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1 INTRODUCTION

SUMMARY

In some Earth materials, significant induced polarization (IP) phenomena are occurring when
an electric perturbation is applied. These mechanisms are described by a frequency-dependent
complex resistivity (CR). The study of the CR spectral signature allows to access indirectly to
several properties of interest of the subsurface linked to the interaction between the pore space
and fluids. CR is usually studied using the electrical method with a direct current approxima-
tion, neglecting by the way electromagnetic (EM) induction that can occur in the data. However,
EM induction increases with frequency and offset, resulting in limitations at high frequencies
or for the investigation of deep target. We implemented a frequency-dependent CR in a 3-D
finite-differences (FD) modelling and inversion code for frequency domain controlled-source
electromagnetic (CSEM) data to take into consideration IP information contained in EM data
or reciprocally. The CSEM methods are resistivity imaging techniques using multifrequency
EM fields that fully take into account EM induction with large investigation depth. Following
a preliminary sensitivity study, a multistage inversion framework was designed to constrain
the multiparameter inverse problem. Furthermore, to manage the increasing number of param-
eters, a second-order polynomial parametrization is used to describe independently frequency
variation of CR norm and phase. We demonstrate the method through 1-D and 3-D synthetic
data inversions for a deep-target model. We show that we were able to recover the CR and
its frequency variation from CSEM data in the IP/EM coupling domain for 1-D targets. The
problem of deep polarizable 3-D targets is more challenging and the resolution of the recovered
CR spectrum was impacted. Nevertheless, we retrieved from a model containing several polar-
izable anomalies some crucial information allowing the discrimination of the targets from the
non-polarizable background and from different spectral CR signatures. Our inversion strategy
allows thus accessing to IP parameters of the medium in an extended frequency domain by
fully taking EM induction information into account.

Key words: Electrical properties;
Inverse theory.

Controlled source electromagnetics (CSEM);

prospecting relies on the measurement of the potential difference
measured between two receiver electrodes due to the injection of

Electric resistivity of Earth materials varies over many magnitudes
depending on the type of rocks (Palacky 1988) and is linked to
various physico-chemical properties of the medium as resistivity
is mainly sensitive to fluids. Its wide range of variation makes re-
sistivity imaging a privileged way to access to medium properties
such as porosity, salinity (Archie 1942), clay content (Waxman &
Smits 1968) or mineralization. Resistivity imaging using electric

*Now at: SINTEF Industry, 7031 Trondheim, Norway

a direct current (DC) between two transmitter electrodes at differ-
ent offsets. The ground apparent resistivity is deduced for different
electrode configurations using a geometrical coefficient. The resis-
tivity is usually considered as a constant and real parameter in many
geophysical applications.

Nevertheless, overvoltage phenomena or induced polarization
(IP), can occur in the ground due to its chargeability (Seigel 1959).
Chargeability of the ground results from the relaxation phenomenon
occurring after the current cut-off with a slow voltage decay that
cannot be attributed to electromagnetic (EM) induction. IP effects
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are due to the transport and reversible accumulation of charges
between grain and fluid interfaces when perturbed by an external
electric field. In an overview of the spectral induced polarization
(SIP) method (Kemna et al. 2012) summarized four kinds of po-
larization mechanisms responsible of IP: Maxwell-Wagner effect,
polarization of the electric double layer (EDL), membrane polariza-
tion and electrode polarization.

To model these effects, the electric resistivity p* is expressed as
a complex and frequency dependent parameter:

P (@) = pr(@) +ipy (@), ()

with p, and p, the real and the imaginary part of the resistivity,
respectively, with p, < p,. @ is the angular frequency and i the
imaginary numberi = «/—1. Its exponential form can also be used:

pi(@) = |p* (w)le!*

lo*(@)| = |/ p}(w) + pi(w) 2)

with @ @
Pepx (@) = arctan (""—) r L)

pr(@) pr(@)”

The study of the complex resistivity of rocks and their spec-
tral behaviour is thus a way to access additional information about
the underground. Originally used in mineral exploration for ore
body mapping, Pelton ez al. (1978) suggested the use of the em-
pirical Cole—Cole (CC) relaxation model (Cole & Cole 1941) to
relate CC model parameters fitting the complex resistivity (CR)
spectrum to medium properties based on earlier laboratory exper-
iments (Madden & Cantwell 1967). He demonstrated that the CC
model parameters describing the shape of the measured resistivity
spectrum can help for the discrimination of the type of dissem-
inated metallic particles and give an estimation of their concen-
tration,by taking advantage of their characteristic CR frequency
behaviour and their phase magnitude. Their resistivity magnitudes
can be similar to other bodies but have different frequency be-
haviour, pointing out the major interest of the method. CC model
became since one of the most popular empirical IP model. How-
ever, there are several kinds of empirical models describing the CR
spectrum that are still in discussion according to their applications
domain (see the work of Dias (2000) for a presentation of 12 ex-
isting models based on equivalent circuits). In a recent work, Liu
et al. (2016) presented a detailed discussion about the performance
of several relaxation models to fit a CR spectrum according to
mineralization.

As well as for ore body discrimination, IP phenomena were shown
to be linked to various kinds of physico-chemical properties of the
media and more particularly linked to the pore space geometry
and fluid interactions. IP method was used in various contexts as
for hydrocarbon detection (Davydycheva et al. 2006; Veeken et al.
2009), hydrogeological studies (Borner et al. 1996; Ghorbani et al.
2009), contaminant detection (Vanhala 1997) and more recently
in biogeophysical application as reviewed in the work of Kessouri
etal. (2019).

To study the CR of the medium and its spectral behaviour, the use
of a large frequency range is necessary. DCIP methods assume a
static field (no time-variation) and EM/IP coupling issues can appear
if DC hypothesis is not respected. EM induction increases with
frequency, offset and depends on the wire-layout. Several empirical
methods dealing with EM induction in DCIP surveys exist, as using
EM removal techniques summarized in Routh & Oldenburg (2001).
Nevertheless, in many DCIP field-scale studies, the frequency range
is limited to be able to neglect EM induction using only unaffected
data (Karaoulis et al. 2011; Orozco et al. 2012).

A rigorous solution to EM/IP coupling is to take into account the
full-EM response of the ground by solving Maxwell equations and
considering the cable layouts. Controlled Source Electromagnetic
methods (CSEM) use the full-field EM responses of the under-
ground excited by a galvanic or an inductive source to recover the
resistivity of the ground. CSEM data can be processed equivalently
in the time domain or frequency domain (Mérbe ef al. 2020; Martin
et al. 2020). As CSEM methods can be an ambiguous term, we will
refer in this paper to all EM methods using an active EM source in
the frequency range within approximately 1 mHz to 100 kHz and
for investigation depths going from a few meters to a few kilome-
tres. Contrary to the DCIP method, EM induction is not viewed as
noise, but as an information fully taken into account to reconstruct
the resistivity model. These kinds of methods are nevertheless nu-
merically more demanding. They were intensively used for imaging
hydrocarbon reservoirs in marine applications (Constable 2010).
They were also used to image and monitor geothermal reservoirs
(Darnet et al. 2020; Bretaudeau et al. 2021). The CSEM methods
have a higher depth of investigation than the DC method. CSEM
methods usually consider the electric resistivity to be a real and
constant parameter by considering IP effects to be negligible.

However, in presence of IP phenomena, this assumption leads in-
version to omit some crucial information on the medium properties.
In their works (Morbe ef al. 2020) presents a large land-CSEM sur-
vey with data contaminated by sufficiently strong IP effects at low
frequency from conductive graptolite shales to be noticed. Recently,
some authors proposed CSEMIP inversion combining EM induc-
tion and IP for a constant CR in 2.5-D (MacLennan et al. 2014) and
in 3-D (Commer et al. 2011). To our knowledge, only one research
group worked to solve together EM induction and IP effects in 3-D
considering a frequency-dependent resistivity based on an integral
equation approach and the less common GEMTIP model (Zhdanov
2008; Zhengwei Xu & Zhdanov 2015; Zhdanov et al. 2018). Com-
bining IP and CSEM methods are of increasing interest these late
years to complete our knowledge of the medium in an increased
range of frequencies. With recent improvements in instrumenta-
tion capabilities as well as the developments of high-performance
computational facilities, the technical abilities to manage such com-
plexity are spreading. Nevertheless, the need for CSEM tools able to
handle such frequency-dependent CR without relying on a specific
parametrization is still a necessity.

To recover IP parameters from CSEM inversion new challenges
arise with the multiplication of parameters. At least, one additional
parameter per cell is necessary to introduce IP for the simplest con-
stant CR case. This case is similar to the simultaneous inversion of
dielectric permittivity and conductivity for high-frequency data (f°
> 100 kHz) as imaginary resistivity can be expressed as a permit-
tivity. Some authors as Lavoué et al. (2014) and Busch ez al. (2012)
developed some strategies to scale the parameters and precondition
the inversion to reconstruct simultaneously electric conductivity
and dielectric permittivity from Ground Penetrating Radar (GPR)
data using full waveform inversion (FWI). For the general case of
a frequency-dependent CR, a real and an imaginary resistivity per
layer and per frequency is needed to fully describe IP phenomena.
Keeping that kind of parametrization is unbearable as the inverse
problem is already ill-posed in the majority of the cases and suf-
fers from non-uniqueness of the solution. An appropriate model
support is necessary to describe the medium with a reduced num-
ber of parameters as it increases proportionally with the number
of frequencies. The choice of parametrization is of crucial impor-
tance to correctly scale the problem between each class of parameter
(Nocedal & Wright 2006). Virieux & Operto (2009) highlighted in
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their paper on FWI, the importance of the parametrization choice for
multiparameter inversion considering targets and acquisition con-
figurations. They presented how some parameters can be coupled
or not, as some parameters can explain the same part of the data,
whereas some are complementary.

We propose in the first part of this paper to present how IP is
contaminating CSEM data set in the quasi-static frequency domain
for a galvanic source. To better understand IP contamination in
CSEM data sets, we present a 1-D sensitivity study of CSEM data
to CR. At first, we discuss the simplest case of the electric field
response of a homogeneous half-space with a constant CR and a CC
based resistivity model to illustrate clearly the IP impact expected
on a CSEM data set for a frequency-dependent CR case. The case
of a chargeable conductive layer in a homogeneous background is
then discussed to present large EM induction coupling arising with
the increasing of the frequency, offset and conductivity.

In the second part of the paper, an inversion framework and a
parametrization developed to retrieve the frequency-dependent CR
based on the sensitivity analysis is presented. We demonstrate the
feasibility of the method with 1-D synthetic examples using a 1-
D inversion based on a semi-analytical (SA) code. The method is
then extended to the 3-D case. The inversions of more complex 3-D
synthetic models with 3-D frequency-dependent polarizable buried
targets are presented, and the results are finally discussed.

2 SENSITIVITY STUDY

At first, we evaluate the sensitivity of CSEM data to CR in order
to better understand the IP signature in the EM data and define an
efficient way to derive them. We restrain our study here to the case of
the electric field response of the underground induced by an inline
horizontal electric dipole (HED)) (galvanic transmitter) located at
the surface. This is the classic case of ERT and SIP method in a
Dipole—Dipole configuration, except that electromagnetic induction
is fully taken into account. SIP method assumes to work in the
static case, whereas CSEM methods use electromagnetic induction
to investigate spatially the underground with several frequencies

by varying the skin depth § &~ 503 ﬂ . The static case is respected

when the offset » from the source is smaller than a wavelength
(A = 278) r K Ay, corresponding to the ‘near field’, which is in
opposition with the ‘far field” where » >> A,, corresponding to the
plane wave domain used in the magnetotelluric method. Considering
EM induction allows the scanning of the underground from the near
to the far-field cases depending on the 7/4 ratio.

Note that, if the magnetic field is considered to study IP, several
limitations are expected to reconstruct the resistivity spectrum as the
magnetic field in the near field is ‘saturated’ and has no sensitivity to
the medium resistivity (Zonge & Hughes 1991). This limitation can
also be observed for an inductive source on the electric field which
vanishes in the near field. Furthermore, (Garcia-Fiscal & Flores
2018) established in their study an improved capacity of (galvanic)
SIP methods to solve Cole—Cole CR parameters compared to the
in-loop transient electromagnetic method (TEM), which uses the
magnetic field obtained at the centre of an induction loop, which
thus mixes inductive and polarization current. Considering these
first limitations, by focusing on the case of the electric field response
from a galvanic source we expect an improved investigation of the
CR spectrum especially at low frequencies.

We first study the sensitivity of IP in CSEM data for a constant CR
half-space with a resistivity phase ¢px of —100 mrad. This value of
phase is in the range of what can be expected in measurements over
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disseminated metallic particles ore bodies as presented by Pelton
et al. (1978) or Liu et al. (2016). We compare in the following
examples a purely real and constant resistivity model to a CR model
with a tenth ratio between imaginary and real resistivity part, as
described by eq. (2), with ¢¢px ~ f)—‘z. Note that we use ¢, notation
to describe the CR phase, which should not be mistaken in the
following argumentation with the observed data field phase delay
denoted ¢.

In order to quantify IP impact in CSEM data, we introduce here
the term IP effect A;, as used in Qi et al. (2019). Lets consider
F"() an operator that extracts the real part, the imaginary part,
the amplitude or the phase of the electric field for a given spatial
component n. The IP effect measures the relative variation between
a response F"(E,+) of a model taking into account a CR (that can
be frequency-dependent) to the electric field response F"(E,,) of
a real and constant resistivity as used for a DC or CSEM survey.
The response difference due to the IP effect is normalized by the
amplitude of the total electric field response for the corresponding
real and constant resistivity model at zero frequency. Normalization
by the total amplitude allows to avoid giving importance to weak
anomalies that are irrelevant in comparison to the total measured
field (i.e. case of the electric field in quadrature phase towards the
DC limit, where its quadrature phase response vanishes for a real
resistivity but not its total field). In the case of the IP effect shown
for the electric field phase, the absolute difference is kept instead of
a relative IP effect. IP effect is defined for each observable as :

F'(E(@)pr@) = F"(E(@))p,
| E(w)y, |
if F"() extracts amplitude, real or imaginary part in the direction n,

x 100

Aip(a)) =

€)

or,

Aip(@) = [F"(E(@)) () = F"(E(@))p]
if F"() extracts the phase in the direction n. 4

Frequency-dependent CR is studied by considering the response
of a medium with a Cole—Cole relaxation CR model p*(w) and is
compared to the medium ‘without IP’, defined as the medium with a
constant and real resistivity p, in the static case and corresponding
to the first CC parameter.

2.1 Constant resistivity homogeneous half-space

1-D responses are computed using a 1-D semi-analytical (SA) code
based on emid code (Kim ez al. 1997). Fig. 1 presents electric field
responses using normalized amplitude and phase spectra (left), or
normalized in-phase and quadrature-phase representation (right), as
a function of /8, with r the source-receiver offset and § the skin
depth. Responses are normalized by their total amplitude in the
static case (i.e. using the value for the smallest ratio computed 7/§
< 107"). This kind of representation allows visualizing the response
from the near field (DC hypothesis) (7/6 < 1) to the far-field (#/§
> 1), independently to the resistivity amplitude of the half-space
or the dipole moment. Electric field on a homogeneous half-space
with respect to 7/§ shows an equivalent effect of the offset or the
frequency variation, as skin depth is proportional to the inverse of
the frequency square root.

The in-phase electric field is generally attributed to galvanic ef-
fects in the medium, whereas quadrature response is attributed to
EM induction. The amplitude and phase of the electric field are a
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Figure 1. Normalized amplitude and phase (left-hand panel) and normal-
ized in-phase and quadrature (right-hand panel) electric field responses for
an inline HED, considering a 100 €.m real resistivity model with and with-
out —100 mrad of CR phase delay. Dotted lines represent the CR model
response whereas solid lines represent the real and constant resistivity re-
sponse (without IP effect).
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Figure 2. IP effect on amplitude and phase delay (left-hand panel) and on
in-phase and out-of-phase (right-hand panel) electric fields on a 100 Q.m
real resistivity homogeneous half-space with —100 mrad of CR phase delay.

mix of both parts. We choose to present in a first example both
representations for the electric field response of a half-space to
have a better understanding of IP effect on each CSEM observ-
able. We can see on Fig. 1 that IP effect caused by a constant CR
with ¢ = —100mrad has a very low effect on the amplitude as
responses are almost superimposed, except in the transition zone
(1 < r/§ <5). IP effects presented in Fig. 2 are limited around
1-2 per cent of electric amplitude except in the limited bandwidth
of the transition area where it can reach 5 per cent. The real part of
the electric field reflects mainly its amplitude due to low quadrature
phase response, but IP effects are slightly higher on the real part.
Contrary to electric field amplitude, IP effects on the electric field
phase can easily be differentiated. Indeed, we observe that IP ef-
fects create a strong phase delay compared to the real and constant
resistivity case. Phase effects around 5.7° (5.7° = 100 mrad) are
observed on the complete spectrum, with a maximum around 8.5°
in the transition zone for HED,. A minimum is observed around
3L g davelength g6 10 a sign reversal of the quadrature electric field.
Note that the electric field phases are shown in degree rather than
using milliradian, as EM data are prone to large phase variations
compared to SIP data. Furthermore, it allows to better differentiate
the data (electric field phase) to the medium parameter (CR phase)
and avoid confusion as they cannot be directly related in CSEM
data (impacted by EM induction) contrary to SIP data.
Considering grounded electric dipole sources, the phase at low
frequency is entirely caused by IP phenomena without amplitude
variation in the near field domain as there is no EM induction in the
static limit. An apparent CR norm and an apparent phase can thus be
deduced from the electric field using a geometric coefficient. This is
the principle of the DCIP method, where EM induction is neglected.
Nevertheless, when 7/8 becomes superior to 0.1, phase delay caused

A. |E| Aip phase(E)

Z 100 =i =

=10 mrad

::10mr:|?-:d -100 mrad
107 o7 ——-100 mrad 101} -300 mrad
-300 mrad S Ss SSss S0 SN
102 10° 103 102 100 prec
f(Hz) f(Hz)
Ajp R(E) A, S(E)
” Ty
= 10"
o
= 107 i S 1
e rad 100 _—1_[1]{_&{1__,/\/
~-10 mrad
7 =—-10 mrad
2 -100 mrad
12 fing=1 ~-100 mrad T of TS,
108§ il -300 mrad
2 107" |t L
10 10° 10% 102 100 103
f(Hz) fHz)

Figure 3. IP effect observed on the electric field amplitude and phase (top
left and right) and on the in-phase and out-of-phase electric field response
(bottom left and right) when increasing CR phase introduced in the medium
by keeping the CR norm |p*| constant (solid lines) or keeping the real part
pr constant (dashed lines) at a value of 100 2.m. An offset of 1500 m is
used here.

by EM induction in the half-space gradually adds up to the electric
field as quadrature currents increase up to 7/6 &~ 1 where EM induc-
tion is expected to reach a maximum (Spies & Frischknecht 1991).
In these cases, the DC hypothesis does not hold anymore. It be-
comes thus crucial to take EM induction into account by modelling
the full EM response to be able to separate IP information from EM
coupling. As an illustration, for a homogeneous half-space, a phase
delay due to EM induction up to 25° can be observed around r/§ ~
1 which is larger than the anomalies due to IP effects (Fig. 1a).

IP effects observed on the electric field phase are due to a strong
impact on quadrature electric field compared to in-phase response
as seen in Fig. 1. Indeed, relaxation currents due to medium charge-
ability introduced by the CR are delayed compared to the injected
current. We can see in Fig. 2 that the IP effect on the quadrature
response represents around 10 per cent of the total electric field on
the complete spectrum, whereas as observed on the amplitude, the
in-phase IP effect reaches a significant value up to 10 per cent only
on a narrow frequency window in the transition zone. This peak
is explained by an additional coupling between IP effect and EM
induction in the medium.

2.1.1 Resistivity phase effect

In the previous section we introduced p, through a constant phase
of —100 mrad by keeping constant p,. Fig. 3, compares IP effect for
various CR phase for a half-space and the HED, case at constant
|p*| or at constant p,. For each observable, proportionality can be
observed with the phase increase. Proportionality between the CR
phase and electric field response is observed, involving that a —10
mrad half-space produces around 10 times less IP effect than a—100
mrad half-space. As CR phase delay decreases, the IP effect is thus
weakening, becoming lower than 1 per cent of relative anomaly for
a—10 mrad of CR phase.
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Figure 4. CR spectra for a Cole—Cole relaxation model pg = 100 2.m, po
=70Qm,m=0.3,7=0.0ls,c=0.5.

A fundamental difference can be observed between the amplitude
and the real part observable compared to |p*| constant or p, con-
stant cases (see Fig. 3). Indeed, towards DC limit the curves become
largely distinct. In the case of |p*| constant, increasing the phase
has a weak impact at low frequencies on the electric amplitude,
whereas keeping p, constant when increasing the phase has a larger
impact at low frequency with an IP effect tending to an asymptote.
This observation can also be made for the real/imaginary part ob-
servables, unless it is the |p*| constant case that is impacted at low
frequency by varying the phase. At high frequency, IP/EM coupling
intervenes and explains large variations in both cases.

Looking closer to the radial static response E,q, of an inline
HED source on a homogeneous half-space at DC limit, we have:
=l ©

r

It is straightforward that the real part of the electric field in the
static limit is directly proportional to p, and the imaginary part to
04> Whereas if looking for the amplitude and the electric field phase
response we obtain:

|Eradial| = 2;{.3\/ (,0,2 + p;) = 221,‘::' (6)

PEqa = atan (_%) R Gepx- (7)

It highlights that when looking at the amplitudes and phases of the
electric field responses, evaluating the IP effect by comparing the
model at |p*| constant should be preferred instead of keeping p,
constant and the opposite when looking at real/imaginary parts of
the electric field. Reformulated in a more practical way, it highlights
that varying the CR phase by keeping the norm constant perturbs
less the electric amplitude and reciprocally for the real/imaginary
part.

In this section, we have shown that a considerable IP effect caused
only by the imaginary part of CR can be observed in CSEM data. IP
effects magnitude is controlled by the CR phase ¢.px. The presence
of an imaginary resistivity p, impacts mainly the phase of the data
and has a weak effect on the amplitude of the electric field response,
which shows significant IP effects only within a limited bandwidth
in the transition zone due to supplementary coupling between EM
and IP effects.

E radial =

2.2 Frequency dependent complex resistivity half-space

In presence of IP phenomena, a frequency dependence of the CR
can be observed, even though it is often considered constant in

3D-CSEM complex resistivity imaging 843
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Figure 5. Electric field in-phase (a) and quadrature (b) for a C-C polarizable
half-space for an in-line HED source at 1000 m offset; CR model response
is compared to real and constant resistivity model responses at DC (pg) and
HF (poo) C-C model boundaries. Panels (c) and (d) show the same response
as (a) and (b) but as electric field amplitude and phase.

a first approximation. We show in Fig. 5 the electric field of a
homogeneous half-space for a galvanic source HED), assuming a
frequency-dependent CR based on a Cole—Cole relaxation model
(Fig. 4, eq. 8):

oo 1
p(w)—Po[l—WI(l—m)]- ©)

The four CC parameters used in the following example to de-
scribe the half-space are the resistivity at DC current py = 100 2.m
corresponding to the low-frequency asymptotic limit, the intrinsic
chargeability m = 0.3, a short relaxation time constant 7 = 0.01
+, s, related to the peak phase frequency, and the frequency de-
pendence exponent ¢ = 0.5. As intrinsic chargeability is defined
as m = 2= ' we obtain the high-frequency asymptotic value,
expected for this CC relaxation model, at po, = 70 Q.m. The
peak phase is expected at the frequency fpeax = — =23Hz

2rt(l—m)2c
(Fiandaca et al. 2018).

Using frequency domain analysis we can directly see in Fig. 5(a)
the gradual behaviour of the in-phase electric field between the two
asymptotic values defined by the CC resistivity model. In-phase
electric field gradually fits the homogeneous half-space response
from py to poo, following essentially the real resistivity variation.
Indeed, we saw previously for the homogeneous case that the real
part of the electric field is weakly sensitive to p,. Considering the
CC resistivity model shown in Fig. 4 and taking the DC resistivity
half-space as a reference, the IP effect on the in-phase electric
field increases from around 1 per cent at low frequency (Fig. 6),
where p, tends to the reference model p,, to reach approximately
30 per cent at high frequencies with a maximum in the transition
zone. As EM induction in a simple half-space is weak, the electric
field amplitude reflects essentially the real part of the electric field
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Figure 6. IP effect on amplitude and phase (top panel) or in-phase and
quadrature (bottom panel) EM responses for the CC resistivity half-space
model.

as the imaginary part is weak (Fig. 5b). The gradual behaviour
observed for the amplitude and in-phase part of the electric field
between the responses of py and p,, model is less obvious looking
at the quadrature phase response. Indeed, the variation of p, with
the frequency affects the EM induction, which is mixing up with the
additional phase delay due to the frequency-dependent CR phase
¢cpx variation. We can see the IP effect on the electric phase in
Fig. 5(d) showing an additional phase delay proportional to the
Cole—Cole phase model, coupled with the effect of the variation of
the CR norm which induces a slight frequency shift of the phase
curves.

Fig. 5 shows that if we consider a real and constant resistivity
in CSEM study with a broad frequency range and in presence of
IP, it can lead to a significant modelling error. Here, strong IP
effects due to p, variations are observed compared to a constant
and real resistivity model. Note that these observations can only be
made by observing several frequencies and depends on the reference
model. IP effects due to p, variations are stronger on the in-phase
component if compared to IP effects due to p, and can represent up
to 30 per cent of the total amplitude instead of a localized maximum
around 16 per cent for the quadrature electric field. CSEMIP data
will be more sensitive to the CR norm, or its real part variations
compared to the imaginary part or the phase variations because
they induce weaker IP effects on the electric quadrature field or
electric field phase. Considering the frequency dependence or the
CR and behaviour seen in Fig. 5, we see that a large spectrum
is necessary to characterize the complex resistivity variations. If
investigation frequency does not include the frequency range where
p* is impacted by frequency variations, main IP information can
be missed. These observations highlight the necessity to choose
carefully the frequencies used, relative to the target and keeping

in mind the fact that in a real field-scale survey only a partial
information of the CR spectrum would be accessible.

2.3 Buried layer

Sensitivity to IP effects will depend on several factors in the case of a
buried target. They are linked to the fundamental difference between
geometrical and frequency sounding. DC method uses geometrical
sounding to control investigation depth by varying TX-RX offset,
whereas CSEM methods use frequency sounding and more often a
complementary mix of both to control investigation depth. Indeed,
the depth of investigation depends on the skin depth in the medium,
decreasing with increasing conductivity and frequency. Sensitivity
to the buried body depends on the offset and the frequency used.
EM data will lose their sensitivity to the target at too short offset,
depending on the survey geometry, or at skin depth shorter than
the target depth. Fig. 7 shows the electric field of a 100 m thick
conductive layer, considering a real or a complex constant resis-
tivity, embedded at 100 m depth in a homogeneous half-space at
100 .m. Real part of the resistivity in the conductive layer was
chosen with a 1: 10 ratio with the background with p, = 10 Q.m,
and an imaginary part p, corresponding to ¢.,x = —100mrad. As
the sensitivity of the target is varying with the offset, we choose
to present a medium offset of 570 m corresponding approximately
to five times the depth of the target and being approximately an
offset of a skin depth separation (8§ ~ 503+/p/f) at 100 Hz (in the
background). This choice ensures a sufficient offset for geometri-
cal investigation and for studying EM induction coupling. A nearer
offset would result in a near field case on the complete frequency
range or an insufficient geometrical investigation depth, whereas
farther choices would result in ranges out of the scope of this article
as it would generate weaker amplitude responses or would con-
cern plane-wave methods as for magnetotelluric methods (Chave &
Jones 2012). We compare on Fig. 7 in-phase and quadrature parts
of the electric field for the real resistivity case £” and for a con-
stant CR case E*. Furthermore, electric field of the real resistivity
background E% is plotted with the IP response component. IP re-
sponse is separated here analogously to the primary/secondary field
separation £/ = E" — E%_ commonly used in CSEM (Newman &
Alumbaugh 1995) and noted Ry = £ — E”. Similar observations
similar to the half-space case can be made. We see negligible ef-
fects of the presence of p, component on the in-phase electric field
with a 7 per cent maximum on a limited frequency range around
200 Hz, whereas an effect around 8 per cent can be observed on
the quadrature electric field under 200 Hz (Fig. 7¢). For frequencies
higher than 2.5 kHz, we can see the response of the layer slowly
tending to the response of the homogeneous background case as the
skin depth in the homogeneous background is decreasing below the
depth of the target. A major difference with the half-space case is
the strong EM induction response of the layer, corresponding to the
out-of-phase secondary field J(E7) from the real resistivity case,
much larger than in the homogeneous case. It results in a competi-
tion between the IP effects and EM induction at high frequencies.
For this particular case, EM induction becomes greater than E,;,
on the quadrature component of the electric field around 10 Hz,
leading to an IP effect becoming slowly negligible.

This case illustrates that in intervals where EM induction is too
large compared to IP effects, the information due to p, would not, or
hardly, be recoverable. It implies that the domain where IP effects
due to p, and EM induction are distinguishable will depends on
the amplitude of both effects and on the offset from the source

€20z fieniga4 90 uo Jasn wbig sassiulp 13 senbibojoss) seyoiayoay aq neaing Aq £+59889/6£8/2/SEZ/a10Me/1[6/Wwoo dno-olwapese//:sdny woJj papeojumoq



=
£
8
5 10 In-Phase part:
=) —E [FEEsnEgms
~— ] emmee- E’ ,,,,,
&= o0,
1091 —Ef SR A
...... EAlp .',-' :
- -E =¥ -
22 / i

10710

N
o

. o_‘
&\ E TG
Alp (%)

102 10" 10° 10" 10%2 10° 10*
f(Hz)

Figure 7. In-phase (a) and out-of-phase (b) electric fields of a constant 10
Q.m layer with (E") and without (£*) a —100 mrad CR phase, ina 100 .m
background at an offset of 570 m. Responses were decomposed into the
primary field (£g), the real resistivity model secondary field (£7}) and the
IP contribution Ex;, = E* — E". (c) IP effect observed for the In-phase
(blue) and out-of-phase (red) electric fields of the constant CR layer model
and a frequency dependent CR layer model based on the previous CC model
(po = 100 Q2.m, poo = 70Q2.m, m = 0.3, 7 =0.0ls,c =0.5).

where EM induction arises. The study of the CR behaviour at high
frequencies will be helped by offsets as short as possible according
to geometrical investigation and depth of the target, to avoid as
possible the domain where EM induction is dominant.

Through these examples, we saw that even if the full EM re-
sponses are accounted for in IP studies and before considering
signal-to-noise ratio, there are strong limitations on which addi-
tional information would be recoverable from a CSEM IP survey:

(i) Medium without p, frequency dependence would be harder
to recover, as IP information is supported only by the quadrature
response with a lower amplitude.

(ii) IP effect over the quadrature electric field due to p, becomes
negligible compared to EM induction arising from medium anoma-
lies at high frequencies and large offsets.

3D-CSEM complex resistivity imaging 845

(iii) Sensitivity to anomalous body is a function of the offset
and frequency compared to its depth and size, which will limit the
frequency range where the CR spectrum of the target is recoverable.

Accessing to IP information is a challenge in several ways. Even
in a perfect case, it will often lead to recover only incomplete
information, limited by EM induction in the medium, depth of
the target, survey design and shape of the resistivity relaxation.
However, we saw that a significant IP effect can still be observed
in the data. These data could be strongly coupled to EM induction,
especially in the case of deep targets requiring long offsets. In order
to retrieve a CR spectrum in these cases, it is necessary to properly
consider the inversion of IP and EM simultaneously.

3 INVERSION OF COMPLEX
RESISTIVITY

In this part, we describe the inversion framework proposed to infer
a 3-D CR model from EM data. Our work relies on the implemen-
tation of CR modelling and inversion into the code POLYEM3D
(Bretaudeau et al. 2021). This code is a 3-D finite-difference paral-
lel code for modelling and inversion of CSEM and MT data in the
frequency domain. We first introduce briefly the essentials of the
original code and the straightforward implementation of CR to the
forward problem. For the sake of clarity, and to assess and validate
our inversion framework with reasonable computational times, we
investigated the multiparameter inversion behaviour through a 1-D
layered model inversion. We described through 1-D synthetic exam-
ples how we established an appropriate multiparameter parametriza-
tion and inversion strategy of the frequency-dependent CR. Finally,
the approach is extended to 3-D, and we present the application to
a more complex 3-D synthetic example.

3.1 Method

The code POLYEM3D solves electrical formulation of Maxwell
equation with a scattered field approach (eq. 9, Newman & Alum-
baugh 1995). The primary field E, defined as the electric field in
a 1-D reference medium o, is solved using the accurate and fast
semi-analytical code mentioned in Section 2.1 (emld, Kim et al.
1997) whereas the scattered or secondary field E; is solved on an
irregular Cartesian grid by a FD scheme (eq. 9) on a staggered grid
formulation (Streich 2009).

VXV xE;+iopnoE;=—iopg(o —o,)Ep. 9)

The imaginary number is noted 7, w represents the angular fre-
quency and p1o the magnetic permeability in the vacuum. Separation
of the primary and secondary fields allows to avoid singularity of
the sources and manage numerical errors due to the fast decrease
of the primary field from the source. Electric field vectors of size
3N contain all three components of the fields on the staggered grid
with N the number of cells.

The medium is originally described by a complex conductivity
vector o with the dimension of the forward grid N, contributing
to a diffusion and a propagation term through a constant and real
conductivity o” and relative permittivity €,, with €, the dielectrical
permittivity of the vacuum:

o =0 +iwe. €. (10)

The forward problem is reduced to a linear system of equations of
the form Ax = b, with x the vector of secondary field on the stag-
gered grid, b corresponding to a secondary source term (o — 0,) E,,
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and A the sparse system of FD equations ruling the problem on the
staggered grid with thirteen non-zero terms per line. The system is
then solved using a parallel direct solver (MUMPS (Amestoy et al.
2001, 2019) or WSMP (Gupta 2000)). A rigorous interpolation
(Shantsev & Maag 2015) taking into account the sharp discontinu-
ities at the air/ground interface, is used to obtain the field response
at the receiver.

Frequency domain CSEM is very well suited to implement IP
effects as we are modelling independently each frequency, contrary
to the time domain method. We straightforwardly adapted the for-
ward problem to a frequency-dependent CR input model. Real and
imaginary parts of the resistivity are used to describe the medium
for each frequency. A reformulation of the propagation term to in-
tegrate the imaginary part of the CR as an effective permittivity €.
is done. 6" in eq. (10) is replaced by a complex conductivity o* and
real and imaginary parts are separated:

o

—~——
o(w) = o’ (w) + ic?(w)+iwe, € (11)

with e = €, + T2 (12)

= o"(w) + iwegr(w) P
Solving the inverse problem consists here to seek for a model
minimizing an objective function x (eq. 13), with a data associated

function y, and one or several model regularization terms x,,.

X = Xa+AXm- (13)

The data minimization term usually consists of the norm of the
data vector residuals between the calculated and the observed data
d* and d°®, respectively, weighted by a diagonal matrix W, com-
posed by the inverse of the data standard deviation. Data vectors are
of the size N; depending on the number of frequencies, transmitters
(TX), receivers (RX) and components considered. We restrain our
present work to the use of a L2 norm (eq. 14):

1
Xa =11 (@ —d™) |2, (14)

The inverse problem is solved iteratively with a deterministic
linearized descent method. As the inverse problem can be overde-
termined, or more frequently underdetermined for large problems,
a regularization is required to stabilize the problem and converge to
a solution. Many types of regularization are possible, depending on
the specificities of the problem and prior information available. Sev-
eral types of common regularization are available in POLYEM3D.
We use a Tikhonov stabilizing functional with a maximum smooth-
ness condition (eq. 15) taking the L, norm of the Laplacian of the
model deviation from a reference model (Grayver et al. 2013) with
A a Lagrange multiplier acting as a trade-off parameter between
data and model regularization. The reference model is chosen here
as the model at the previous iteration. A minimum norm stabilizing
functional (eq. 16) is also combined with the smoothing constraint
in the following 1-D cases to better regularize the iteration step in
multiparameter cases as the maximum smoothness condition does
not constrain the length of the step of the model perturbation during
the iterative process as soon as the perturbation is smooth.

X = 1[92 — )3 (15)

m

K™ = Hm —m" ][, (16)
with m the vector of model parameters describing the medium of
dimension N,, and depending on the inversion domain size and
parametrization. Usually, a smaller grid with variable transforma-
tion is used as inversion grid comparatively to the forward grid.

The optimization algorithm is a preconditioned gradient-based
descent method implemented through a reverse communication al-
gorithm, combined with a line search based on a bracketing strategy
(Nocedal & Wright 2006; Métivier & Brossier 2016). It requires at
each iteration the computation of the cost function x and its gradi-
ent d,,x. Local optimization using gradient-based methods solves
iteratively a problem at the iteration & and starting from a model m;
with a defined step Am in the descent direction determined by the
reversed gradient of the cost function:

M1 = my + Amy, (17)
Mpp1 = My — A0y X - (18)

We denoted partial derivatives with respect to a variable using a
compact notation. The partial derivative by m is thus noted 9,, = a%
The optimal descent step length « is determined using a line-search
technique respecting the Wolf-conditions (Nocedal & Wright 2006)
ensuring the objective function to decrease of a sufficient amount
using the curvature condition. The gradient of the data cost function
for an L2 norm needs estimation of the sensitivity matrix J and the
data residual vector Ad expressed as:

i

ad,
Jij =W with i=1,..,N;, andj=1,..,N,

d; M
duxa = NI WyAd)  with
Ad = dcal _ dobs' (19)

T denotes the transposed conjugate operator. Derivatives expressions
of the regularization cost function can be found in Grayver et al.
(2013).

Gauss—Newton (GN) optimization which has a greater conver-
gence rate, takes advantage of the approximated Hessian to solve
the model step and neglect the second-order terms compared to
full Newton method. The data part of the approximated Hessian
is expressed as H = % = 9R(JTJ). The Hessian helps to coun-
terbalance the sensitivity gap between parameters. Considering a
linear problem and taking the derivative of the second-order Taylor
expansion of the data misfit function only, we have a solution for

Am respecting:
HAm = —3de- (20)

For small problem as following 1-D examples, the approximated
Hessian can directly be inverted to find the optimal step size. In
order to take into account for non linearity of the problem, a line-
search is undertaken to obtain an optimal step « (o > 0) and the
model at next iteration. The final equation including regularization
terms solved to determine next iteration is:

3% Xm
om?

-1
Mip) =My — o [m(JTJ) + 2 ] Onxa + X0 xm).  (21)

3.2 1-D complex resistivity inversion

In this section, we focus on the 1-D problem allowing reasonable
memory usage and fast computation. The multiparameter problem
of CR could easily be studied compared to larger 3-D problems. Ja-
cobian computation was done explicitly using perturbation method
with central point difference. Perturbation was chosen as 1 per cent
of the resistivity to ensure a slight variation in the data and account
for linearity approximation.
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3.2.1 Parametrization

Considering at first a constant CR, the model parameter vector m
contains 2N, real parameters with N, the number of inverted
cells in the medium. m contains the CR of the medium separated
into amplitude and phase of the CR. Different parametrizations can
be used and the logarithm of these parameters will be investigated
here as it constrains the positiveness of the solution. To respect the
parametrization choice, some change of variables should be care-
fully applied to the Jacobian depending on the original formulation.
As we are using for the 1-D case the perturbation method to ob-
tain the Jacobian, we can straightforwardly perturb the respective
parameters to solve it and obtain the gradient from eq. (19). Other-
wise, change of variables for the gradient can be achieved using the
chain rule (as it is necessary for the 3-D problem):

_ X

0 22

b X p (22)
dp 0

X = 9p 9X (23)
am dp

In our case we want at first a formulation to invert the parameters
|o*| and ¢epx With m:

M| p* | o = <|q£px|> (24)

The gradient (or the Jacobian) is calculated with respect to p, and p,
separately and a change of variable is applied to obtain the desired
parametrization.

The cost function depends on both variables in the CR case:
dx X

dp, + —dp (25)

pr g

Both parts of the gradient of the cost function with respect to the
norm and the phase of the CR can be expressed for each cell as:

dx =

dx  9p Ox apgy 37)(
Imys dlp*| dp.  3|p*| Bp,

ax _ ap, Ix apy 87)( 26)
Mpy  Oepx 00 Depy Py

Using the real and imaginary part in its cosine/sine formulation,
we can differentiate each term with respect to amplitude/phase of
CR into the following matrix:

apr Ipy dlp* |cos(¢epx) 0 lo* [sin(¢pepx)
a|p*| BAP*I — Lolo Llp*|
opr Pq | dlp"Icos(¢epx) o™ Isin(Pepx)
O¢epx  Ipepx 0¢epx Oepx

:( COS(¢CPX) Sin(¢cpx) )
_lp*|Sin(¢cpx) |,O*|COS(¢CPX)

@7

Gradient with respect to amplitude and phase of the resistivity
is finally expressed from the real/imaginary form of the gradient
using for each term j = 1,..., Njpy:

. X
cos(¢cpxj) Sln(¢cpxj) ) pr

9x; <
8m‘p;‘,¢cpxl_ N 7|10‘7|Sin(¢cpx/-) |pjlcos(¢cpr) %

(28)

3.2.2 Multistage workflow

With CR arises significantly the need to manage high number of
parameters and non-uniqueness of the solution, especially in a
frequency-dependent case as we add more unknowns to an already
undetermined problem. Stabilizing the inversion to lead optimiza-
tion to the rightful model is of crucial importance. The method used
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Table 1. Properties of the three layers CR model, with / the thickness of
the layer.

Layer # h (m) [p*](£2.m) —cpx (mrad)
1 100 100 0

2 100 10 100

3 00 40 0

@ 000000000000 00000O0O0O0{

X coord. (m)
o

-100 0 100 200 300 400 500
Y coord. (m)

Figure 8. CSEM synthetic survey geometry using a 500 m profile of 21
receivers (blue circles) and a HED source oriented in-line, in the Y-direction
(red arrow).

to constrain optimization is to take advantage of the differences in
IP effects related to the variations of the amplitude and phase of CR
in CSEM data. From the sensitivity study, we know that the impact
of ¢cpx on the amplitude of the electric field is weak considering a
similar |p*|. To take advantage of this particularity, a multistage ap-
proach is developed allowing the management of real and imaginary
CR parts independently:

(1) A first stage (1), consists in inverting the amplitude of the
electric field to obtain the amplitude of the CR |p*|(2.m).

(i) A second stage (2), inverts the residual remaining on the
electric field phase to solve the CR phase ¢, (£2.m) of the model.

The amplitude/phase parametrization of the electric field was
preferred over the separation of real/imaginary parts as amplitude
comprises a mix of both galvanic and induction information con-
tained in the data, contrary to the real part of the electric field which
is mainly associated to galvanic effects in the medium.

3.2.3 Constant complex resistivity model inversion

A 3-layers model is inverted with a conductive middle layer of
10 2.m and a resistivity phase of —100 mrad (Table 1). Observed
data were generated with the same 1-D SA code and are inverted
using a GN algorithm. During our developments, the GN method
had proven better convergence rates and a better handling of the
multiparameter problem due to the natural scaling properties of
the inverse Hessian application compared to the steepest descent
method using only the gradient, or other 2nd order optimization
methods as L-BFGS (Métivier & Brossier 2016).

Synthetic survey geometry is a 500 m profile of 21 receivers
and an inline HED source, oriented in the profile direction with
a minimal offset of 50 m to ensure a good geometrical coverage
(Fig. 8). The logarithm of the in-line electric field data was used
with 13 frequencies logarithmically spaced from 1072 to 10* Hz.
The layered inversion grid is composed of 21 layers of increasing
thicknesses starting from the first layer below the air interface of 20
m. The inversion grid does not match perfectly the interfaces of the
true three layers model used to compute the observed data.

Starting model was chosen as a homogeneous half-space with
pr = 50Q2.m. When a CR is considered a low imaginary part is
considered in the starting model taking p, = —0.05 €2.m to obtain
astarting phase of ¢px = —1 mrad. Data residuals were weighted by
a 1 per cent relative error in the covariance matrix (see Appendix B
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(c) Inversion p*, multi-
parameter; rms = 0.88%

(d) Inversion p* multi-stage
approach; rms = 0.90%

Figure 9. 1-D results for the different inversions considering a real resis-
tivity medium with and without IP in the data, or a CR medium using a
multiparameter or a multistage inversion. Blue lines represent the resistivity
amplitude (solid, inverted; dashed, true), red lines represent the resistivity
phase (solid, inverted; dashed, true).

for covariance and rms estimation). No noise was added in the data.
A maximum smoothness regularization was used in the following
1-D examples with a regularization parameter A equal to 1. We
present in Figs 9(a) and (b) the results of the inversion of the real
part of the resistivity, for synthetic data generated without and with
IP. Then, inversions of CR models are presented searching for the
CR norm and phase simultaneously in a multiparameter inversion
and then separately through the multistage strategy (Figs 9¢c and d).
The latter inversion uses only electric field amplitude data in the
first stage, then during the second stage only the electric field phase
data.

The first inversion result (Figs 9a) that seeks a real and constant
resistivity model without IP in the data is well resolved with smooth
variations with a data rms equal to 0.43 per cent. An acceptable
rms is defined as a 1 per cent rms. The second inversion result
(Figs 9b) includes IP effects in the data but does not take into
account a CR during the inversion. The model is well resolved,
nevertheless data rms did not converge more than 2.72 per cent.
The remaining residuals are due to the phase of the data that are
not well fitted due to IP effects which are not taken into account
during the inversion. Multiparameter inversion of the CR resolving
simultaneously amplitude and phase of the CR is shown in Fig. 9(c).
Data are well fitted with a 7ms of 0.88 per cent and a model close
to the true model.

The fourth inversion was performed through the multistage work-
flow (Fig. 9d). Results are very similar to the multiparameter inver-
sion, but complexities of managing parameters of different classes
with different sensitivity were avoided. After the first stage, rms on
the data was equal to 2.7 per cent, similarly to the second inversion

(Fig. 9b). At the end of the 2nd stage, a satisfactory rms was reached
as well, with rms = 0.90 per cent and demonstrating the efficiency
of the multistage workflow.

3.2.4 Frequency dependent complex resistivity parametrization

Inverting a frequency-dependent CR p*(w) is challenging as each
frequency multiplies the total number of model parameters. To de-
crease the total number of parameters, a Cole—Cole parametrization
of the CR is commonly used to reduce the unknowns to four param-
eters per cell. Nevertheless, this parametrization assumes that the
resistivity model follows strictly a Cole—Cole relaxation. Let’s con-
sider a Cole—Cole model: py is the DC resistivity, m the amplitude
of the drop from pg to p at high frequency and the phase peak
amplitude, t the inflexion point of the CR amplitude spectrum and
the phase peak position and at last the frequency exponent ¢ that
controls the broadness of CR variations with respect to frequency.
We already saw that sensitivity to IP effect is reasonably small com-
pared to EM effects and that a part of the IP information will not be
accessible. Only a small portion of the residual contains information
on the shape of the CR model. We choose to use a 2nd order polyno-
mial support to describe the CR spectrum adapted to a multistaged
strategy. Indeed, we obtain thus two independent polynomials to
describe the medium, each having different sensitivity to electrical
data. As CSEM data are more sensitive to CR norm variation than to
the CR phase, the use of a CC model allows to retrieve a CR phase
spectrum even if data are not sensitive to it, which could be seen
as an advantage but also misleading in cases with low information
on the medium and low sensitivity. Looking for two independent
polynomials allows to cross-check results between CR norm and
phase and to pay more attention to what is reliable in the data. In
most cases, 2nd order polynomials are expected to be sufficient to
describe the CR model with an acceptable accuracy according to
resolution limitation with depth and expected noise at the field scale.
It results in six parameters per cell: three for each polynomial, p”
and ¢" describing, respectively, |p*|(w) and ¢ (w). Nevertheless,
using the multistaged strategy detailed previously, only three param-
eters are managed at once, the coefficient of degree zero dealing
with a mean constant resistivity and the two coefficients of higher
degree related to the frequency dependence shape as the slope and
the second-degree curvature of the CR spectrum.

Again, the logarithm of | p*|(w) and ¢y () parameters was cho-
sen for the polynomials description. Furthermore, as resistivity vari-
ations with frequency are following a power law with frequency, the
logarithm of the frequency was chosen for the polynomial descrip-
tion. Polynomial coefficients used to describe the CR spectrum are
then defined by eqs (29) and (30):

log(|p*]) = Y125 py * log,o(f) (29)

10g(—¢ep) = Y125 q; * logyo(f), (30)

with f'the frequency. Model vector becomes then:

0
1
2
0 €3]
1
2

R[N

Using the logarithm of the amplitude and phase of the CR, the
zeroth-order term corresponds naturally to the value at 1 Hz. In
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order, to keep this value in an investigated frequency range, we
translate this ‘pivot’ frequency to obtain a pivot frequency in the
middle of the spectrum investigated.

In the case of the frequency-dependent CR, the gradient can be
obtained by directly perturbing each polynomial coefficient param-
eter or by using a change of variable of |p*|(w) and ¢, (w) related
gradients. The change of variable allows a considerable improve-
ment using 2 calls to forward modelling per data and per layers as
for the constant resistivity case, whereas perturbing directly polyno-
mial coefficients needs 2(N, + 1) forward call per data and layers,
with N, the degree of the polynomials. The gradient is obtained
using the chain rule. Considering |p*|(@) polynomial, we obtain:

Ax ) _ [ dlog(lp*I(@)) ax
(31’"> - ( apn Blog(\p*l(w))) (32)
It results in sum notation in:
Nire
('ax> = /Zq log,,(/3)" S S (33)
) T a1og(0*1(/)

Gradient and Jacobian of ¢, polynomial are obtained using the
same method.

As the three coefficients of each polynomial are describing the
resistivity norm or the resistivity phase, some crosstalks exist be-
tween each parameter of a same polynomial. A preconditioning of
the inverse problem is applied by scaling the coefficients of degrees
higher than zero in order to adjust their sensitivity. These coeffi-
cients are related to the slope and the 2nd order curvature of the
spectrum which are ruling our data at the second order compared to
the constant components of the CR. The scaling of each coefficient
by a constant p”_ is introduced as a trade-off between parameters,
preconditioning in a sense the priority order of each parameter.
Indeed, a logical way to lead the inversion to the true resistivity
starting from a homogeneous medium is to use a parametrization
giving an appropriate weight to polynomial coefficients, solving the
main constant component in priority as it explains the data at first
order, then an acceptable slope and/or the 2nd order coefficients.

3.2.5 Polarizable layer model inversion

Synthetic inversions of a frequency-dependent CR model are pre-
sented in the following to illustrate our multiparameter and multi-
stage inversion method. Synthetic survey and model geometry used
for the constant CR model inversion were re-used with a frequency-
dependent CR conductive layer based on two different Cole—Cole
models and presented in Fig. 10. A polynomial is fitted on each
curve to provide an idea of the resolution capabilities of 2nd order
polynomials compared to a CC model. The chosen CC models are
similar with py = 10 Q.m, m = 0.5 and ¢ = 0.5 ensuring a sufficient
response with a maximum CR phase above —100 mrad, whereas we
chose two different relaxation times in order to play with the induc-
tive coupling response with 7; = 0.1s presenting low to medium
EM/IP coupling and 7, = 0.001 s presenting a high coupling be-
tween IP and induction responses.

Synthetic data were calculated using the 1-DSA code for the exact
three layers model, whereas GN inversions were performed using
the polynomial parametrization on a grid of 21 layers similarly to
previous examples using a GN optimization. Regularization used
was a maximum smoothness constraint with the previous iteration
as a reference to ensure smooth variations. Furthermore, the mini-
mum L2-norm deviation from the previous iteration was added here
in order to regularize large model updates between iterations. Ad-
ditional regularization with the minimum norm allows stabilizing
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Figure 10. Cole—Cole resistivity models introduced in the conductive layer
of the true model for two different relaxation times, 7y = 0.1s and 7, =
0.001 s, with pg = 10 Q2.m, m = 0.5 and ¢ = 0.5; solid lines represent the
true model whereas cross markers represent the best polynomial fit using a
polynomial of degree 2.

the multiparameter problem as it helps to prevent large steps of one
parameter compared to the others.

The starting model is as previously a 50 €2.m half-space with —1
mrad. Results of the multistaged inversions are shown in Figs 11(a)
and (b) for the long 7, and the short 7, time constant models. The
amplitude of the resistivity was solved in the first stage (1), whereas
the resistivity phase was solved in the second stage using the model
obtained in (1). We used in these examples a scaling p!. and p2
of 0.1 and 0.025 in order to help the trade-off between polynomial
parameters of degree zero and n > 0.

|p*|™ results correspond to the first stage of the inversion pro-
cedure with an unmodified constant and negligible CR phase set to
—1 mrad in the starting model, whereas the CR phase gbég}: images
correspond to the result of the second stage starting from the result
of the first stage. v; model had a starting rms of 70.4 per cent,
was improved to 2.70 per cent during stage (1) and a final rms of
0.97 per cent was reached after stage (2). Considering 7, model, the
starting rms was around 64 per cent and was improved in stage (1)
to 1.45 per cent and in stage (2) to 0.84 per cent. rms are lower for
the short relaxation time layer model, as IP effects are competing
with EM induction and due to the loss of sensitivity to the buried
layer towards high frequency. Fig. 12 presents an example of the
data fit improvement during the multistage procedure for a receiver
at the centre of the acquisition profile for t; and 7, layer models.
Amplitude and phase data of the electric field are very well fitted.
Note that at the end of stage (1), amplitude data are perfectly fitted
whereas a relatively large residual is remaining on the phase. This
phase residual is inverted with success during the stage (2) of our
inversion workflow.

During the first stage inverting the electric field amplitude of the
data, the geometry of the true medium is correctly solved for both
relaxation times as well as the frequency dependence of the CR
norm. The top of the polarizable layer is well located whereas the
bottom limits of the conductive layer show a smoother transition as
the bottom of conductive layers are harder to solve. The soundings
show that a correct trend is obtained for both CC relaxation time
constants. Fig. 13 shows CR spectra in the polarizable layer for
the true, the starting and the inverted models. The second stage
allows to retrieve the CR phase by inverting electric field phase
data only. The polarizable layer geometry is well resolved on the
CR phase. The shapes of the phase spectra are in good agreement
with the true CC phase shapes. The CR phase spectra are presented
for the layer at 120 m depth in Figs 13(b) and (c). We can see
that phase maxima are relatively well retrieved. The lower fit of the
phase maxima of Fig. 13(b) comparative to 13(c) can be explain
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Figure 11. Inversion results for the 7| and 7, CC layer models with, respec-
tively, a low and a high EM/IP coupling using a 500 m profile of 21 receivers
and an inline HED source as described in Fig. 8. Note that | o* ™ subplot are
the results of stage 1 and are not modified during stage 2, whereas subplot
¢£g;’ are the results of stage 2 and were kept at the starting model values
during stage 1 as only |p*| is inverted.

by some equivalence issues inherent to the method. However, the
shapes are not well constrained on their flank where phase values
are low despite good data fits (Fig. 12). It can be noticed again that
large EM effects can be observed above 2—3 Hz. Whereas a DCIP
algorithm is expected to give similar to better results for the 7,
model below these frequencies (which contains the majority of the
IP information) it is obvious that neglecting EM effects for 7, model
inversion would lead to wrong estimations of the CR as most of the
IP information is above 1 Hz and thus perturbed by EM induction.

In this part, we demonstrated that our approach is able of retriev-
ing the geometry of the layer and the shape of the CR spectra for
the norm and the CR phase separately. Nevertheless, the bell-shapes
of the CR phase spectra are damped where ¢ is low. This is due
to a lack of sensitivity to low CR phase (Fig. 3), thus data are less
sensitive to these variations during inversion.
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Figure 12. Data fit on the in-line electric field amplitude and phase at each
stage of the multistage inversion for the 7| and 7, CC layer models for the
receiver at the centre (offset = 300 m) of the profile of 21 receivers (Fig. 8).
Black crossed lines are the observed data d°, blue lines are the data at the
end of stage (1) @€' and red lines are the data at the end of stage (2) d*'¢°.
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Figure 13. Inversion results for the 7 and 7, CC layer models with, re-
spectively, a low and a high EM/IP coupling using a 500 m profile of 21
receivers and an inline HED source as described in Fig. 8.
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Figure 14. Comparison of the capacity to solve the frequency variation of
the CR norm using an optimal frequency sounding acquisition (15 frequen-
cies from 0.01 to 10° Hz) and an optimal acquisition geometry (Fig. 8),
or using the same receivers geometry but a farther source (x = 0 m, y =
—500 m) resulting in a lack of geometrical information in the near surface.

3.2.6 Geometrical versus frequency sounding

The previous cases were based on synthetic data sets with an ideal
acquisition geometry and investigation frequency window consider-
ing the targeted chargeable layer dimension and depth. In CSEM sur-
veys, a part of geometrical information needed in the DC method can
be obtained using a frequency sounding, by scanning the medium
with the variation of the skin depth and lowering slightly thus the
number of TX/RX needed to obtain a correct image. Fig. 14 presents
the result of stage (1) for two cases with different geometrical cov-
erages and shows the importance of conserving the maximum of
geometrical information to obtain a reliable frequency-dependent
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CR model. To ensure a perfect frequency sounding even for the
shallowest layers of our inverted model, we use in these examples
15 frequencies logarithmically spaced from 1072 to 10° Hz, giving
a minimal skin depth of 15 m for 100 Q.m. Fig. 14(a) presents the
result for the same acquisition geometry (Fig. 8) as previous 1-D
examples for an optimal coverage. On the other hand, Fig. 14(b)
presents the inversion result for a farther source with a minimal
offset of 500 m. In this way, we introduced a lack of geometrical
information close to the surface. We can see that without sufficient
geometrical coverage and without additional constraints, the inver-
sion is unable to relocate the frequency variation in the correct layer.
Indeed, contrary to classic CSEM methods where the resistivity is
considered constant with frequency allowing to constrain the depth
of investigation, we have more degrees of freedom and equiva-
lences issues. A sufficient geometrical coverage is thus essential to
correctly solve the frequency-varying CR target.

3.3 3-D polarizable cubes inversion

Following 1-D development, the inversion strategy of CR in several
stages and based on a second-order polynomial parametrization was
adapted to the 3-D case. The gradient computation with respect to
the real conductivity of the medium is based on the adjoint state
method (Plessix 2006; Plessix & Mulder 2008) described in Ap-
pendix A. For the CR case, the gradient is computed for the real
0, x4 and the imaginary part d,¢ x, of the complex conductivity
independently at each calculated frequency without additional for-
ward problem resolution using eq. (A17). As the A matrix and the
adjoint field A, are similar to the real resistivity case. The difference
relies only on the differentiation of the system of FD equations 4
(eq. 9) with respect to o which contains a term iwu dependent of o.
The difference between the real and imaginary terms is thus a factor
by the imaginary number 7 and the differentiations with respect to
o' and 07 become:

30’ (A(G_V)ES _ b*)* — (ZCU//C)* (ES* + EP*) (34)

s (A(0NES = b*)" = (—wp)* (ES* + ET*) (35)

The gradient associated to the polynomial parametrization is then
built up from d,- x, and 9,4 x4 using change of variable following
the chain rule presented in the 1-D section. Fréchet derivatives are
computed using a similar scheme as the gradient, except that a unit
residual is back-propagated during the adjoint-state computation for
each data separately.

3.3.1 Two-cubes model description

To demonstrate and discuss our frequency dependent CR inver-
sion approach for a 3-D case using a second order polynomial
parametrization, synthetic examples are presented for two 3-D tar-
gets with different spectral resistivity characteristics. Two cubes of
200 m with different CC properties in a 100 2.m homogeneous
half-space are investigated. Cubes dimensions and depth are close
to the anomaly investigated by Zhdanov et al. (2018) without the
extension in one horizontal direction. The first cube (cube 1) is a
polarizable conductive cube with CC parameters py = 10 Q.m, m
= 0.5, 7 =1s, ¢ = 0.5, which are close to the parameters of a
conductive ore body anomaly presenting an IP response. The cube
liscentredinx = 100m, y = —100m and z = 200 m. The second
cube (cube 2) centred in x = —100m, y = 100m and z = 200 m
was define with CC parameters py = 100 Q2.m being equal to the
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Figure 15. CR spectrum (left-hand panel, norm; right-hand panel, phase)
of the Cole—Cole model of cube 1 (pg = 10Q2.mm =0.57 = 1sc =0.5)
and cube 2 (pg = 100Q2.mm = 0.57 = 0.0ls ¢ = 0.5).
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Figure 16. Acquisition geometry using a surface 50x50 m receiver grid
(blue dots) above the cubes (cube boundaries projected in surface are repre-
sented by black lines) and 5 HED sources (red arrow).

background resistivity, m = 0.5, t = 0.01 s and ¢ = 0.5 (Fig. 15).
These properties were chosen arbitrarily to evaluate the capacity
to image a target with low resistivity contrast with the background
using only IP effects for the imaging. Two different relaxation times
were used with a short and a long t parameter. At first, each cube
models are inverted separately in the homogeneous medium. Mod-
els will be referred as cube 1 model and cube 2 model, respectively.
A third inversion with both cube is then presented.

Acquisition geometry uses a 700 x 700 meregular receivers grid in
surface measuring the electric field in two perpendicular horizontal
directions with a 50 m separation in X and Y direction (Fig. 16). Only
5 HED transmitters are used. Transmitters were positioned 700 m on
the right and left of the centre of the survey with X-directed and Y-
directed polarization to enhance sensitivity of each vertical face of
the cubes enhancing horizontal current lines, whereas a fifth HED
transmitter Y-oriented was positioned at the centre of the grid to
ensure a minimal geometric constraint at short offsets. Considering
the central source singularity, data from receivers with offset shorter
than 100 m from the transmitter were excluded from the inversion.

3.3.2 Grid description

As the 3-D forward problem results in much higher computational
costs than for the 1-D case, we use only seven frequencies from
1072 to 10* Hz in our examples. The forward grid used by the
inversion is composed of cells of 12.5x12.5 m horizontally in the
core area, from 750 m in both directions in the Y-direction and 400
m in the X-direction as no source is present along this axis. Outside

this domain, cells expand progressively to 50x50 m up to 1000 and
750 m, respectively. It allows to keep a sufficiently small cell size in
the neighbourhood of the acquisition but reduces the total number
of cells as no variation is expected outside the acquisition area for
our synthetic example. Vertically, the cells are 3 m thick at the air
interface and are expanding by 10 per cent towards depths up to 500
m. Outside this domain, cell sizes increase more abruptly up to a far
limit to ensure Dirichlet boundary conditions. A different grid was
used for the inversion. Indeed, number of parameters for a classic
CSEM inversion is already large and hardly manageable, which
becomes worse for the multiparameter problem such as frequency-
dependent CR. A coarser 700x 700 m grid based on linear splines
(De Boor & De Boor 1978) is used for the inversion, with nodes
separated by 50 m horizontally in the acquisition area and 5 meters
vertically with a 20 per cent expansion rate up to 550 m depth.

Inversion parameters at the boundaries of the inverted domain are
vertically extended to the bottom of the forward grid limit, whereas
they are extended on 75 m from the horizontal boundaries of the
inversion domain. A linear interpolation is applied between the
value at the inverted boundaries and the reference model value up
to a 250 m distance toward far limits to ensure a smooth transition.
The horizontal interpolation distance from the inverted domain is
increasing with depth below 250 m depth. It allows avoiding to
excessively extend anomalies at the boundaries of the inversion
domain outside the inversion domain, where there is no constraint
but a sensitivity that can be large.

The resulting grids are a forward model grid around =~ 500 000
cells and an inversion grid of 4500 spline nodes.

3.3.3 Jacobian scaling

To constrain the large disparity of sensitivity between the central and
farther sources and the fast sensitivity decrease beneath receivers
to depth, we preconditioned our problem by P,, the inverse of the
sum of each line of the Jacobian matrix at the lowest frequency
in the reference homogeneous half-space model. We obtain thus a
scaling of the model parameters that can be seen as the footprint of
the acquisition geometry and compensates for the disparity of sen-
sitivity due to the central transmitter and the fast loss of sensitivity
with depth. In order to avoid enhancing excessively areas with no
sensitivity, we had limited the scaling by the value at the centre of
the acquisition grid, where we are horizontally the most sensitive
(below the central transmitter) for a depth of 1/3 the farthest sources
offset from the centre of the acquisition grid (z = 230 m).

1

== with y a user defined lower limit  (36)
(Zj:l J]m) + 14

Py,

3.3.4 Data

Observed data were modelled with POLYEM3D but using a dif-
ferent forward grid. Cell limits were in accordance with the exact
boundaries of the cubes, contrary to the inversion grid. Wd covari-
ance matrix contains the inverse of the standard deviation considered
as 1 per cent of the total amplitude of the horizontal electric field
(see Appendix B). We chose to not introduce a supplementary noise
in the observed data of the following examples. However, it can
be highlighted that the inverse problem still contains some discrep-
ancies, as there is a numerical noise due to the difference of grid
used to solve the observed and calculated data, discrepancies due to
the inversion grid using a spline parametrization, or discrepancies
between the CC model used to compute the observed data and the
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polynomials of 2nd that could fit best the true model. The feasibility
in presence of a realistic signal-to-noise ratio is discussed later in
the discussion section.

In order to optimize the usable information during the first stage,
a slight variation was applied for the 3-D case compared to previous
examples. Indeed, we focused previously on amplitude data during
the first stage and phase data were ignored at this point as they are
affected by the CR phase. We choose to improve the information
available by adding a part of the phase data for 3-D model inversion,
as polarity information can be essentials in complex geology. Phase
data were added during the first stage to improve the EM information
used. They were appropriately penalized to avoid taking into account
the small phase delay related to ¢p. A covariance representing a
relative error of 4 per cent (*2.3°) was used.

3.3.5 Stage zero

Synthetic CSEM data were inverted with a GN optimization using
LSQR method (Paige & Saunders 1982; Grayver et al. 2013) to
compute the model perturbation Am at each iteration. Maximum
smoothness regularization was used with a regularization parameter
that can be estimated using an L curve. The inversions were under-
taken using a remote supercomputing facility part of the French
National Computing Center for Higher Education (CINES) equip-
ments. Each inversion used 260 cores distributed over 10 nodes of
64 Go and required several tens of hours of computing. No perfor-
mance test was carried out at the time of these computations as it
was not the main goal of this work. However, to provide the reader
an estimation of the computational requirements, we needed for the
following 3-D examples roughly 40 s to analyse, factorize and solve
the FD system of linear equations (eq. 9) and 200 s to compute the
Jacobian and the gradient per frequency.

Considering that 3-D problems are more challenging than the
1-D case and that IP effects are small, we started the inversion with
a stage ‘zero’ prior to stage (1) defined previously to help the local
optimization. The starting model is a constant resistivity medium
of 100 €2.m with a negligible CR phase of —1 mrad. In order to get
closer to the true medium resistivity before inverting for frequency
dependence, stage (0) inverts data to retrieve p°. p° represents a
constant resistivity norm medium similarly to a CSEM survey con-
sidering a constant and real resistivity. Note that the exponential
of the zeroth order polynomial coefficients are presented in the
following images in order to correspond to a CR norm [€2.m] or
phase [ — mrad] as the polynomials are based on the logarithm of
these parameters. Fig. 17 presents the results of stage (0) for the
two-cubes and the cube 1 models. No stage (0) inversion was per-
formed for the cube 2 model as there is a low contrast between the
background and cube 2, starting model data and synthetic observed
data are already close enough. An additional image presents the
inversion result of the IP contaminated data of the two-cubes model
considering a purely real and constant resistivity inversion and is
referred as a ‘classical’ CSEM inversion. For this case, no special
care on [P contamination was taken to provide a comparison. In-
version iterations were stopped when acceptable rms were reached
with a convergence rate considered too low. In a real case survey,
a user with an experienced eye is needed to understand EM and
IP contribution in CSEM data in order to manage these stages by
detecting the low IP effect in EM data and having a bigger picture
of the capacity to fit the data set according to the situation.

The starting rms for the cube 1 model is 20 per cent, whereas the
rms of the cube 2 model, with low contrast anomaly is 2 per cent.
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Figure 17. Inversion results for a classic CSEM inversion and stage 0 of
two-cubes and cube 1 model. Each plot represents the constant p,- (left-hand
panel) or the p° polynomial parameter for several horizontal slices through
the 3-D inverted model at depth Z = 50, 110, 200, 290 and 400 m. The first
slice represents the corresponding image for the true p, or p° model within
the cubes (from 100 to 300 m depth). Surface receivers are represented as
black dots and projected on the shallowest slice, whereas contours of the
cubes are represented as black lines.

The two-cubes model starting rms is about 22 per cent. Each image
is close to the true model considering the diffusive limit of CSEM
imaging. Cube 1 resistivity is slightly underestimated but well lo-
cated, with a cube around 10 Q.m in its center. Cube 2 cannot be
separated clearly from the background at this stage in Figs 17(a) and
(c). Classic CSEM inversion is not severely perturbed by IP effects,
nevertheless, data are not perfectly fitted with a remaining rms of
1.33 per cent on amplitude, 0.75 per cent on phase data and a total
rms of 1.53 per cent. The remaining total 7ms is already acceptable
even without considering IP effects of the target at this depth, which
highlights again the necessity of a very low noise data set in order to
look for CR spectrum. In the next steps, we applied stage (1) of our
inversion workflow. It starts from the model obtained at stage (0) to
retrieve the frequency dependence expected in the cubes inverting
p" polynomial coefficients before the consideration of stage (2).

3.3.6 Cube 1 model

At the end of stage 0, inverted data are close to the observed data
with a rms = 1.8 per cent. Nevertheless, a slight variation of the
amplitude of the measured electric field can be observed as well
as a phase due to IP effects. In stage (1), the coefficients of the
polynomial describing the norm of the resistivity |p*| are retrieved
from the slight variation remaining on electric amplitude data and
the weighted phase data. Stage (2) starts then from the model ob-
tained with a 1 per cent covariance on phase data, to fit the phase
residual due to the imaginary part of the CR. Stage (2) was directly
inverted for the three polynomial coefficients ¢” without passing by
an intermediate stage solving at first a constant parameter ¢° model.

A regularization parameter equal to 1 was used for stage (1),
whereas it was reduced to 0.1 with better results during stage 2.
Figs 18(a)—(d) show p" polynomial coefficients obtained at the end
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Figure 18. Inversion results for the conductive cube 1 model. Each subplot
represents p” (left-hand panel) or ¢” (right-hand panel) from the zeroth to the
second degree (top to bottom) polynomial parameters as several horizontal
slices through the 3-D inverted model for depth Z = 50, 110, 200, 290 and
400 m. The first slice represents the corresponding image for the true model
within the cubes (from 100 to 300 m depth). Surface receivers are represented
as black dots and projected on the shallowest slice, whereas contours of the
cubes are represented as black lines. Individual depth-section slices are
provided as online Supporting Information.

of stage 1 for the cube 1 model starting from the constant resistivity
model of the stage (0). At the end of stage 1 for this model and the
followings, data rms is already below 1. As the rms still are locally
slightly above 1, in the area above the cube, we thus allowed an
overfitting using a covariance with 0.25 per cent of relative error
to enhance areas with lower fit with the quadratic norm. Figs 18(b)
to (f) present results of the second stage for the ¢” polynomial
coefficients with a final rms = 0.67 per cent.

Looking at model results at the end of stage 1, we see that our
inversion procedure failed to retrieve correctly the frequency de-
pendence of the CR norm of the cube 1 with a perturbed geometry.
Several artefacts are seen in the area of cube 1, with a slope p!
tending to a correct value at the top of the cube but going at lesser
extents in the wrong direction below. A similar observation can be
made on p? value, which tends towards the real value on the edge of
the cube only. Stage 2 result (Fig. 18, right-hand plots) presents the
q" polynomial coefficients and shows that even with a low residual
remaining to fit, our inversion workflow was able to retrieve the CR
phase and a part of the spectral signature of cube 1. The constant
CR phase image obtained for the parameter ¢° is very well resolved.
A negative slope of the CR phase was retrieved from ¢' image for
cube 1. The geometry of the cube is slightly less well resolved
as it extends more to depth and slightly overflows its boundaries
at x = Om limit. The second-order coefficient ¢> presents a slight

exp(q0)
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Figure 19. Inversion results for the cube 2 model with low contrast with the
background. Each subplot represents p” (left-hand panel) or ¢” (right-hand
panel) from the zeroth to the second degree (top to bottom) polynomial
parameters as several horizontal slices through the 3-D inverted model for
depth Z = 50, 110, 200, 290 and 400 m. The first slice represents the
corresponding image for the true model within the cubes (from 100 to 300
m depth). Surface receivers are represented as black dots and projected
on the shallowest slice, whereas contours of the cubes are represented as
black lines. Individual depth-section slices are provided as online Supporting
Information.

anomaly at the cube position in the right direction but its value is
largely underestimated and is barely significant.

3.3.7 Cube 2 model

A similar inversion was then undertaken for the cube 2 model, which
presents a low contrast with the background medium, but a strong
[P response (Fig. 15). This cube has a weak frequency variation of
the CR norm below 1 Hz due to the short relaxation time used. IP
properties would thus be harder to solve with a static approximation
used in the DCIP method, as most of the information is at higher
frequencies with an increasing EM coupling. Figs 19(a)—(c), shows
p" polynomial coefficients obtained during the first inversion stage
for the cube 2 model and Figs 19(d)—(f) the results of stage (2)
with a final ms = 0.41 per cent. The p" polynomial coefficients
describing the CR norm of the cube 2 model are well resolved. The
geometry of the anomaly fit the dimension of the 3-D cube. p° and
p' values at the center of the cube are in agreement with the true
values but slightly underestimated. p value presents an anomaly re-
flecting the cube dimension, but its value is largely underestimated.
Considering ¢" polynomial coefficients describing the CR phase of
the medium the constant parameter ¢° is well resolved and imaged
well the position of the cube. The spectral behaviour parameters
are less well resolved. A large and overestimated positive slope ¢!
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Figure 20. Inversion results for the ‘two-cubes’ model. Each sub-plot rep-
resents p” (left-hand panel) or ¢” (right-hand panel) from the zeroth to the
second degree (top to bottom) polynomial parameters as several horizontal
slices through the 3-D inverted model for depth Z = 50, 110, 200, 290 and
400 m. The first slice represents the corresponding image for the true model
within the cubes (from 100 to 300 m depth). Surface receivers are repre-
sented as black dots and projected on the shallowest slice, whereas contours
of the cubes are represented as black lines. Individual depth-section slices
are provided as online Supporting Information.

is obtained at the cube position but no variation of ¢> parameter is
imaged.

3.3.8 Two-cubes model

In a third inversion, both cubes are inserted into the homogeneous
half-space to increase the complexity and determine if previous
observations are impacted by interactions between the cubes during
the inversion process. Fig. 20 presents both polynomial coefficients
results describing the CR of the medium and following the same
figure layout as Figs 18 and 19. The final rms at the end of the
inversion workflow for the two-cubes model is 0.9 per cent.
Looking at model results at the end of stage 1, we see that the
inversion failed to retrieve correctly the spectral signature (p' and
p?) of the conductive cube as well as in the cube 1 model inversion.
Similar artefacts are observed. Cube 2 polynomial p” is correctly
retrieved. However, notice that with the largest resistivity contrast
of the two-cubes model compared to the cube 2 model, cube 2 is
not clearly differentiated from the background on the constant p°
parameter. On the contrary, the parameters describing the CR norm
spectral shape are well retrieved and allow to clearly dissociate the
cube from the background. Indeed, p' and p* are negative and in
agreement with the true values. p' is geometrically well resolved,
whereas p? is spreading out of the cube boundaries. Stage 2 results
present the ¢" polynomial coefficients where both cubes are imaged
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Figure 21. CR spectra at the centre of the cubes and at the top-centre of
cube 1 for the two-cubes model. Green curves are the spectrum at the end
of previous inversion stage (stage 0 for |o| and stage 1 for d¢py).

by a unique constant CR phase anomaly. Indeed, cubes are seen as
a smooth and elongated ¢° anomaly oriented in the cubes diagonal.
However, the CR phase slope ¢' clearly allows the differentiation
of both cubes from the background and more importantly between
themselves, with two slopes in opposite directions due to the differ-
ence in relaxation times. Considering, the last parameter g2, a slight
negative variation can be observed but is not significant again.

Fig. 21 summarized the results of the polynomial coefficients
under the form of CR spectra at the centre of the cube positions.
The spectra at the top of cube 1 are also displayed as its geometry
was not well retrieved. It shows that the cube 1 anomaly at the
top-centre (Fig. 21a) of the cube could reflect a coherent CR norm
spectral variation contrary to the anomaly retrieved below, at the
centre of cube 1 (Fig. 21c). CR norm spectra of cube 2 (Fig. 21e) is
in very good agreement with the true model. Considering CR phase
spectra both cube results are in good agreement with the major
trends of the true CR phase spectral shapes (Figs 21b, d and f). The
CR phases of cube 2 (Fig. 21f) are largely overestimated at high
frequencies which is explained by the loss of sensitivity due to the
skin effect.

€20z fieniga4 90 uo Jasn wbig sassiulp 13 senbibojoss) seyoiayoay aq neaing Aq £+59889/6£8/2/SEZ/a10Me/1[6/Wwoo dno-olwapese//:sdny woJj papeojumoq



856 J. Porté, E Bretaudeau and J.F. Girard

4 DISCUSSION

A multistage workflow and a polynomial parametrization were de-
veloped and used to constrain the multiparameter inverse problem
associated to the inversion of a CR medium taking into account
its spectral behaviour. The inversion strategy is based on the rela-
tionships observed between the IP effects on the amplitude of the
electric field and the CR norm variations and between the IP effects
observed on the electric field phase and the CR phase. The proposed
strategy solves the CR norm and phase separately during the inver-
sion based thus uniquely on data sensitivity to these parameters.
Indeed, both |p*|(w) and ¢y (w) parts describing the CR are not
coupled by a specific model as it is the case for a Cole—Cole model.
1-D synthetic examples demonstrated the efficiency of the method
and parametrization. It allowed to retrieve a good CR spectrum
shape for the norm and the phase of a buried layer. Nevertheless,
even for simple cases using a 1-D model, IP sensitivity issues are
already challenging when considering a buried target.

Considering 3-D synthetic examples, the inverse problem is much
larger and the IP sensitivity of CSEM data to buried and limited po-
larizable body is decreasing. Some encouraging results can never-
theless be highlighted here. Cube 2 CR spectrum trend was relatively
well retrieved in the cube 2 and two-cubes synthetic models on the
norm and the phase. Cube 1 failed to retrieve the correct CR norm
spectrum due to equivalence problems. Nevertheless, the constant
parameter and the main trend of CR phase spectral variations were
correctly retrieved and well located during the second stage for the
q" parameter. Excepting for the cube 2 CR norm (Fig. 20c) match-
ing relatively well the true p? value, the second-order polynomial
coefficient was not well imaged in the 3-D case for a target at this
depth. In addition to the low sensitivity of IP effects, the limited
resolution of the CR spectral shape can be explained partially by
the depth of the buried target and the gradual loss of sensitivity of
EM data at increasing frequencies, as the skin depth is decreasing.
The spectrum shape is thus less well constrained at high frequen-
cies and no more sensitive to these depths. Through our 3-D model,
we demonstrated that both cubes could be discriminated from the
background in several ways when looking for IP effects. Cube 1 is
easily dissociated from the background due to its high conductivity,
but also with its constant CR phase parameter ¢°. Even though the
fact we failed to obtain a correct norm spectrum, we show that a
correct CR phase trend could be retrieved from the electric phase
residual. On the contrary, the cube 2 anomaly presents a short char-
acteristic time and is very hard to dissociate from the background
using only a constant CR norm (or a constant p”), whereas large
EM induction perturbations are expected due to the depth of the
target and frequency needed to investigate such short relaxation
time. Cube 2 results highlight thus the advantages of taking into
account the IP effects in CSEM data, where we succeed to retrieve
the CR norm variation from the constant background. Considering
the CR phase, the constant parameter ¢° allows the dissociation
of the second cube from the background as well, but also using
its spectral behaviour. Finally, the spectral behaviour of both cubes
could also clearly be differentiated between themselves using the
opposed slope ¢' observed on the CR phase. The resulting slopes
on the CR phase let us differentiate between the long and the short
relaxation time anomaly.

We saw that CSEM data sensitivity to IP effects of deep 3-D tar-
gets is relatively weak even considering a large frequency-dependent
CR anomaly (high chargeability, CR phase peak below —100 mrad).
The IP signal gets close to numerical accuracy as the depth of the
target increases and its size decreases. In our examples, we did not

consider an additional noise. The presence of noise would certainly
affect our capacity to retrieve correctly a CR medium and its fre-
quency dependence depending on the measurement quality and the
case-dependent cultural noise. Therefore, data with an exceptional
signal-to-noise ratio are necessary to expect to retrieve such results
in the case of a real survey. However, it is possible to improve the
signal-to-noise ratio by using proper data processing techniques as
robust processing algorithms (Egbert & Booker 1986; Streich et al.
2013). Furthermore, signal-to-noise ratio can be improved by in-
creasing the source moment. It can be achieved by injecting a larger
current by using a strong transmitter able to inject several dozen
of amperes (Streich e al. 2013; Morbe et al. 2020) and/or by in-
creasing injection or receiver dipole sizes as cable-layout responses
can be taken into account in the computation of EM fields. Great
care should be taken for the positioning of the survey arrays. The
positions of electrodes and wire layouts should be measured using a
differential GPS positioning system able to reach a centimetric ac-
curacy. A repeatability error around 0.1 per cent can thus be reached
as demonstrated in Darnet et al. (2020) for a time-lapse land-CSEM
application at a kilometric scale. In their repeatability study. Tietze
et al. (2019) showed that they could reach an accuracy within the
range of ~0.1-0.3 per cent relative to the measured field ampli-
tude for source-receiver offsets below 2 km. Despite being quite
challenging, we thus consider that a sufficiently good accuracy is
reachable as IP studies are restricted to near-surface investigations
due to the fast loss of sensitivity inherent to IP phenomena.

An acceptable constant real resistivity model of the 3-D buried
targets was retrieved during the inversion of CSEM data contami-
nated by IP effects without taking a frequency-dependent CR into
account (Fig. 17). However, we showed that by using an appropriate
parametrization and a pragmatic workflow, we were able to better
explain the data and retrieve successfully a significant part of the IP
information for these deep targets as well as taking EM induction
into account in the imaging process.

Considering shallower targets, larger IP effects would be expected
in EM data, but the choice of the imaging method should be cau-
tiously considered between DCIP and CSEMIP. Indeed, the need
of a numerically expensive CSEMIP inversion instead of using the
DC assumption should be carefully evaluated according to the EM
information expected in the data. Indeed, as the polarizable target
is getting shallower, shorter offsets can be used for the imaging
problem and thus data are gradually less subject to EM contami-
nation in IP data. However, they contain also less EM information
that could help for the reconstruction of the medium. While the
DC method can offer a better resolution in shallow subsurface due
to the use of a larger number of TX-RX arrays combined with a
lighter computational requirement compared to CSEM methods, it
can require a larger logistic as information is obtained geometrically
only. On the contrary, adding frequency-sounding information can
slightly reduce efforts on the field with a certain complementar-
ity between offset and frequency. Indeed, we image relatively well
our cubes with only 5 transmitters in our examples by considering
EM effects during the inversion. However, if frequency-sounding
information used in EM surveys can lighten the acquisition, the IP
problem still requires a sufficient geometrical constraint to solve the
CR spectral behaviour due to the underdetermined inverse problem.
Otherwise, some artefacts can easily appear as in the reconstruc-
tion of the cube 1 polynomial coefficients p”, which points out
that a few supplementary sources could be preferred. Nevertheless,
adding supplementary sources would also be computationally more
expensive. IP effect is not enough sensitive for these offsets and
target depths to be really quantitative without additional constraint
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on the target. However, the CSEMIP method still allows the dis-
crimination between the targets spectral signatures and offers thus
a supplementary mean of characterization.

5 CONCLUSION

In this work, we successfully managed to implement a frequency-
dependent CR into a 3-D CSEM modelling and inversion code.
Following a straightforward implementation in the frequency do-
main CSEM forward problem, the multiparameter inverse problem
was decomposed in two main stages based on electric field sensi-
tivity to the norm and phase of the CR and using a second-order
polynomial parametrization. Our approach does not rely on a par-
ticular empirical IP model. The method was developed and tested
on simple 1-D synthetic problems, before an application on 3-D
synthetic examples with two different deep targets of interest, a
conductive and polarizable cube and a polarizable cube with none
of few resistivity contrast with the background. Recovered spec-
tral shapes are imperfect due to the low sensitivity to IP effects
of deep-buried targets and some equivalence problems intervening
for the CR norm variation of one of the targets taken in our ex-
amples. Nevertheless, using our multistage workflow coupled with
a polynomial parametrization of the CR allows us to retrieve an
important part of the CR spectral trends of the 3-D anomalies con-
sidered. CSEMIP method shows a great potential to discriminate
between polarizable bodies at large depths and considering simulta-
neously EM induction information. The spectral behaviours should
be sufficiently contrasted for a discrimination of deep target spec-
tral signatures. The CSEMIP problem would require a data set of
high quality to access to weak IP effect contained in EM data and
implies the use of a forward problem solver of sufficient accuracy.
In the future, the implementation of a more specific IP parametriza-
tion could be considered for comparison with the polynomial
parametrization.
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Figure S1. Inversion results of the ‘two-cubes’ model for p° the
zeroth order polynomial coefficient describing |p*|(w). Each slice
represent a depth-section at Z = 50, 110, 200, 290 or 400 m equiv-
alent to the 3-D view displayed in Fig. 20. The true model depth
section is represented (top-left) at the cubes depths.

Figure S2. Inversion results of the ‘two-cubes’ model for p' the first
order polynomial coefficient describing |p*|(w). Each slice repre-
sent a depth-section at Z = 50, 110, 200, 290 or 400 m equivalent to
the 3-D view displayed in Fig. 20. The true model depth section is
represented (top-left) at the cubes depths.

Figure S3. Inversion results of the ‘two-cubes’ model for p? the
second order polynomial coefficient describing |p*|(w). Each slice
represent a depth-section at Z = 50, 110, 200, 290 or 400 m equiv-
alent to the 3-D view displayed in Fig. 20. The true model depth
section is represented (top-left) at the cubes depths.

Figure S4. Inversion results of the ‘two-cubes’ model for ¢° the
zeroth order polynomial coefficient describing —¢(w). Each slice
represent a depth-section at Z = 50, 110, 200, 290 or 400 m equiv-
alent to the 3-D view displayed in Fig. 20. The true model depth
section is represented (top-left) at the cubes depths.

Figure S5. Inversion results of the ‘two-cubes’ model for ¢' the first
order polynomial coefficient describing —¢(w). Each slice represent
a depth-section at Z = 50, 110, 200, 290 or 400 m equivalent to
the 3-D view displayed in Fig. 20. The true model depth section is
represented (top-left) at the cubes depths.

Figure S6. Inversion results of the ‘two-cubes’ model for ¢° the
second order polynomial coefficient describing —¢(w). Each slice
represent a depth-section at Z = 50, 110, 200, 290 or 400 m equiv-
alent to the 3-D view displayed in Fig. 20. The true model depth
section is represented (top-left) at the cubes depths.

Figure S7. Inversion results of the cube 1 model for p° the zeroth
order polynomial coefficient describing |p*|(w). Each slice repre-
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sent a depth-section at Z = 50, 110, 200, 290 or 400 m equivalent to
the 3-D view displayed in Fig. 18. The true model depth section is
represented (top-left) at the cubes depths.

Figure S8. Inversion results of the cube 1 model for p! the first order
polynomial coefficient describing |p*|(w). Each slice represent a
depth-section at Z = 50, 110, 200, 290 or 400 m equivalent to the
3-D view displayed in Fig. 18. The true model depth section is
represented (top-left) at the cubes depths.

Figure S9. Inversion results of the cube 1 model for p? the second
order polynomial coefficient describing |p*|(w). Each slice repre-
sent a depth-section at Z = 50, 110, 200, 290 or 400 m equivalent to
the 3-D view displayed in Fig. 18. The true model depth section is
represented (top-left) at the cubes depths.

Figure S10. Inversion results of the cube 1 model for ¢° the zeroth
order polynomial coefficient describing —¢(w). Each slice represent
a depth-section at Z = 50, 110, 200, 290 or 400 m equivalent to
the 3-D view displayed in Fig. 18. The true model depth section is
represented (top-left) at the cubes depths.

Figure S11. Inversion results of the cube 1 model for ¢' the first
order polynomial coefficient describing —¢(w). Each slice represent
a depth-section at Z = 50, 110, 200, 290 or 400 m equivalent to
the 3-D view displayed in Fig. 18. The true model depth section is
represented (top-left) at the cubes depths.

Figure S12. Inversion results of the cube 1 model for ¢> the second
order polynomial coefficient describing —¢(w). Each slice represent
a depth-section at Z = 50, 110, 200, 290 or 400 m equivalent to
the 3-D view displayed in Fig. 18. The true model depth section is
represented (top-left) at the cubes depths.

Figure S13. Inversion results of the cube 2 model for p° the zeroth
order polynomial coefficient describing |p*|(w). Each slice repre-
sent a depth-section at Z = 50, 110, 200, 290 or 400 m equivalent to
the 3-D view displayed in Fig. 19. The true model depth section is
represented (top-left) at the cubes depths.

Figure S14. Inversion results of the cube 2 model for p' the first
order polynomial coefficient describing |p*|(w). Each slice repre-
sent a depth-section at Z = 50, 110, 200, 290 or 400 m equivalent to
the 3-D view displayed in Fig. 19. The true model depth section is
represented (top-left) at the cubes depths.

Figure S15. Inversion results of the cube 2 model for p? the second
order polynomial coefficient describing |p*|(w). Each slice repre-
sent a depth-section at Z = 50, 110, 200, 290 or 400 m equivalent to
the 3-D view displayed in Fig. 19. The true model depth section is
represented (top-left) at the cubes depths.

Figure S16. Inversion results of the cube 2 model for ¢° the zeroth
order polynomial coefficient describing —¢(w). Each slice represent
a depth-section at Z = 50, 110, 200, 290 or 400 m equivalent to
the 3-D view displayed in Fig. 19. The true model depth section is
represented (top-left) at the cubes depths.

Figure S17. Inversion results of the cube 2 model for ¢' the first
order polynomial coefficient describing —¢(w). Each slice represent
a depth-section at Z = 50, 110, 200, 290 or 400 m equivalent to
the 3-D view displayed in Fig. 19. The true model depth section is
represented (top-left) at the cubes depths.

Figure S18. Inversion results of the cube 2 model for ¢> the second
order polynomial coefficient describing —¢(w). Each slice represent
a depth-section at Z = 50, 110, 200, 290 or 400 m equivalent to
the 3-D view displayed in Fig. 19. The true model depth section is
represented (top-left) at the cubes depths.
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APPENDIX A: ADJOINT STATE
METHOD APPLIED TO FD CSEM
SCHEME

The gradient computation using the adjoint state method, is summa-
rized in the following after the recipe proposed by Plessix (2006).

State equations

At first, a list of the state equations must be established, which are
the equations describing the forward problem, as well as the link
towards the inversion domain. The state functions are associated
with independent state variables. Three state functions can be de-
rived from the forward problem and from forward to inverse domain
operators:

(i) The forward problem system, defined as:
A@)ES =b*  with b’ =—iw(c —0")E", (A1)

with A(o) the system of FD equation defined by eq. (9) and de-
veloped in appendix in Streich (2009). o is the conductivity vector
defined for each cell of the forward grid.

(i1) The interpolation operator Q, relating the field calculated on
the forward staggered grid to data measured at the exact receiver
position (Q includes the vector field reorientation, the type of field
extracted, etc.). Each data recording at a receiver position is consid-
ered as an independent data.

QFE" =dy (A2)

(iii) The operator C(o) that linked the forward to the inverted
parameter m, which contains the change of variable and the change
of grid operators, defined as:

Clo)=m (A3)

Three state variables are obtained and will be associated to an
adjoint state variable of same dimension:

State function State variable Adjoint variable

A(0)ES = b8 ES ke
QES = dcal deal Ad
Clo)y=m o Ao

Augmented functional £ recipe

(1)At first, the augmented functional (or associated Lagrangian) £
defining the adjoint state problem introducing the objective function,
can be defined following Plessix (20006) as:

Lm, 0, deat, B, hg, s he) = x(d)

- < )Ld7 QES - dcal >

— < ke, A(G)ES = b° >, (A4)

— <X, Clo)—m >

with <, > representing the scalar product notation. The problem of
the adjoint state method seeks therefore a solution that minimizes
thus the objective function with respect of m, under the constraints
of each state function.

(i1)The adjoint state equations are then derived looking for the saddle
points of £ with respect to each state variable defined previously.
The state variables and the adjoint state variables are considered
independent of m.
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L
(a) 8anl = 0
oL
= 0ux(d") = 8y < ha, QE® — de >
adca]
0= (dcal - dobs) + Aa
re = —Ad (A5)

A first adjoint state equation is obtained, which allows to determine
the adjoint state variable A, that corresponds simply to the residual
vector:

Ao = —Ad (A6)
(b) s =
oL s s
3E —0, < Ae, A(O)E® —b° > =0, < Ay, OFE° — dey >
0=—(Q)hs — A(0)'%,
A(0)'h. = (0) Ad (A7)

The second adjoint state relation is a linear system ‘Ax = b’, that
can be solved to get the adjoint field A, by back-propagating the
residual on the grid equivalently to a source term. The matrix 4 is
the same as the forward problem and is already factorized, thus a
similar form can be used taking the conjugate (noted ~— ) of the
previous relationship to preserve the 4 matrix:

A = (QFAd (A8)

©%=0

% = =0y <Ay, C(0)—m > —0y < e, A(O)ES —b* >
0 = —3,C0) 4 —[0,(A0)E®) = 3,bD)]

Ay = —(0,C0)) " [9(A(0)E®) — 35b")] e (A9)

If no grid transformation a parametrization of m equal to the con-
ductivity medium o as stated in the forward problem as :

m=C(o)=o0 (A10)

A relation between A, and the adjoint field A, is obtained in the last
adjoint state function:

ho = = [0(A@)ES) —8,bD)] A (Al1)

(iii)The third step is to evaluate the gradient, which correspond to
the derivative of £ with respect to m considering each state variable
independent of m (comprising d*! in the cost function):

oL

— = =0y <A, C(o)—m >

om

ad

—L: = Ay (A12)
om

The gradient is therefore obtained with respect to the adjoint
variable X, for which the expression was determined in eq. (A11):

OnX =Xy (A13)

Gradient solution

The adjoint field solution X, obtained through the solution of the
linear system Ax = b (eq. A8), the gradient can be computed with:

Onx = = —(0,C(0)) " [0, (A@)ED) —3bD]Ae  (Al4)
(i) Derivation of 4 matrix and the source term by o results in:

9 (A(0)ES) = (iwp) E (A15)
(i1) and for the source term:
d,b* = (—iwp) EF* (A16)

The gradient of the objective function is then obtained for a real
conductivity parametrization (m = o) with:

dx = —[ionE™] 2, (A17)

APPENDIX B: ERROR ESTIMATION

Error estimation on the result of the inversion was calculated using
a weighted root mean square deviation:

[(Ad W) WA
rms = | LW Warrd dW‘]’JdW" d (B1)

vector W, is defined as the inverse of the data standard deviation. For
synthetic data, standard deviation is defined according to a relative
error e:

whner — 1 /o with o the standard deviation (B2)
linear 1 . .
= — with e the relative error (B3)
|dobs|e

As we are using the logarithm of the data (logarithm of the ampli-
tude of the considered EM field and its phase) the standard deviation
had to be converted for its log equivalent. The variance and standard
deviation of an observed data in logarithm can be written according
to its relative error as:

Gl%)g = (log(dobs + edobs) - 10g(dobs))2

2 dobs + edobs :
Tl = log T dm

Olog = log(l + e) (B4)

A relation independent of the magnitude of the data is obtained.
The covariance matrix for logarithmic data is thus written as:

1 1
- for small variation (BS)

log — ~
log(1+¢e) e

d

By using a relative error representing 1 per cent of the total field
amplitude for rms computation, the weighted rms can be seen as
a percentage of variation of the data fit. Relative error are thus
estimated for a component of the field E* (k, being the X or Y
component of the field) in comparison to the total field £ then
€1 per cont = O‘O‘IE'f‘m‘ . €1 percent 15 then the value used in eq. (B4) for

covariance computation.
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