/order Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/expand Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/select Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/status-code Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/querystatus-code Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/orderby Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/top Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/skip Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/pagination Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/count Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/filter Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/built-infilter-operations Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/request-data/built-inquery-functions Dependency http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1protocol/odata-v4.0-errata02-os-part1-protocolcomplete.html#_Toc406398292 Dependency http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1protocol/odata-v4.0-errata02-os-part1-protocolcomplete.html#_Toc406398297 Dependency http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1protocol/odata-v4.0-errata02-os-part1-protocolcomplete.html#_Toc406398299 Chapter 11. Batch Requests Requirements Class http://www.opengis.net/spec/iot_sensing/1.1/req/batch-request Target Type Web Service Requirement http://www.opengis.net/spec/iot_sensing/1.1/req/batch-request/batchrequest Dependency http://docs.oasis-open.org/odata/odata/v4.0/errata02/os/complete/part1protocol/odata-v4.0-errata02-os-part1-protocolcomplete.html#_Toc406398359 Req 39: batch-request/batch-request The batch-processing of the SensorThings service SHALL be as defined in Chapter 11. http://www.opengis.net/spec/iot_sensing/1.1/req/batch-request/batch-request

Table of Figures

• Figure 1

Abstract

The OGC SensorThings API provides an open, geospatial-enabled and unified way to interconnect the Internet of Things (IoT) devices, data, and applications over the web. At a high level the OGC SensorThings API provides two main functionalities and each function is handled by a part. The two parts are the Sensing part and the Tasking part. The Sensing part provides a standard way to manage and retrieve observations and metadata from heterogeneous IoT sensor systems. This document is version 1.1 and it is extending the first version of Sensing part. Example 5: An example of a Sensor entity { "@iot.id": 1, "@iot.selfLink": "http://example.org/v1.1/Sensors(1)", "Datastreams@iot.navigationLink": "Sensors(1)/Datastreams", "name": "TMP36", "description": "TMP36 -Analog Temperature sensor", "encodingType": "application/pdf", "metadata": "http://example.org/TMP35_36_37.pdf" } { "@iot.count":84, "value": [{ "@iot.id": 1, "@iot.selfLink": "http://example.org/v1.1/ObservedProperties(1)", "Datastreams@iot.navigationLink": "ObservedProperties(1)/Datastreams", "description": "The dew point is the temperature at which the water vapor in air at constant barometric pressure condenses into liquid water at the same rate at which it evaporates.", "name": "DewPoint Temperature", "definition": "http://dbpedia.org/page/Dew_point" }, { "@iot.id ": 2, "@iot.selfLink": "http://example.org/v1.1/ObservedProperties(2)", "Datastreams@iot.navigationLink": "ObservedProperties(2)/Datastreams", "description": "Relative humidity is the ratio of the partial pressure of water vapor in an air-water mixture to the saturated vapor pressure of water at a prescribed temperature.", "name": "Relative Humidity", "definition": "http://dbpedia.org/page/Relative_humidity" },{…},{…},{…}], "@iot.nextLink":"http://example.org/v1.1/ObservedProperties?$top=5&$skip=5" }

ObservedProperty

Usage 3: address to an entity in a collection

Users can address to a specific entity in an entity set by place the unique identifier of the entity between brace symbol "()" and put after the entity set name. The service then returns the entity with all its properties.

URI Pattern: SERVICE_ROOT_URI/ENTITY_SET_NAME(ID_OF_THE_ENTITY)

Response: A JSON object of the entity (with all its properties) that holds the specified id in the entity set.

Example 12: an example request that addresses to an entity in a collection

Example Request: http://example.org/v1.1/Things(1)

Usage 4: address to a property of an entity

Users can address to a property of an entity by specifying the property name after the URI addressing to the entity. The service then returns the value of the specified property. If the property has a complex type value, properties of that value can be addressed by further property name composition.

If the property is single-valued and has the null value, the service SHALL respond with 204 No Content. If the property is not available, for example due to permissions, the service SHALL respond with 404 Not Found.

[Adapted from OData 4.0-Protocol 11. { "resultTime": "2010-12-23T10:20:00-07:00" }

Usage 5: address to the value of an entity's property

To address the raw value of a primitive property, clients append a path segment containing the string $value to the property URL.

The default format for TM_Object types is text/plain using the ISO8601 format, such as 2014-03-01T13:00:00Z/2015-05-11T15:30:00Z for TM_Period and 2014-03-01T13:00:00Z for TM_Instant.

URI

Pattern:

SERVICE_ROOT_URI/ENTITY_SET_NAME(ID_OF_THE_ENTITY)/PROPERTY_NAME/$value

Response:

The raw value of the specified property of an entity that holds the id in the entity set. 2015-01-12T23:00:13-07:00

Usage 6: address to a navigation property (navigationLink)

As the entities in different entity sets may hold some relationships, users can request the linked entities by addressing to a navigation property of an entity. The service then returns one or many entities that hold a certain relationship with the specified entity.

URI Pattern: SERVICE_ROOT_URI/ENTITY_SET_NAME(ID_OF_THE_ENTITY)/LINK_NAME

Response: A JSON object of one entity or a JSON array of many entities that holds a certain relationship with the specified entity.

Usage 7: address to an associationLink

As the entities in different entity sets may hold some relationships, users can request the linked entities' selfLinks by addressing to an association link of an entity. An associationLink can be used to retrieve a reference to an entity or an entity set related to the current entity. Only the selfLinks of related entities are returned when resolving associationLinks.

URI Pattern: SERVICE_ROOT_URI/ENTITY_SET_NAME(KEY_OF_THE_ENTITY)/LINK_NAME/$ref

Response:

A JSON object with a value property. The value of the value property is a JSON array containing one element for each associationLink. Each element is a JSON object with a name/value pairs. The name is @iot.selfLink and the value is the selfLink of the related entity.

Example 16: an example of addressing to an association link

Usage 8: nested resource path

As users can use navigation properties to link from one entity set to another, users can further extend the resource path with unique identifiers, properties, or links (i.e., Usage 3,4 and 6). The OGC SensorThings API adapts many of OData's system query options and their usage. These query options allow refining the request.

Requesting Data

The result of the service request is as if the system query options were evaluated in the following order.

{ "values": [{ "@iot.id": 1, "@iot.selfLink": "http://example.org/v1.1/Things(1)", "Locations@iot.navigationLink": "Things(1)/Locations", "Datastreams@iot.count":1, "Datastreams": [{ "@iot.id": 1, "@iot.selfLink": "http://example.org/v1.1/Datastreams(1)", "name": "oven temperature", "description": "This is a datastream measuring the air temperature in an oven.", "unitOfMeasurement": { "name": "degree Celsius", "symbol": "°C", "definition": "http://unitsofmeasure.org/ucum.html#para-30" }, "observationType": "http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_Measurement", "observedArea": { "type": "Polygon", "coordinates":

"phenomenonTime": "2014-03-01T13:00:00Z/2015-05-11T15:30:00Z", "resultTime": "2014-03-01T13:00:00Z/2015-05-11T15:30:00Z" }], "HistoricalLocations@iot.navigationLink": "Things(1)/HistoricalLocations", "description": "This thing is a convection oven.", "name": "Oven", "properties": { "owner": "John Doe", "color": "Silver" } }] } Query options can be applied to the expanded navigation property by appending a semicolonseparated list of query options, enclosed in parentheses, to the navigation property name. Allowed system query options are $filter, $select, $orderby, $skip, $top, $count, and $expand.

Example

[Adapted from OData 4.0-URL 5. 1.2] Example Request 4: http://example.org/v1.1/Datastreams(1)?$expand=Observations($filter=result eq 1) returns the Datastream whose id is 1 as well as its Observations with a result equal to 1.

$select

Req 24: request-data/select The $select system query option requests the service to return only the properties explicitly requested by the client. The value of a $select query option SHALL be a comma-separated list of selection clauses. Each selection clause SHALL be a property name (including navigation property names). In the response, the service SHALL return the specified content, if available, along with any available expanded navigation properties.

[Adapted from OData 4.0-Protocol 11.2. 4 The $orderby system query option specifies the order in which items are returned from the service. The value of the $orderby system query option SHALL contain a comma-separated list of expressions whose primitive result values are used to sort the items. A special case of such an expression is a property path terminating on a primitive property.

The expression MAY include the suffix asc for ascending or desc for descending, separated from the property name by one or more spaces. If asc or desc is not specified, the service SHALL order by the specified property in ascending order.

Null values SHALL come before non-null values when sorting in ascending order and after nonnull values when sorting in descending order.

Items SHALL be sorted by the result values of the first expression, and then items with the same value for the first expression SHALL be sorted by the result value of the second expression, and so on.

[Note: Adapted from OData

$top

Req 26: request-data/top The $top system query option specifies the limit on the number of items returned from a collection of entities. The value of the $top system query option SHALL be a non-negative integer n. The service SHALL return the number of available items up to but not greater than the specified value n.

If no unique ordering is imposed through an $orderby query option, the service SHALL impose a stable ordering across requests that include $top.

[Note: Adapted from OData 4.0-Protocol 11.2. 5.3] In addition, if the $top value exceeds the service-driven pagination limitation (i.e., the largest number of entities the service can return in a single response), the $top query option SHALL be discarded and the server-side pagination limitation SHALL be imposed. returns the first five Observation entries after sorted by the phenomenonTime property in descending order.

$skip

Req 27: request-data/skip The $skip system query option specifies the number for the items of the queried collection that SHALL be excluded from the result. The value of $skip system query option SHALL be a nonnegative integer n. The service SHALL return items starting at position n+1.

Where $top and $skip are used together, $skip SHALL be applied before $top, regardless of the order in which they appear in the request.

If no unique ordering is imposed through an $orderby query option, the service SHALL impose a stable ordering across requests that include $skip.

[Note: Adapted from OData http://example.org/v1.1/Observations?$skip=2&$top=2&$orderby=resultTime returns the third and fourth Observation entities from the collection of all Observation entities when the collection is sorted by the resultTime property in ascending order.

$count

Req 28: request-data/count The $filter system query option allows clients to filter a collection of entities that are addressed by a request URL. The expression specified with $filter is evaluated for each entity in the collection, and only items where the expression evaluates to true SHALL be included in the response. Entities for which the expression evaluates to false or to null, or which reference properties that are unavailable due to permissions, SHALL be omitted from the response.

[Adapted from Data 4.0-URL Conventions 5.1 .1] The expression language that is used in $filter operators SHALL support references to properties [Adapted from Data 4.0-Protocol, 11.4.

Create an Entity]

In addition, the link between entities SHALL be established upon creating an entity. Two use cases SHALL be considered: (1) link to existing entities when creating an entity, and (2) create related entities when creating an entity. The requests for these two use cases are described in the following subsection.

When clients create resources in a SensorThings service, they SHALL follow the integrity constraints listed in Table 24. For example, a Datastream entity SHALL link to a Thing entity. When a client wants to create a Datastream entity, the client needs to either (1) create a linked Thing entity in the same request or (2) link to an already created Thing entity. The complete integrity constraints for creating resources are shown in the following table.

Special case #1 -When creating an Observation entity that links to a FeatureOfInterest entity:

Sometimes the FeatureOfInterest of an Observation is the Location of the Thing. For example, a wifi-connected thermostat's temperature observation's feature-of-interest can be the location of the smart thermostat, that is the room where the smart thermostat is located in.

In this case, when a client creates an Observation entity, the client SHOULD omit the link to a FeatureOfInterest entity in the POST body message and SHOULD not create a related FeatureOfInterest entity with deep insert. And if the service detects that there is no link to a FeatureOfInterest entity in the POST body message that creates an Observation entity, the service SHALL either (1) create a FeatureOfInterest entity by using the location property from the Location of the Thing entity when there is no FeatureOfInterest whose location property is from the Location of the Thing entity or (2) link to the FeatureOfInterest whose location property is from the Location of the Thing entity. Special case #2: In the context of IoT, many Observations' resultTime and phenomenonTime cannot be distinguished or the resultTime is not available. In this case, when a client creates an Observation entity, the client MAY omit the resultTime and the service SHOULD assign a null value to the resultTime. http://www.opengis.net/spec/iot_sensing/1.1/req/create-update-delete/create-entity POST /v1.1/Observations HTTP/1.1 Host: example.org Content-Type: application/json { "Datastream": { "@iot.id": 1 }, "phenomenonTime": "2013-04-18T16:15:00-07:00", "result": 124, "FeatureOfInterest": { "@iot.id": 2 } }

Create related entities when creating an entity

Req 35: create-update-delete/deep-insert A request to create an entity that includes related entities, represented using the appropriate inline representation, is referred to as a "deep insert". A SensorThings service that supports entity creation SHALL support deep insert.

If the inline representation contains a value for a computed property (i.e., id), the service SHALL ignore that value when creating the related entity.

On success, the service SHALL create all entities and relate them. On failure, the service SHALL NOT create any of the entities. POST /v1.1/Things HTTP1.1 Host: example.org Content-Type: application/json { "description": "This an oven with a temperature datastream.", "name": "oven", "Locations": [{ "name": "CCIT", "http://sweet.jpl.nasa.gov/ontology/property.owl#DewPointTemperature", "description": "The dewpoint temperature is the temperature to which the air must be cooled, at constant pressure, for dew to form. As the grass and other objects near the ground cool to the dewpoint, some of the water vapor in the atmosphere condenses into liquid water on the objects." }, "Sensor": { "name": "DS18B20", "description": "DS18B20 is an air temperature sensor…", "encodingType": "application/pdf", "metadata": "http://datasheets.maxim-ic.com/en/ds/DS18B20.pdf" } }] }

URI Pattern

An URI addressing to a single entity.

Header

Content-Type: application/json

Message Body

A single entity representation including a subset of properties for the specified collection.

Response

On success, the response SHALL be a valid success response. In addition, when the client sends an update request to a valid URL where an entity does not exist, the service SHALL fail the request.

Upon successful completion, the service must respond with 200 OK or 204 No Content. Regarding all the HTTP status code, please refer to the HTTP Status Code section.

Delete an entity

Req 38: create-update-delete/delete-entity To delete an entity in a collection a SensorThings service SHALL follow the requirements as defined in Section 10.4. http://www.opengis.net/spec/iot_sensing/1.1/req/create-update-delete/delete-entity

Request

A successful DELETE request to an entity's edit URL deletes the entity. The request body SHOULD be empty.

Services SHALL implicitly remove relations to and from an entity when deleting it; clients need not delete the relations explicitly.

Services MAY implicitly delete or modify related entities if required by integrity constraints. Table 25 lists SensorThings API's integrity constraints when deleting an entity.

HTTP Method

DELETE

URI Pattern

An URI addressing to a single entity. { "name": "DS18B20", "description": "DS18B20 is an air temperature sensor", "encodingType": "application/pdf", "metadata": "http://datasheets.maxim-ic.com/en/ds/DS18B20.pdf" } --changeset_77162fcd-b8da-41ac-a9f8-9357efbbd Content-Type: application/http POST /v1.1/Things(5)/Datastreams HTTP/1.1 Host: host Content-Type: application/json Content-Length: ### { "name": "Temperature Thing 5", "description": "The temperature of thing 5", "ObservedProperty: {"@iot.id": 12}, "Sensor": {"@iot.id": "$sensor1"} } --changeset_77162fcd-b8da-41ac-a9f8-9357efbbd----batch_36522ad7-fc75-4b56-8c71-56071383e77b-- A MultiDatastream groups a collection of Observations and the Observations in a MultiDatastream have a complex result type.

The MultiDatastream extension entities are depicted in Figure 3.

The size and the order of each element of a MultiDatastream's unitOfMeasurements array (i.e., MultiDatastream(id)/unitOfMeasurements) SHALL match the size and the order of each element of the related ObservedProperties collection (i.e., MultiDatastreams(id)/ObservedProperties).

The size and the order of each element of a MultiDatastream's unitOfMeasurements array (i.e., MultiDatastreams(id)/unitOfMeasurements) SHALL match the size and the order of each element of all related Observations' result (i.e., MultiDatastreams(id)/Observations?$select=result).

The size and the order of each element of a MultiDatastream's unitOfMeasurements array (i.e., MultiDatastreams(id)/unitOfMeasurements) SHALL match the size and the order of each element of the MultiDatastream's multiObservationDataTypes array (i.e., MultiDatastreams(id)/multiObservationDataTypes).

When a complex result's element does not have a unit of measurement (e.g., a

OM_TruthObservation type), the corresponding unitOfMeasurement element SHALL have null values.

http://www.opengis.net/spec/iot_sensing/1.1/req/multi-datastream/constraints

Example 32: MultiDatastream entity example 1

{ "value": [{ "@iot.id": 1, "@iot.selfLink": "http://example.org/v1.1/ObservedProperties(1)", "Datastreams@iot.navigationLink": "ObservedProperties(1)/Datastreams", "MultiDatastreams@iot.navigationLink": "ObservedProperties(1)/ MultiDatastreams", "description": "The dew point is the temperature at which the water vapor in a sample of air at constant barometric pressure condenses into liquid water at the same rate at which it evaporates. At temperatures below the dew point, water will leave the air.", "name": "Dew point temperature" }, { "@iot.id ": 2, "@iot.selfLink": "http://example.org/v1.1/ObservedProperties(2)", "Datastreams@iot.navigationLink": "ObservedProperties(2)/Datastreams", "MultiDatastreams@iot.navigationLink": "ObservedProperties(2)/ MultiDatastreams", "description": "Relative humidity (abbreviated RH) is the ratio of the partial pressure of water vapor to the equilibrium vapor pressure of water at the same temperature.", "name": "Relative Humidity" }, { "@iot.id": 3, "@iot.selfLink": "http://example.org/v1.1/ObservedProperties(3)", "Datastreams@iot.navigationLink": "ObservedProperties(3)/Datastreams", "MultiDatastreams@iot.navigationLink": "ObservedProperties(3)/MultiDatastreams", "description": "Visibility is a measure of the distance at which an object or light can be clearly discerned. ", "name": "Visibility (Weather)" }] } Example 34: an example Observation of the above MultiDatastream: Please note that the order of the elements in the result array match (1) the order of the related ObservedProperties (i.e., Observation(id)/MultiDatastreams(id)/ObservedProperties), (2 (2) create Observation entities with dataArray.

Retrieve a Datastream's Observation entities in dataArray

In SensorThings services, users are able to request for multiple Observation entities and format the entities in the dataArray format. When a SensorThings service returns a dataArray response, the service groups Observation entities by Datastream or MultiDatastream, which means the Observation entities that link to the same Datastream or the same MultiDatastream are aggregated in one dataArray.

Request

In 24. The two special cases defined in Req 33 are also applied in the case of creating Observations with MQTT Publish.

Link to existing entities when creating an Observation entity

To link to existing entities when creating an Observation entity with MQTT, the conditions in Req 34 is applied.

Create related entities when creating an Observation entity (deep insert)

To create related entities when creating an entity with MQTT, the condition in Req 35 is applied. Response: When the value of the subscribed property is changed, the service returns a JSON object.

Receive updates with MQTT Subscribe

The returned JSON object follows as defined in Section 9. Note: In the case of an entity's property is updated, it is possible that the selected properties are not the updated property, so that the returned JSON does not reflect the update.

A.5. SensorThings API MultipleDatastream Tests

This section contains the conformance classes for the SensorThings API MultiDatastream extension.

That means a SensorThings API service that allows clients to group a collection of observations' results into an array (i.e., a complex result type) needs to pass the conformance tests defined in this section.

A.5.1 Conformance class: SensorThings API MultiDatastream

Conformance class id: http://www.opengis.net/spec/iot_sensing/1.1/conf/multi-datastream

Dependencies:

Test method

Inspect the full JSON object of a MultiDatastream entity (i.e., without $select) to identify, if each entity has the mandatory properties and relations, and fulfill the constraints defined in the corresponding requirements.

A.6. SensorThings API Data Array Extension

This section contains the conformance classe for the SensorThings API data array extension. That means a SensorThings API service that allows clients to request the compact data array encoding defined in this specification needs to pass the conformance tests defined in this section.

A.