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Abstract
The metamodel-based approach (also referred to as the surrogate approach) is commonly applied to overcome the computational
burden of numerical models that are used to simulate the evolution of reservoir fluids and pressures in response to any production
scheme. In this study, we propose an adaptation of this approach for aquifer thermal energy storage (ATES) systems. ATES systems
are characterized by cyclic loading/unloading production schemes, which result in a strong similarity in the dynamics of the
intercyclic evolution of variables such as the temperature at the producer well. Instead of training several metamodels, i.e., one
per cycle (“independent” metamodelling approach), we take advantage of the intercyclic similarity to train a single metamodel
within the setting of multifidelity cokriging (“multicyclic”metamodelling approach). To explore the predictive performance of this
approach, we applied a random subsampling validation approachmultiple times to 300 simulation results of a realistic ATES system
in the Paris basin by considering three characteristics, i.e., the minimum and maximum temperature, and the rate of temperature
decrease at each cycle. Numerical experiments with varying training dataset sizes (from 33 to 66% of the total number of results) and
using 100 test samples show that (1) the predictive error of the multicyclic metamodelling reaches lower levels (by 20–50%) than
that of the independent approach; (2) this higher predictive performance is achieved while saving computational time cost because
the training phase only needs a few tens of “complete” simulations (run over all cycles) together with a few hundreds of “partial”
simulations (stopped at the first cycle); the latter simulations are less expensive to evaluate because of shorter simulated time.

Keywords Krigingmetamodel .Multifidelity .Globalsensitivityanalysis .Aquifer thermalenergystorage .Underground thermal
energy storage

1 Introduction

Geothermal simulators are key components in the computa-
tion of the evolution of fluids and pressures within reservoirs
in response to any production scheme (see, for instance, [1] for
an overview of the main thermohydraulic geothermal simula-
tors and their modelling capabilities). Despite the progress in
numerical modelling, as well as in computational hardware
and software developments, the computational time cost of a
single model run can reach several hours or days. This com-
putational burden poses severe difficulties when multiple calls
to the reservoir model are necessary, for instance, for uncer-
tainty quantification or history matching. To overcome this

computational burden, a possible solution consists of the sta-
tistical analysis of precalculated high-fidelity simulation re-
sults to set up a cheap-to-evaluate metamodel (also referred
to as a “proxy” or “surrogate” or “response surface”). The
cheap-to-evaluate metamodel is then used in place of the
long-running geothermal simulator. The implementation of
these statistical methods has a long history in the petroleum
industry; see, for instance, the key lessons drawn by Amudo
et al. [2] and by Zubarev [3]. An extensive and comprehensive
review of the different statistical methods is provided by
Razavi et al. [4]. Examples of real case applications are pro-
vided by White et al. [5] for uncertainty analysis, Pratama &
Supijo [6] for probabilistic geothermal resource capacity as-
sessment, Limbeck et al. [7] for induced seismicity forecast-
ing, Fursov et al. [8] for the Bayesian inverse problem and
Manceau & Rohmer [9] for global sensitivity analysis.

In addition to the results of high-fidelity long-running nu-
merical simulations, some advanced metamodelling proce-
dures make the most of alternative information. This is the
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case for the multifidelity metamodelling approach, where any
results from approximate versions (named low fidelity) of the
numerical geothermal simulator are assimilated. For instance,
the approximate versions can correspond to numerical models
with coarse mesh resolutions (see, e.g., [10, 11]) or simplified
physics (see, e.g., [12]). This has positive implications in prac-
tice, as low-fidelity models are less expensive to run, which
allows performing a larger number of simulations while gath-
ering information that is useful to improve the predictive ca-
pability of the metamodel.

The present study builds upon a similar idea to predict the
intercyclic evolution of key parameters for aquifer thermal
energy storage (ATES). Typically, ATES is associated with
a district heating network (DHN), and a large volume of un-
derground water is mobilized in a cyclic manner by alternating
the storage phase of low-carbon heat (e.g., waste or solar) and
heat recovery (to shave the peaks in the thermal demand that
would otherwise be covered by fossil fuels); see, for instance,
the comprehensive introduction by Cabeza et al. [13] and the
state of the art by Kallesøe et al. [14]. Figure 1(a) presents two
examples of temperature evolution at the production well of
the ATES system used as an application case in our study
(described in full detail in Section 2). We note that there is a
strong similarity in the dynamics of the intercyclic tempera-
ture evolution (though it differs, the “general” temporal pat-
tern is reproduced at each cycle). This shows that there is a
strong intercyclic dependence of the key characteristics, such
as the temperature extrema at each cycle (Fig. 1b) or the rate of
decrease (defined as the decay parameter of an exponentially
decreasing function) at each cycle (Fig. 1c).

In this study, we aim to take advantage of this similarity to
improve the prediction over all cycles within a multifidelity
metamodelling approach. Our proposal is to link the fidelity
level to the cycle index. In this approach, the lower fidelity
level then corresponds to the variable of interest computed
for the first cycle only (the simulation is a “partial” simulation,
and it is stopped after computing the variable at the first cycle),
and the higher fidelity level corresponds to the variable of
interest computed for all cycles (the simulation is “complete”
and run over all 16 cycles, as illustrated in Fig. 1). This means
that the “partial” simulations provide results that are viewed as
approximate versions of the results of “complete” simulations.
The expected result is a reduction in computational burden as
more model runs can be performed during the first cycles due
to the lower computation time cost (because of shorter simu-
lation times). Our objective is to develop and test the perfor-
mance of this multifidelity approach, termed “multicyclic
metamodelling”. This will rely on cokriging metamodels [15]
based on the design and analysis of computer experiments [16]
and will be applied to an ATES project in the Paris basin.

This paper is organized as follows. Section 2 describes the
ATES case, which motivates our developments, namely, a
domestic waste incineration plant coupled to an interseasonal

heat storage system within the Dogger deep aquifer in the
Paris basin. In this section, we present the numerical model
used to compute the variables of interest over 16 loading/
unloading cycles as well as the input variables that are used
to parametrize the setting of the ATES system. Section 3 pro-
vides the details of the different statistical methods used to set
up the multicyclic metamodel. In Section 4, we apply the
procedure and evaluate its capability to predict the variable
of interest over the different cycles using an extensive random
subsampling validation approach. The performance is com-
pared to a procedure that uses multiple metamodels that are
built independently at each cycle.

2 Application case

2.1 Context

The application case is located in the Dogger aquifer of the
Paris basin at a depth of 1500–2000 m with rock formation
temperatures at the top of the productive layers between 55
and 85 °C. This aquifer has been intensively used since the
late 1970s to feed DHNs, mostly in the Paris conurbation [17].
Approximately 50 geothermal plants are currently operating.

Here, we study an ATES system coupled to a conventional
plant feeding a DHN, as described by Réveillère et al. [18].
The excess heat (to be stored) originates from a domestic
waste incineration plant. The system has two wells that oper-
ate alternately as producer and injector to store heat during the
summer season and then to recover the heat during the winter
season. In summer, the geothermal fluid circulates from the
cold to the warm well, and then the circulation is reversed in
winter. The loading/unloading cycle of thermal storage is a
periodic sequence of 12 months (see an illustration in Fig. 2).

2.2 Setup of the numerical model

To predict the evolution of the interseasonal heat storage sys-
tem, a numerical model is built based on the “Dogger data-
base” [19] and the scheme of heat storage exploitation. The
conceptual model used for hydrothermal modelling is based
on a reservoir structure made of one or multiple layers with a
constant thickness of 10 m for each structure (Fig. 3b).

In the model, a vertical plane of symmetry (Fig. 3a) in the
middle of the aquifer is used (to reduce the computational time
cost). Both wells (in the middle of the model) are separated by
a distance D. The domain is a 3D model measuring 10 km by
5 km by 90 m in the X, Y and Z directions, respectively. The
model is based on a 3D prismatic mesh (Fig. 3c) with 45
layers and a refined mesh close to the wells and comprises
approximately 30,000 cells. The mesh is generated using the
Computational Geometry Algorithms Library CGAL. The nu-
merical simulations are performed using the ComPASS
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Platform,1 which implements state-of-the-art numerical
schemes to discretize multiphase Darcean flows on generic
unstructured meshes. The reader is referred to [20] (and the
references therein) for further theoretical and implementation
details. All numerical simulations (described in the next sec-
tion) are performed using a parallel computation scheme with
4 MPI (message passing interface) processes, and the total
computation time for each case ranges from <1 hour to
≈14 hours depending on the setting of the input variables
(described in Section 2.3).

2.3 Input variables

The settings of the ATES system are parameterized using a
total of 14 different input variables (Table 1). The first

category of input variables relates to the hydrogeological fac-
tors and corresponds to:

– the reservoir properties (intrinsic permeability, perme-
ability anisotropy, porosity, initial temperature, and res-
ervoir architecture);

– the caprock porosity;
– the hydrogeological setting (regional water flow direction

and gradient related to the regional water flow).

Note that most of these uncertain parameters correspond to
continuous scalar variables, but some uncertain parameters
have been chosen to be mathematically represented with
scenario-like variables, i.e., variables that can only take dis-
crete values (named levels). These correspond to the reservoir
architecture (three scenarios depicted in Fig. 4), regional water
flow direction (two scenarios W–E or E–W), and reservoir

Fig. 1 a Examples of temperature evolution over 16 cycles during the
unloading phase for two different settings of the ATES system described
in Section 2. b Evolution of the temperature extrema at each cycle,
minimum (dashed lines) and maximum (solid lines) values. c Evolution

of the rate of decrease (decay parameter of an exponentially decreasing
function) for each cycle. The vertical dashed lines indicate a given cycle
(cycle N°15)

1 https://charms.gitlabpages.inria.fr/ComPASS/ and http://www.anr-charms.
org/page/compass-code
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Fig. 2 Description of the loading/unloading cycle (flow rate and temperature) imposed at the hot (a) and cold wells (b). The horizontal axis provides the
time expressed in number of weeks since the start of the production. A cycle is defined by two time durations, T1 and T2

Fig. 3 a XY geometric view of the numerical model; b ZX view of the reservoir structure; and (c) prismatic mesh with a vertical exaggeration of 20
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Table 1 Lower and upper bounds
of each continuous scalar input
variable. For scenario-like input
variables, the number of scenarios
is indicated

Input variable Symbol Lower bound Upper bound Unit

Hydrogeological setting

Gradient Grad 0.01 0.3 bar/km

Direction Dir 2 scenarios

Reservoir

Intrinsic permeability* Kres 11 12.3 –

Porosity Pres 10 25 %

Initial temperature Tres 45 85 °C

Anisotropy Ani 3 scenarios

Architecture Res 3 scenarios (Fig. 4)

Caprock

Porosity Pcap 0.1 10 %

Design parameters

Interwell distance D 800 1600 m

Time duration N°1 of the cycle T1 10 15 weeks

Time duration N°2 of the cycle T2 30 35 weeks

Maximum flow rate Q 175 375 m3/h

Temperature at the hot well (HW) THW 75 115 °C

Temperature at the cold well (CW) TCW 30 65 °C

*With transformation -log10()

Fig. 4 Three scenarios of
reservoir architecture
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permeability anisotropy (three scenarios Kxx =Kyy >Kzz;
Kxx>Kyy>Kzz; Kyy>Kxx>Kzz).

The second category of input variables corresponds to design
parameters, namely, the interwell distanceD and the parameters
describing the unloading/loading cycles at the hot and cold wells
(Table 1). A total of 16 cycles (each of them of approximately
one year, depending on the design parameters, see Fig. 2) are
simulated. Each cycle consists of (1) T1=10 to 15 weeks of hot
fluid storage at a constant flow rate Q ranging from 175 to 375
m3/h and at a temperature THW ranging from 75 to 115 °C, while
water is unloaded from the cold well; (2) T2=30 to 35 weeks of
hot fluid unloading at a constant flow rate Q; and (3) a 3-week
delay time at the end of each period.

2.4 Computer experiments

To cover a broad range of different settings, we perform com-
puter experiments by randomly and uniformly generating 300
different vectors of the 14 input variables using the sliced
Latin hypercube design developed by Qian [21]. This method
was selected because of its high efficiency in producing space-
filling random designs while accounting for a mixture of con-
tinuous and scenario-like variables; see also, e.g., the work by
Al-Mudhafar et al. [22], for a study of the efficiency of Latin
hypercube designs in the context of metamodel-based optimi-
zation for oil reservoirs. Prefiltering is applied so that the
reservoir initial temperature Tres ranges between the cold and
hot well temperatures (THW, TCW). To illustrate the distribu-
tion of the training points, the matrix of scatterplots for the
group of temperatures (Tres, THW, TCW) as well as the distri-
bution of the scenario-like variables are provided in Fig. A1
and Fig. A2, respectively, in Supplementary Material A.

For each of these random ATES settings, the numerical
model is run to compute the time evolution (over 16 cycles)
of different variables (pressure, temperature, flow rate, energy
amount, etc.).We focus the study on the temperature extracted
at the hot and cold wells when they are alternatively pro-
ducers. A preliminary processing procedure is applied to ex-
tract the minimum/maximum temperature Tmin/Tmax at each
cycle as well as the temporal pattern depicted in Fig. 5. Details
on this processing are given in Supplementary Material B.

Figure 5 shows that the “general” temporal pattern at each
cycle (denoted c) is reproduced for both the loading (Fig. 5a)
and unloading phases (Fig. 5b). This means that only the main
characteristics of this pattern vary across different cycles. To
model the intracyclic temporal evolution, at each cycle c, we
consider an exponentially decreasing model of the form:

Tmax cð Þ−Tmin cð Þð Þexp −rate cð Þ:tð Þ þ Tmin cð Þ ð1Þ
where Tmax(c)/Tmin(c) are the temperature extrema for cycle c
and the rate parameter measures the decay speed over time
(denoted t) for the considered cycle c.

In the following, we aim to predict the intercyclic evolution
of the characteristics in Eq. 1 (named variables of interest)
given the configuration of the ATES system described by
the 14 input variables (Table 1). We restrict the analysis to
the unloading phase (Fig. 5b), which presents a more complex
(nonlinear) pattern compared to the (quasi)linear intracyclic
evolution of the temperature for the loading phase. Figure 6
provides the statistics of the intercyclic evolution for the three
variables of interest considering the 16 cycles.

3 Methods

The multicyclic metamodelling approach relies on kriging
metamodels (described in Section 3.1) trained within the
multifidelity cokriging setting (Section 3.2). The proposed
approach is validated by applying the procedure described in
Section 3.3. To ease the training phase, a preliminary screen-
ing analysis is conducted to identify the variables that influ-
ence the most results (Section 3.4), i.e., the variables that are
selected as inputs of the multicyclic metamodel.

3.1 Kriging metamodel

Let us consider the vector of d continuous input variables
x=(x1,…,xd). The variable of interest y is then computed using
the numerical geothermal simulator, which takes x as input.We
denote by y the vector of N known values of y(x) that are
computed on a design of experiments D= {x(1),…, x(N)}.
The set of pairs {x(i), y(i)}i = 1, …, N is the training dataset (com-
prised of N training samples) that is used to construct the
metamodel.

In the context of kriging metamodelling (also named
Gaussian process (GP) regression [23]), the function y(x) is
assumed to be a realization of a GP (Y(x)) with a constant
mean μ and a covariance function k(.,.), named the kernel,
that can be written as ∀x, x′, k(x,x′) = cov(Y(x),Y(x′)) =σ2.
R(x,x′) with σ2 being the variance parameter and R(.,.) the
correlation function related to k(.,.)

The prediction at a new observation x∗ is given by the

kriging mean bY x*
� �

using the equations of ordinary kriging
(see, e.g., [24]) as follows:

bY x*
� � ¼ μþ r

0
x*
� �

:R−1: y−μ:INð Þ ð2Þ

where R is the correlation matrix whose element is
R[i, j] =R(x(i),x(j)); r is the vector composed of the correlation
between x∗ and the points of D written as σ2. R(x∗,D), and IN
is the vector of ones of length N.

For the continuous input variables, the covariance function
kcont is assumed to follow the Matérn 5/2 model [23]. As de-
scribed in Section 2.2, some input variables are scenario-like
variables, i.e., categorical variables. There are different ways to
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model them in the kriging model [25]. The analysis of the
categorical variables in our case reveals that they are implicitly
associated with a notion of order (they are ordinal variables). To
account for them, we follow the approach described by

Roustant et al. [25]: Section 2.2.1, and assume that the corre-
sponding kernel model kcat is described as follows:

kcat u; u
0

� �
¼ ekcont F uð Þ; F u

0
� �� �

ð3Þ

Fig. 5 Evolution of the temperature (scaled between 0 and 1) at the
producer (black line) during the loading (a) and unloading (b) phases.
The solid black lines correspond to the mean calculated considering 300

random configurations of the ATES setting. The limits of the coloured
envelope are defined by computing the 5th and 95th percentiles

Fig. 6 Intercyclic evolution of the main characteristics of the intracyclic
dynamics (described by Eq. 1): minimum (a) and maximum (b)
temperature and rate of decrease (c). The solid line corresponds to the

median value computed for 300 random settings of the ATES system.
The light and dark coloured envelopes are defined by computing the
percentiles at 25–75% and 5–95%, respectively

229Computational Geosciences (2023) 27:223–243



where u is the categorical variable that can take up a finite

number of levels L, ekcont is a one-dimensional continuous ker-
nel (here assumed to be the Matérn 5/2 model), and F(.) is a
one-dimensional nondecreasing function (also called warping)
F : {1,…,L}→ℝ. In our case, the warping function is chosen
to bemodelled by the identity functionF(u)=u. The covariance
function k(x,x′) for both types of input variables (continuous
and categorical) is formed via the tensor product of kcont with
kcat.

3.2 Multifidelity cokriging

When running a numerical model, different levels of complex-
ity (for instance, for different spatial resolutions of the mesh)
are generally possible. This results in a hierarchy of model
levels; the model with the finest mesh is the model with the
highest fidelity. Multifidelity metamodelling (e.g., [15, 26])
was introduced to take advantage of these different levels to
predict the output at the finest level (high fidelity) using the
results provided by the model of a coarser level (low fidelity);
the advantage is that the latter model has a lower computation
time cost. The analysis of the variables of interest at each cycle
(Figs. 5 and 6) indicates a strong hierarchy between the cycles,
which suggests making an analogy between the aforemen-
tioned levels of complexity and the cycle index, i.e., the higher
the cycle index is, the finer the level, as described in the intro-
duction. This means that the results computed for cycle N°1
only (the simulation is said to be partial) are seen as approx-
imate versions of the results computed over all cycles, from
cycle N°1 to N°16 in our case (the simulation is said to be
complete). The expected result is a reduction in the computa-
tional burden because gathering information at a low cycle
index (e.g., N°1 or N°2) is less expensive because the model
run is stopped earlier. In the following, we present how to set
up the multicyclic metamodel within the multifidelity
framework.

For simplicity, we restrict the presentation to two levels of
fidelity, i.e., cycles N°1 and N°2. We denote by y1(x) and
y2(x) the output at each respective cycle considering the vector
of inputs x, and we denote by y1 the vector of n1 known values
of y1(x) on a design of experiments D1 and by y2 the vector of
n2 known values of y2(x) onD2 by considering nested designs
D2⊂D1 and n2<n1. For our case, this means that we use more
results computed at cycle N°1 than results computed from
cycle N°1 to N°2; the computation time cost of the former
set of simulations is lower because the simulated time is
shorter.

We assume that y1(x) and y2(x) are both realizations of GP
Y1(.) and Y2(.). To link them, we follow the approach of [15]
by assuming that cov(Y2(x), Y1(x

′)|Y1(x)) =0,∀x≠x′ , which
leads to the following model:

Y 2 xð Þ ¼ ρY 1 xð Þ þ Yd xð Þ ð4Þ

where ρ is a scale factor and Yd(.) is a Gaussian process indepen-
dent of Y1(.) that represents the difference between ρY1(.) and

Y2(.). The kriging predictors bY 1 and bYd are then constructed by
using Eq. 2 with means μ1 and μd and correlation functions
R1(.,.) and Rd(.,.) with variance parameters σ2

1 and σ2
d . The

kriging predictor bY 2 is then defined as follows:

bY 2 x*
� � ¼ μ2 þ r

0
2 x*
� �

:R2
−1: y−μ2:In1þn2ð Þ ð5Þ

where
y= (y1,y2),

μ2=ρ. μ1+μd, r2¼ ρ:σ2
1:R1 x*;D1

� �
ρ2:σ2

1:R1 x*;D2

� �þ σ2
d:Rd x*;D2

� �� �
,

a n d t h e c o v a r i a n c e m a t r i x i s R2¼
σ2
1:R1 D1;D1ð Þ ρ:σ2

1:R1 D1;D2ð Þ
ρ:σ2

1:R1 D1;D2ð Þ ρ2:σ2
1:R1 D2:D2ð Þþ

�
σ2
d

:Rd D2;D2ð Þ
�
.

These equations can be generalized to handle multiple
levels of complexity, i.e. multiple cycles in our case, by fol-
lowing [26]. In practice, the training of the multicyclic
metamodel implies estimating the different parameters (means
μ1,μd and variance parametersσ2

1;σ
2
d , and length scales of the

different correlation functions R1 and Rd). This is performed
by relying on maximum likelihood estimation with the opti-
mized algorithm proposed by Le Gratiet [26].

3.3 Validation procedure

The objective is to assess to what extent the multicyclic
metamodel is capable of predicting the variables of interest with
high accuracy by considering “yet-unseen” new configurations
of the input variables (Table 1). To quantify this predictive
performance, we adopt a random subsampling approach (see,

e.g., [27]). Given a set of Ntot pairs x ið Þ; y ið Þ� 	
i¼1…N tot

, we ran-

domly selectN pairs for the training and ntest pairs (among those
that are not used for the training) for evaluating some perfor-
mance indicators. This procedure is repeated multiple times. In
our case, ntest =100 (i.e., 33% of the total number of available
results), and N is varied from 100 to 200 (i.e., 33 to 66% of the
total number of available results).

In this study, at each cycle c, we compute three different
performance indicators, i.e., the root mean square error RMSE,
the mean absolute error MAE (expressed in units of the vari-
able of interest), and the mean absolute percentage error
MAPE, which is a normalized criterion expressed in %:

RMSE cð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ntest
∑ntest

i¼1
bY c x ið Þ
� �

−Yc x ið Þ
� �� �

2

r
ð6aÞ

MAE cð Þ ¼ 1

ntest
∑ntest

i¼1jbY 2 x ið Þ
� �

−Y x ið Þ
� �

j ð6bÞ
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MAPE cð Þ ¼ 100

ntest
∑ntest

i¼1j
bYc x ið Þ� �

−Yc x ið Þ� �
Yc x ið Þð Þ j ð6cÞ

where x(i) is the ith vector of input variables in the test set, Yc is
the true value of the variable of interest at cycle c (i.e., the
result of the numerical model at cycle c), and bYc is the predic-
tion provided by the multicyclic metamodel at cycle c.

In addition to the multicyclic metamodelling approach, we
consider an alternative approach named “independent”, which
consists of predicting Yc using a kriging metamodel trained by
considering only the results at cycle c. This means that the
prediction for Y1, Y2, …, Yc are provided by c kriging
metamodels trained independently at each cycle using Eq. 2.

3.4 HSIC-based screening analysis

The number of input variables is 14 (see Section 2), which is
sufficiently large to pose some difficulties in the training of the
kriging metamodel, especially regarding the moderate size of the
training dataset, where Ntot=300 (see, e.g., [28]). A preliminary
screening analysis is then conducted, which consists of filtering
out the variables of negligible influence [29]. We adopt here the
procedure developed by Da Veiga [30] based on the HSIC
(Hilbert–Schmidt independence criterion) measure, which can
achieve the screening task with a limited number of numerical
simulations (a few hundred). In the following, we recall the main
aspects of the procedure; the reader can refer to [30] for full details.

Let us associate Xi with a universal reproducing kernel
Hilbert–Schmidt (RKHS) space defined by the characteristic
kernel function ki(.,.). The same transformation is associated
with Y by considering a RKHS space with kernel k(.,.). We
define the HSIC measure as follows:

HSIC X i; Yð Þ ¼ E ki X i;X
0
i

� �
k Y ; Y

0
� �� �

þ E ki X i;X
0
i

� �� �
E k Y ; Y

0
� �� �

−2E E ki X i;X
0
i

� �
jX i

� �
E ki Y ; Y

0
� �

jY
� �� �

ð7Þ

where X
0
i; Y

0� �
is an independent and identically distributed

copy of (Xi,Y), and E(.) is the expectation operator. As a char-
acteristic kernel for continuous variables, the Gaussian kernel
is used and is defined as exp(−λ‖x−x′‖2), with λ being the
bandwidth parameter chosen as the inverse of the empirical
variance of the considered variable. For categorical variables,
the identity function is used as a characteristic kernel.

From a sensitivity analysis perspective, using the HSIC mea-
sure is useful to identify noninfluential factors because its nullity
indicates thatXi does not influenceY. To identify the significantXi,
the null hypothesis ′H0:HSIC(Xi,Y)=0

′ (against the hypothesis
′H1:HSIC(Xi,Y)>0

′) is tested, and the corresponding p value is
evaluated (see [31] and references therein). When the p value is
below a significance threshold (chosen here as 5%), it indicates
that the null hypothesis should be rejected, i.e., this means that if

the p value <5%, the considered input Xi has a significant influ-
ence on Y. To compute the p value, we rely on the sequential
bootstrap-based algorithm developed by El Amri andMarrel [31].

In our case, an additional difficulty is related to the depen-
dence between some input variables, i.e., the hot well and cold
well temperatures (THW, TCW) and the reservoir initial temper-
ature Tres cannot be sampled independently because they
should fulfil some constraints of inequality (see Section 2.2).
In this situation, the corresponding HSIC measures cannot be
interpreted as the individual effect of each of these variables.
To account for this dependence, we replace these dependent
variables with a unique categorical variable. The latter vari-
able can be defined by grouping the three dependent variables
by means of clustering algorithms such as k-means [32]. The
levels of the categorical variable then correspond to the cluster
indices assigned to each triplet of dependent variables. For
instance, performing k-means clustering with k=20 allows
the triplets (THW, TCW, Tres) to be grouped among 20 different
clusters. The HSIC measure is computed for the newly de-
fined categorical variable using a categorical kernel and re-
flects the influence of the whole group of dependent variables
on the uncertainty of the considered variable of interest.

4 Results

In this section, we first apply the HSIC-based screening ana-
lysis (Section 3.4) to identify the input variables of high im-
portance among the 14 variables. Then, in Section 4.2, we
train the multicyclic metamodel by considering the input var-
iables identified as important for the three variables of interest
(Tmin, Tmax and the rate of decrease) and analyse its predictive
performance. To extensively explore the predictive perfor-
mance, the training procedure is conducted 100 times in
Section 4.3, and the results are compared with those of the
independent metamodelling approach. Finally, we test the ro-
bustness of the results to the type of training procedure
(Section 4.4).

4.1 Screening analysis

We first apply HSIC-based screening analysis to identify the input
variables that are the most important with respect to the three
variables of interest, Tmin, Tmax, and the rate of decrease over
16 cycles. To do so, we estimate the p values of the statistical test
based on the HSIC measures at each cycle (evaluated using the
300 learning samples). As detailed in Section 3.4, we account for
the dependence between the three temperatures, THW, TCW and
Tres, by replacing this group of variableswith a categorical variable
named ‘TempG’, whose value (level) corresponds to the cluster
index provided by a k-means algorithm when k=20. Preliminary
tests have shown that varying k from 15 to 25 does not impact the
results of the sensitivity analysis.
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Figure 7 provides the boxplots of the p values (across the
16 cycles). This allows us to identify the input variables that
are noninfluential with respect to each considered variable
of interest, i.e., the ones whose p value is above 5%. This
shows that the identified noninfluential variables do not
change from one cycle to another. This also shows that
the number of variables that should be used as inputs of
the metamodel can be reduced, i.e., from 14 to 3 or 4
depending on the variable of interest. The temperature ex-
trema (Tmin and Tmax) are mainly influenced by the temper-
ature loading characteristics of the ATES system (TempG),
which was expected given the loading/unloading of fluids
for this ATES system (Section 2.1). This is consistent with
the results of our preliminary statistical analysis
(Supplementary Material A: Figs. A6 and A7), which indi-
cates that the temperature values vary over several orders of
magnitude across the different TempG levels. In addition,
the regional water flow direction Dir impacts the Tmax val-
ue, which appears to be physically coherent because the
maximum temperature is related to the fluid propagation
from one well to another, which is more or less eased
whether the regional flow direction aligns with that of the
production fluid flow. Considering the rate of decrease,
Fig. 7c shows that it is mainly influenced by the interwell
distance D, the reservoir architecture Res and both time
durations T1 and T2 (Fig. 7c). This is consistent with the
results of our exploratory statistical analysis (Supplementary
Material A: Fig. A5), which provides indications of a linear
relation of the rate with D, T1 and T2. In addition, this
preliminary analysis (Supplementary Material A: Fig. A8)
also shows that rate values can vary significantly across the
different reservoir architecture scenarios. The identification
of these important variables appears to be in agreement with
the physical processes acting during the ATES lifecycle
because all these parameters are related to the time evolu-
tion of the fluid flow during operations. Depending on the
reservoir architecture (Fig. 4) and the interwell distance
(Fig. 3), the fluid will circulate more or less “easily” be-
tween the wells, which is modulated by the time character-
istics of the stair-like loading cycles (Fig. 2). In the follow-
ing, we select only these influential variables as inputs of
the metamodels. The implication of this assumption is fur-
ther discussed in Section 4.2.

4.2 Application of the multicyclic metamodel

We train the multicyclic metamodel for the three variables of
interest by randomly selecting N = 200 training samples
among the Ntot = 300 available and by retaining the remaining
samples (ntest = 100 samples) to test the performance

(Section 3.3). Figure 8 provides the evolution of the perfor-
mance indicators over the 16 cycles as well as the comparison
between the true and the predicted values for the last cycle
(cycle N°16). This shows that the prediction error RMSE/MAE
increases as the cycle index increases and reaches small-to-
moderate values of a few °C for Tmin/Tmax and~0.03 for the
rate, which can be considered satisfactory given the order of
magnitude of the considered variables (Fig. 6). In addition, the
normalized errors (measured by MAPE) reach values up to
1.6, 3.5% and<4% for Tmin, Tmax, and the rate, respectively,
which confirms the satisfactory performance. We note, how-
ever, that the prediction of the rate is more difficult, as shown
by the higher spread of the scatterplot in Fig. 8c as well as the
larger bias in the prediction.

The added value of performing a preliminary phase of
screening (Section 4.1) is shown in Fig. 9, which corresponds
to the same analysis as Fig. 8 but with metamodels trained by
considering all 14 input variables. A clear decrease in the pre-
dictive performance is outlined for Tmin and Tmax (Fig. 9a, b).
The increase in the prediction error for the rate’s prediction is
noted, but it remains smaller than for Tmin and Tmax. Figure 9 (c,
left) shows increases of 1–1.5 units for RMSE andMAE and by
0.5–1.0% for MAPE. We also note a higher bias for the rate
(Fig. 9c, right).

The multicyclic metamodel also informs on the intercyclic
dependence of the considered variable of interest. Figure 10
provides the evolution of the scale factor that models this
dependence (term denoted ρ in Eq. 4). This shows that the
intercyclic dependence decreases over the cycles (as suggested
by the analysis of the time series in Figs. 5 and 6) by following a
nonlinear trend for Tmin and a quasilinear trend for Tmax.
Figure 10 also shows that the intercyclic dependence has
the largest variation at the beginning and reaches a
quasiconstant plateau from cycle N°4/N°5. This suggests
that if the first part (before cycle N°4/5) is accurately
modelled, the prediction for the second part should be
improved (due to small changes).

4.3 Performance analysis

Here, we extensively explore the performance of the multicyclic
metamodelling approach by testing the influence of several
aspects: (1) the number of training samples (N=100, 150 or
200); (2) the comparison to the independent metamodelling
approach; and (3) the influence of different training options:

– Option 1 ‘C100%’. The same number N of training sam-
ples is used regardless of the cycle index;

– Option 2 ‘Cp%’. The designs of the experiments are
nested (as described in Section 3.2) with a decreasing
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Fig. 7 Boxplot of the p values of the HSIC-based test of independence
calculated for the minimum temperature (a), the maximum temperature
(b) and the rate of temperature decrease (c) considering all 16 cycles. The

horizontal dashed red line indicates the significance level at 5%. The
colour indicates the cycle index (from 1 to 16)
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number of training samples when the cycle index in-
creases from 2 to 16. In other words, all N training sam-
ples are used for cycle N°1 (corresponding to the lower
fidelity level), and a lower number of samples are used for
cycles N°2 to N°16 by considering a proportion p (among

75%, 50%, and 25%) of N. Note that this option is less
expensive to evaluate than option 1 because a smaller
number of numerical simulations are run up to cycle
N°16. Supplementary Material C: Fig. C1(a) provides
an illustration of this training option.

Fig. 8 (Left). Evolution of the performance indicators RMSE (sold black line),MAE (black dashed line) andMAPE (solid orange line) for Tmin (a), Tmax

(b) and the rate of decrease (c); (Right). Comparison between the true and predicted values for the three variables of interest at the last cycle
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The training/validation procedure is conducted multiple times
by performing 100 replicates of the random subsampling proce-
dure described in Section 3.3 using ntest=100 test samples.

Figure 11 provides the MAPE results for the prediction of
the rate. Without decreasing the proportion p of training

samples, the performances of both metamodelling ap-
proaches, multicyclic and independent approaches, are equiv-
alent (Fig. 11a–g). Decreasing p clearly impacts the perfor-
mance of the independent metamodels, while the multicyclic
approach remains almost insensitive to the decrease. At the

Fig. 9 (Left). Evolution of the performance indicators RMSE (solid black
line),MAE (black dashed line) andMAPE (solid orange line) for Tmin (a),
Tmax (b) and the rate of decrease (c) without the preliminary phase of

screening; (Right). Comparison between the true and predicted values for
the three variables of interest at the last cycle
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last cycle (N°16), theMAPE value is decreased by a factor of
~33% when using the multicyclic metamodelling approach.
This decrease is also verified for the other performance indi-
cators (Supplementary Material D). This higher performance
is also shown for Tmin (Fig. 12) and Tmax (Fig. 13) with a
decrease in the MAPE value by up to 20 and~50%, respec-
tively. This result clearly outlines the added value of incorpo-
rating the information of the intercyclic dependence in the
metamodel construction: a higher level of predictive quality
can be achieved with a smaller number (down to 25) of high-
fidelity numerical simulations, i.e., a smaller number of nu-
merical simulations that are run for all cycles up to cycle
N°16. This means that the multicyclic metamodel here re-
quires less computational effort.

4.4 Robustness to type of training procedure

In Section 4.3, we adopt a training procedure based on the
‘Cp%’ option. We further investigate whether alternative
training procedures would impact the performance results.
To do so, the predictive performance of the multicyclic
metamodel is evaluated by considering an alternative option
‘Lp%’ in addition to option 1 ‘C100%’ and option 2 ‘Cp%’.
For this training option, the number of training samples at

each cycle is defined by progressively and linearly decreasing
their proportion from 100% to a given value p (among 75%,
50%, and 25%) as the cycle index increases from N°2 to
N°16. This means that the computation time cost of this option
is larger than “Cp%” but remains lower than that of option 1.
Supplementary Material C: Fig. C1(b) provides an illustration
of this training option. Similar to Section 4.3, the different
options are investigated by performing the random subsam-
pling procedure multiple times (here 100) with N =200 and
ntest = 100.

Considering the prediction of the rate, Fig. 14 pro-
vides the mean value of the MAPE performance indica-
tor over the 16 cycles together with the 10th and 90th
percentiles for the three different training options. This
shows that the performance of the mult icyclic
metamodel is relatively insensitive to the type of train-
ing procedure (compare the top and bottom panels in
Fig. 15) regardless of the proportion of samples p that
is retained over the cycles. The same conclusion is
reached for the two other variables Tmin/Tmax (see
Supplementary Material E). Figure 14 suggests that (1)
very few “complete” model runs (here down to 50) are
necessary to reach a high predictive performance (which
is also shown in Section 4.3); (2) this overall predictive

Fig. 10 Evolution of the scale
factor over the cycles for the three
variables of interest, rate (grey
dot), Tmax (red triangle), and Tmin
(blue square)
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performance mainly depends on the number of training
samples for cycle N°1 (training option “Cp%”), and (3)
the number of training samples for cycles N°2 to N°16
has little impact on the performance.

We further examine the influence of the training option on
the intercyclic dependence (modelled by the scale factor in Eq.
4). Figure 15 shows that the spread in the results (measured by
the envelope width) is relatively small for option “Lp%” and

Fig. 11 Evolution of theMAPE performance indicator for rate prediction
using the independent (grey dot) and multicyclic (orange triangle)
metamodelling approaches. Different numbers N of training samples are
tested as well as different training options (named “Cp%”) with p

indicating the proportion of samples kept among N for the training over
the cycles N°2 to N°16. The solid line is the mean value calculated from
the results of a random subsampling approach conducted 100 times. The
envelope limits are computed using the 10th and 90th percentiles
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to some extent for option “Cp%”. Stable results are obtained
for Tmax and for the rate prediction (grey and red lines in Fig.
15, top, respectively) regardless of the number of training
samples, hence confirming our conclusions on the predictive
performance. This result is, however, only valid for Tmin

provided that a sufficiently large number of training samples
are available (“C75%”, Fig. 15a). This is particularly clear in
Fig. 15(b,c), where the spread in the results is nonnegligible
considering cycles N°2 and N°3. Despite the use of the opti-
mized algorithm developed by Le Gratiet [26], this highlights

Fig. 12 Evolution of theMAPE performance indicator for Tmin prediction
using the independent (grey dot) and multicyclic (orange triangle)
metamodelling approaches. Different numbers N of training samples are
tested as well as different training options (named “Cp%”) with p

indicating the proportion of samples retained among N for the training
over the cycles N°2 to N°16. The solid line is the mean value calculated
from the results of a random subsampling approach conducted 100 times.
The envelope limits are computed using the 10th and 90th percentiles
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some difficulties in the computation of the parameters of the
nested kriging metamodels (termed hyperparameters, see
Section 3.2) with a low number of training samples. Some
improvements in the stability of our results are observed when

tuning the algorithm for hyperparameter optimization (in par-
ticular by increasing the number of multistarts of the optimi-
zationmethod for likelihoodmaximization), but this should be
further explored in the future.

Fig. 13 Evolution of the MAPE performance indicator for Tmax

prediction using the independent (grey dot) and multicyclic (orange
triangle) metamodelling approaches. Different numbers N of training
samples are tested as well as different training options (named “Cp%”)
with p indicating the proportion of samples retained among N for the

training over the cycles N°2 to N°16. The solid line is the mean value
calculated from the results of a random subsampling approach conducted
100 times. The envelope limits are computed using the 10th and 90th
percentiles
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5 Concluding remarks and further work

In this study, we propose a metamodelling approach (named
multicyclic metamodelling) based on a multifidelity cokriging
model for the prediction of ATES. By using a numerical mod-
el of a realistic ATES system in the Paris basin, our tests based
on an extensive random subsampling validation approach (by
varying the number of training samples from 33 to 66% of the

total number of available results) show a higher performance
of the multicyclic metamodel (with a decrease in the error
indicator by 20–50% on average) compared to the indepen-
dent metamodelling approach. The major advantage of the
proposed approach is the ability to achieve this higher predic-
tive performance while saving computational time cost be-
cause the training phase only needs a few tens of complete
long-running simulations, i.e., simulations that are run over all
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Fig. 14 Evolution of theMAPE performance indicator for the prediction
of the rate considering different training options (see Section 4.4 for
details). The solid line is the mean value calculated from the results of a

random subsampling approach conducted 100 times. The envelope limits
are computed using the 10th and 90th percentiles
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cycles (compared to the hundreds required by the independent
metamodelling approach). The influence of the training pro-
cedure is tested, and we show that the performance of the
multicyclic metamodel is relatively insensitive to it regardless
of the proportion of samples that is retained over the cycles
(whether a constant or a linear decrease is applied). Finally,
we outline that the capability of the multicyclic metamodel to
learn the intercyclic dependence is a key aspect for reaching
this high predictive capability. In addition, we complement the
procedure with a preliminary screening analysis, which en-
ables us to identify the key input variables that influence the
most results, hence reducing the number of input variables of
the metamodel (here decreased by >70%).

This study should be considered a first feasibility assess-
ment of the multicyclic metamodelling approach.
Underground activities other than ATES also involve com-
plex cyclic production/injection phases (such as those in
low permeability reservoirs, e.g., CO2-enhanced gas recov-
ery [33] and storage or production-enhanced cyclic pressure
pulsing [34]), and the use of the proposed metamodelling
approach should also benefit their prediction. However, to
reach a full operative level, several aspects of the approach
need to be further improved. First, a simple modelling of the
intracyclic evolution was used by fitting an exponentially
decreasing function. In other application cases, more

complex temporal evolutions at each cycle are expected. A
possible approach worth investigating is to combine our
approach with a dimension reduction step using, for in-
stance, principal component analysis, as proposed by
Thenon et al. [11]. Second, we trained three different
multicyclic metamodels, one for each parameter of the ex-
ponentially decreasing function (Tmin/Tmax and the rate pa-
rameter). This means that the interdependence between
these three variables is not accounted for here, which might
impact the predictive performance. An improvement could
rely on a multivariate version of the multifidelity cokriging
approach using, for instance, recent developments in this
direction, as proposed by Ma et al. [35]. Third, we perform-
ed the screening analysis by combining the HSIC measure
with a clustering algorithm to account for the dependence of
a group of variables. To address this sensitivity analysis
with correlated inputs, more advanced methods should be
applied in the future by relying, for instance, on the devel-
opments of Da Veiga [36] using Shapley effects. Finally,
our tests outlined the difficulty of training the multicyclic
metamodel when the number of training samples is low (25–
50). In addition to the improvements in the optimization of
the kriging parameters’ estimation, adaptive sampling and
sequential design of experiments, as proposed by Liu et al.
[37] and Stroh et al. [38], are expected to play a key role.

Fig. 15 Mean value of the scale factor considering the different training options detailed in Section 4.4. The envelope is computed from the 10th and 90th
percentiles given 100 replicates of the random subsampling procedure
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