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Highlights
Material requirements and impacts of the building sector in the Shared Socioeconomic Pathways
Hugo Le Boulzec,Sandrine Mathy,François Verzier,Baptiste Andrieu,Daniel Monfort-Climent,Olivier Vidal

• The prospective regional building stocks of seven scenarios are compared.
• The regional stocks and flows of base materials are estimated.
• Strong inequalities are observed in the projected in-use stocks per capita of materials.
• The recycled concrete aggregates (RCA) could reduce the landfills stocks if implemented quickly on a large scale.
• The green concrete mixes could allow to significantly decrease the energy demand of concrete production.
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A B S T R A C T
The significant weight of the building sector in global material demand has been addressed in several
publications, but a lack of consideration of the energy-materials nexus was identified. To fill this gap,
we developed a stock-flow dynamic model from 1950 to 2100, using scenarios of the International
Energy Agency and the Shared Socioeconomic Pathways of the academic literature. We find that
(i) the increasing stocks in the less developed countries results in a rise of the inflows; (ii) strong
inequalities are observed in the in-use stocks per capita of materials in the SSPs, despite optimistic
material intensities projection, (iii) a growing materials demand translates into larger final energy
demand of material production, which could question the feasibility of some low-energy demand
scenarios, and that (iv) the recycled concrete aggregated display a significant potential to enhance the
reduction of accumulated concrete stocks in landfills and green concrete could decrease the energy
demand of concrete production. We furthermore highlight the crucial temporal aspect of policies to
successfully implement these solutions, as long lifetimes are observed in the building sector.

1. Introduction
The conjunction of a soaring human demography over

the 20𝑡ℎ century and a rapid improvement of housing condi-
tions has driven the increase of the final energy demand in
the building sector. It grew from 60 EJ in 1973 to more than
121 EJ in 2019 (IEA, 2021), representing approximately
40% of the global final energy demand. In a context of
rapid development of emerging countries and of increasing
of environmental concerns, a better understanding of the
drivers of the energy demand and environmental impacts of
the building sector has therefore become a growing topic in
the academic and institutional literature1. However, the op-
erational phase of building has gathered most of the attention
in prospective studies, and we identify a lack of analysis
of the energy-raw material nexus in the embodied phase.
Industrialization of countries relies on the development of
material-intensive infrastructures, which could have an im-
pact on energy availability. We further develop this topic
in this section by discussing the embodied phase (Section
1.1), the dynamic and prospective material modeling studies
(Section 1.2) and material engineering (Section 1.3).
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1The development of building energy and infrastructures databases in
Europe or the USA shows the growing importance of the understanding of
the building sector energy demand.

1.1. The need to better evaluate the embodied
energy of buildings

The energy demand of the building sector is segmented
between the operational phase and the embodied phase,
which is defined as "the total energy used to construct,
maintain, and finally demolish a building" (Azari and Ab-
basabadi, 2018). The operational phase has been thoroughly
studied over the past decades and has led to a better un-
derstanding of the leverages to achieve higher energy effi-
ciency in the building sector, such as the design (Pacheco
et al., 2012) or the role of occupants (Yang et al., 2014;
Zhang et al., 2018). It has allowed the implementation of
energy efficiency policies, such as in the European Union
(Economidou et al., 2020), where an improvement of house-
hold energy efficiency by 29% has been observed between
2000 and 2019 (Rousselot and Pinto Da Rocha, 2021). The
residential segment has received much of the focus, despite
the potential for energy efficiency in the non-residential
segment (Ruparathna et al., 2016), which explained the
increase of the share of the non-residential segment in the
building final energy demand over the last two decades (IEA,
2021). With the extensive knowledge on the operational
phase of buildings, the embodied phase has progressively
gained attention (Chastas et al., 2016; Azari and Abbasabadi,
2018). The bottom-up approach describing the materials and
their stocks and flows within the building sector has proven
to provide useful results to develop strategies to reduce
embodied energy and environmental impacts.
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1.2. Dynamic materials modeling of the building
sector

The analysis of the social metabolism2 has been a grow-
ing research field over the past 20 years. Initial studies
developed static top-down approaches of the stocks and
flows of materials embedded in human societies3 and a
growing trend for dynamic analysis has rapidly been ob-
served through dynamic material flows analysis (MFA). A
special emphasis is placed on the building sector in the
literature, as it represents a significant share of base materials
demand4. Several recent studies have proposed reviews of
the materials modeling in the building sector. They allowed
a better understanding of the methodological approaches
displayed in the literature (Göswein et al., 2019; Nasir et al.,
2021), highlighted the substantial role of assumptions on
the outcomes (Augiseau and Barles, 2017) and provided a
comparison of the methods to quantify the material content
of construction and demolition wastes (Wu et al., 2014).

We have identified 21 dynamic MFA studies modelling
base materials using a bottom-up approach and focusing
on the building sector, on a national, multinational or
global scale5. The analysis were mainly conducted at a
national level, which enables to grasp the specificity of
local stock and flow dynamics, and improve data accu-
racy, especially concerning building lifetime and material
intensities (Augiseau and Barles, 2017). Probably due to
the low availability of estimates of building surfaces, only
three bottom-up studies computed material stocks and flows
of materials at regional or multi-regional scale (Mastrucci
et al., 2021). They display a focus on materials in a waste
framework (Wiedenhofer et al., 2015) and on the prospective
materials stocks and flows in a socioeconomic pathways,
with a thorough disaggregation of the residential and non-
residential buildings types (Marinova et al., 2020; Deetman
et al., 2020). However, none of these multi-regional studies
provide insights about the analysis of the outcomes in the
energy-materials nexus.
1.3. The role of materials engineering to reduce

energy demand and environmental impacts
The consideration of the stocks and flows within the

energy-materials nexus represents a rising topic6. Indeed,
2The social metabolism-or socioeconomic metabolism-"constitutes the

self-reproduction and evolution of the biophysical structures of human so-
ciety. It comprises those biophysical transformation processes, distribution
processes, and flows, which are controlled by humans for their purposes.
The biophysical structures of society (‘in use stocks’) and socioeconomic
metabolism together form the biophysical basis of society." (Pauliuk and
Hertwich, 2015)

3For instance at a regional level in the Stocks and Flows Project
(Graedel et al., 2002).

4The base materials are defined as the materials used for structural uses,
and for which a low substitution potential is observed. It includes aluminum,
copper, concrete, iron and the materials mostly used for alloy steel making
(manganese, chromium or nickel).

5A detail of the identified publications is provided in the Supplemen-
tary Information. We observe that the Chinese perimeter represents almost
half of these publications.

6The reader can refer to recent publications such as Giurco et al. (2014);
McLellan (2017); Vidal et al. (2017) or Elshkaki (2019). The inclusion of

the share of GHG emissions from materials production
increased from 15% of global GHGs in 1995 to 23% in 2015
(Hertwich et al., 2019). The concrete sector alone repre-
sented between 6 and 8% of global energy demand in 2016
(Bataille, 2019; Andrew, 2017). In parallel, the construction
and demolition wastes (CDW) accounted for more than 30%
of the global produced solid wastes in 2020 (Ginga et al.,
2020). In the perspective of reducing the environmental
impacts of concrete, new processes of concrete production,
through recovery, recycling and the use of other materials in
concrete manufacturing are developed and studied.

Japan or the Netherlands achieve close to 100% concrete
recycling rate by recycling concrete into new structural
applications or in lower grade uses such as road (Tam, 2009;
Xicotencatl, 2017). It allows considerable reduction of the
environmental impacts of construction and demolition waste
(CDW) by lowering their amount in landfills and decreasing
the need for production. Concrete is recycled in the form
of aggregate by a crushing process, partly replacing natural
aggregate content in the concrete production7. However,
the different types of recycled aggregates suffer from a
lack of confidence from construction actors and are rarely
used in structural applications (Silva et al., 2019; European
Environment Agency, 2021). A growing number of publica-
tions focus on the evaluation of mechanical and durability
performance of recycled aggregates concrete (RAC) using
recycled concrete aggregates (RCA) replacement, showing
that several parameters could allow RCA replacement, such
as the structure of the aggregates (Silva et al., 2014; Ve-
rian et al., 2018; Guo et al., 2018), the process conditions
(Thomas et al., 2018) or further enhancement techniques
(Verian et al., 2018).

The development of green concrete8 also aims to re-
duce the environmental impact. It is a low-carbon concrete,
which production mainly relies on industrial or agricul-
tural by-products, nanoparticles and advanced techniques to
further understand concrete structures (Vishwakarma and
Uthaman, 2020). Given that most of the energy demand
and environmental impacts of concrete production occurs
during cement production, the replacement of primary ma-
terials by waste materials reduces lower impacts of concrete
production (Reiners and Palm, 2015). The use of wastes
in concrete production has been implemented for decades
in the concrete industry through supplementary cementi-
tious materials (SCM)9. The most common SCM are coal
fly ash (CFA)10, blast furnace slags (BFS)11, silica fume,
resource studies within a broader nexus has been studied by Bleischwitz
et al. (2018a)

7Shares of 12% to 29% of recycled concrete were observed in German,
the Netherlands and the United Kingdom in 2012 and 2013 (Reiners and
Palm, 2015)

8"Green concrete" is referred to as green concrete in the text. However,
it is a low-carbon concrete and not a carbon-free material.

9The Lafarge company defines Supplementary Cementitious Materials
(SCMs) as "materials that, when used in conjunction with portland cement,
portland limestone cement or blended cements, contribute to the properties
of hardened concrete through hydraulic and/or pozzolanic activity".

10CFA is a by-product of the combustion of coal to generate electricity.
11BFS is produced during the iron-making process.
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or metakaolin (Habert, 2014; Holland et al., 2016)12. The
performance and environmental impacts of green concrete
have attracted increasing interest in the literature (Siddique,
2014; Gu and Ozbakkaloglu, 2016; Paris et al., 2016; Jiang
et al., 2018; Sandanayake et al., 2020). Despite the extensive
research on concrete recovery and recycling, and on green
concrete, their implementation has never been conducted in
large scale scenarios.
1.4. Scope and objectives of this study

The present study aims at filling the identified gaps by
adopting a combined assessment of material requirements,
energy-raw materials nexus, and material engineering op-
tions to decrease the embodied energy of building infras-
tructures. These topics are usually considered separately
in the literature. It prevents any identification of potential
energy availability issues related to an increase in embodied
energy. In addition, the scenarios coverage considered in
this study is broader than in previous publications, which
allows to provide insights in material and embodied energy
requirements for the building sectors for various socioeco-
nomic pathways. We (1) estimate the base materials (con-
crete, aluminum, copper and steel) weight of construction
13 in Shared Socioeconomic Pathways and IEA scenarios,
(2) estimate the historical and prospective energy demand
of the materials production in the building sector and (3)
assess the potential of energy demand reductions of concrete
in the building sector through concrete recovery, recycling
and green concrete use. This paper is structured as follows.
Section 2 details the methods and data. Section 3 describes
the results, section 4 discusses them and section 5 concludes.

2. Methods and data
A four-step methodology was developed. First, historical

and prospective floor areas were obtained at a regional level.
Second, the base material stocks and flows in the building
sector were estimated using dynamic and regional material
intensities and lifetimes in the MATER model. Both primary
and secondary raw materials are estimated. Third, the final
energy of material production is estimated and compared
to the total final energy in transition scenarios. Lastly, their
energy demand was assessed and two solutions were con-
sidered for a reduction of concrete demand and impacts:
concrete recovery and recycling, and green concrete. Their
potential in reducing the embodied energy demand was
assessed in the selected scenarios.
2.1. Scenarios

Seven scenarios are considered: the Shared Socioeco-
nomic Pathways (SSP) combined with the Representative
Concentration Pathways (RCP), the Beyond 2 Degrees
Scenario (B2DS) and the Reference Technology Scenario

12Many other materials can also be used, such as foundry sand, wood
ash, plastic, glass and other ashes (Paris et al., 2016; Sandanayake et al.,
2020).

13Thermal renovation is related to energy management, and is referred
to as renovation in the rest of the study.

(RTS). They provide six socioeconomic futures which cor-
responds to six projections of the building surfaces. These
scenarios were selected for the wide range of socioeconomic
and climate pathways they depict and for their broad use
in the academic and institutional literature. Their main
characteristics are described in this section, and a summary
of the scenarios is provided in Table 1.
2.1.1. The Shared Socioeconomic Pathways combined

with Representative Concentration Pathways
The Shared Socioeconomic Pathways (SSP) feature mul-

tiple baseline (without climate policies) worlds because un-
derlying factors, such as population, economic growth, ed-
ucation, urbanization and the rate of technological devel-
opment, could lead to very different future emissions and
warming outcomes, even without climate policy. They are
based on five narratives intended to span the range of plau-
sible futures: sustainable and inclusive development in the
SSP1, middle of the road in the SSP2, regional rivalry in the
SSP3, inequality in the SSP4 and fossil-fueled development
in the SSP5 (O’Neill et al., 2017). They were developed
by the climate change research community in parallel of
the Representative Concentration Pathways (RCPs) that set
pathways for greenhouse gas concentrations and the amount
of warming that could occur by the end of the century (RCP
1.9 to RCP 8.5 W/m2)14 (Moss et al., 2010; van Vuuren et al.,
2011). SSPs and RCPs are combined are combined to assess
the efforts needed both to reduce GHG emissions and to
adapt according to the different levels of global warming of
the RCPs and the different socio-economic assumptions of
the SSP. Such trajectories are quantified with six Integrated
Assessment Models (IAMs) (Riahi et al., 2017). Five of
these IAMs are used as markers15 for a specific SSP16.

The SSPs were computed with a climate constraint
through the implementation of RCPs. The RCP 2.6 was
implemented on the SSP1, SSP2 and SSP3, while the RCP
4.5 was used on the SSP2, SSP3 and SSP4. In order to
provide an extreme case, the SSP5 baseline was further
selected (Table 1). The computation with the GCAM 5.4
model was selected because in this model, the regional
residential and non-residential floor areas are estimated for
32 regions from 1990 to 2100 through a logit approach
(Calvin et al., 2017). The building stock and floor areas
depend on socioeconomic assumptions (SSPs), but not on
the RCP.
2.1.2. The International Energy Agency scenarios

Two scenarios of the International Energy Agency were
selected: the Reference Technology Scenario (RTS) and the

14The RCP 1.9 translates into a average global warming of about 1.5°C.
It reaches at least 4°C in the RCP 8.5 (IPCC, 2021).

15A marker consists in a reference modeling of each SSP by an IAM,
which is used in climate policies analysis (Riahi et al., 2017). A further
computation of the five pathways in several of six selected IAMs allows for
a comparative analysis of the results.

16AIM/CGE for the SSP1 van Vuuren et al. (2017), MESSAGE-
GLOBIOM for the SSP2 (Fricko et al., 2017), IMAGE for the SSP3
(Fujimori et al., 2017), GCAM for the SSP4 (Calvin et al., 2017) and
REMIND-MAgPIE for the SSP5 (Fricko et al., 2017)
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Table 1
Summary of the socioeconomic characteristics of the selected scenarios.

Scenario
Computation
model Population

GDP
per capita

Average
global warming References

RTS
B2DS ETP-2017 High Low

2.7-3°C
<2°C IEA (2017)

SSP1 - RCP 2.6 GCAM 5.4 Low Medium 1.8°C
Kim et al. (2006)
O’Neill et al. (2014)

SSP2 - RCP 2.6 GCAM 5.4 Medium Medium 1.8°C
Kim et al. (2006)
O’Neill et al. (2014)

SSP3 - RCP 4.5 GCAM 5.4 High Low 2.7°C
Kim et al. (2006)
O’Neill et al. (2014)

SSP4 - RCP 4.5 GCAM 5.4 Medium Low 2.7°C
Kim et al. (2006)
O’Neill et al. (2014)

SSP5 baseline GCAM 5.4 Low High 4°C
Kim et al. (2006)
O’Neill et al. (2014)

Beyond 2°C Scenario (B2DS) (IEA, 2017). The RTS is a
baseline scenario that takes into account existing energy-and
climate-related commitments by countries, including Na-
tionally Determined Contributions pledged under the Paris
Agreement. The average temperature increase would reach
2.7°C to 3°C in 2100 (Table 1). Conversely, the B2DS pro-
poses an ambitious trajectory, with a 50% chance of limiting
the temperature increase to 2°C in 2100 by reaching carbon
neutrality by 2060 (Table 1). This requires unprecedented
efforts in all sectors at the global level, which translates in
particular into a drastic reduction in fossil fuel consumption
and a massive recourse to renovation (IEA, 2017). Both
scenarios display a similar residential and non-residential
building stock with different renovation policies, for nine
regions up to 2060.
2.2. The MATER model

The modeling methodology of this study relies on the
MATER (Multiregional Assessment of Technology, Energy
and Raw material) stocks and flows model (Figure 2) which
covers the entire energy chain and three end-use energy
sector. A stock-driven approach is considered to estimate
the primary and secondary materials requirements, and their
associated production energy and CO2 emissions (Vidal,
2021; Le Boulzec et al., 2022). The MATER model is a
Python version of the DyMEMDs model (Vidal et al., 2021;
Le Boulzec et al., 2022) with new features such as the
endogenization of the industry and electricity supply sectors.
2.2.1. MATER methodology

The building sector was segmented in two segments:
residential and non-residential. Historical surfaces data were
firstly used to calibrate logistic-based building stocks be-
tween 1900 and 2018, for nine multinational areas (Table
S1). Secondly, prospective floor areas and renovation strate-
gies were obtained from scenarios to compute the regional

residential and non-residential surfaces up to 210017. Mate-
rials intensities, end-of-life collection rate (EOR-CR), recy-
cling process efficiency rate (EOL-PR) and regional building
lifetimes distributions are then used to model base material
stocks and flows over time. Finally, the indirect energy
demand and CO2 emissions associated with the materials
production are estimated. The simplified methodology be-
hind the building module of the MATER model is presented
in Figure 1. Figure 2 displays more precisely the materials
stocks and flows loop used in the model. It was previously
described in Le Boulzec et al. (2022), and general model
equations are provided in the Supplementary Information.
2.2.2. Historical and prospective regional building

stocks
The stock-driven approach in the MATER model re-

quires historical and prospective building stock input data,
which were obtained from the literature and from the seven
selected scenarios (Section 2.1). The building stock is di-
vided between the residential and non-residential segments.
Few historical floor area data are available in the literature at
the regional scale. Pan et al. (2020) provided a modelling of
Chinese residential and commercial building stocks based on
historical data between 1996 and 2014, in accordance with
the results of Huo et al. (2019). Some data are available for
Europe as well, but the perimeter is usually limited to the Eu-
ropean Union countries. IEA (2014) reported residential and
services buildings floor areas data in 2000 and 2011, while
Harvey et al. (2014) provided insights into regional floor
areas per capita and Calvin et al. (2017) displayed national
and regional data in the GCAM model. At the prospective
level, seven different prospective trends of the building stock
evolution are depicted through the computation of seven
scenarios: the five Shared Socioeconomic Pathways in the
open-source GCAM 5.4 model (Kim et al., 2006) and the

17Except in the Low Energy Demand and the International Energy
Agency scenarios, see Section 2.1.
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Figure 1: Simplified methodology lying behind the MATER model. Adapted from Le Boulzec et al. (2022).

Figure 2: Key loop used in the MATER model to estimate the stocks and flows of materials during the construction and
maintenance of the infrastructure. Source: Le Boulzec et al. (2022)

RTS/B2DS scenarios modeled in the Energy Technology
Perspectives 2017 (ETP-2017) model (IEA, 2017). The sce-
narios are briefly described in Section 2.1.

The historical regional residential building floor areas
were then extrapolated back to 1900 with a logistic approach

based on GDP per capita18. The non-residential stock was
assumed to represent a constant share of the total stock from

18The logistic curve provides a useful tool to describe the behavior of the
infrastructures and materials stock through a three-phase profile: growth,
maturation and saturation(Bleischwitz et al., 2018b). It allows to compute
the limited "carrying capacity" of a system (Chen and Graedel, 2015). The

Le Boulzec et al.: Preprint submitted to Elsevier Page 5 of 19
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Figure 3: Global building floor areas in the selected scenarios.

1900 to 1990, and the shares observed in the SSPs from 1991
to 2018. The prospective surfaces were then considered from
2019 to 2100 for the SSPs and 2060 for the IEA scenarios.
However, the IEA (2018) showed significant differences in
the floor areas in 2017, and the prospective regional surfaces
were rescaled to fit the historical building stocks.
2.2.3. Intensities and recycling rates

The material scope of this study includes four base
materials (aluminum, concrete, copper and steel), which rep-
resent most of both the annual demand (USGS, 2021b) and
the environmental impacts of material production (Bataille,
2019). The dynamic end-of-life recycling rates from Le Boulzec
et al. (2022) were considered for aluminum, copper and
steel. The regional recovery and recycling shares of Tam
et al. (2018) and Reis et al. (2021) were used for concrete,
assuming no concrete was recovered in 1990. In order to es-
timate materials stocks and the input and output flows of the
building sector, regional and dynamic materials intensities
were considered. A further distinction was made between
residential and non-residential intensities. The residential
segment displays various levels of intensities, which is
explained by the different constructive modes in the areas.
Concrete dominates the mixes ahead of masonry and wood,
except in North America and Africa where wood remains the
most used materials (IEA, 2018). The non-residential seg-
ment encompasses various types of buildings (e.g. hospital,
industrial building, school, office, bar and restaurant...) with
different functionalities and only few disaggregated material
intensities data are available. Therefore, average values were
selected for this segment. As for the residential segment,
concrete remains dominant in the construction mix ahead
of steel, except in the North American segment where the
steel intensity is the highest. Dynamic material intensities
were considered to model the evolution of both the building
GDP/capita values were obtained from the Maddison historical statistics
and the population from the United nations population

materials mix19 over time and the amounts required. A logit
profile based on GDP was used to compute the materials
intensities, based on historical data from Müller (2006);
Ortlepp et al. (2016); IEA (2018) and Gontia et al. (2018)
for steel and concrete and from Ortlepp et al. (2016);
Kleemann et al. (2016); Ortlepp et al. (2018); ADEME et al.
(2018); Schipper et al. (2018); Dong et al. (2019); Marinova
et al. (2020) and Deetman et al. (2020) for aluminum and
copper. Given their structural nature in building, different
saturation levels were considered for steel and concrete20,
while the same saturation levels were selected for copper
and aluminum.

Finally, primary production energies estimated in Vidal
(2021) and Le Boulzec et al. (2022) were selected, as well
as the secondary production energies from Le Boulzec et al.
(2022). The historical data and the modeled intensities are
available the Supplementary Information.
2.3. Regional lifetimes

Lifetime represents an influential parameter in material
modeling (Hu et al., 2010), and its value carries significant
effects on infrastructure stock renewal and outputs (Müller
et al., 2014). In spite of this, the parameter is not well known
because of a lack of regional and empirical data (Cao et al.,
2019). Static values reduce the accuracy and undermine
the reach of studies, and dynamic lifetimes are increasingly
considered in the literature. Recent researches focus on
providing better insights about the lifetime dynamics (Zhou
et al., 2019; Cao et al., 2019), studying the impact of the
choice of statistical distribution (Miatto et al., 2017) and
analysing the impact of lifetime on building LCA results
(Aktas and Bilec, 2012; Marsh, 2017). However, the lack of
knowledge about the evolution of regional lifespans prevents
a correct estimation of dynamic lifespans in multi-regional
studies. Therefore, constant and regional mean lifetime were
considered, and a normal distribution was used. Due to a
lack of data about the non-residential building stocks lifetime
characteristics, similar values are considered for residential
and non-residential buildings. Current regional lifetimes
considered in the literature were used, and normal distribu-
tion were considered. A full documentation of the data and
the lifetime distributions are available in the Supplementary
Information.
2.4. Reducing the energy demand of concrete

Two main solutions for a reduction of concrete demand
and impacts are considered. Firstly, a growing recovery and
recycling of concrete is studied, and the potential reduction
of accumulated concrete in landfills is assessed. It allows
for a reduction in primary concrete. Then, green concretes

19For instance, a rising share of concrete observed in Japan and the
Western countries was observed after the Second World War, see Section
S2.5 of the Supplementary Information. However, no further evolution of
the mix was considered, such as the increasing use of wood.

20It is explained by the different materials mixes in building in the
considered areas. For example, more steel and wood building are observed
in the North American area (IEA, 2018).
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mixes based on industrial by-products and recycled aggre-
gates are used in the projected concrete demand, to estimate
a potential decrease of the impacts of concrete production.
The two solutions are computed in the selected scenarios to
estimate the associated energy demand.
2.4.1. Concrete recovery and recycling

The first solution is displayed in two successive steps.
The recovery potential (1) is firstly assessed. It then allows
for an estimation of a reduction of the landfills burden (2).
Few data are available on the regional recovery rates of con-
crete, and the European Union results on the recovery and
recycling of Construction and Demolition Wastes (CDW)
are not representative of the global CDW management21.
The rates displayed in Reis et al. (2021) and Tam et al. (2018)
were used to estimate the regional lost and recovered stocks
and flows, and were assumed to increase by 20% by 2060.
Dynamic rates were used, assuming that no concrete was
recovered in 1990.

The concrete is recovered in two types of aggregates. Re-
cycled aggregates (RA) are composed of several materials in
significant proportions and represents most of the recovered
flow, and recycled concrete aggregates (RCA) are mainly
made of concrete waste Marinković and Carević (2019). The
RA and RCA replace natural aggregated (NA) to produce re-
cycled aggregated concrete (RAC). Most of the RA and RCA
are currently used for non-structural applications (Behera
et al., 2014; Silva et al., 2019), but recent studies have shown
that high shares of RCA in RAC could be reached under
some process conditions (Thomas et al., 2018; Guo et al.,
2018; Verian et al., 2018). In order to estimate the reduction
of the concrete lost stock, a business-as-usual case and three
scenarios of progressive increase of RCA replacement of
NA in concrete production are considered (Table 2). No
replacement was assumed before 2025, and final replace-
ment share of 20% was assumed to be reached in 2040 or
2060, and 50% in 2060. The 20% replacement hypothesis
aims to compute a conservative scenario, in accordance with
the current limit in some European countries (Tang et al.,
2020), while the 50% scenario displays a more optimistic
case. RCA generation is only computed to estimate the
reduction of lost stock, and given the lack of consensus, no
energy demand and environmental impact reductions were
considered22. More information about the literature and the
methodology is available in the Supplementary Information.
The SI further proposes a 50% penetration case to compute
RCA replacement on a smaller regional perimeter.
2.4.2. Green concrete

The second solution considered is green concrete, which
is defined as low-carbon concrete. Mainly based on industry
or agriculture by-products, it allows to reduce the energy

21The European Union implemented a Waste Framework Directive,
which set quantitative objective by 2020.

22The energy demand of concrete production mostly occurs during ce-
ment production. The recycling of concrete has therefore little or no impact
on the overall concrete energy consumption (World Business Council for
and Sustainable Development, 2009).

demand and environmental impact of concrete production.
Four green concrete mixes were considered, based on two
types of replacements used from 2030 to 2100:

• Replacement of natural aggregates by various types of
recycled concrete aggregated23, or steel slag24;

• Replacement of Ordinary Portland cement, by coal fly
ash (CFA)25 or blast furnace slag (BFS)26.

The four mixes were used on a low penetration case
(20% of the concrete inflow) and a high penetration case
(100% of the concrete inflow). The composition and green
concrete environmental impacts were selected from Flower
and Sanjayan (2007); Turk et al. (2015) and Kurda et al.
(2018). The four mixes and their production energy and
emissions reductions are summarized in Table 3.
2.5. Sensitivity analysis

Little information on uncertainties were provided with
the data used in this study. In order to give insights about
main data and modeling choice related variability, a local
sensitivity analysis was conducted. Since material intensities
and energy intensities of material production have linear
effects in the computation, the analysis focuses on the mean
lifetime value in the normal distribution, for which both
variations of ± 20% were computed (Le Boulzec et al.,
2022) and a logit-based evolution was considered. Material
intensities and energy intensities of base material production
have linear effect throughout the calculation. We find that
the logit-based evolution has little impacts on the material
inflows. Conversely, we observe significant differences for ±
20% variations of the mean lifetime, which is explained by
the combined effects of different material intensities among
regions with various socioeconomic dynamics and the larger
inflow required to feed the in-use stock in a stock-driven
model.

3. Results
The stock-driven flow modeling approach conducted

offers a regional and dynamic analysis of materials, and their
production energy between 1950 and 2100 for the SSPs, and
2060 for the RTS and B2DS. The results are depicted in this
section. The global and regional level results are presented.
The SSP2 2p6 is referred to as SSP2, and the SSP3 4p5 is
referred to as SSP3 in this section.

23It includes fine RCA, coarse RCA and a mix of fine and coarse RCA.
Coarse and fine aggregates are defined by the size of their particles.

24Steel slag is a byproducts of steel manufacturing. The natural aggre-
gates are sometimes replaced by electric arc furnace steel slag (EAFSS),
which is produced during the electric arc furnace (EAF) steel manufacturing
process.

25Coal fly ash (CFA) is a by-products of coal combustion for power
generation.

26Blast furnace slag is a by-products of iron or steel during the blast
furnace manufacturing process.
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Scenario Replacement

RS1 Progressive increase from 0% in 2025 to 20% of RCA replacement in 2060

RS2 Progressive increase from 0% in 2025 to 50% of RCA replacement in 2060

RS3 Progressive increase from 0% in 2025 to 20% of RCA replacement in 2040

BAU No RCA replacement from 2025 to 2060

Table 2
Replacement scenarios of natural aggregates by recycled concrete aggregates.

Green concrete Replacement Production energy reduction Emissions reduction

GC1 30% CFA 19% 26%

GC2 60% CFA 38% 51%

GC3 60% CFA and 100% coarse RCA 60% 60%

GC4 40% BFS 22%

Table 3
Considered replacements in green concretes, using coal fly ash (CFA), recycled concrete aggregates (RCA) and blast furnace slag
(BFS). Sources : Flower and Sanjayan (2007); Turk et al. (2015) and Kurda et al. (2018)

3.1. Global in-use stocks and inflows of materials
3.1.1. Materials in-use stocks

The significant increase observed in the building stock
(Figure 3) has a direct impact on the materials embedded in
residential and non-residential buildings between 1950 and
2018. The concrete in-use stock grew from 9.7 to 211 Gt in
the period, while the steel in-use stock increased from 0.3 Gt
to 8.5 Gt, the aluminum in-use stock from 4.9 Mt to 375 Mt
and the copper in-use stock from 4.9 Mt to 266 Mt (Figure
4). The global building surface experiences an upward trend
in all the selected scenarios. Different profiles are however
observed. Monotonic growth is observed in the RTS, B2DS,
and SSP2-3 for all base materials, while non-monotonic
growth is shown in the SSP1 and SSP4-5. The in-use stocks
displays substantial differences among the scenarios. The
concrete stock reaches between 332 Gt (SSP4) and 546 Gt
(SSP5) in 2100, while the steel stock grows between 14 Gt
(SSP4) and 23 Gt (SSP5), the copper stock between 527 Gt
(SSP4) and 900 Gt (SSP5) and the aluminum stock between
628 Gt (SSP4) and 1,070 Gt (SSP5). The SSP4 is the less
material-intensive scenario, and the SSP5, RTS and B2DS
consumes the most materials. As the assumptions of the
IEA scenarios are very high in terms of floor area, they lead
to the highest weight of materials until 2060. In-use stocks
profiles vary among materials as well. The SSP5 displays a
reduction of the concrete in-use stock from 2085, while the
copper stock increases up to 2100 (Figure 4). This outcome is
explained by the logistic behavior of the materials intensities
and the regional building hypothesis.
3.1.2. Global materials inflows

The depicted stocks and their associated lifetimes create
a dynamic of input and output flows. The historical reduction
of the growth rate of materials in-use stock between 2008

and 2018 induces a stabilization of the annual inflows27
(Figure 5). The variations between 2018 and 2030 result of
the transition from the historical modeled surfaces to the
prospective scenarios hypothesis and the historical behavior
is explained by the choice of a GDP-based logit curve.
Despite similar values of the inflows in 2100 for some
scenarios, they all display significant differences in their pro-
files. In the SSP5, the flows experience a substantial rise until
2035 before stabilizing for concrete, steel and aluminum.
The SSP5 flows peak to about 14 Gt/yr for concrete, 0.5 Gt/yr
for steel, 27 Mt/yr for aluminum and 22 Mt/yr for copper.
We also find that the SSP1 and the SSP4 present monotonic
decreasing profiles and similar values in 2100. However,
while the SSP1 flows show an increase in the rate of decline
from 2055 to 2100, the SSP4 flows exhibit a reduction of
this rate from 2060 to 2100. In the same vein, the SSP2
and SSP3 reaches comparable flows values in 2100, and are
the only scenarios with upward phases. Finally, the RTS and
B2DS display higher flows values than other scenarios. The
linear growth of the surfaces in the two scenarios creates
large required inflows, estimated to 17 Gt/yr of concrete, 0.6
Gt/yr of steel, 32 Mt/yr of aluminum and 30 Mt/yr of copper
in 2060. Regional materials stocks and flows were obtained
for the nine regions.

The building stock was segmented between the residen-
tial and the non-residential surfaces. The residential seg-
ment represents most of the global floor area, but displays
lower concrete, steel and aluminum intensities. We therefore
observe a high share of the non-residential segment in the
materials stocks and flows. It reaches 33% of the concrete
stock, 44% of the steel stock, 51% of the aluminum stock
and 16% of the copper stock in 2018, for only 26% of the
total floor areas. The share of the non-residential buildings

27We refer to the inflow as the sum of both the primary flow and the
recycled flow.
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(a) Concrete (b) Steel

(c) Copper (d) Aluminum
Figure 4: In-use stocks of concrete, steel, copper and aluminum in the global building sector. The RTS and B2DS results are
almost similar because of their similar building stock.

in the annual inflows increases over time in the SSPs, and
remains steady in the RTS and B2DS. The inflow was fur-
ther segmented between primary and secondary materials,
and no secondary concrete was assumed in the study. The
recycled steel reaches 15% of the annual flow in 2018, while
secondary aluminum and copper respectively represent 5.7%
and 4.3% of the inflow. The projected surfaces behavior has a
significant impact on the secondary share, since a decreasing
floor area allows for a higher share of recycled materials
in the inflow. We therefore observe substantial differences
between scenarios, and the SSP1 displays twice the share
of secondary materials compared to the SSP3, with 78%
of recycled steel, 41% of recycled aluminum and 30% of
recycled copper.
3.1.3. Regional in-use stocks and inflows of materials

The global evolution of raw material in the building
sector hinders regional disparities. The areas considered

present different socioeconomic trajectories and construc-
tion characteristics (lifespan, materials intensity), resulting
in heterogeneous regional demand. While developed areas
display more mature building stocks and slow increase of
material intensities, developing area present lower lifetimes,
rapidly increasing population, GDP/capita and material in-
tensities. The stock of basic raw materials in use in Europe,
North America and the OECD-Pacific region represent just
23% of the global stock by 2100 in the SSP2 (Figure S17),
compared with 47% in 1950. It translates into a larger
reduction of share in the inflow because of lower lifetimes
in developing areas than in developed area. Moreover, a few
areas represent most of future demand of base raw materials.
Africa, China, India and Other Asia account for 63% to 67%
of the total cumulative inflow between 2025 and 2100 in the
SSPs. Moreover, the in-use stocks per capita shows many
disparities between scenarios (Figure 6). In particular, there
are major differences in the levels reached by industrialising
countries by the end of the century. The inequalities between
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(a) Concrete (b) Steel

(c) Copper (d) Aluminum
Figure 5: Annual inflows of concrete, steel, copper and aluminum in the global building sector.

the regional in-use stocks per capita of aluminum and copper
display an increase in the two decades before decreasing by
the end of the century (Figure 7). This results is explained
by the assumptions on material intensities.
3.2. Materials production energy

The energy and environmental cost of extracting and
transforming the base materials experienced a significant
rise during the historical period. The production energy of
raw materials increased from 3,100 PJ/yr in 1950 to nearly
29,800 PJ/yr in 2006, before dropping to 22,600 PJ/yr in
2018, as a direct effect of the 2007-2008 financial crisis. It
represents about 4% of the global final energy demand (Table
6). The energy consumed for materials production finally
reaches between 6,670 PJ/yr and 12,600 PJ/yr in 2100 in the
SSPs, which corresponds to 1960-1970 levels. The required
energy remains higher in the RTS and B2DS than in the SSPs
in 2060.

3.3. Impacts reduction potential
3.3.1. Concrete recovery

The assumed growing share of recovery of concrete
leads to a rise of recovered flow of concrete from 0.1 Gt/yr
in 1993 to more than 1.2 Gt/yr in 2018, with a recovered
stock amounting to 16 Gt. The recovered stock then displays
little differences between scenarios, due to the time-delay
effect of long lifetime in the building sector. The recovered
flow finally reaches between 2.9 Gt/yr and 4.5 Gt/yr in 2100,
and the recovered stock grows to more than 200 Gt in all the
scenarios (Figure S18). A noteworthy result is the evolution
of the lost stock with the assumed growing concrete recovery
compared to constant 2020 regional shares until 2100. The
Figure S18 shows the comparison for the lowest lost stock
(SSP4) and the highest value (SSP5). We observe differences
amounting to about 65 Gt between the two scenarios, which
represents between 18% and 20% of concrete lost stock
reduction in landfills.
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(a) Aluminum (b) Copper
Figure 6: Stock per capita by scenarios in the building sector.

(a) SSP1 (b) SSP2

(c) SSP3 (d) SSP4
Figure 7: Stock per capita of aluminum by scenarios and areas in the building sector. Further regional results are available in the
Supplementary Information.
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Green concrete Production energy reduction
reduction

GC1 4%

GC2 8%

GC3 12%

GC4 4%

Table 4
Energy demand reductions in the scenarios in 2100 for a use
of green concretes on 20% of the concrete inflow.

3.3.2. Concrete recycling
Three cases of RCA replacement are considered. The

conservative scenarios assume a 20% RCA replacement of
NA in concrete by 2040 or 2060. Both scenarios require
maximum annual RCA processing between 0.7 Gt/yr and
1.7 Gt/yr depending on the prospective building stock. The
S1 scenario allows for a reduction of the concrete lost stock
reaching 16% to 24% in 2100. The 20-year delay observed
between the S1 and the S3 creates a higher RCA demand
peak in the S3, as the building stocks rise in the early
prospective period. It further allows for an average 4% larger
lost stock reduction by 2100 in the S3. However, even the
most ambitious RCA replacement scenario, assuming a 50%
level, does not allow for a depletion of the lost stock, which
decreases by 41% to 59% in 2100 in the seven selected
building surfaces scenarios.
3.3.3. Green concrete

The computation of the four green concrete mixes shows
that their use could reduce the energy demand and the
CO2 emissions of concrete production between 4% and 12%
by 2060 for a 20% penetration scenario (Table 4). A full
penetration of green concrete in the inflow of the building
sectors shows significant reduction of concrete impacts. The
energy demand drops between 19% and 60% depending on
the concrete mix considered, as expected by the design of the
green concrete mixes. The CFA and BFS demand display the
same profile in the scenarios as the concrete inflows in Figure
5a. The CFA requirements could reach more than 700 Mt/yr
between 2030 and 2040 in the 100% penetration scenario
for the GC2 and GC3 mixes, and more than 140 Mt/yr in the
20% penetration case. For the GC4 mix, the BFS needs reach
more than 70 Mt in the 20% case and almost 500 Mt in the
100% case in the early 2030s.

4. Discussion
4.1. Saturation levels of per-capita surface

The per-capita floor areas display high final levels in
the B2DS and RTS of the IEA (2017) and show steep rises
until 2060. Considering the medium population scenario of
the United Nations et al. (2019), the per-capita floor area
reaches 102 m²/capita in Europe, 117 m²/capita in North
America and 127 m²/capita in the OECD Pacific area in

206028. The global average per-capita floor area finally raises
from 32 m²/cap in 2017 to 48 m²/cap in 2050 and 53 m²/cap
in 2060. The RTS and B2DS final per-capita floor areas were
not designed with saturation level, and the total floor area
displays a linear profile. We consider this linear assumption
to be unrealistic29, and the final levels are not in line with
the few prospective estimation available in the literature.
The SSPs display substantially lower per-capita stock values,
estimated between 54 and 66 m²/cap in Europe, 66 and 83
m²/cap in North America and 53 to 66 m²/cap in the OECD
Pacific. Deetman et al. (2020) and Marinova et al. (2020)
estimated a global value of about 38 m²/cap in 2050 in the
SSP2 scenario, which is 24% lower than in the IEA (2017)
study. In a normative 1.5°C scenario, Grubler et al. (2018)
estimated a global convergence to 30 m²/cap. In China,
Hong et al. (2016, 2014) and Cao et al. (2018) depicted
potential saturation levels of 46 m²/capita to 50 m²/capita
for the Chinese residential sector in 2050. Considering the
historical share of non-residential surfaces in the global
stock of 16% (Pan et al., 2020), the saturation level of the
global stock could amount to 53 to 58 m²/capita in 2050, in
line with the SSPs, but significantly lower than the RTS and
B2DS. Given the impact of floor area per capita assumption
in the total floor area projections, an in-depth analysis of
their future regional saturation levels has yet to be conducted
to assess the consistency of scenarios.
4.2. Material weight of the building sector and

comparison with previous studies
The results reflect a significant share of the building

sector in the global materials consumption. The global total
demand for concrete was estimated to about 24 Gt/yr in 2020
(USGS, 2021a)30. The calculated demand in the building
sector reaches 8 Gt/yr in 2018, which represents about 40%
this global consumption. The steel inflow of 2019 amounts
to 18% of the global steel demand. It remains low in com-
parison to the 50% estimate of Worldsteel (2021). The con-
struction sector however also includes infrastructures and
networks, which could partially explain this difference. The
copper demand estimated exceeds 40% of the global refined
consumption, which is above the 30% common estimated
of the building share in the global demand, with regional
disparities (Schipper et al., 2018; Dong et al., 2019; Institute,
2021; ICSG, 2014). It indicates lower actual copper intensi-
ties to the selected values. The aluminum consumption of
buildings was evaluated to 56% of the global demand in
2018, which is larger than in the estimates31.

Finally, the results were compared with previous prospec-
tive studies focusing on the SSPs. Greater use of indus-
trial ecology tools in integrated assessment models (IAMs)

28In relative terms, the higher increase is observed in India, Other Asia
and OECD Pacific, with floor area per capita increasing by 125% to 167%
between 2017 and 2060.

29A saturation level is already observed in France. Insee (2017) reported
an almost steady residential floor area per capita of 40 m²/capita since 2006.

30We considered a 20% share of cement in concrete.
31A 25% to 37% share of building and construction in aluminum demand

is observed.
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has been identified as a potential avenue for improvement
towards more coherent scenarios (Pauliuk et al., 2017).
Over the past years, several studies have proposed ex-post
estimations of material requirements in SSPs. Marinova
et al. (2020) and Deetman et al. (2020) analyzed the regional
need for base materials for residential and service buildings
in the SSP2, Pedneault et al. (2022) estimated global future
aluminum stocks and flows for six sectors and all SPPs
while Klose and Pauliuk (2023) studied the global copper
requirements in the SSP2. The estimation in this study
align well with Pedneault et al. (2022) for aluminum, with
Deetman et al. (2020) for steel, concrete and copper and are
higher than in Klose and Pauliuk (2023) for copper. The
authors estimated an increase of the in-use stock of copper
per capita in a building sector from about 28 kg/cap to 37
kg/cap between 2015 and 2050. In this study, we observe
a similar result in 2015, but a significantly larger stock per
capita in 2050 (Figure 6b). This could be explained by the
rapid increase in the material intensity of copper in the
industrialising regions considered in this study. The Table
S12 summarizes the results of the different studies.
4.3. Increasing materials demand and the

potential of RCA
The results show an increase of the building stock until

2060 or 2100 with various paces for the selected materials.
It is explained by both new construction and renovation. We
firstly observe increasing population and GDP per capita in
most of the scenarios, and rising base materials intensities
in the less developed areas. Moreover, a growing develop-
ment of renovation policies is observed in the scenarios to
tackle the environmental impact of the building sector. We
estimated that the aluminum weight of renovated surfaces
could be significant in Europe, North America and China,
while both concrete and steel display low amount in the
renovation process. The regional policies could therefore
carry a substantial impact on the aluminum demand.

The increase of the materials in-use stock will create
outflows of construction and demolition wastes, which could
ultimately translate into a growing landfills burden. The
potential of higher share of concrete recovery was showed
to reduce the concrete lost stock, and it is crucial to quickly
develop recovery strategies, because of the time-delay effect
on outflows of long lifetimes in the building sector. The
RCA replacement could further allows to use CDW as a
"secondary mine". However, we estimated that no depletion
of the concrete in landfills could occur in case of a late
and low-scale use of RCA. In a very ambitious scenario,
the lost stock could be depleted between 2047 and 2060
in all the scenarios for a 100% RCA replacement on 100%
of the inflow. The RCA demand could reach 3.5 Gt/yr to
8.6 Gt/yr. It shows the magnitude of the lost stock, and the
importance of policies in the feasibility of quickly initiating
a RCA processing industry.

4.4. Impacts of materials production and the
significant role of green concrete in reducing
concrete impacts

The base materials demand estimated in the study repre-
sents about 4% of the final energy consumption in 2018. It
was estimated that concrete had the most impact, with 2.7%
of the final energy demand. Given the shares of the global
materials demands evaluated in Section 4.2, the global con-
crete and steel industries represent between 11% and 13% of
the final energy consumption in 2018, in line with Bataille
(2019) and Andrew (2017). The prospective shares were
estimated for the RTS, B2DS and two different RCP32 ap-
plied on the SSP1, SSP2 and SSP3 (Table 6). We observe
lower shares of production energy of materials in final
energy demand than the 2018 level, except for the B2DS.
It is explained by the significant reduction in final energy
demand, and similar socioeconomic assumptions to the RTS.
Moreover, the more strigent the RCP, the higher the share of
production energy of materials in total final energy demand.
It is explained by a substantial decrease of energy demand at
the end of the century to reach a lower radiative forcing. Our
results further show that the production energy of materials
is substantial when compared to the final energy demand
of the building sector. It could amount to about 10% of
the cumulative final energy demand of the building sector
between 2015 and 2100 in the SSP2 2p6, and 32% in the
B2DS between 2015 and 2060 (Table 5).

Therefore, despite a context of growing demography and
GDP per capita, the final energy demand of producing base
raw materials could decrease. In order to reach stringent
climate objectives, low-energy demand scenarios are con-
sidered, despite still displaying medium to high assumptions
of socioeconomic parameters. However, accounting for the
final energy demand of the production phase of infrastruc-
tures and the impacts of a decline of ore grade could show a
growing share of future total final energy demand.

The rising shares of the production energy of materials in
final energy demand between 2060 and 2100 unveil the issue
of the feasibility of ambitious scenarios with medium or high
socioeconomic assumptions. Accounting for the final energy
demand of the production phase of infrastructures and the
impacts of a decline of ore grade could show a growing
share of future total final energy demand. The share of the
base materials production for the building sector increases in
2060 compared to the historical level, and could reach 7.3%
of the final energy demand in the B2DS. A similar trend in
others sectors-such as the development of renewable ener-
gies (Vidal et al., 2017, 2018) or storage devices (Deetman
et al., 2021)-could create a substantial energy constraint due
to the materials production. Concrete represents most of the
energy demand among the four selected base materials. The
implementation of a higher share of green concrete depicted
in Section 2.4 could provide an option to actually reduce the
energy and environmental impacts of concrete production

32The Representative Concentration Pathways are scenarios of radiative
forcing, as previously presented in Section 2.1. It acts as a climate policy in
the SSP.
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Scenario Final energy of
materials production (EJ)

Final energy in the
building sector (EJ)

Total final energy
demand (EJ)

SSP1 2p6 1,350 14,100 47,430

SSP2 2p6 1,560 15,100 52,200

SSP3 4p5 1,410 14,000 51,400

SSP4 4p5 1,190 14,100 52,150

SSP5 baseline 1,890 22,400 73,980

B2DS 1,390 4,300 15,480

RTS 1,390 6,300 24,130

Table 5
Estimations of cumulative production energy of materials in new buildings and comparison with the final energy demand between
2015 and 2100 for SSPs and between 2015 and 2060 for RTS and B2DS.

Scenario Final energy of material production (EJ)

1950 2018 2040 2060 2100

SSP1 2p6

3.1 23

20 18 6.7

SSP2 2p6 24 19 12

SSP3 4p5 24 16 12

SSP4 4p5 20 14 7.4

SSP5 baseline 32 25 10

B2DS 33 31

RTS 33 31

SSP2 2p6 with GC2-20%

3.1 23

23 19 11

SSP2 2p6 with GC3-20% 22 17 11

SSP2 2p6 with GC2-100% 18 12 7.9

SSP2 2p6 with GC3-100% 15 8.4 5.4

B2DS with GC2-20% 31 29

B2DS with GC3-20% 30 28

B2DS with GC2-100% 25 20

B2DS with GC3-100% 20 13

Table 6
Final energy demand of the base materials production in the selected scenarios. The results of the SSP2 and B2DS are further
displayed with the green concrete scenarios on 20% or 100% of the inflow.

while considering higher socioeconomic pathways. We ob-
served in Section 3.3.3 the energy reduction potential when
green concrete mixes were used on 20% or 100% of the flow.
In the most optimistic case, the GC3 used on 100% of the
B2DS concrete inflow would allow to reduce the building
materials share of the energy demand below the level of
the RTS, and the GC2 induces intermediate results. When
applied on the SSP2 2p6, it the GC mixes allow substantial
energy savings in the peak demand years. In 2040, between 1
and 9 EJ could thus be saved in the SSP2 in comparison with
a BAU case, and it could reach 0.4 to 6.9 EJ in 2100 (Figure
8). The GC mixes could therefore provide a significant tool

to further decrease the impact of concrete while consuming
industrial or agriculture by-products.

The rise in green concrete demand induces a growing
by-products demand. The feasibility of a large development
of some green concrete mixes could therefore be ham-
pered by a decrease in the main products demand, and
our model shows that a penetration of CFA on 100% of
the concrete inflow could create shortage in most of the
scenarios at a global level. The development of various
low carbon concrete mixes could prevent dependency to
one materials, and rely on regional by-products availability.
Further assessments of the dynamic between the industrial
by-products generation, their stocks, the penetration rate
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Figure 8: Comparison of final energy for base material produc-
tion in the building sector.

of green concretes and their composition would allow to
identify the opportunities and the constraints of a large use of
green concrete to decrease the energy demand of materials
in the building sector. Further implementation of material
efficiency strategies (Allwood et al., 2013; Shanks et al.,
2019; Pauliuk et al., 2021) are not considered and could
provide additional tools in a further analyses.
4.5. Limitations

This study proposes a regional approach of the building
sector, modeling raw materials as well as their embodied
energy. Several limitations to a more accurate modeling
were however identified. Firstly, as emphasized in Augiseau
and Barles (2017) and Müller et al. (2014), data inten-
sity and data quality significantly undermine construction
materials modeling studies, and induce strong impact on
outputs. In this bottom-up study, the difficulty to assess
materials intensities was observed, and revealed significant
errors in the copper demand results. Few analysis tackle the
regional disparities in both construction mixes (concrete and
steel) and other material uses (copper and aluminum), their
evolution over time and the uncertainties. If the selected
level of concrete consumption in buildings is in accordance
to common values of the literature, the estimated copper
and aluminum regional material intensities suffer of sig-
nificant uncertainties. This issue could benefit from lower
scale studies assessing the local intensities. We believe that
both household and multi-regional level studies could be
complementary to further understand the local materials
cycle dynamics while providing input for more accurate
large-scale analysis and allowing a better understanding of
building life cycle management.

Secondly, the overall building life span is considered,
without distinctions on the incorporated devices. Given the
structural nature of concrete and steel, this assumption is
reliable. It could however induce uncertainties for copper
and aluminum, if mainly incorporated in less structural de-
vices such as electrical applications (Schipper et al., 2018).

Further studying on the specific uses of materials in con-
struction is needed to assess the impact of this overall life
span assumption. Thirdly, the considered collect rates are not
specific to the building sector, which is not a physical reality.

5. Conclusion
Human demography is a growing concern in current en-

vironmental studies. It carries crucial impacts on residential
and non-residential building stock growth over the coming
decades, and was analyzed through six socioeconomic path-
ways combined with climate scenarios. Firstly, the base ma-
terials stocks and flows of the building sector was estimated,
as well as the final energy of raw materials production.
Secondly, the results were confronted to the prospective
energy of the selected scenarios, and two solutions were
implemented to reduce the impacts of concrete.

We firstly find that (i) the material dependency of the
building sector could create a massive rise of the inflows,
further enhanced by two aspects: the considered increase
of the materials intensities in the less developed areas. We
further show that (ii) strong inequalities are observed in the
in-use stocks per capita of materials in the SSPs, despite
optimistic material intensities projection, (iii) a growing
materials demand translates into larger final energy demand
of material production, which could question the feasibility
of some low-energy demand scenarios, and that (iv) the
recycled concrete aggregated display a significant potential
to enhance the reduction of accumulated concrete stocks
in landfills and green concrete could decrease the energy
demand of concrete production.

We furthermore highlight the crucial temporal aspect of
the RCA and green concrete implementation, as it requires
the development of industries to tackle the large concrete
demand of the building sector. These strategies remain how-
ever insufficient to limit human impact within planetary
boundaries. They should be used in conjunction with other
measures (e.g. material efficiency), and as part of an in-
depth review of uses, with the broader aim of achieving a
decent standard of living for as many people as possible
while limiting the impact on the environment.
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