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Despite over twenty years of research, assisted seismic history matching (ASHM) remains a challenging problem for the energy industry. ASHM is an optimisation problem to find the best subsurface reservoir model for robust predictions of field performance. The results are typically assessed by a decreasing misfit between simulated and observed data, but the optimised models are often inaccurate, uncertain, and non-unique. In this paper, we take a fresh look at ASHM and view it from the perspective of the fitness landscape, or search space. We propose that characterising the fitness landscape will lead to a deeper understanding of the problem, greater confidence in the optimised models, and a better appreciation of the uncertainties. Fitness landscape analysis (FLA) is established in other fields, but has mostly been applied to combinatorial problems or continuous problems with analytical solutions. In contrast, ASHM is a real-world, ill-posed, inverse problem, which is computationally expensive and contains data errors and model uncertainties. We introduce a new method for FLA that provides intuitive information on the setup of the problem. It uses multidimensional clustering and visualisation to explore the structure of the landscape and detects the presence and relative magnitude of data errors, which are typical of real data. It is applied to a synthetic, full-field, reservoir model and the 1 Downloaded from https:

Subsurface reservoir models are used in the energy industry to forecast field performance, predict the outcome of new wells, and optimise production. The models are history-matched so that they accurately replicate the observed production data and provide robust predictions. Seismic history matching (SHM) [START_REF] Oliver | 4D seismic history matching[END_REF] uses time-lapse (4D) seismic data in addition to the production data to further enhance the models. The production data from the wells and the time-lapse seismic data are complementary because they provide independent measurements of the reservoir's dynamic behaviour at different measurement and temporal scales.

The production data measures flow rates and reservoir pressures at the wells, whereas 4D seismic data provides field-wide images of pressure and saturation changes within the reservoir. History matching has primarily been applied to the development of oil and gas fields, but it has been used more recently for CO 2 storage [START_REF] Ahmadinia | Analysing the role of caprock morphology on history matching of Sleipner CO 2 plume using an optimisa-43 Downloaded from[END_REF][START_REF] Chadwick | 4D seismic quantification of a growing CO 2 plume at Sleipner, North Sea[END_REF], geothermal energy [START_REF] Schulte | Multi-objective optimization under uncertainty of geothermal reservoirs using experimental design-based proxy models[END_REF], contaminant hydrology (Essouayed et al., 2020), and hydrogeology [START_REF] Li | Constraining regionalscale groundwater transport predictions with multiple geophysical techniques[END_REF].

History matching subsurface reservoir models is a very challenging task. It is an inverse problem whose goal is to infer the subsurface reservoir model from the
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observed data. It is typically posed as an optimisation problem, where the initial model's parameters are iteratively adjusted so that its predicted data matches the observed data. Furthermore, the problem is ill-posed because there is usually insufficient data to determine a unique model solution. Considerable progress has been made in assisted history matching (AHM), in which the model is automatically adjusted to match the observed production data from wells, but assisted seismic history matching (ASHM), where the model is optimised to match both the production and time-lapse seismic data, has proven to be much more challenging [START_REF] Oliver | 4D seismic history matching[END_REF].

The quality of the history matched models is usually assessed by measuring the misfit, or fitness, of the predicted and historical data using an objective function.

To quantify the overall fitness of a reservoir model in ASHM, an objective function that combines the production and seismic data is defined. The model's parameters are iteratively adjusted to minimise the fitness measured by the objective function.

The model's robustness can also be judged by convergence of the parameters towards meaningful values and its ability to accurately predict some observed data withheld from the optimisation. These measures provide greater confidence in the optimised model, but they do not guarantee that the model is unique or that it accurately represents the subsurface reservoir.

One of the main issues for ASHM is configuring the problem to achieve reliable model updates. Many approaches have been proposed, but there seems to be little consensus on how the problem should be addressed. For example, it is unclear which parameters to select and how to update them, which seismic domain to compare the data, i.e., reservoir properties, impedances, or seismic reflectivity, how to strategy and algorithm to use to find optimal solutions. Synthetic models have shown that incorporating time-lapse seismic data in the history matching process can lead to improved recovery of the true model [START_REF] Gervais | Integration of saturation data in a history matching process based on adaptive local parameterization[END_REF], Trani et al., 2013). However, the results for real producing reservoirs are less clear because of the complexity of the problem [START_REF] Corte | Deep neural network application for 4D seismic inversion to changes in pressure and saturation: Optimising the use of synthetic training datasets[END_REF][START_REF] Mitchell | 4D Assisted Seismic History Matching Using a Differential Evolution Algorithm at the Harding South Field[END_REF][START_REF] Obidegwu | Seismic assisted history matching using binary maps[END_REF][START_REF] Roggero | History matching of production and 4D seismic data: Application to the Girassol field, offshore Angola[END_REF][START_REF] Stephen | Assisted seismic history matching of the Nelson field: Managing large numbers of unknowns by divide and conquer[END_REF]. A new approach to ASHM is needed, opening novel possibilities for enhancing its efficiency and dependability.

In this paper, we take a fresh look at ASHM and view it from the perspective of the fitness landscape of a continuous optimisation problem. This is the multidimensional surface that defines the fitness between the model and observed data over the entire parameter search space. It contains all the information about the problem and its setup, including the data, models, and objective functions that define the problem, as well as their associated errors and uncertainties. The ability of the optimisation algorithm to successfully search the landscape for global minima is related to its structural properties, such as its global structure, separability, conditioning, and multimodality [START_REF] Mersmann | Benchmarking evolutionary algorithms: Towards exploratory landscape analysis[END_REF]. Consequently, we propose that analysing the main characteristics of the fitness landscape for ASHM problems will provide greater insight into the configuration of the problem, and potentially lead to better-posed landscapes for more-successful optimisations.

This will greatly benefit our understanding of ASHM as an optimisation problem and help to achieve more-successful model updates.

However, it is difficult to characterise the topology of real-world fitness landscapes because they are complex multidimensional surfaces that are difficult to fitness landscape analysis (FLA) have been developed, which typically calculate low-level features or attributes of landscapes [START_REF] Malan | A survey of advances in landscape analysis for optimisation[END_REF][START_REF] Malan | A survey of techniques for characterising fitness landscapes and some possible ways forward[END_REF], but they are often expensive to compute and difficult to interpret. The low-level features can be related to the high-level characteristics of the landscape, such as global structure and ruggedness, which define the problem's characteristics and hardness. More recently, a more holistic approach has been adopted in exploratory landscape analysis (ELA) [START_REF] Kerschke | Detecting Funnel Structures by Means of Exploratory Landscape Analysis[END_REF][START_REF] Mersmann | Benchmarking evolutionary algorithms: Towards exploratory landscape analysis[END_REF] where many low-level features are computed and compared with other landscapes using machine learning techniques [START_REF] Kerschke | Automated Algorithm Selection on Continuous Black-Box Problems by Combining Exploratory Landscape Analysis and Machine Learning[END_REF]. This is a promising approach, but it requires comparison with other landscapes for interpretation. ELA has mostly been used to characterise and design black-box benchmark problems (Škvorc et al., 2020) and for algorithm selection. FLA has been applied

to some real-world problems such as wind turbine design [START_REF] Caamaño | Experimental analysis of the relevance of fitness landscape topographical characterization[END_REF], computational protein design [START_REF] Simoncini | Fitness landscape analysis around the optimum in computational protein design[END_REF], and energy optimisation of buildings (Waibel et al., 2019), but for the most part, it has been applied to combinatorial problems or continuous problems with analytical solutions. To our knowledge, FLA has not been applied to ASHM problems.

We introduce a new method for FLA to characterise and visualise fitness landscapes for real-world subsurface reservoir models. Compared with existing methods, our approach is more direct and intuitive, and does not require unreasonable computational overhead. The method employs multidimensional visualisation techniques to investigate differences between groups of landscape samples that are clustered into topologically similar features. Using benchmark functions with known mathematical properties, the method is evaluated before being ap- method are compared with those of ELA, and the impact of data errors on the fitness landscape is explored using both methods.

The article is organised into the following sections. Firstly, in Section 2.1, we describe the models and data used for our experiments. Then, the workflow used to generate the fitness landscapes, the sampling methodology, and the objective functions are described in Section 2.2. Next, in Section 2.3, we introduce our method for FLA and demonstrate its utility using well-known analytical benchmark problems. In section 3, we present the results of fitness landscape analysis for the full-field model using our method, and compare them with those of ELA.

The impact of data errors on the fitness landscapes is also explored using both methods in Section 3.4. We summarise our results and discuss their implications for ASHM problems in Section 4. We also discuss the limitations of this study, and our thoughts for future research. Finally, in Section 5, we conclude with some final thoughts.

Methods

In this section, we describe the models used for the experiments, the method for sampling and computing fitness landscapes, the data errors added to the observed data, and the FLA methods.

Benchmark functions and reservoir models

Initially, benchmark functions were used to develop and test our methodology for FLA. Then, two synthetic reservoir models with increasing complexity, shown in Figure 1, were used to gain further insight to the character of ASHM fitness
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landscapes. The results of our method were compared with those of ELA. In addition, the impact of data errors on the fitness landscapes was investigated by perturbing the observed data with random noise and artefacts, which are typical of real time-lapse seismic data.

Benchmark functions

The black-box optimisation benchmark (BBOB) functions [START_REF] Finck | Real-parameter black-box optimization benchmarking[END_REF], Hansen et al., 2009) were used to understand, calibrate, and evaluate our method for FLA. The functions were ideal for this purpose because they have known solutions, they can be calculated in any number of dimensions, and they are quick to evaluate. They have well-defined mathematical properties such as separability, conditioning, multimodality, and global structure, which should be distinguishable by the FLA methods. Ten-dimensional benchmark functions were used to evaluate the FLA methods, but 21-dimensional functions were used to compare with the Brugge model.

Sandbox reservoir model

The two-dimensional fitness landscapes for a synthetic ASHM problem were investigated using a sandbox-type of reservoir model, which is shown in Figure 1a. The 
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for oil saturation (SOIL) and reservoir pressure (PRESSURE) for each formation.

However, TNO did not provide the true model, which was used to generate the data, but they did provide 104 different realisations of the property grids. Consequently, for controlled experiments, we selected one of the property realisations (FY-SF-KM-1-1) to define a new true model and generated its corresponding production dataset, which was then used as the true or observed data for subsequent experiments.

The ™Eclipse 100, version 2018.2, black-oil reservoir simulator was used for reservoir simulation. The observed production data were generated from the true model using liquid-rate control (LRAT). The target liquid-rate of the oil producers was 317.98 m 3 /day with a minimum bottom-hole pressure constraint of 5MPa, and the target flow-rate for the injectors was 635.95 m 3 /day with a maximum injection pressure constraint of 18 MPa. The observed production data, which consists of oil production rates (WOPR), water production rates (WWPR), and bottom-hole pressures (WBHP) for each well, were then used to control subsequent reservoir simulations for the fitness evaluations. The total liquid rate for each well was matched, where possible, to the observed production rates generated from the true model using LRAT control. The proportions of oil and water for each well and reservoir pressure were not restricted by this method, but rather depended on the reservoir's geological and fluid properties.

Data errors

The impact of data errors on the fitness landscapes was evaluated by adding random noise or Gaussian-shaped artefacts to the observed time-lapse difference maps, shown in Figure 2. These are common types of data errors, which are often found
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in real time-lapse seismic data. Although every effort is made to reduce the data errors in seismic processing, they often persist through ASHM and may lead to erroneous model updates. Figure 2 shows examples of the original time-lapse oil saturation and pressure maps for each formation with added noise and artefacts.

Noise with standard deviations of 0.05, 0.1, and 0.15 (fraction) were added to the oil saturation maps and 2, 4, and 6 MPa to the pressure difference maps. The Gaussian-shaped artefact was centred on grid cells x=40, y=18 with standard deviations of 11 grid cells in the x-direction and five grid cells in the y-direction.

The maximum amplitude of the artefacts was -0.05, -0.10, and -0.15 (fraction)

for the oil saturation maps and 2, 4, and 6 MPa for the pressure maps. No data errors were added to the wells' production data on the assumption that they can be accurately measured, although this may not be true in practice.

Fitness landscape sampling and computation

Fitness landscape samples were generated using the workflow shown in Figure 3a.

Initially, as discussed in Section 2. 
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(a) Time-lapse difference maps for oil saturation with random noise level of 0.1 (fraction). The blue coherent area is the true time-lapse water sweep signal, and the speckling is the random noise. Twenty-one model parameters, shown in table 1, were used to define the search space for the fitness landscape. The parameters were defined as scalars of the model properties for porosity, net-to-gross and permeability (X, Y and Z directions) for each formation, as well as the transmissibility of the fault. The perturbation consisted of a small change in the scalar value, which was then applied to the reservoir property grid. Although this was a simple approach to change the model's properties and sample the search space, it was thought to be sufficient for an initial exploration of ASHM fitness landscapes. A kriging method that honours the property values at the wells would be preferable and should be implemented Figure 3a shows the workflow used to generate a sequence of fitness samples, which were then analysed using the workflow shown in Figure 3b. 
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for subsurface reservoir models, which in practice limits the number of fitness landscape samples that can be computed. To ease this, reservoir simulations were computed in parallel using 24 cores on a single node of a high-performance cluster computer. Each node consisted of 24 AMD ™Opteron 6348 processors operating at 1400MHz and with 264 GB memory. Each reservoir simulation took approximately one minute to run, making the experiments feasible.

Sobol-Saltelli sampling [START_REF] Saltelli | Making best use of model evaluations to compute sensitivity indices[END_REF] was used to define the search-space locations of the fitness landscape samples. This is a quasi-random, low-discrepancy sequence that provides an efficient way to sample high-dimensional hypercubes.

We used the open-source Python library SALib (https://pypi.org/project/ SALib/) [START_REF] Herman | SALib: An open-source python library for sensitivity analysis[END_REF][START_REF] Iwanaga | Toward SALib 2.0: Advancing the accessibility and interpretability of global sensitivity analyses[END_REF] for Saltelli sampling and global (Sobol) sensitivity analysis. The number of samples required for FLA is debated (Škvorc et al., 2020); however, we chose N (2D + 2) samples, where N is a number of base two, and D is the problem's dimensionality. We chose a value of N = 1024 (45,056 samples for 21-dimensional problems) for fitness landscape cases without data errors, but for practical reasons, we reduced N to 128 (5,632 samples for 21-dimensional problems) for fitness landscape cases with data errors.

The objective functions were based on either the well production data or the time-lapse reservoir maps extracted from the simulation model. Time-lapse reservoir simulation maps were used to represent 4D seismic data inverted to pressure and saturation for our experiments. This avoided the complexity associated with real, narrow bandwidth, 4D seismic data, which was beyond the scope of this study.

The production data from the wells are one-dimensional time series of oil production rates (WOPR), water production rates (WWPR), and bottom-hole pressure measurements (WBHP) at each well, and the time-lapse reservoir maps are two-
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dimensional grids of oil saturation (SOIL) and reservoir pressure (PRESSURE) for each formation extracted from the simulation model. The oil and water production rates were inversely correlated and consequently, only the oil production rates (WOPR) were used. For each geological formation, the time-lapse reservoir maps were calculated by vertically averaging the grid cell values within each formation at each grid cell's spatial location.

The mean-square-error (MSE) (Equation 1) was used to calculate the fitness of a model, f i , by comparing its modelled data, d i , with the true data, (d true ):

f i = 1 p p j=1 (d i j -d true j ) 2 , (1) 
where f i is the fitness of the model, m i , and p is the number of samples in the modelled and observed datasets. The MSE was calculated for all production wells or reservoir formations and averaged to generate an overall model fitness for each objective function. Equation 1 could be extended to combine different data types, e.g., time-lapse difference maps, well production data, and time-lapse time-shift maps, into a single objective function, but this would require appropriate scaling factors to normalise the units and combine the measurements. This could be explored in future research.

Fitness landscape analysis

This section describes our new method for FLA, fitness landscape clustering (FLC), and briefly reviews ELA, which is an established method for FLA, that was used
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Fitness landscape clustering

We developed a new methodology for characterising and visualising the fitness landscape, referred to as fitness landscape clustering (FLC). It uses multidimensional clustering to group landscape samples into distinctive landscape features, and multidimensional charts to analyse their characteristics. The workflow is illustrated in Figure 3b. For a sequence of fitness landscape samples,

F = f i , f i+1 , f i+2 , ..., f n ,
clustering is based on the sample's normalised [0, 1] parameter vector x i and its weighted normalised fitness, wf i , where w is a constant scalar applied to the normalised fitness values. The weighting factor was determined by experimentation to balance the spatial and fitness emphasis of the clusters. In further research, this factor could be determined automatically. We found that scaling the normalised fitness values before clustering emphasised the landscape's structure over its spatial location. Three clustering algorithms were evaluated, including K-Means [START_REF] Lloyd | Least squares quantization in PCM[END_REF], Gaussian Mixture Method (GMM) [START_REF] Mclachlan | Mixture models: inference and applications to clustering[END_REF], and Hierarchical Aggregation (HAC) [START_REF] Müllner | Modern hierarchical, agglomerative clustering algorithms[END_REF], but the results were very similar.

The cluster's fitness distributions were displayed as a violin chart [START_REF] Hintze | Violin plots: A box plot-density trace synergism[END_REF], where each "violin" is the kernel density estimate (KDE) of the fitness values within each cluster. The chart shows the fitness distributions for all clusters and provides a visual representation of the landscape's global structure.

The spatial locations of the cluster points are displayed as parallel-coordinate density (PCD) charts [START_REF] Inselberg | The plane with parallel coordinates[END_REF][START_REF] Moustafa | Parallel coordinate and parallel coordinate density plots[END_REF], Streit et al., 2006). In this representation, the parameter axes are displayed as parallel vertical lines, which allows many axes (or dimensions) to be displayed in a single chart. It shows both the location and distribution of the cluster's points. Colour shading is used to
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indicate the density of points within the cluster, where light colours correspond with lower density and darker colours with higher density. High densities suggest that the points are tightly clustered in the parameter search space, whereas low densities imply that the points are more dispersed. This may also be related to the parameter sensitivity and degree of conditioning, where sensitive parameters give rise to well-defined localised minima in the landscape and less-sensitive parameters form elongated valleys. The true model's parameter values, which define the location of the global minimum, are represented by a single dashed polygonal line that intersects each parameter axis at the true model's value.

Additionally, we developed a novel representation of the fitness landscape using a three-dimensional radar chart, which combines both the location and fitness of the cluster to characterise the landscape more intuitively. The parameter axes are plotted as radial lines at the base of the chart, and fitness on the vertical axis. A point x with fitness f (x) within a high-dimensional hypercube maps to

x, f (x) → x j cos( 2πj D )i, x j sin( 2πj D )j, f (x)k , ∀j, (2) 
in a three-dimensional radar chart, where x j is the magnitude of the j th component of x, D is the landscape's dimensionality, and f (x) is the fitness at location x. The vectors i, j, and k are perpendicular unit vectors of the radar chart's orthogonal coordinate space.

In this representation, multidimensional points are displayed as polygonal lines at their appropriate fitness or height on the vertical axis. We found that displaying the cluster centroid locations, rather than all the cluster's samples, reduced data occlusion and was easier to interpret. The cluster's centroid lines were enclosed
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in an α-surface [START_REF] Asaeedi | α-concave hull, a generalization of convex hull[END_REF], or concave hull, for a more intuitive visual representation. The α value for the surface was selected by visual inspection as the minimum value required to enclose all cluster centroid lines. The Hausdorff distance metric [START_REF] Huttenlocher | Comparing images using the Hausdorff distance[END_REF] was used to compare the shape of the α-surfaces for different functions or landscapes quantitatively. The Hausdorff distance was computed between the vertices of two α-surfaces. It is a small value for similar surfaces and a large value for dissimilar surfaces.

Exploratory landscape analysis

To evaluate our method further, we compared its results with those of the wellknown method of exploratory landscape analysis (ELA) [START_REF] Kerschke | Detecting Funnel Structures by Means of Exploratory Landscape Analysis[END_REF][START_REF] Kerschke | Towards analyzing multimodality of continuous multiobjective landscapes[END_REF][START_REF] Malan | A survey of advances in landscape analysis for optimisation[END_REF][START_REF] Mersmann | Exploratory landscape analysis[END_REF]. ELA calculates numerous low-level features or attributes of the landscape, which can be related to the landscape's higher-level characteristics. We found that six of the feature sets were practical for our analysis, namely metamodel, levelset, y-distribution, dispersion, information content, and nearest better clustering. However, some low-level features, such as the cell-mapping features, were too expensive to calculate for high-dimensional problems and were not used. Moreover, some low-level features such as convexity and local search, which require additional fitness evaluations during computation, were also impractical for these experiments. It may be possible to compute these for real-world ASHM problems, but it would require a different implementation and could become prohibitively expensive.

It is difficult to interpret the numerical values of the low-level features individually, so ELA is typically used to compare the fitness landscapes of different problems. In this work, we employed dimensionality reduction using the t-distributed
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stochastic neighbour embedding (t-SNE) algorithm to compare the feature sets for several landscapes as two-dimensional scatter plots [START_REF] Škvorc | Understanding the problem space in single-objective numerical optimization using exploratory landscape analysis[END_REF](Škvorc et al., , Mersmann et al., 2011)). We used the R implementation of the Feature-based Land- 

Results

In this section, we describe the results of FLA for increasingly complex models.

Initially, some insight on the character of ASHM fitness landscapes is gained using the simple sandbox model, Then, we demonstrate and compare our method for FLA in higher dimensions using a set of well-known benchmark functions. Next, our method is applied to a real-world reservoir model, and the impact of data errors on the fitness landscapes investigated. Finally, we compare the results of our method with those of ELA.

Two-dimensional landscapes for the sandbox model

Two-dimensional fitness landscapes, shown in Figure 4, were calculated for the most sensitive parameters of the sandbox reservoir model for both the well-production and time-lapse reservoir map objective functions. The effect of data errors was also investigated by adding either random noise or an artefact to the observed data. to extend the observations to higher-dimensional problems, but they cannot be so easily visualised. We conjecture that fitness landscapes of high-dimensional ASHM problems will have similar characteristics to those of the sandbox model, but the challenge is to find methods that can efficiently and intuitively characterise and visualise them to better understand their properties. 

Benchmark functions in high dimensions

The FLA methods described in Section 2 were applied to the well-known black-box optimisation benchmark (BBOB) problems [START_REF] Hansen | Real-Parameter Black-Box Optimization Benchmarking[END_REF]. The goal was
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to test each method's ability to characterise and distinguish functions with known mathematical properties in high dimensions: 10-dimensional functions in this case.

The results of FLC are displayed for three of the BBOB functions (Sphere, Sharp Ridge, and Gallaghers 101-me Peaks) in Some low-level features could not be calculated because they were too computationally expensive, consequently only a subset of the features were used. We found that the distribution of points in the t-SNE scatter plot was very sensitive to the t-SNE parameters, particularly the perplexity, early exaggeration, and learning rate. The cluster groupings, positions, and sizes varied markedly with different parameter choices. The parameter sensitivity of the t-SNE algorithm is a well-known issue (Wattenberg et al., 2016), suggesting that further investigation of the method is required. The t-SNE parameters of perplexity 3, early exaggeration 18, and learning rate 800 were chosen to produce a reasonable distribution and grouping of the points, but these may not be optimal.

Several cluster groups formed in the scatter plot, which bear some relationship to the function's main properties. For example, the cluster containing functions 16, 21, 22, and 23 have similar properties of multimodality with weak or adequate global structure. However, other clusters are more diverse, for example, the cluster 3,6,7,8,10,11, and 20 has a variety of properties.

O R I G I N A L U N E D I T E D M A N U S C R I P T containing functions 2,
We suspect that better results could have been achieved using more low-level features, but some, such as those based on cell-mapping, were too expensive to compute for higher dimensional problems. ELA is mostly used to compare fitness landscapes for different problems, which is different from our goal of directly describing the fitness landscapes for individual problems. The violin charts in Figure 7a show the Brugge model fitness landscapes for the four objective functions based on oil production rates (WOPR), bottom-hole pressure measurements (WBHP), time-lapse oil saturation maps (SOIL), and timelapse reservoir pressure maps (PRESSURE). For WOPR, the majority of clusters are biased towards low-fitness values, and there are only a few clusters that have high-fitness values. This implies that it is a low-lying and low-relief plateau with a few high-fitness peaks. Furthermore, it suggests that WOPR is fairly insensitive to the model parameters and that there are likely to be many local and global minima, giving rise to many non-unique solutions. This is not surprising because it is an average of the oil rate fitnesses for 20 production wells, where a poor match in one well may be compensated by a good match in other wells. The clusters for WBHP and SOIL are also biased towards low-fitness values, but have more structure and fewer, but more distinctive, low-fitness clusters. This indicates that there may be several well-defined global minima, and fewer non-unique solutions.
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The PRESSURE landscape has more variability than the other objective functions, with a broader spread of clusters across the fitness range. This implies a higher-relief fitness landscape structure and greater sensitivity to the parameters.

It does, however, have many low-fitness clusters, meaning that there may be numerous non-unique solutions. This follows because reservoir pressure is known to be important for history matching real producing reservoirs [START_REF] Barroeta | Importance of Using Pressure Data While History Matching a Waterflooding Process[END_REF]. Reservoir pressure is sensitive to the mass-balance of fluids within the reservoir and may be more sensitive to the dynamic engineering parameters, such as relative permeability, than the fluid-flow measurements. 

Impact of data errors in high dimensions

One important aspect of this study was to assess the impact of data errors in the observed data on the structure of fitness landscapes. We demonstrated in Section 3.1, that random noise increases the average fitness of the landscape, and that data artefacts distort the landscape causing the global minimum to move away from the true-model solution. In this section, we test our method's ability to detect the impact of data errors on fitness landscapes in higher dimensions.

The impact of data errors was evaluated by adding either random noise or a Gaussian-shaped artefact to the observed time-lapse difference maps, as described in Section 2.1.4. Data errors were not added to the observed production data in this case. Fitness landscapes were generated for the four objective functions based on both well-production data (WOPR, WBHP) and time-lapse reservoir maps (SOIL, PRESSURE) for each data-error case. Three-dimensional radar charts were then generated for each fitness landscape, and the data-error cases quantitatively compared with the error-free landscapes using the Hausdorff distance metric of the α-shape's vertices. The results are presented in Figure 8. Three-dimensional radar charts are shown for the four objective functions with no data errors in Figure 8a, random noise in Figure 8b, and data artefacts in Figure 8c. Figure 8d shows a bar graph of the Hausdorff distance for each of the data-error experiments compared with the no-error cases. The graph's abscissa enumerates the magnitude of the noise or artefact for each data-error case, while the ordinate measures the magnitude of the Hausdorff distance, employing a logarithmic scale. The colour of the bars represents both the type of data error (noise or artefact) and the type of objective function: time-lapse reservoir maps of oil saturation or reservoir pressure.
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The shape of the radar charts can be visually compared to assess the impact of data errors. Since no data errors were added to the well production data, the WOPR and WBHP concave-hull surfaces should be identical. However, their shapes vary a little, probably because of randomness in the landscape sampling and the K-Means clustering. The change of shape is more noticeable for the SOIL and PRESSURE objective functions, where data errors were present. There is a marked change of shape for the noise cases, particularly for the SOIL objective function, but less change for the artefact cases. Figure 8d shows that the Hausdorff distance increases monotonically with the magnitude of the data error for the timelapse reservoir maps, but it is an order of magnitude larger for random noise than for Gaussian artefacts. There is a similar magnitude effect on both the SOIL and PRESSURE landscapes for both data-error types. The method's detectability was assessed by calculating the Hausdorff distance, shown by the black markers in Figure 8d, for the error-free objective functions (WOPR and WBHP) as well as the data-error cases (SOIL and PRESSURE). The Hausdorff distance for the error-free cases was similar to the lowest data-artefact case (2MPa) for the SOIL and PRESSURE objective functions, but remains approximately constant for the other experiments. This provided an estimate of the noise in the method because of the pseudo-random landscape sampling, and showed that, except for the lowestamplitude artefact, data errors were detectable in all the experiments.

The results of the data-error experiments for the high-dimensional problems are consistent with the two-dimensional fitness landscapes described in section 3.1.

The difference in shape of the concave-hull surfaces, measured by the Hausdorff distance of its vertices, increases monotonically for both the noise and artefacts, but noise has a considerably larger effect than artefacts. The method has some
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inherent noise, due to differences in pseudo-random sampling between landscapes, but the effects of data errors are greater than the sampling differences and are detectable. At this stage of research and for synthetic cases, we have demonstrated that FLC can provide information on the type of error present in the data, and leads to a more informative fitness landscape analysis for data assimilation problems. However, this would be more challenging for real cases where noise-free data is not available. The utility of the method for real cases will be evaluated in future research.

Exploratory landscape analysis

ELA was applied to the Brugge model fitness landscapes, with and without data errors, and compared with the 21-dimensional BBOB functions. The t-SNE scatterplot of the results is shown in Figure 9. A reasonable distribution of points and clusters was obtained using a perplexity value of three, early exaggeration 18, and learning rate 800. As before, the method was found to be very sensitive to the dimensionality reduction (t-SNE) parameters, but there was some consistency in but the SOIL points are dispersed. There is little consistency in the separation between points with and without data errors for either the SOIL or PRESSURE objective functions, suggesting that this method may not be sensitive to data errors. We note that the WOPR and WBHP clusters are somewhat dispersed, despite no data errors, which may be due to randomness in landscape sampling, the low-level features, or the dimensionality reduction (t-SNE) algorithm. The separation of the BBOB functions from the real-world ASHM landscapes in the scatter plot suggests that the ASHM problems are not adequately represented by the benchmark functions, and other models may be required to represent them.

Discussion

In this work, we have taken a fresh look at ASHM by viewing it from the perspective of the fitness landscape of a continuous optimisation problem. FLA was applied to synthetic reservoir models to gain a deeper understanding of the main characteristics of their fitness landscapes and the implications for optimisation.

FLA is established in other disciplines, but is mostly applied to combinatorial problems or continuous problems with analytical solutions. In contrast, ASHM is a high-dimensional, ill-posed, inverse problem that is subject to model uncertainties and data errors and requires expensive simulations. We aimed to develop an efficient and visually intuitive method for FLA to improve the setup of ASHM problems, create landscapes that are more conducive to optimisation, and increase
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confidence in the optimised models.

FLA for the Brugge reservoir model indicates that its high-dimensional fitness landscapes are low-lying structures with many local or global minima, and with some global structure. This may help to explain the ambiguous and uncertain results obtained for real-world ASHM problems. Low-relief, multimodal landscapes are likely to give rise to numerous solutions that may be far from the true model.

Successive iterations of optimisation may lead to low-fitness solutions that appear to be optimum models, but that does not guarantee that they are either accurate or unique. Consequently, they may provide false predictions and forecasts.

Withholding some data for validation may help to reduce this, but it may be inconclusive for complex real-world reservoir models. Furthermore, our observations may help to explain why well-based pressure measurements are often preferred for production-based history matching, since the landscape seems to be better posed for optimisation and has less non-unique solutions. Unfortunately, due to their high-cost and frequent failure under harsh subsurface conditions, down-hole pressure gauge measurements are often sparse.

Our method, which is based on clustering landscape samples, provides an intu- than their individual points, we found that it reduced data occlusion and eased interpretation. For more detailed analysis, the data points can also be filtered, either by fitness or categorical cluster number, in an interactive display. At this point, the concave-hull surface surrounding the cluster points provides an intriguing representation of the fitness landscape, but its meaning is not fully established and further research is required. Nevertheless, we found that by comparing the positions of the concave-hull's vertices using the Hausdorff distance metric, it was possible to quantitatively compare fitness landscapes. The metric was sensitive to errors such as random noise and artefacts in the observed data, and it was able to detect both the presence and relative magnitude of the errors. In the presence of data artefacts, the shape of the concave-hull surface changed, but it is not yet clear how this is related to the position of the global minimum. The impact of data errors and model uncertainty has not been explored in the literature, so it is not clear whether other methods can provide this kind of information. However, it is an important aspect of real-world optimisation problems and should be researched further.

We compared our method with ELA, which is a well-known method for fitness landscape analysis. The method was able to separate the high-dimensional benchmark functions into clusters based, to some degree, on their high-level properties.

The Brugge-model landscapes fell into separate clusters based on their objective function, which implies that the landscapes have different characteristics. While some dispersion was observed in the clusters, it is not clear that this was related to the type or magnitude of the data errors. The well-based objective functions
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without data errors displayed a similar degree of dispersion to the time-lapse mapbased objective functions with data errors. This dispersion could be due to the quasi-random sampling of the fitness landscapes, the restricted set of low-level features, or the sensitivity of the t-SNE parameters. It suggests that ELA may not be sensitive to data errors, and that it may not be able to distinguish real data errors from the effects of randomness in the method, but further investigation is required.

The Brugge-model landscapes tended to separate from the benchmark functions in the t-SNE scatter plots, which suggests that they may not be well represented by the benchmark functions. This could provide the motivation to develop more representative benchmark models for real-world ASHM problems. Because of their computational requirements or their requirement for additional evaluations, some low-level features could not be computed for higher-dimensional landscapes, which may have limited the analysis. Furthermore, the results of dimensionality reduction using t-SNE were very sensitive to its parameters, although there was some consistency in the cluster groups.

Fitness landscape clustering (FLC) represents an initial foray into FLA for real-world ASHM problems, but it requires further research and development. Real subsurface reservoirs are complex, and provide many additional challenges for FLA.

The Brugge model is ideal for developing and testing FLA methods because it has a known true model and is fast to simulate. However, the true model for a real reservoir is unknown, and reservoir simulations may take much longer. Sampling high-dimensional spaces is an enduring issue and, for real-world ASHM problems, is severely limited by the computational expense of reservoir simulations. We believe that this limits the ability of most FLA methods to characterise high-dimensional or Saltelli methods for efficient sampling; however, according to the "curse of dimensionality" (Bellman, R. and Rand Corporation and Karreman Mathematics Research Collection, 1957), the volume of a hypercube increases rapidly for high dimensions, leading to extremely sparse sampling. Whilst it is beyond the scope of this study, proxy models based on physics-constrained neural networks offer the potential to considerably speed-up reservoir simulations [START_REF] Kim | Closed-loop Reservoir Management using a Convolutional -Recurrent Neural Network Proxy for Robust Production Optimization[END_REF] and could be considered. Our method employs K-Means clustering based on the Euclidean distance between samples and fitness to group landscape points into topologically similar clusters, but the effectiveness of the clustering algorithm has not been thoroughly evaluated. Other methods for multidimensional clustering, including dimensionality reduction, may be considered in future work. Euclidean distance may not be appropriate for FLA in high-dimensional problems, and alternative distance metrics or other concepts of neighbourhood should be investigated.

Real time-lapse seismic datasets are complex and contain data errors and uncertainties, but it is challenging to distinguish real signals from artefacts. We have shown that data artefacts distort the landscape and may lead to erroneous model updates, but the effects of model errors and uncertainties should also be explored. Assisted seismic history matching is currently treated as an optimisation problem in the energy industry, where the goal is to find the optimum subsurface model that reproduces the observed production and time-lapse seismic data. However, this often leads to assimilated models that are non-unique and erroneous, consequently, confidence in the models is low. In this work, we have taken a new approach to the problem by viewing it from the perspective of the fitness landscape. We found that characterising the fitness landscape led to a deeper understanding of the optimisation problem and may explain the uncertain results seen in industry.

It could, in the future, provide information to improve the configuration of the problem and lead to more confidence in the assimilated models.

Fitness landscape analysis is a challenging task that has not been previously applied to real-world problems such as ASHM. Many methods have been developed

for analysing combinatorial problems or continuous benchmark functions, but in this work, we have extended their application to the computationally-expensive, real-world problem of ASHM. To understand the main characteristics of the fitness landscape, we developed a new method based on clustering. We compared our method with another, well-established, method for FLA and found it to be a relatively efficient way to gain an intuitive understanding of the fitness landscape.

We found that ASHM fitness landscapes were generally low-lying plateaus with 

  define the objective function for a reliable measure of fitness, or what optimisation

  compute and visualise. During the last thirty years or so, many methods for

  plied to a real-world, full-field, synthetic reservoir model. The results of the new

  model was designed to minimise complexity whilst using real geological, petrophysical, and fluid properties, which were based on a North Sea reservoir. The model consists of a rectangular grid of cells in three layers, each with 400 cells.The cells' dimensions were 25 m by 25 m horizontally and 9.144 m (30 ft) thick.The model contained two fluids of under-saturated oil and brine. A water injection well and an oil production well were placed in diagonally opposite corners of and reservoir simulation was used to model the flow of fluids through the reservoir. Production data from the wells and time-lapse reservoir pressure and water saturation maps were then extracted from the model. Two-dimensional fitness landscapes were calculated by uniformly sampling the model parameters within their allowable ranges, building new models with perturbed parameters, and comparing their simulated data with the true model's data. The fitness of each model was defined as the mean-square-error (MSE) of the modelled and observed data, for both the production data and time-lapse reservoir maps that were extracted from the model.2.1.3 Brugge full-field reservoir modelThe Brugge model, shown in Figure1b, is a full-field synthetic reservoir model created by the Netherlands Organisation for Applied Scientific Research (TNO) for the Society of Petroleum Engineer's (SPE) Applied Technology Workshop (ATW) on production optimisation in 2008 (Peters et al., 2010). It was selected for this work because it is a realistic reservoir model that has a known true model and solution, and its reservoir simulations are fast to compute: each reservoir simulation took approximately one minute. Four geological formations were defined within the reservoir (Schelde, Mass, Waal, and Schie) and populated with realistic petrophysical values for porosity, net-to-gross, and permeability. The model also contains a geological fault near the crest of the structure. Twenty oil production and 10 water injection wells were used to develop the field. The oil producers were placed near the crest of the structure in the oil zone, and the water injectors were located down-flank in the water zone. Production data for the first 10 years was supplied for the oil producing wells, as well as time-lapse difference maps Three-dimensional view of the sandbox-style simulation model showing its fluid saturation state after the start of production. Water has progressed from the injection well towards the production well in a radial pattern. (b) Three-dimensional view of Brugge simulation model showing its initial fluid saturation state (Mitchell et al., 2023). The oil production wells are near the crest of the structure in the oil zone, and the water injection wells lie down-flank in the water zone.

Figure 1 :

 1 Figure 1: Subsurface reservoir models used for fitness landscape analysis of ASHM problems. The models contain two fluids: oil (green) and water (blue). The wells are shown as black lines that penetrate the reservoir model from above.

  Time-lapse difference maps for reservoir pressure with a Gaussian-shaped artefact and peak amplitude of 6 MPa. The blue semicircular area is the true pressure signal, and the red elliptical area on the left of the maps is the pressure artefact.

Figure 2 :

 2 Figure 2: Time-lapse oil saturation and reservoir pressure maps for each reservoir formation (Schelde, Maas, Waal, and Schie) with added random noise and Gaussian-shaped artefacts. These are typical of real time-lapse seismic data.

  d true , d i ) F = f 1 , f 2 , . . . , f n (a) Fitness landscape sampling workflow. Fitness landscape samples were calculated by comparing the modelled data (orange boxes) with the true data (blue boxes) using the objective function. The true model's parameters were systematically changed to create new models, from which a sequence of model fitnesses were created, F = f i , f i+1 , f i+2 , ..., f n .

  The fitness landscape analysis workflow. Fitness landscape samples are separated into topological features by clustering based on their normalised Euclidean distance and fitness values. The clustering process is illustrated by the pictures in the lower left of the figure, where a continuous surface is segregated into discrete clusters. The clusters' statistics are summarised with violin charts, their multidimensional location in the parameter space as parallel-coordinate density charts, and the landscape is represented as a three-dimensional surface in a 3D radial coordinate chart. The clusters can be filtered by their categorical number and fitness values for a more-detailed investigation.

Figure 3 :

 3 Figure3: Fitness landscape analysis workflows. Figure3ashows the workflow used to generate a sequence of fitness samples, which were then analysed using the workflow shown in Figure3b.
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  Figures4a and 4bshow example fitness landscapes for two parameters; permeabil-

  The presence of noise in the observed data increases the mean fitness of the landscape, but the minima remain at the truemodel solution.

  The presence of an artefact in the observed data distorts the landscape surface, and the minima move away from the truemodel solution.

Figure 4 :

 4 Figure 4: Two-dimensional fitness landscape for PERMX and PERMY model parameters using an objective function based on time-lapse reservoir-pressure maps. The parameter values are plotted on the ordinate and abscissa axes of the graphs, and the colour shading and contours show the fitness values. The parameters were sampled at uniform intervals for dense spatial coverage, and the red dot marks the true model's parameter values.

  Figure5. Sobol-Saltelli sampling was used to generate, 22,528 quasi-random samples from the 10-dimensional search space for each function. The sample locations and fitnesses were normalised and weighted by a factor of three, i.e., w = 3, which was determined by experimentation. This achieved a good balance between fitness and spatial location in the clustering. K-means clustering was then used to extract 40 clusters for each function. The number of clusters was determined through experimentation to provide visually appealing and interpretable displays; however, an automated approach could be implemented in subsequent research.The Sphere function (Figure5a) is a smooth, separable function with a single global minimum. Most of its clusters lie in the centre of the fitness range, with only a few high and low-fitness clusters evident. The parallel-coordinates chart (Figure5g) shows that its lowest-fitness cluster (35) is located near the global minimum, which is marked by the black dotted line. The α-surface shown in its three-dimensional radar chart (Figure5j) manifests as a cylindrical structure that narrows towards its base at the global minimum. The red dotted line at the bottom of the chart is the location of the global minimum.The Sharp Ridge function (5b) is a unimodal function with high conditioning, i.e., the function has much greater sensitivity (≈ 10 6 ) to some parameters than others. Its clusters are also biased towards the middle of the fitness range (Figure5e), but there are a few distinctive low-fitness clusters. The parallel-coordinates chart for this function (Figure5h) indicates that its lowest-fitness cluster (33) to the global minimum. Parameters x1, x2, x3, and x8 are more dispersed than the others, indicating that they have more variability due to the function's high conditioning. The function's three-dimensional structure in the radial-coordinates chart (Figure5k) is elongated in the same parameter directions, providing further evidence of the function's high conditioning.In contrast, the distribution of clusters for Gallagher's Gaussian 101-me Peaks function is markedly different to the Sphere and Sharp Ridge functions. It is a multimodal function with weak global structure (Figure5c). Most of its clusters are at the top of the fitness range, with only one distinctive low-fitness cluster.The parallel-coordinates chart for this cluster, Figure5i, shows that its points are widely distributed across the search space, suggesting that it contains points from many of the function's minima. It's α-surface (Figure5l) has a different shape to the previous functions, where the high-fitness clusters form a broad top and the low-fitness cluster a narrow base, which lies close to the true solution marked by the red dotted line.The analysis shown in Figure5demonstrates that our method, FLC, can, to some degree, characterise and distinguish fitness landscapes with distinctive mathematical properties in high dimensions. Landscape properties such as global structure, conditioning, and multimodality are detectable. Violin charts show the fitness distribution of topologically similar features within the landscape and provide an insight on the global structure of the landscape. Parallel-coordinate density charts show the multidimensional location of the points for an individual cluster and the distribution of points within the cluster. They can clearly distinguish points that belong to well-defined global minima from those of a multimodal landscape, which have many local or global minima. The three-dimensional radar chart

  Violin chart for 10dimensional Sphere function. Ridge 1 0D s altelli 1 024 K M eans 4 0 n ormalise T rue w eight 3 .pdf Ridge 1 0D s al (e) Violin chart for 10dimensional Sharp Ridge function. 101-me Peaks 1 0D s altelli 1 024 K M eans 4 0 n ormalise T ru meP eaks 1 0D s altelli 1 024 K M eans 4 0 n ormalise (f ) Violin chart for 10dimensional Gallaghers 101-me Peaks function.
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  Ridge 1 0D s altelli 1 024 K M eans 4 0 n ormalise T rue w eight 3 .pdf Ridge 1 0D s al Peaks 1 0D s altelli 1 024 K M eans 4 0 n ormalise T ru meP eaks 1 0D s altelli 1 024 K M eans 4 0 n ormalise Ridge 1 0D s altelli 2 2528 K M eans 4 0 n ormalise T rue w eight 3 .pdf Ridge 1 0D s a Peaks 1 0D s altelli 2 2528 K M eans 4 0 n ormalise T r 25 Downloaded from https://academic.oup.com/jge/advance-article/doi/10.1093/jge/gxad062/7258820 by BRGM user on 07 September 2023 representation of the fitness landscape, which combines the fitness and location of the clusters into a single chart, and provides an intuitive representation of high-dimensional landscapes.Exploratory landscape analysis (ELA) was also used to analyse the 10-dimensional BBOB functions, and the results were compared with those of fitness landscape clustering (FLC). The results of ELA analysis and subsequent dimensionality reduction using t-SNE are shown as a two-dimensional scatter plot in Figure6. The enumerated markers in the scatter plot represent the BBOB functions, and the colour of the marker is related to the function's main property, i.e., separability, conditioning, global structure, and multimodality. The functions, of course, have more than one mathematical property and may not be uniquely distinguishable.
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 6 Figure6: T-SNE scatter plot for the 10-dimensional BBOB functions using a subset of ELA features and t-SNE dimensionality reduction (perplexity 3, early exaggeration 18, and learning rate 800). Clusters of functions that have similar high-level properties form in the scatter plot.
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  The parallel-coordinate density charts for the lowest-fitness clusters of each objective function are shown in Figure7b. For WOPR, the lowest-fitness cluster (54) has a high point-density for most parameters, which, for the most part, do not correspond with the true-model solution. This implies that it represents a non-unique minimum. The violin chart for WOPR, shown in Figure7a, supports this reasoning because it has many low-fitness clusters indicating numerous nonunique solutions. For the majority of parameters, the points in cluster two of the WBHP objective function are close to the true solution, suggesting that the lowest-fitness cluster is close to the true-model solution and may coincide with the global minimum. The density of points is high for most parameters, indicating that the global minimum is fairly localised. The parallel-coordinates chart for cluster 31 of the SOIL objective is similar to WOPR, in that the points are localised for most parameters, but they are not generally coincident with the true-model solution. This may also represent a non-unique minimum. The points within cluster 57 of the PRESSURE objective function are widely dispersed for many of the parameters, except for the permeability parameters of the Waal formation, 29 Downloaded from https://academic.oup.com/jge/advance-article/doi/10.1093/jge/gxad062/7258820 by BRGM user on 07 September 2023

  Radial coordinate charts.

Figure 7 :

 7 Figure 7: Fitness landscape analysis for 21-dimensional fitness landscapes (WOPR, WBHP, SWAT, and PRESSURE) of the Brugge subsurface reservoir model.

  the cluster groups for different parameters. The fitness landscapes of the Brugge model are represented by the blue, orange, green, and red points, and the BBOB functions by the purple points. The colour of the points represents the type of objective function (WOPR, WBHP, SOIL, and PRESSURE) for the Brugge model landscapes. The shape of the markers represents the data error type, i.e., a circle for no data error, a cross for random noise, and a square for an artefact. The annotations indicate the amplitude of data errors for the Brugge model landscapes (0.05, 0.10 and 0.15 for SOIL, and 2, 4, and 6MPa for PRESSURE) and the func-Hausdorff distances for the 21dimensional fitness landscapes of the Brugge model with data errors.
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 89 Figure 8: Radar charts for the Brugge model 21-dimensional fitness landscapes with and without data errors.

  itive means to characterise and visualise fitness landscapes. Violin charts show the landscape's global structure, and parallel-coordinate density charts interrogate the location and spatial distribution of the cluster's samples. Because the method uses quasi-random sampling methods that are independent of the problem's dimensionality, it is relatively efficient. The number of clusters was determined manually in this study, but the optimum number of clusters should be determined automatically in future work. The three-dimensional radar chart is a novel way to visualise multidimensional points in a three-dimensional space. It enhances the concept of visualising both the location and fitness of a multidimensional point in a single chart. By displaying the clusters' centroid locations, rather

  landscapes. In this work, we used quasi-random methods such as Latin-hypercube

Furthermore

  , time-lapse seismic data are recorded as band-limited acoustic signals and must be inverted to compare with the simulation model properties, but this is very difficult in practice. Alternatively, the simulation model properties can be converted to impedances and synthetic acoustic signals for direct comparison with the time-lapse seismic data, but this introduces more uncertain processes, models, and parameters. In future work, we intend to apply fitness landscape analysis to a real producing field, with real data, to investigate these issues.

  many local or global minima and some global structure. This helps to explain the non-uniqueness and uncertainty of the optimised models in industry, as well as the low-confidence in their forecasts and predictions. Pressure-based landscapes appeared to have more global structure and fewer minima than those based on liquid saturations, which suggests they may be a better-posed landscapes for history matching. This is consistent with industry experience. We observed that data errors distorted the shape of the fitness landscape and moved the location of the global minimum away from the true solutions, potentially leading to erroneous model updates.This work represents an initial foray into FLA for ASHM problems and will serve as the foundation for further research. We will continue to develop our methodology and apply it to a real producing reservoir, with the aim of understanding ASHM at a deeper level. Furthermore, this work supports our original hypothesis that characterising the fitness landscape for ASHM problems will provide a deeper understanding of the problem, inform its setup, and may lead to a new approach to ASHM. ., Verardo, E., Pryet, A., Chassagne, R., & Atteia, O., 2020. An iterative strategy for contaminant source localisation using GLMA optimization and Data Worth on two synthetic 2D aquifers, Journal of Contaminant Hydrology,

  1, reservoir simulation was used to generate the observed dataset, d true , from the model, m true , defined by the parameter vector x true . The parameters of the true model were then perturbed to create a new model realisation, m i , with parameter vector x i , and used to generate its modelled dataset, d i , by reservoir simulation. The model data, d i , and the true data, d true , were then compared using an objective function, O b (d true , d i ), to calculate the model's fitness, f i . The process was repeated n times, systematically perturbing the parameters of the true model to generate the set of fitness landscape samples,

Table 1 :

 1 Reservoir model parameters and their search-space ranges. A scalar was applied to each of the property grids to perturb the models and compute the fitness landscape. The table shows the mean property values for each formation, as well as the mean values for the minimum and maximum scalar cases. The minimum and maximum scalar values are also shown in parentheses.

	Formation Property	Mean Minimum	Maximum
		Porosity	20.7	14.5 (0.7)	26.9 (1.3)
		Net-to-gross	0.6	0.4 (0.7)	0.8 (1.3)
	Schelde	PermX (mD)	1105.0 552.5 (0.5) 2210.0 (2.0)
		PermY mD)	1105.0 552.5 (0.5) 2210.0 (2.0)
		PermZ (mD)	16.5	8.25 (0.5)	165 (10.0)
		Porosity	19.0	13.3 (0.7)	24.7 (1.3)
		Net-to-gross	0.88	0.62 (0.7)	0.97 (1.1)
	Maas	PermX (mD)	90	45 (0.5)	900 (10.0)
		PermY (mD)	90	45 (0.5)	900 (10.0)
		PermZ (mD)	2.3	1.15 (0.5)	23.0 (10.0)
		Porosity	24.1	16.87 (0.7) 31.33 (1.3)
		Net-to-gross	0.97	0.68 (0.7)	1.0 (1.1)
	Waal	PermX (mD)	814	407 (0.5)	1628 (2.0)
		PermY (mD)	814	407 (0.5)	1628 (2.0)
		PermZ (mD)	23.7	11.85 (0.5) 237 (10.0)
		Porosity	19.4	13.58 (0.7) 25.22 (1.3)
		Net-to-gross	0.77	0.39 (0.7)	1.0 (1.3)
	Schie	PermX (mD)	36	18 (0.5)	360 (10.0)
		PermY (mD)	36	18 (0.5)	360 (10.0)
		PermZ (mD)	1.6	0.8 (0.5)	16 (10.0)
	Fault	Trans' multiplier	1	0.1 (0.1)	2.0 (2.0)

  Streit, M., Ecker, R. C.,Österreicher, K., Steiner, G. E., Bischof, H., Bangert, C., Kopp, T., & Rogojanu, R., 2006. 3D parallel coordinate systems-A new data visualization method in the context of microscopy-based multicolor tissue cytometry, Cytometry Part A, 69(7), 601-611, 10.1002/cyto.a.20288. Trani, M., Arts, R., & Leeuwenburgh, O., 2013. Seismic History Matching of Fluid Fronts Using the Ensemble Kalman Filter, SPE Journal , 18(01), 159-171, 10.2118/163043-pa. van der Maaten, L. & Hinton, G., 2008. Visualizing data using t-SNE, Journal of machine learning research, 9, 2579-2605. Waibel, C., Mavromatidis, G., Evins, R., & Carmeliet, J., 2019. A comparison of building energy optimization problems and mathematical test functions using static fitness landscape analysis, Journal of Building Performance Simulation, 12(6), 789-811, 10.1080/19401493.2019.1671897. Wattenberg, M., Viégas, F., & Johnson, I., 2016. How to Use t-SNE Effectively,

	Distill , 10.23915/distill.00002.
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