Late Pleistocene to Holocene slip rates for the Gurvan Bulag thrust fault (Gobi-Altay, Mongolia) estimated with ¹⁰Be dates

J.-F. Ritz,¹ D. Bourlès,² E. T. Brown,³ S. Carretier,⁴ J. Chéry,¹ B. Enhtuvshin,⁵ P. Galsan,⁵ R. C. Finkel,⁵ T. C. Hanks,⁷ K. J. Kendrick,⁸ H. Philip,¹ G. Raisbeck,⁹ A. Schlupp,¹⁰ D. P. Schwartz,⁷ and F. Yiou⁹

Received 30 March 2001; revised 3 June 2002; accepted 28 August 2002; published 20 March 2003.

[1] We surveyed morphotectonic markers along the central part of the Gurvan Bulag thrust fault, a fault that ruptured with the Bogd fault during the Gobi-Altay earthquake (1957, M 8.3), to document climatic and tectonic processes along the fault for the late Pleistocene-Holocene period. The markers were dated using ¹⁰Be produced in situ. Two major periods of alluviation ended at 131 ± 20 and 16 ± 4.8 ka. These appear to be contemporaneous with global climatic changes at the terminations of marine isotope stages (MIS) 6 and 2. The vertical slip rates, determined from offset measurements and surfaces contemporaneous with global climatic changes at the terminations of marine isotope stages, varied from 0.14 ± 0.03 mm/yr over the late Pleistocene-Holocene and between 0.44 ± 0.11 and 1.05 ± 0.25 mm/yr since the end of the late Pleistocene. The higher of these slip rates for the last ~16 kyr is consistent with paleoseismic investigations along the fault [Prentice et al., 2002], and suggests that, at the end of late Pleistocene, the fault evolved from quiescence to having recurrence intervals of 4.0 ± 1.2 kyr for surface ruptures with ~4 m vertical offset (similar to that of 1957). The inferred recurrence interval is comparable to that of the Bogd fault (3.7 ± 1.3 kyr) suggesting that the two faults may have ruptured together earlier during the last 16 kyr.

INDEX TERMS: 7221 Seismology; Paleoseismology; 1208 Geodesy and Gravity: Crustal movements—intraplate (8110); 1824 Hydrology: Geomorphology (1625); 7230 Seismology: Seismicity and seismotectonics; 8107 Tectonophysics: Continental neotectonics; KEYWORDS: Late Pleistocene, Holocene, thrust fault, slip rate, ¹⁰Be dating, Mongolia

1. Introduction and Tectonic Setting

[2] Recent advances in paleoseismology have demonstrated the importance of studying active faulting over several seismic cycles [e.g., McCalpin, 1996; Yeats and Prentice, 1996]. Even in regions where strain rates are high (i.e., interplate settings), instrumental and historical records of seismicity are barely representative of a complete seismic cycle, emphasizing the importance of paleoseismic studies. Moreover, some examples of long-term analyses of seismic activity have shown that periods of activity can alternate with periods of quiescence along a single fault or a group of faults [e.g., Sieh et al., 1989; Grant and Sieh, 1994; Marco et al., 1996; Xiwei and Qidong, 1996; Khair et al., 2000]. This emphasizes the need for understanding the behavior of faults over longer periods of geologic history.

[3] In this paper, we use in situ-produced ¹⁰Be to determine the rate of late Quaternary vertical slip along the Gurvan Bulag fault (Figures 1–3). The Gurvan Bulag fault is a 23 km long thrust that ruptured most recently in 1957, simultaneously with the Bogd strike-slip fault during one of the strongest seismic event (M 8.3) to have occurred in continental interiors during the last century [Florensov and Solonenko, 1965; Molnar and Qidong, 1984; Baljinnyam et al., 1993; Kurushin et al., 1997]. Determining the vertical slip rate along the Gurvan Bulag thrust fault over a long time period will permit examination of interaction between the Bogd and Gurvan Bulag faults, notably whether the two faults ruptured together in the past as well.

[4] Morphological analysis along the Bogd fault provides evidence of cumulative displacements, such as the offset of streams, ridges, or alluvial fans. This has allowed estimation of the late Quaternary slip rate along the Bogd fault. At Noyan Uul, along the main strike-slip segment of the Bogd fault, Ritz et al. [1995] estimated a maximum horizontal slip...
rate of 1.2 mm/yr from an offset alluvial fan dated by cosmogenic 10Be produced in situ (Figure 2). This rate suggests recurrence intervals on the order of 5 kyr for surface rupture similar to that of 1957. Preliminary interpretation of 10Be dates of offset morphotectonic markers along the Gurvan Bulag thrust fault suggested variations of vertical slip rate through time [Ritz et al., 1997], and therefore a possible episodic behavior of the faulting process, which has not been proposed for the Bogd fault. Nevertheless, such episodic behavior has been suggested for other secondary thrust faults associated with the Bogd fault system [Owen et al., 1999].

The topography of the region appears tightly associated with geometry, kinematics, and distribution of ruptures (Figure 2b). Along the Ih Bogd and Baga Bogd massifs, the left lateral slip is associated with a vertical reverse component. The two massifs of Ih Bogd and Baga Bogd are bounded by oblique reverse faults along their northern flanks and pure reverse faults along their southern flanks. They can be considered as rigid pop-up structures resulting from transpressional deformations within restraining bends along the Bogd strike-slip fault [Kurushin et al., 1997; Cunningham et al., 1996, 1997]. The flat summit plateau of the Ih Bogd massif (Figure 3c), an elevated remnant of an old erosional surface [Florensov and Solonenko, 1965; Baljinnyam et al., 1993] suggests that the bounding faults have the same long-term slip rate. Hanks et al. [1997] reported a \sim0.1 mm/yr vertical slip rate for the past 100 ka along a thrust fault segment to the north of the Ih Bogd massif, southeast of Dalan Tüüü foreberg (Figure 2b). The massif rises more than 2000 m above the E-W trending Valley-of-Lakes to the north, and about 1500 m above its southern piedmont. Determination of the long-term uplift rate along the Gurvan Bulag fault should permit evaluation of the uplift history of the Ih Bogd massif.

In 1957, the most recent of these, the Gobi-Altay earthquake, ruptured the eastern part of the Valley-of-Lakes fault, an ancient Paleozoic structure that was reactivated during the Cenozoic era [Florensov and Solonenko, 1965]. The following year, a Mongolian-Russian expedition to the epicentral zone provided an outstanding description of ground surface effects of the earthquake [Florensov and Solonenko, 1965]. Recently, Baljinnyam et al. [1993] revisited some of the piercing points of the surface breaks and Kurushin et al. [1997] furnished an updated and thorough description of the whole rupture area. The main rupture of more than 260 km of left lateral strike-slip occurred along the Bogd fault, to the north of the Ih Bogd (3957 m) and Baga Bogd (3590 m) massifs (Figure 2b). The average horizontal displacement was between 3 and 4 m with a maximum section of offsets up to 5–7 m [Kurushin et al., 1997]. An additional 100 km of reverse faulting, distributed

Figure 1. Photograph of the central part of Gurvan Bulag active thrusting ridge (“foreberg”) at the southern foothills of Ih Bogd massif, taken from a distance of 5 km.

Figure 2. (a) Simplified map of Quaternary faults (symbols noted subsequently) in Central Asia and $M \geq 8$ earthquakes (solid dots) recorded during the past century [modified after Molnar and Qidong, 1984]: B, Baikal; S, Sayan; T, Tsetserleg; B, Bolnay; A, Altay; GA, Gobi-Altay; TS, Tien Shan; P, Pamir; AT, Altyn Tagh; QS, Qilian Shan; O, Ordos; H, Haiyuan; KL, Kun Lun; LS, Lungmen Shan; XS, Xian Shui; RR, Red River; K, Karakorum; Ch, Chaman. (b) Sketch map of the 1957 Gobi-Altay rupture. Bold and italic numbers indicate horizontal and vertical displacements, respectively, in meters [data from Kurushin et al., 1997].
on five secondary segments, ruptured simultaneously with the Bogd fault during the 1957 earthquake (Ölziiyt, Gurvan Bulag, Toromhon, Dalaan Tüürü, and Hetsüü; Figure 2b) [Florensov and Solonenko, 1965; Kurushin et al., 1997]. These fault segments correspond mainly to thrust faults found at the base of ridges and low hills or “forebergs” [Florensov and Solonenko, 1965; Kurushin et al., 1997; Owen et al., 1999; Bayasgalan et al., 1999b], which are shortening structures associated with the main Bogd strike-slip fault. The foreberg associated with the Gurvan Bulag fault, to the south of the Ih Bogd massif, is the major field area for the present study.

The morphology of the Gurvan Bulag foreberg is the result of the interactions between tectonics (vertical offset) and fan dynamics (erosion or deposition) [Bayasgalan et al., 1999a; Carretier et al., 2002]. Flat, active surfaces are generally directly downstream of drainage basins where erosional and depositional rates are at a maximum, whereas hills are found in areas where deposition rates are lower, typically at the lateral margins of the fans (Figures 3 and 4). The foreberg is thus a system of inset surfaces that show clear cumulative vertical slips. These surfaces, containing quartz-rich boulders, offer the possibility to evaluate the vertical slip rate of the Gurvan Bulag thrust fault during the late Quaternary, using cosmic ray exposure dating.

2. Morphotectonic Analysis

2.1. Analysis of Aerial Photographs

This study focused on two fans cut by the central part of the Gurvan Bulag thrust fault (Figure 3) and where the 1957 vertical displacements were the largest [Kurushin et al., 1997]. Analysis of 1:35,000 scale Soviet-Mongolian aerial photographs taken of these fans in 1958, allowed us to identify three main alluvial markers from their relative elevations (Figure 4). S1 corresponds to upper, old eroded surfaces found within the hanging wall in a band of 1–1.5 km width uphill from the fault scarp. They result either from fold thrusting or represent elevated remnants of planar abrasive or depositional surfaces. S2 is an intermediate alluvial surface inset in S1 and is found in large patches extending on both sides of the fault. Within it, we distinguished S2a from S2b according to differences in stream system morphology. S2a is found mainly in the hanging wall block and shows a low-density, strongly incised stream pattern. S2b is found mainly within the footwall block and has a dense superficial stream system converging downstream, which we interpret as the result of localized erosional processes (e.g., diffuse sheet wash, rilling). S3 is the youngest depositional surface, extending from the apex of the cones to the Gurvan Bulag foreberg, and appears to be inset in S2. In the western fan (Figure 4) as it approaches the fault zone, S3 overlies surface S2 and then dissipates before reaching the fault scarp, except maybe along the main, narrow stream channel. This termination of S3 deposits above the fault scarp has also been described further east at Gurvan Bulag [Carretier et al., 2002]. However, it is not observed within the eastern fan in our study area, where S3 is more deeply inset within the two older surfaces and crosses the fault scarp in broad channels (Figure 4).

In addition to these three main alluvial surfaces, the aerial photographs also enabled us to define additional features present only within the western fan: S4 corresponds to gullies cut in alluvial surfaces near the fault scarp, and C are local cones which are found in the footwall in front of S4 gullies. We interpret these features as local debris cones...
that accumulated at the toeslope of the fault scarp contemporaneously with the incision of S4 gullies into older hanging wall alluvial surfaces.

2.2. Fieldwork

[11] We focused our fieldwork within the western fan, where the 1957 fault displacements, as well as the cumulative deformation, appeared largest, and where the surfaces and their associated deposits seemed to be the broadest and the best preserved (Figure 5). Field observations of the surfaces defined through the use of aerial photographs permitted more detailed morphological descriptions. S1, the high surfaces, have the morphology of uplifted N-S elongated hills. Flat tops are still observed in some places, but in most cases tops are rounded (Figure 6). These surfaces contain deeply weathered granite boulders totally engulfed in more finer material. S2 is well inset within S1 and shows a planar morphology with large boulders (1 m in average) almost totally encased in the surface. Some rare, weathered, and often fractured boulders are still elevated on the surface, their lower parts encased in finer deposits (Figures 7 and 10). S3 appears as a broad debris flow characterized by a dense boulder field (Figures 6b and 7). This debris flow contains well-preserved large granite boulders (up to 3 m, 1 m in average) that are embedded in a finer matrix. Many of the boulders have dark desert varnish and some of these have petroglyphs, reportedly 3000-yr-old [Florensov and Solonenko, 1965]. At the studied site, S3 covers surface S2, but terminates before reaching the fault scarp (Figures 6b and 7). S4, the most recent morphologic marker, is present in 50 m wide gullies near the fault, and corresponds to cut terraces incised into older fill terrace material. Their transverse profile defines a concave surface covered by soil containing cobbles (Figures 6 and 8). Close to the fault, these gullies are more or less incised along the stream channels due to the post-1957 regressive erosion along intermittent streams. In the field, we also observed a local debris flow, called S5, inset into one of the S4 gullies (Figures 5b and 14). This recent debris flow unit was offset during the 1957 earthquake and shows ~2.5 m high, sharp, vertical risers due to rapid stream incision following to the 1957 earthquake.

2.3. Measurement of Offsets

2.3.1. Offsets Associated With 1957 and Penultimate Earthquakes

[12] From the described features, we attempted to estimate the amount of the 1957 offsets and of cumulative vertical offsets along this portion of the Gurvan Bulag thrust fault. We surveyed the morphology of the surfaces by...
measuring cross profiles with kinematic GPS using two Ashtech receivers (Figure 9a). One was used as a base, its antenna fixed on a tripod downstream from the fault scarp; the other one was mobile, its antenna attached to a hand-carried pole. Both receivers recorded positioning data (from at least four satellites) at intervals of 3, 5, or 10 s depending on the length of profiles and the need for topographic detail. After the surveys, positioning data were processed with GPPS and KINSVY Ashtech software. Remeasurements of starting points for each profile indicated horizontal and vertical uncertainties on the order of 1 cm. We measured seven profiles across the different surfaces (see Figures 4 and 5). Results are shown in Figure 9b. Vertical displacements and associated uncertainties were calculated from the profiles using mathematical parameterizations developed by Hanks et al. [1984] from the work of Bucknam and Anderson [1979].

[13] Profile 1 is perpendicular to the fault and follows the crest of a ridge contiguous with surface S1 (Figure 4). The slope morphology associated with the 1957 scarp along this profile displays a typical single event scarp degradation profile. It is characterized by a straight, steep linear back-slope, with a concave toeslope and convex shoulder. Estimation of the 1957 vertical separation from this profile is 4.0 ± 0.3 m.

[14] Profiles 2, 3, and 4, also perpendicular to the fault, cross surfaces S4 and simple interpretation suggests larger vertical slip values: 5.6 ± 0.2, 7.8 ± 0.4, and 6.0 ± 0.5 m, respectively. However, the shapes of profiles 2 and 3 show complex slope morphology suggesting that more than one event is recorded in the scarp. The lower parts of both profiles are linear and we interpret them as the gravity-controlled face associated with the 1957 event [Carretier et al., 2002]. Assuming that the height of these faces represents an upper limit for the 1957 vertical offset, we determined values of 4.0 ± 0.2 and 4.5 ± 0.4 m along profiles 2 and 3, respectively. Upper parts of both profiles display beveled surfaces with mounds and hollows that we interpret as degraded preexisting scarps (see Figure 9b). If we interpret the beveled parts of profiles as degraded scarps from a single prior event, the minimum vertical offset associated with this penultimate event is 1.6 ± 0.2 and 3.3 ± 0.4 m, respectively. Note that we do not observe the symmetrical change in slope downstream the 1957 gravity-controlled faces, corresponding to the slope front filled due to the degradation of the penultimate scarp. There are two possible explanations for this: either the debris were removed further downstream or, as proposed by Carretier et al. [2002], the 1957 fault rupture stepped forward at the bottom the penultimate degraded scarp.

[15] Profile 4 (Figures 8b and 9b) corresponds to site 44 of Kurushin et al. [1997, their Figure A44b] in which the 1957 vertical offset is estimated at 5.2 ± 0.5 m. Our profile displays an apparent symmetry that might be interpreted as a single event scarp with a height of 6.0 ± 0.5 m. Nevertheless, the fact that profile 4 crossects (400 m to the east) the same fault scarp as profiles 2 and 3 which have evidence for two events, suggests that the scarp at profile 4 also is the result of multiple events. We believe that the apparent straight line face does not represent the 1957 fault scarp, but was formed by recent gravitational collapse of the cumulative frontal part of the scarp at this site. Such collapse would have removed the preexisting topography associated with the penultimate event. This precludes the
possibility of accurately separating the offsets associated with two events. There is a slight indication of a bevel at the upper portion of this profile, suggesting a preexisting scarp. This feature also appears on the profile reported by Kurushin et al. [1997]. Therefore we interpret the very uppermost beveled part of profile 4 (between coordinates 100 and 150 m) as a remnant of preexisting topography.

[16] In summary, the mean 1957 vertical offset along the central part of the Gurvan Bulag thrust fault calculated from profiles 1, 2, and 3 is 4.2 ± 0.3 m. There is evidence for one preexisting earthquake affecting surface S4. The mean vertical offset of the penultimate event calculated from profiles 2 and 3 is 2.5 ± 1.2 m, which represents a lower limit because the scarps may have been affected by erosion or gravitational collapse. It is also likely that springs, present within S4 gullies along the fault scarp before 1957 (“Gurvan Bulag” means “three springs” in Mongolian; the 1957 earthquake changed local hydrology and dried up the springs) and associated overland flow, as well as cryoturbation, have modified the shape of the scarp.

2.3.2. Offset of Surface S2

[17] Profiles 5 and 6 are parallel profiles 2 km long separated by about 10 m (Figures 4, 5, and 9), cross surface S2 and permit estimation of its cumulative vertical displacement. They show a planar surface at the footwall with a general slope of about 5° toward the south, then a cumulative vertical scarp corresponding to surface S2 which shows a slight convex upward bend just upslope the fault rupture. Within the foreberg, the debris flow surface S3 covers surface S2 and is characterized by a planar section that connects to the upstream slope of the fan.

[18] The downslope endpoints of profiles 5 and 6 are located far below the fault scarp to extend beyond localized...
cones (surface C) that overlie surface S2. Indeed, this site is within the surface defined as S2b from analysis of aerial photographs. Therefore we consider the vertical separation between the hanging wall surface S2a and the footwall surface S2b as the maximum cumulative vertical slip of surface S2. From profiles 5 and 6, we estimate this maximum cumulative vertical slip to be 18.5 ± 0.5 and 19 ± 0.5 m, respectively.

Profile 7 also crosses surface S2 and provides an estimate for a maximum vertical displacement of S2 of 22 ± 1 m. Further east, a similar cumulative vertical displacement for S2 (17–20 m) was measured along a profile that follows a well-preserved area of the surface on both sides of the rupture [Carretier, 2000]. In summary, from profiles 5, 6, and 7, we estimate the mean vertical offset for surface S2 in the studied area at 19.8 ± 1.9 m.

2.3.3. Offset of Surface S3

Profiles 5 and 6 also permit estimation of the vertical displacement of surface S3, although this is more uncertain because at this place, S3 stops before reaching the fault scarp, and is not found at the footwall. In the hanging wall, S3 deposits are almost at the same level than surface of S2 deposits (see also Figure 7). The slight difference in height between the surfaces S2 and S3 on the profiles 5 and 6 may be interpreted as an inset of about 1 m of surface S3 with respect to the top of surface S2. It can also be interpreted as the termination of S3 deposits against the fold of surface S2 above the fault. Extension of the planar S3 surface to the south indicates vertical separations of 17.5 ± 0.5 and 17 ± 0.5 m of surface S3 deposits with respect to footwall surface S2b on profiles 5 and 6, respectively. As described earlier, S3 and S2 are deeply incised by gullies denoted S4 (Figures 5 and 6b), the formation of which led to a series of cones on the footwall (C). We interpret these features as the effects of regressive erosion caused by vertical displacement along the fault. However, because we do not observe the continuation of S3 all along the profile, we cannot tell how much of the observed cumulative displacement occurred before and after S3 deposition. Two extreme scenarios can be proposed depending on whether the cumulative offset occurred before or after S3 deposition. If most of the cumulative offset occurred before S3 deposits, the minimum vertical displacement for S3 would be 7.8 ± 0.4 m, which corresponds to the vertical displacement calculated for the closest S4 gully (profile 3, Figure 9b). In contrast, if the cumulative offset occurred after deposition, the measured mean vertical separation of 17.3 ± 0.4 m would represent a maximum value for the vertical offset for S3 (assuming that the footwall...
surface level of S3 would be the same as surface S2b). Finally, profile 7 gives a minimum vertical offset of S1 of 31 ± 1 m.

3. Estimating Surface Exposure Ages

3.1. Fieldwork and Sampling

[21] To date the exposure to cosmic rays of morphological markers, we had been measuring 10Be produced in situ [e.g., Brown et al., 1991; Bierman, 1994]. The alluvial fans cut by the Gurvan Bulag thrust fault show variations in morphology and degree of preservation (see description of studied sites previously). Our sampling selection strategy should minimize the effects of exposure prior to deposition and of erosion following deposition. We focused our work on the three most recent morphotectonic markers surface S2, the debris flow surface S3, and the cut terrace S4.

[22] S2 and S3 surfaces are depositional features characterized by boulder fields. We assumed that the occurrence of large granite boulder flows represent the effect of strong erosional events having reworked massive quantities of slope material from the upstream drainage basins of the Ih Bogd massif. In addition, because these debris flows represent an intense erosional event, it would be expected that deposition would be rapid and little cosmogenic nuclide accumulation would occur during transport. Under these conditions, the concentration of in situ cosmogenic 10Be is directly related to the time when alluviation ended, or when subsequent incision led to the abandonment of the fan surface. All the samples are along profiles 5 and 6 (Figure 5b).

[23] We collected seven samples from surface S2, downhill of debris flow S3, where topographic surface forms a slight convex upward bend (see profiles 5 and 6 in Figure 9b), and where the boulders (~1 m in diameter) are far apart: five samples were taken on top of granite boulders of this part of the surface and two samples from a soil pit showing Stage 3 carbonate morphology (Figures 5 and 10).

[24] We collected 10 samples from S3 debris flow surface sampling the top of granite boulders (~1–3 m in diameter) (Figures 5 and 11). We also collected a depth profile of 10 samples from a 1.7 m deep soil pit located at the toe of debris flow S3 to analyze the distribution of 10Be concentration at depth (Figure 12).

[25] Five cobbles were sampled from S4 cut terraces (Figures 5, 8a, and 13). We believe that this material corresponds to older fill material that was buried before its exposure by stream incision.

[26] In addition of the sampling of the three morphotectonic markers, we also collected five samples from the eastern wall of the riser which incised the debris flow S5.
We used this natural cross section to analyze the 10Be concentrations beneath 2 m depth.

3.2. Laboratory Methods

[27] Thirty-seven samples (Table 1) have been analyzed by accelerator mass spectrometry. Samples from surfaces S3, S4, and S5 as well as from the soil pit were analyzed at the Tande´tron AMS facility, Gif-sur-Yvette, France [Raisbeck et al., 1987, 1994]. Samples from surface S2 were analyzed at the LLNL AMS facility, Livermore, California, USA [Davis et al., 1990].

[28] Chemical preparation varied slightly between the two laboratories. At Gif-sur-Yvette, it consisted of crushing and sieving samples to yield 0.25–1.0 mm fragments, which were cleaned in HCl to eliminate potential surface contamination by 10Be produced in the atmosphere [Brown et al., 1991]. Then quartz was purified from the cleaned material by selective dissolution of feldspars with H_2SiF_6. After quantitative dissolution of this purified quartz in HF, the samples were spiked with 300μg of 9Be carrier for analyses of 10Be. Isotope ratios were determined by calibration against NIST Standard Reference Material 4325. At Livermore, samples were crushed and sieved to an uniform size of 0.25–0.5 mm. Quartz was separated from these

Table 1. 10Be Concentrations and Ages for Markers

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>10Be $\times 10^3$, atm/g</th>
<th>Uncertainty, 1σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2 samples (altitude: 2000 m, latitude: 44°50.832'N, production: 27.4 atm/g/yr)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GB96-9</td>
<td>3480</td>
<td>118</td>
</tr>
<tr>
<td>GB96-10</td>
<td>3640</td>
<td>115</td>
</tr>
<tr>
<td>GB96-11</td>
<td>3630</td>
<td>89</td>
</tr>
<tr>
<td>GB96-12</td>
<td>3410</td>
<td>83</td>
</tr>
<tr>
<td>GB96-13 (65cm)</td>
<td>1360</td>
<td>39</td>
</tr>
<tr>
<td>GB96-14 (90cm)</td>
<td>960</td>
<td>32</td>
</tr>
<tr>
<td>GB96-13 (0cm)b</td>
<td>3360</td>
<td>349</td>
</tr>
<tr>
<td>GB96-14 (0cm)b</td>
<td>3410</td>
<td>360</td>
</tr>
<tr>
<td>GB96-15a</td>
<td>2400</td>
<td>58</td>
</tr>
<tr>
<td>Mean concentration</td>
<td>3488</td>
<td>120</td>
</tr>
<tr>
<td>Mean 10Be age, ka</td>
<td>131</td>
<td>20</td>
</tr>
</tbody>
</table>

| S3 samples (altitude: 2000 m, latitude: 44°50.832'N, production: 27.4 atm/g/yr) |
Mo93-AII1	325	36
Mo93-AII2	336	49
Mo93-AII3	488	52
Mo93-AII4	677	65
Mo93-AII5c	1166	99
Mo95-11	426	37
Mo95-12	335	27
Mo95-13	368	29
Mo95-14	482	61
Mo95-15	505	37
Mean concentration	438	114
Mean 10Be age, ka	16.0	4.8

| S4 samples (altitude:1950 m, latitude: 44°50.832'N, production: 26.5 atm/g/yr) |
Mo95-16	121	13
Mo95-17	235	31
Mo95-18	91	15
Mo95-19	146	20
Mo95-20f	414	36
Mean concentration	148	62
Mean 10Be age, ka	5.6	2.5

| S5 samples |
Mo95-21	1589	102
Mo95-22	490	43
Mo95-23	350	34
Mo95-24	467	45
Mo95-25	405	45

aAll results presented with respect to ICN standards. For S3, S4, and S5 samples, this requires normalization by a factor of 1.14 ± 0.04 to account for inconsistency with NIST standards.

bNormalized to surface with a neutron attenuation length of 145 ± 7 g/cm2 and a density of 2.0 ± 0.1 g/cm3.

cNot included in calculation of mean.
rocks by a chemical isolation method [Kohl and Nishiizumi, 1992] using HCl and HF:HNO₃ baths. Beryllium carrier was added to the clean quartz separates and the sample was then dissolved in an HF:HNO₃ mixture. Be was separated and purified using ion exchange chromatography. The observed ratios were normalized to ICN ¹⁰Be standards that were diluted by Nishiizumi (personal communication, 1992). It appears that comparison of ¹⁰Be concentrations determined using ICN standards are slightly higher than those determined by calibration against the NIST standard and require normalization by a factor of 0.875 ± 0.030 [e.g., Middleton et al., 1993]. Interlaboratory calibration of ¹⁰Be determinations should resolve these inconsistencies. We present all measurements calibrated relative to the ICN standards, as these have been utilized for determination of ¹⁰Be production rates (Table 1). Our calculations are based on the assumption that there has been little erosion from the sampled boulder surfaces; this is supported by the presence of heavy desert varnish coatings. Nevertheless, this assumption makes our ages lower limits.

For each of the three surfaces, we observe clusters of data that do not overlap from one surface to another (Figure 15). However, two samples, M093-All5 and M095-20, show much higher concentrations than the rest of S3 and S4 samples, respectively. We interpreted these samples as reworked material from pre-exposure [e.g., Van der Woerd et al., 1998; Brown et al., 2002]. It is likely, for instance, that sample M095-20 from surface S4 is reworked material from the S3 debris flow. On the other hand, GB96-15 has low ¹⁰Be concentrations compared with other S2 samples. This sample was taken at the top of a weathered boulder almost totally encased in the ground surface, (Figure 10, foreground). We interpret this lower concentration as the result of shielding by debris covering the boulder and gradually removed over time [cf. Hallet and Putkonen, 1994]. The three samples (of the 22 analyzed for surfaces S2, S3, and S4) that fall outside the cluster values were not taken into account in discussions that follow.

3.3. Age Calculations

3.3.1. Alluvial Surfaces

[30] From the mean concentration of the clustered values, we calculated ages and associated uncertainties propagating an uncertainty of 15% in the production rate. The production rate of ¹⁰Be was estimated from the altitude- and latitude-dependant polynomials of Lal [1991]. The mean concentrations calculated for surfaces S2 (six samples), S3 (nine samples), and S4 (four samples) are 3488 ± 120/²¹C₂, 438 ± 114/²¹C₂, and 148 ± 62/²¹C₂ atm/g, respectively (Figure 15). From these concentrations, the ages for the end of deposition or abandonment of S2 and S3 are 131 ± 20 and 16.0 ± 4.8 ka, respectively, and the exposure age of S4 is 5.6 ± 2.5 ka.

3.3.2. Soil Profile

[31] Distributions of ¹⁰Be concentrations in the 1.7 m soil pit excavated at the toe of debris flow S3 shows a log linear decrease in ¹⁰Be concentrations with depth (Figure 16 and Table 2). This material thus belongs to the same depositional sequence and underwent the same evolution in situ since the time of deposition. The concentrations are much higher than would be expected for a profile within surface S3, indicating another origin. On the other hand, the distribution is nearly consistent with the mean concentration estimated for surface S2. The slightly higher concentrations of S2 surficial material with respect to the log linear depth profile (Figure 16) suggests that ~25 cm of S2 deposits may have been eroded during the emplacement of the S3 debris flow. This is consistent with the pedogenic profile along the soil pit showing a change in texture at depth, from silty loam to underlying sandy loam, that can be attributed to a depositional unconformity. This overlying deposition could be the fine-grained portion of the debris flow associated with the abandonment of S3.
with surface S3. Its thickness at this place is about 20 cm (Figure 12b). This abrupt change of texture was also observed at the same depth in a soil pit excavated 20 m farther north in the S3 boulder field. All this support the hypothesis that S2 samples contained negligible inherited 10Be upon deposition and that its surface exposure age is correct. Therefore our interpretation is that surface S2 deposition ended at ~131 ka and remained exposed to cosmic rays during the late Pleistocene (~115 kyr) before it was covered by abrupt emplacement of S3 debris at ~16 ka.

3.3.3. Recent Debris Flow

Samples collected at the bottom (≥2 m depth) of the recent debris flow associated with S5 show unexpectedly high 10Be concentrations ranging from $350 \pm 45 \times 10^{3}$ to $1589 \pm 102 \times 10^{3}$ atm/g (Table 1). If we assume that the material was not exposed prior to deposition, such values at depth would suggest that the deposits remained exposed to cosmic rays at the present position for hundreds of thousands of years. The inset position of the debris flow in other surfaces precludes this scenario and implies, on the contrary, that most of the material was previously exposed. Careful analysis of the drainage pattern associated with S5 shows that the debris flow deposits are confined to the mainstream channel draining the fan (Figure 4). No equivalent recent debris flow was observed inset into other nearby S4 surfaces that drain only the lower reaches of the fan surface (Figure 5b). Therefore we interpret S5 material as a localized deposition associated with remobilization processes within the main drainage. Note that four of the five samples have concentrations similar to S3 concentrations which suggests that most of S5 material is a recent reworking of upstream S3 material confirming that a major alluviation occurred at ~16 ka.

4. Slip Rates in the Late Pleistocene and the Holocene

Topographic data and 10Be dates of offset surfaces allow us to calculate vertical slip rates along this part of the Gurvan Bulag thrust fault (Figure 17). Abandonment or the end of deposition of surface S2 in the studied place is dated at 131 ± 20 ka and its mean vertical offset is estimated at 19.8 ± 1.9 m. Of this total offset, 20–25% is due to the 1957 event (4.2 ± 0.3 m). Because one cannot know when during the seismic cycle the marker formed, we bracketed the late Pleistocene-Holocene slip rates with mean total offset (19.8 m) and mean total offset minus the mean 1957 offset (15.6 m). Dividing these values by the age of S2 yields upper and lower limits on the vertical slip rates of 0.16 ± 0.04 and 0.12 ± 0.03 mm/yr, respectively. We adopt a value of 0.14 ± 0.03 mm/yr for the vertical component of the slip.

The end of deposition of surface S3 is dated at 16 ± 4.8 ka. Depending on whether most of the offset occurred before or after S3 deposition (see section 2.3.3), the vertical offset is estimated to be 7.8 ± 0.4 or 17.3 ± 0.4 m. These values incorporate the 1957 offset. As noted previously, we do not know when the marker formed in the seismic cycle. Following the same line of reasoning as for surface S2, we bracket the vertical offset of S3 between 7.8 and 3.4 m or 17.4 and 13.1 m. Dividing these values by the age of S3 deposits, we obtained two vertical slip rates for the last ~16 kyr, 0.40 ± 0.11 and 1.05 ± 0.25 mm/yr, respectively.

Table 2. Depth Profile in Surfaces S3 and S2

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>10Be × 10, atm/g</th>
<th>Uncertainty, 1σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>GB96-1 (40–45 cm)</td>
<td>1383</td>
<td>109</td>
</tr>
<tr>
<td>GB96-2 (55–60 cm)</td>
<td>1022</td>
<td>78</td>
</tr>
<tr>
<td>GB96-3 (90 cm)</td>
<td>895</td>
<td>69</td>
</tr>
<tr>
<td>GB96-4 (110–115 cm)</td>
<td>570</td>
<td>45</td>
</tr>
<tr>
<td>GB96-5 (130 cm)</td>
<td>582</td>
<td>51</td>
</tr>
<tr>
<td>GB96-6 (145–148 cm)</td>
<td>504</td>
<td>46</td>
</tr>
<tr>
<td>GB96-7A (160 cm)</td>
<td>288</td>
<td>98</td>
</tr>
<tr>
<td>GB96-7B (160 cm)</td>
<td>241</td>
<td>27</td>
</tr>
<tr>
<td>GB96-8A (170 cm)</td>
<td>209</td>
<td>24</td>
</tr>
<tr>
<td>GB96-8B (172 cm)</td>
<td>222</td>
<td>40</td>
</tr>
</tbody>
</table>

All results presented with respect to ICN standards. This requires normalization by a factor of 1.14 ± 0.04 to account for inconsistency with NIST standards.
rate of the Gurvan Bulag fault increases at the end of late Pleistocene (Figure 17). If we choose the first interpretation, and subtract 7.8 from 19.8 m, the late Pleistocene, between 131 and 16 ka, vertical slip rate is \(\approx 0.08 \text{ mm/yr} \), which is five times smaller than for the last \(\approx 16 \text{ kyr} \) (\(\approx 0.4 \text{ mm/yr} \)). The recurrence intervals for events similar to 1957 earthquake would be about 50 kyr during the late Pleistocene and 10.4 ± 3.6 kyr during the last \(\approx 16 \text{ kyr} \).

If we choose the second interpretation, and if we subtract 17.3 m (S3 offset) from 19.8 m (S2 offset), the late Pleistocene vertical slip rate is \(\approx 0.03 \text{ mm/yr} \). Consequently, the Gurvan Bulag slip rate would have increased drastically at the end of the late Pleistocene. This has important significance in terms of seismic activity. If we assume repeated surface ruptures similar to that of 1957 (4.2 m), the Gurvan Bulag thrust fault would have remained mainly quiescent during the late Pleistocene period, with maximum one strong event. In contrast, there would have been four events during the last \(\approx 16 \text{ kyr} \), with a recurrence interval of 4 ± 1.2 kyr.

Surfaces S4 are vertically displaced with 6.5 ± 1.2 m with respect to the footwall surfaces. From topographic profiles, we interpreted this displacement as the cumulative slip due to only two events, the penultimate and the 1957 surface ruptures, and thus has limited use for a rate determination. However, the exposure age of S4 cobbles (5.6 ± 2.5 ka) may represent the age of the erosional surface that was established between the prepenultimate and penultimate events. This furnishes an upper limit for the time interval between the penultimate event and 1957 earthquake.

5. Discussion and Conclusion

5.1. Regional Climate History

Our \(^{10}\text{Be} \) dates indicate that two most recent major aggradational episodes on the southern slopes of the Ih Bogd massif occurring at 131 ± 20 and 16 ± 4.8 ka (Figures 18a and 18c), may be contemporaneous with global climatic changes at the terminations of marine isotope stages (MIS) 6 and 2, respectively. Consistent with earlier work in the Gobi-Altay [Ritz et al., 1995; Carretier, 2000], the ca. 100 ka event appears to have been of greater magnitude than subsequent events. The beginning of the late Quaternary (MIS 5e) was characterized by exceptional global warmth and coincides with a period of strong Milankovitch global warming centered on 125,000 BP and lasting between 134,000 and 120,000 BP [Dawson, 1992]. Similarly, a period of global warming which began near 15,000 BP during the MIS 2/1 transition also corresponds to an enhanced period of insolation. In the Gobi-Altay, cold periods may have been too dry to permit significant glaciation [e.g., Gillespie and Molnar, 1995] and the temperature too low to allow major alluviation processes. This is
consistent with preliminary dates of fine deposits (S. Balescu, personal Communication, 2002) that accumulated behind the gigantic Baga Bogd paleolandslide [Philip and Ritz, 1999] that suggest that no important alluviation events occurred between ca. 90 and 16 ka at the foothills of the Baga Bogd massif.

[39] Consistent with previous field surveys [i.e., Florensov and Solonenko, 1965], we did not observe any glacial features (such as cirques, rock bars, or moraines) during a total of 14 weeks of fieldwork in the Ih Bogd and Baga Bogd mountains over six field seasons. This suggests that the major aggradation events at the terminations of MIS 6 and MIS 2 were not associated with glacial meltwater, but rather that there was enhanced precipitation in the Gobi-Altay at these times. The interpretation of a major climatic pulse at 16 ± 4.8 ka is consistent with conclusions by Owen et al. [1997,
5.2. Neotectonics of the Gurvan Bulag Fault

5.2.1. Variation of Slip Rates During the Late Pleistocene-Holocene

Our results suggest evolution of the vertical slip rate along the Gurvan Bulag thrust fault over the last ~130 kyr (Figure 17). They indicate an increase of the fault activity at the end of the late Pleistocene, which is more or less pronounced, depending upon the offset chosen for surface S3. However, whether this increase is modest with a fault evolving from low activity (0.08 mm/yr) to moderate activity (0.4 mm/yr), or large with a fault evolving from quasi-inactivity (0.03 mm/yr) to high activity (1.05 mm/yr) [e.g., Stemmons and Depolo, 1986] cannot be deciphered from our morphologic observations.

Recurrence intervals may be used to evaluate which of these scenarios is more appropriate. The value of 5.6 ± 2.5 kyr for the maximum time interval between the penultimate event and 1957 earthquake estimated from analyses of surface S4 is consistent with the recurrence interval (4.0 ± 1.2 kyr) for events similar to that of 1957 implied by the high slip rate calculated for the last ~16 kyr. Furthermore, Prentice et al. [2002] show that the penultimate event occurred after 6.0 ka, most likely between 2.6 and 4.4 ka, and that a possible earlier rupture occurred after 7.3 ka. This implies that 1.05 ± 0.25 mm/yr may be the better estimate for the Holocene rate of vertical slip along the Gurvan Bulag thrust fault.

5.2.2. Comparison of Activity on the Bounding Faults of the Ih Bogd Massif

These results also suggest that the recurrence intervals for the last ~16 kyr surface faulting on the Gurvan Bulag thrust are similar to the Bogd strike-slip fault. Indeed, at Noyan Uul, Ritz et al. [1995] estimated a minimum slip rate at 1.2 mm/yr from an ~100 m offset alluvial dated at 80 ka. A reevaluation of the production of 10Be calculated for the geographic, rather than geomagnetic latitude of the site (the average location of the geomagnetic North Pole over the past 10 ka is very close to the geographic North Pole [Ohno and Hamano, 1992]) yields a minimum age of 71 ± 12 ka for the alluvial surface and consequently, a 1.5 ± 0.4 mm/yr long-term maximum horizontal slip rate along the Bogd fault. This includes a 10 m uncertainty in the horizontal measurement and a 15% uncertainty on the production rate. At Noyan Uul, differential GPS surveys of mismatched gullies indicate a horizontal offset of 5.5 ± 0.5 m for the 1957 event and a double displacement of 11 ± 1 m for the combined 1957 and penultimate events [Ritz et al., 1997]. A 5.5 m characteristic horizontal offset [cf. Schwartz and Coppersmith, 1984] along the Bogd fault, implies a minimum recurrence interval of 3.7 ± 1.3 ka, similar to our value for Gurvan Bulag. In contrast with the possible relationship noted here, Prentice et al. [2002] conclude that the penultimate surface ruptures of the Gurvan Bulag thrust and the Bogd faults did not occur during the same earthquake, based on paleoseismic data for the segment of the Bogd fault near Toromhon (Figure 2) indicating that the penultimate event occurred at 0.8–2.3 ka [Bayasgalan, 1999].

Our late Pleistocene-Holocene vertical slip rate along the Gurvan Bulag fault is very close to a value reported for the northern flank of Ih Bogd. Using 10Be and 26Al produced in situ, Hanks et al. [1997] reported a ~0.1 mm/yr vertical slip rate for the past 100 ka along a thrust fault segment to the north of the massif, southeast of Dalan Tüü¨ü¨ foreberg (Figure 2). This is consistent with the horizontal geometry of the summit plateau of Ih Bogd, which is interpreted as an uplifted, old, erosional surface (Figure 3) with identical cumulative slip on both sides.

Could this imply that the activity of the thrust fault bounding the northern flank of the Ih Bogd massif had the same increase at the end of the late Pleistocene as the Gurvan Bulag thrust fault? The surface rupture of the 1957 earthquake produced vertical offset of about 2–3 m [Kurushin et al., 1997] along the segment of the Bogd fault bounding the Ih Bogd massif to the North. If we assume a mean recurrence interval of ~3.5 kyr deduced from the late Pleistocene-Holocene slip rate along the Bogd fault (see earlier), this would lead to a vertical slip rate close to 1 mm/yr. This is similar to the last ~16 kyr slip rate at Gurvan Bulag and could mean that the fault segment bounding the Ih Bogd massif to the north also increases its activity at the end of the late Pleistocene.

The ~0.14 mm/yr late Pleistocene-Holocene vertical slip rate along the thrust faults bounding Ih Bogd compared with the ~1.5 mm/yr late Pleistocene-Holocene horizontal slip rate along the main strike-slip segment of the Bogd fault poses the question of the distribution of the fault activity around Ih Bogd massif through time. One might imagine that the Bogd strike-slip fault moved alone for a long period of time, whereas no movement occurred along adjacent thrust fault segments. Alternatively, it is possible that the lateral movement occurring along the Bogd fault could be absorbed on other thrusts to achieve a 1 mm/yr long-term vertical slip rate of the Ih Bogd massif. Although satellite imagery and field observations suggest that the massifs associated with the Bogd fault contain several abandoned faults corresponding to thrust-related structures that accommodated regional oblique-slip deformation during earlier stages of tectonic activity [Bayasgalan et al., 1999], we do not know when these structures were active and what were their slip rates.

However, if we assume that the late Pleistocene-Holocene vertical slip rate calculated along the Gurvan Bulag thrust fault represents the uplift rate for the Ih Bogd massif from the beginning of the deformation, the ~2 km of vertical separation between the summit plateau and the bounding faults would have occurred over a period of 12–18 Myr. This would imply extremely low erosion rate in this part of Mongolia. Moreover, it is an order of magnitude greater than what had been assumed earlier by Florensov and...
Solonenko [1965] and Baljinnyam et al. [1993], and is double the estimate of Kurushin et al. [1997]. Alternatively, if the slip rate during the last ~16 kyr were representative of the long-term, the time required for uplift at the Ih Bogd massif would be ca. 2 Myr. This emphasizes the need for knowledge of tectonic processes over a range of timescales for understanding mountain building.

[48] Acknowledgments. We thank B. Bayasgalan, K. Berryman, R. Brauch, K. Hanson, J. Jackson, W. Lund, C. Prentice, and T. Rockwell for fruitful discussions during field work, P. Molnar for his comments, and A. Delplanque for drawings. We thank Hubert Camus for helpful discussions about the geomorphology of alluvial deposits, and J. Van der Woerd and an anonymous reviewer for their thorough reviews that allowed us to make significant improvements to the original manuscript. This work was mainly supported by CNRS programs Tectoscope, Mecalith, DBT II, and Prose, by Lawrence Livermore National Laboratory (LLNL) operating under US DOE contract EN-6-7405 and by USGS Menlo Park the Center of Informatic and Remote Sensing, Mongolian Academy of Sciences. Tandem operation is supported by CNRS, IN2P3, and CEA.

References

Brown, E., T. J. M. Edmond, G. M. Raisbeck, F. Yiou, M. D. Kurz, and E. J. the long-term, the time required for uplift of the Ih Bogd massif would be ca. 2 Myr. This emphasizes the need for knowledge of tectonic processes over a range of timescales for understanding mountain building.

Brown, E. T., R. Bendick, D. L. Bourles, V. Gaur, P. Molnar, G. M. Raisbeck, DOE contract EN-6-7405 and by USGS Menlo Park the Center of Informatic and Remote Sensing, Mongolian Academy of Sciences. Tandem operation is supported by CNRS, IN2P3, and CEA.

D. Bourles, Centre Européen de Recherche et d’Enseignement de Géosciences de l’Environnement (CEREGE), Europole Méditerranéen de l’Arbois, B.P. 80, 13 545 Aix-en-Provence, Cedex 4, France.

E. T. Brown, Large Lakes Observatory, University of Minnesota, Duluth, MN 55812, USA.

S. Carretier, BRGM/ARN3, Av. Claude Guillemin BP 6009, 45000 Orleans, France.

J. Chéry, H. Philip, and J.-F. Ritz, Laboratoire de Géophysique, Tectonique et Sédimentologie, UMR 5573—Université Montpellier II, 4 Place Eugène Bataillon, 34095 Montpellier Cedex 05, France. (ritz@dstu.univ-montp2.fr)

R. C. Finkel, LLNL, University of California, P.O. Box 808, Livermore, CA 94551-9989, USA.

T. C. Hanks and D. P. Schwartz, U.S. Geological Survey, MS 977, 345 Middlefield Road, Menlo Park, CA 94025, USA.

K. J. Kendrick, U.S. Geological Survey, 525 South Wilson Avenue, Pasadena, CA 91106, USA.

G. Raisbeck and F. Yiou, Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, IN2P3-CNRS, Bâtiment 108, 91405 Orsay, France.

A. Schlupp, Laboratoire de Télédétection et Risque Sismique, CEA/DIF/DASE/LDG, BP 12, 91680 Bruyères-le-Chatel, France.