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Abstract. Various methods are available for assessing un-
certainties in climate impact studies. Among such meth-
ods, model weighting by expert elicitation is a practical
way to provide a weighted ensemble of models for specific
real-world impacts. The aim is to decrease the influence of
improbable models in the results and easing the decision-
making process. In this study both climate and hydrological
models are analysed, and the result of a research experiment
is presented using model weighting with the participation of
six climate model experts and six hydrological model ex-

perts. For the experiment, seven climate models are a priori
selected from a larger EURO-CORDEX (Coordinated Re-
gional Downscaling Experiment – European Domain) en-
semble of climate models, and three different hydrologi-
cal models are chosen for each of the three European river
basins. The model weighting is based on qualitative evalua-
tion by the experts for each of the selected models based on
a training material that describes the overall model structure
and literature about climate models and the performance of
hydrological models for the present period. The expert elici-
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tation process follows a three-stage approach, with two indi-
vidual rounds of elicitation of probabilities and a final group
consensus, where the experts are separated into two different
community groups: a climate and a hydrological modeller
group. The dialogue reveals that under the conditions of the
study, most climate modellers prefer the equal weighting of
ensemble members, whereas hydrological-impact modellers
in general are more open for assigning weights to different
models in a multi-model ensemble, based on model perfor-
mance and model structure. Climate experts are more open
to exclude models, if obviously flawed, than to put weights
on selected models in a relatively small ensemble. The study
shows that expert elicitation can be an efficient way to assign
weights to different hydrological models and thereby reduce
the uncertainty in climate impact. However, for the climate
model ensemble, comprising seven models, the elicitation in
the format of this study could only re-establish a uniform
weight between climate models.

1 Introduction

Uncertainty of future climate projections is a key aspect in
any impact assessment, such as for hydrological impacts
(Kiesel et al., 2020; Krysanova et al., 2017). Hydrological-
impact modelling often involves regional downscaling of
global-scale simulations and bias adjustment of the multi-
ple driving variables for multiple ensemble members of mul-
tiple global and regional climate models, as well as multi-
ple greenhouse gas emission scenarios (Pechlivanidis et al.,
2017; Samaniego et al., 2017). With added uncertainties in
each step in this chain (also known as a cascade) (Mitchell
and Hulme, 1999; Wilby and Dessai, 2010), the number of
simulations can quickly become overwhelming and espe-
cially, the uncertainty can become inflated (Madsen et al.,
2017). The end results will contain a mixture of sampled un-
certainties stemming from core climatological processes and
methodological and statistical influences on the results.

The large computational burden and the huge projec-
tion uncertainties are difficult to cope with for practition-
ers. Therefore, decision-makers in the water sector using cli-
mate services have increasingly demanded a user-friendly,
tailored, high-resolution climate service (Vaughan and Des-
sai, 2014; Olsson et al., 2016; Jacobs and Street, 2020) that
preferably incorporates a reduction of computational burden
and projection uncertainty (Dessai et al., 2018; Krysanova
et al., 2017). Information on the confidence of the climate
change projection and impact result is often not sufficiently
transparent for end users (Schmitt and Well, 2016). This is
an important barrier for the implementation of adaptation op-
tions (Klein and Juhola, 2014; Brasseur and Gallardo, 2016)
and constrains the efficiency of climate services.

In this paper we focus on available climate scenarios from
CMIP5 without looking into uncertainties of different Rep-

resentative Concentration Pathway (RCP) scenarios. We do
not address the uncertainties related to how future socioeco-
nomic growth impact the suite of Intergovernmental Panel on
Climate Change (IPCC) emission scenarios, where some sci-
entists argue that the IPCC RCP8.5 high-emission (baseline)
scenario over-project future CO2 emissions (Burgess et al.,
2021; Pielke and Richie, 2021). Instead we focus on the un-
certainties related to a selected ensemble of climate model
inputs (precipitation, dry spell, temperature, evapotranspi-
ration, etc.) and hydrological models (snow, soil moisture,
groundwater depth, discharge, etc.) used for informing risk-
assessment-specific catchments in Europe.

There are aspects of climate where some members of a
model ensemble can be proven more trustworthy than oth-
ers, such as the simulation of key atmospheric circulation
patterns at a global or local scale, and specific features of
particular importance for a case study. It can be argued that
these ensemble members should be promoted above others,
or given larger weights in an ensemble statistic, when eval-
uating the climate change projections. If some climate mod-
els have very low trustworthiness and in practice can be dis-
carded, this reduces the computational requirement. If the
models that are discarded or given low weight have projec-
tions furthest away from the ensemble mean, potentially as a
consequence of missing process descriptions, model weight-
ing may in addition result in a reduced uncertainty. In this
respect there are different traditions in the climate and hy-
drological modelling communities.

The climate modelling community often prefers using
a large ensemble of climate models, and ensemble model
weighting is a controversial issue. Model democracy (Knutti,
2010) is a well-established term in the climate modelling
community referring to the widespread assumption that each
individual model is of equal value and when combining sim-
ulations to estimate the mean and variance of quantities of
interest, they should be unweighted (Haughton et al., 2015).
The claim for model democracy is supported by the argu-
ment that the value of weighting climate models has not been
clearly demonstrated (Christensen et al., 2010, 2019; Matte
et al., 2019; Clark et al., 2016; Pechlivanidis et al., 2017;
Samaniego et al., 2017) or that model weighting simply adds
another level of uncertainty (Christensen et al., 2010). At the
same time, in recent years, there has been a significant effort
on sub-selecting models from the large ensemble of models
based on different frameworks (diversity, information con-
tent, model performance, climate change signal, etc.). Here,
the argument is that model democracy has not been useful
for impact modelling with the purpose of adaptation (see in-
vestigations in Kiesel et al., 2020; Pechlivanidis et al., 2018;
Wilcke and Bärring, 2016; Knutti et al., 2013). Another prac-
tical reason for selecting a smaller sub-set of representative
ensemble members from the larger ensemble is that impact
modelling can be computationally and methodologically in-
tensive in the case that a large number of models have to
be applied (Kiesel et al., 2020). The hydrological modelling
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community, on the other hand, typically uses a small ensem-
ble of hydrological models (e.g. Giuntoli et al., 2015; Karls-
son et al., 2016; Broderick et al., 2016; Hattermann et al.,
2017), and model weighting using Bayesian model averag-
ing or other methods is quite common and non-controversial
(Neumann, 2003; Seifert et al., 2012).

Climate projections of precipitation (Collins, 2017) and
more generally hydrological variables are subject to large
uncertainty. This has been the motivation for utilizing an ex-
pert judgement methodology to assess the impact of model
uncertainty. Expert judgement techniques have previously
been used to estimate climate sensitivity (Morgan and Keith,
1995), future sea level rise (Bamber and Aspinall, 2013; Hor-
ton et al., 2020), credibility of regional climate simulations
(Mearns et al., 2017), and tipping points in the climate sys-
tem (Kriegler et al., 2009). One such technique, called expert
elicitation (EE), is frequently used to quantify uncertainties,
in decision-making or in cases with scarce or unobtainable
empirical data (Bonano et al., 1989; Curiel-Esparza et al.,
2014). However, the application of EE to regional climate
change has largely been undocumented, underspecified or in-
cipient, with a few exceptions (Mearns et al., 2017; Grainger
et al., 2022). Given the large uncertainties in projecting re-
gional and local climate change, Thompson et al. (2016) have
argued that subjective expert judgement should play a central
role in the provision of such information to support adapta-
tion planning and decision-making. Ideally, this kind of ex-
pert judgement should be carried out in a strictly defined
group of experts dealing with the topics addressed by the im-
pact model.

There are different ways to sub-select more trustworthy
members from a large multi-model ensemble of climate and
impact model projections, e.g. so-called emergent constraints
or observational constraints (Hall et al., 2018). An alternative
approach to looking at model quality for the historical cli-
mate focuses on sub-selecting ensemble members spanning
the uncertainty range related to the future climate change sig-
nal (Wilcke and Bärring, 2016; McSweeney et al., 2015).
Contrary to these quantitative methods, EE is a more qual-
itative technique that assesses the trustworthiness of single
members based on the subjective knowledge of experts (Ye
et al., 2008; Sebok et al., 2016). One possible way to describe
the uncertainties of climate models and hydrological-impact
models is by model weighting where the experts assign prob-
abilities to the different models, which is used to weight the
different members of an ensemble of models (Morim et al.,
2019; Risbey and O’Kane, 2011; Chen et al., 2017). In our
context, EE uses expert judgement and dialogue (intersubjec-
tivity) to assign weights within an ensemble of climate and
hydrological models for specific real-world applications. Ba-
sically, such weights are (inter)subjective and prone to have
inherent biases (Tversky and Kahneman, 1974); thus they
must be derived following a transparent protocol and pro-
cess (Morgan and Keith, 1995; Ye et al., 2008; Bamber and
Aspinal, 2013; Sebok et al., 2016; Morim et al., 2019).

Building narratives, for example, in regional climate
change through EE is one option (Hazeleger et al., 2015;
Stevens et al., 2016; Zappa and Shephard 2017; Dessai et
al., 2018). Thompson et al. (2016) argue that this is needed
when providing climate service information to support adap-
tation planning and decision-making. Further, several users
also need to perform in-depth exploration of each step of the
chain and for both frequent and more rare events.

The aim of the present study is to test the EE method
to provide weighted ensembles of climate and hydrological
models for specific real-world cases. As a result, this ap-
proach will weight and rank those models from the a priori
selected ensemble models, which have the highest perceived
probability of reliably projecting climate change and hydro-
logical impacts, for clearly stated catchment-specific issues.
This investigation has the following specific objectives:

– to investigate EE and expert judgement to provide
weighted ensembles of climate and hydrological mod-
els for specific real-world impacts

– to analyse the individual and group elicitation of prob-
abilities in model selection and the dialogue between
experts from the two communities (climate and hydrol-
ogy) and their impact on the individual probabilities

– to identify lessons learned regarding the format of the
expert elicitation and to identify alternative designs for
overcoming weaknesses discovered in EE.

In Sect. 2, the case studies and climate and hydrological
models are described. Section 3 describes the methods for
EE, including selection of experts, planning, training and ag-
gregation of results. Section 4 describes the results from the
two groups (climate and hydrological modellers). Section 5
discusses the EE results along with the aggregated uncertain-
ties from the individual and group rounds of elicitation and
discusses virtual versus in-person workshops. Finally, issues
of our EE are discussed before concluding in Sect. 6.

2 Case studies and climate and hydrological models

2.1 Case studies

Five case studies distributed across different hydroclimatic
zones in Europe were used (Fig. 1). These case studies are
located in Sweden, Denmark, France and two sites in Spain
(Fig. 1). Only the Danish, French and Spanish Guadalfeo
River catchments (cases 2, 3 and 4) were included in the hy-
drological model assessment. The cases have different aims
and, therefore, require different information from climate
services. Additionally, the sites have contrasting climate and
physical characteristics (Table 1). For instance, the observed
annual precipitation trends are positive for the Swedish and
Danish cases and negative for the remaining sites. The ex-
perts that participated in the elicitation were given a training
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Figure 1. The location of case studies within Europe. Only cases 2,
3 and 4 are included in the hydrological modelling part of the expert
elicitation.

material document describing the most important character-
istics of each case study (see Supplement).

2.2 Climate models

The climate model ensemble consisted of different re-
gional climate model (RCM) combinations from the EURO-
CORDEX initiative (Coordinated Regional Downscaling Ex-
periment – European Domain; Jacob et al., 2014) available
at a 12.5 km× 12.5 km resolution. The RCMs are driven
by global climate models (GCMs) from CMIP5 (Coupled
Model Intercomparison Project phase 5, Taylor et al., 2012).
The model combinations selected for the analysis included
all models that fulfilled the following criteria (at the time of
extraction from the Earth System Grid Federation – ESGF –
in May 2019):

– scenarios driven by Representative Concentration Path-
ways RCP2.6, RCP4.5 and RCP8.5 (van Vuuren et al.,
2011)

– daily outputs of precipitation, 2 m (mean, maximum and
minimum) air temperature, 10 m wind speed and sea
level pressure

– available coverage for the simulation period from at
least 1971 to 2099.

Even though the above criteria might not be relevant for
EE, they integrate different requirements that climate mod-
els should fulfil to develop a comparable impact assessment.
The selection resulted in a total of eight downloaded model
experiments from the ESGF node; because the combinations
of MPI-M-LR and REMO included two different realizations
of the GCM, this was considered a single model in the ex-
pert elicitation but was included separately in the training
material to show the impact of natural variability in the one
GCM–RCM combination. The resulting seven climate model
combinations (Table 2) were used for the analysis at all sites.
The limited number of climate models also conforms to the
limits of the elicitation method as previous studies found that
experts are expected to make less reliable judgements when
ranking more than seven items (Miller, 1956; Meyer and
Booker, 2001). Detailed performance of the climate models
compared to the observations and information on telecon-
nection patterns/atmospheric variability patterns was given
to the experts before the workshop as training material (see
Supplement).

2.3 Hydrological models

Three different hydrological models were used for each of
the French, the Danish and the Spanish Guadalfeo River case
studies (Table 3). The selected hydrological models are fre-
quently employed in each of the sites to assess the impacts
of climate change on hydrology. Here we argue that an as-
sessment of the models, which are commonly used in each
site, is more relevant than assessing the same ensemble of
models at all sites. Consequently, the hydrological models
presented here are a mixture of distributed, physically based,
semi-distributed and lumped conceptual models, depending
on the site under assessment. The hydrological models used
in each site are briefly presented in Table 3. An extensive
description of the models and their performance in each of
the sites were given to the experts before the elicitation as
training material (see Supplement).

3 Expert elicitation experimental setup

Expert elicitation is a formal method of uncertainty assess-
ment often used in studies where due to the sparse or unob-
tainable empirical data the experience and subjective opinion
of experts is used as additional input (Krayer von Krauss et
al., 2004). In this study the elicitation comprised a climate
and hydrological modelling perspective with a similar aim to
find the models with the highest probability of reliably pro-
jecting climate change and climate change impacts within a
model ensemble. Initially, EE was planned to take place in
March 2020 in the form of a joint in-person workshop, where
climate and hydrological modelling experts could have par-
ticipated both in plenary and topical sessions and discus-
sions. However, due to the outbreak of the COVID-19 pan-
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Table 1. Aim of the different study cases along with their physical and observed climate characteristics.

Case study
location

Sweden Denmark France Guadalfeo, Spain Granada, Spain

Aim of the
assessment

Climate change im-
pacts on the biodi-
versity

Climate change im-
pacts on the foun-
dation of agricul-
tural production

Climate change
impacts on
hydropower
production and wa-
ter management for
other uses

Climate change im-
pacts on the allo-
cation of water for
tourism, agriculture
and energy

Changes in physi-
cal processes such
as sea waves, flu-
vial discharges and
sediment transport

Area (km2) 10 000 1124 3580 530.5

Precipitation
(mm yr−1)

741 1003 1055 745 460–630

Temperature
(◦C)

5.6 8.8 3.2 12.5 –

Wind speed
(m s−1)

– – – – 18–22

Wind waves
(km)

– – – – 200–300

Table 2. Climate model ensemble used for expert elicitation. The
realization (member no.) column denotes the version of initial con-
ditions.

GCM RCM Realization
(member no.)

EC-EARTH RACMO22E 12
EC-EARTH CCLM4-8-17 12
EC-EARTH RCA4 12
HadGEM2-ES RCA4 1
HadGEM2-ES RACMO22E 1
MPI-ESM-LR RCA4 1
MPI-ESM-LR REMO2009 1

demic, a virtual setting with two separate workshops was
adopted even though expert elicitation is traditionally con-
ducted in the form of in-person sessions. The elicitation took
place in the form of virtual workshops on 25–26 May 2020
for climate modelling experts and for hydrological modelling
experts on 3–4 June. The separation of climate and hydro-
logical modellers at the workshops hindered discussions that
were planned to take place between the two groups of ex-
perts. On the other hand, moving the elicitation to a virtual
platform gave an excellent opportunity to explore how virtual
elicitation could work in the future.

Even though the elicitation was moved from an in-person
to a virtual platform, the training material and the elicitation
structure remained as originally planned. The elicitation was
centred around a questionnaire which the experts were asked
to fill in during three consecutive elicitation steps. The first
two steps included individual evaluations, while the last step

comprised a group elicitation where experts were asked to
reach consensus about the questionnaires (Fig. 2).

3.1 Selection of experts

During the planning of the elicitation study, 18 selected ex-
perts were invited to contribute to the elicitation, and alto-
gether 12 experts had accepted to participate in the study by
December 2019. The two virtual workshops were planned
with the participation of these 12 experts, i.e. 6 hydrol-
ogy and 6 climate experts corresponding to Cooke and
Probst (2006) who specified 6 experts as the minimum num-
ber to obtain robust results and 12 as an upper limit, where
additional experts do not contribute with further benefits.

The role of the experts was to provide the knowledge nec-
essary to assess members of climate or hydrological model
ensembles through individual assessment and group discus-
sions. These experts were selected based on recommenda-
tions from the partner institutes of the research project. As a
requirement, the experts were previously not affiliated with
the elicitation experiment, but some degree of familiarity to
the geographical area of at least one of the case studies was
expected. Correspondingly, for the hydrological modelling
experts, experience with at least one of the hydrological mod-
els was regarded as an additional selection criterion. After
the second individual round of elicitation, one hydrological
modelling expert decided to leave the study; thus only the
five remaining experts participated in the group elicitation.
The probabilities assigned by this expert are included in the
results of the study.

https://doi.org/10.5194/hess-26-5605-2022 Hydrol. Earth Syst. Sci., 26, 5605–5625, 2022
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Table 3. Hydrological models used in each of the study sites.

Site Models Characteristics References

Denmark MIKE-SHE:
two-layer

– Physically based, integrated and fully distributed model at a resolu-
tion of 250 m× 250 m
– The model divides the unsaturated zone into a root zone and a zone
below the root zone
– Vertical flow depends on the storage of the unsaturated zone, ignoring
the delay in the flow
– Actual evapotranspiration is a function of the potential evapotranspi-
ration and the soil moisture content

Abbott et al. (1986),
Graham and Butts
(2005), Yan and Smith
(1994)

MIKE-SHE:
gravity flow

– Physically based, integrated and fully distributed model at a resolu-
tion of 250 m× 250 m
– Based on the continuity equation and Darcy’s law
– Vertical flow only depends on the force of gravity
– Actual evapotranspiration is a function of vegetation and the soil mois-
ture content

Abbott et al. (1986),
Graham and Butts
(2005), Kristensen and
Jensen (1975)

MIKE-SHE:
Richards equa-
tion

– Physically based, integrated and fully distributed model at a resolu-
tion of 250 m× 250 m
– Based on the continuity equation and Darcy’s law
– Vertical flow depends on the soil moisture retention and hydraulic
conductivity
– Actual evapotranspiration is a function of vegetation and the soil mois-
ture content

Abbott et al. (1986),
Graham and Butts
(2005), Kristensen and
Jensen (1975)

France GR4J – Lumped conceptual model with four parameters
– Water balance controlled by actual evapotranspiration and groundwa-
ter
– Snowmelt is simulated using the two-parameter CemaNeige model

Perrin et al. (2003),
Valéry et al. (2014)

GR6J – Lumped conceptual model with six parameters
– Modified version of GR4J that allows for a change of the direction of
the exchange and adds a conceptual store
– Snowmelt is simulated using the two-parameter CemaNeige model

Perrin (2000), Le
Moine (2008), Valéry et
al. (2014)

TOPMO – Lumped conceptual model adapted from TOPMODEL with seven pa-
rameters
– Water balance controlled by evaporation from interception and
groundwater reservoirs
– Simulates runoff, combining heterogeneous time response flows from
exponential and quadratic routing stores
– Snowmelt is simulated using the two-parameter CemaNeige model

Michel et al. (2003),
Beven and Kirvy
(1979), Valéry et al.
(2014)

Spain
(Guadalfeo
River)

HYPE – Semi-distributed conceptual model
– Infiltration is estimated using a water table discrimination model
– Evaporation is estimated using the modified Hargreaves–Samani
method
– Snowmelt is simulated using three decay factors related to tempera-
ture, radiation and fractional snow cover

Lindström et al. (2010),
Samuelsson et al.
(2011)

SWAT – Semi-distributed conceptual model
– Infiltration is estimated using the Green and Ampt method for a single
soil layer
– Evapotranspiration is estimated using the Penman–Monteith method
– Snowmelt is simulated using the degree-day method

Arnold et al.
(1998), Green
and Ampt (1911), Pen-
man (1948), Monteith
et al. (1964)

WiMMed – Distributed physically based model
– Infiltration is estimated using the Green and Ampt method for a two-
soil layer
– Evapotranspiration is estimated using the Penman–Monteith method
– Snowmelt is simulated using a punctual energy and mass balance ex-
tended to cell scale using depletion curves

Polo et al. (2009),
Aguilar et al. (2011),
Herrero et al. (2009),
Pimentel et al. (2017)
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Figure 2. Flow chart of the expert elicitation process.

3.2 Formulating elicitation questions

The elicitation both for the climate and hydrological models
had the same approach taking place in three consecutive elic-
itation steps including both individual and group elicitation
(Fig. 2). During each step, the experts were asked to fill in
a questionnaire (see Supplement). A separate questionnaire
was developed for the climate and hydrological modelling
experts following the same principles. The questionnaire was
composed of two separate blocks of progressively quantita-
tive questions.

The first block was aimed at making the experts conscious
about the elicited climate and hydrological models by asking
for their assessment on modelling concepts, structures and
assumptions that can influence the models’ ability to predict
climate or hydrological processes under future conditions
and thus influence the probability assigned to the models.
This block included questions where the experts first had to
make a qualitative assessment of the elicited models and then
were asked to rank the models according to their capabilities
in predicting future climate and specific hydrological (or re-
lated) processes in the study areas. Answers to this block of
questions were only elicited during the first two individual
steps of the elicitation but not during the group elicitation
(Fig. 2).

Eliciting answers to the second block of questions was the
main purpose of elicitation, where experts were expected to
assign probabilities to the climate and hydrological models
for each case study. It was possible to assign zero probabil-
ity to models, while the total probability assigned to models
had to equal 1. In the context of this study equal probabil-
ity means that all models have an equal probability of cor-
rectly predicting future climate change or the impacts of cli-
mate change on hydrology in the case of hydrological mod-
els. While describing the results of the study, the term “model
weight” is used interchangeably with “model probability”.

This progressively quantitative approach of first making
qualitative assessment, then ranking (block 1) and finally as-

signing probabilities (block 2) was chosen to ease the ex-
perts into making decisions on model probabilities, as studies
have shown that it comes more naturally to experts to make
a qualitative assessment or ranking than assign probabilities
(Goossens and Cooke, 2001). The purpose of the iterative
structure was twofold: firstly it gave an opportunity to the
experts to revise their opinions, and secondly it also enabled
consistency checks of the individual experts’ answers.

3.3 Planning the elicitation

Step 1 of the elicitation was an individual elicitation, where
experts were asked to fill in a questionnaire (Fig. 2). It was
expected that experts would use their previous experience,
intuitive knowledge about the hydrological/climate models
and rely on the training material provided by the workshop
organizers. The completed questionnaires were supposed to
be returned a week before the workshop. Nine experts re-
turned the first questionnaire before the proposed date, while
three experts delivered them just before the online workshops
2 months later; thus some experts had a fresher memory of
the questionnaire when filling it out again during the work-
shop.

In step 2, experts were asked again to individually fill in
the questionnaires at the end of the first day of the virtual
workshop (Fig. 2). It was assumed that the presentation of the
case studies, climate and hydrological models, and discus-
sions of the anonymous results of the first individual round
of elicitation during the workshop would potentially clarify
issues, provide the experts with new ideas introduced by fel-
low experts and give the experts an opportunity to re-evaluate
their initial opinion. The results of this elicitation round could
also reflect on how the experts influence each other.

In step 3, as a last step of the elicitation process (Fig. 2),
the climate and hydrological modelling experts were asked to
participate in a moderated discussion with the aim of reach-
ing consensus on the probabilities assigned for each model
for the specific case studies. The discussions were moder-

https://doi.org/10.5194/hess-26-5605-2022 Hydrol. Earth Syst. Sci., 26, 5605–5625, 2022



5612 E. Sebok et al.: Use of expert elicitation to assign weights to climate and hydrological models

ated by scientists of the AQUACLEW (Advancing QUAl-
ity of CLimate services for European Water) project, with
one moderator for the climate group and three moderators
with specific knowledge about modelling in each hydrolog-
ical model case study for the hydrological modeller group.
Participants of the research project were also listening to the
conversation, helping the moderator with comments or sug-
gestions for questions in the background unnoticed by the
participating experts. Prior to the group elicitation, experts
were also shown the anonymous results of the second indi-
vidual elicitation round, followed by a short discussion. Be-
tween each round of elicitation, the anonymous results of the
previous elicitation round were shown to the experts and ex-
perts were given the opportunity to discuss and comment on
the results (Fig. 2).

3.4 Training of the experts on the case studies and
elicitation

A training document describing the concept and the aim of
EE, case study catchments, the climate models and the hy-
drological models was sent to the experts 4 months prior to
the workshops (see Supplement). In the training material, the
scientists of the AQUACLEW project described all case stud-
ies and both the climate and hydrological models in a simi-
lar manner with the same indicators of model performance,
which are based on comparing their simulation skill to obser-
vational datasets. Even though such comparison is common
to assess the simulation skill of EURO-CORDEX climate
models (e.g. Kotlarski et al., 2014; Casanueva et al., 2016),
it is acknowledged that there is a degree of uncertainty com-
ing from the observation datasets (e.g. Herrera et al., 2019;
Kotlarski et al., 2017). It was requested that experts famil-
iarize themselves with this training material and, if suitable,
include it in their assessment during the elicitation.

During the first day of the workshop, the case studies
were again presented to the experts, who were also reminded
about the concept of EE and the biases that could influ-
ence their judgement during the elicitation (Fig. 2). The
most common biases that were expected to occur during the
elicitation (overconfidence, anchoring, availability and mo-
tivational bias) were also demonstrated. It was emphasized
that the method relies on the experts’ subjective assessment
based on prior knowledge and experience and the general im-
pressions of the training material. Questions could also be
skipped in case the experts were not comfortable answering.

3.5 Aggregation of results

As the aim of the elicitation was to assign probabilities for
both climate and hydrological models to assess which ones
are deemed to be most reliable in describing climate change
and climate change impacts, only the second block of ques-
tions eliciting probabilities will be presented in detail. Both
for the climate and hydrological models, the probabilities

were elicited three times, twice individually leading to a
mathematical aggregation and at last as a group elicitation
involving behavioural aggregation (Fig. 2) where the group
of experts had to reach consensus.

For the first two rounds of elicitation, the individual as-
sessment of experts was used to calculate the 50th percentile
of the probability distribution for each model following the
process described by Ayyub (2001). For this, the six proba-
bilities given by the experts for a specific model were first
ranked in decreasing order, and then the arithmetical mean
of the third and fourth highest probability was used to calcu-
late the 50th percentile of the probability distribution for the
specific model (Eq. 1):

Q= (X3+X4)/2, (1)

where the arithmetical mean of the third (X3) and fourth (X4)

highest probability of the ranked expert probabilities is used
to calculate the 50th percentile of the probability distribution
(Q) for each model. As the 50th percentile of the probability
distribution was calculated for each model independently, the
sum of the 50th percentiles within the model ensembles will
not necessarily be equal to 1.

Results from the group elicitation were obtained by discus-
sion, where the six climate and five hydrological modelling
experts managed to reach consensus on the second day of the
virtual workshops (Fig. 2). The group elicitation comprises
more than assigning probabilities, which is the direct output;
it is also an expert inquiry or dialogue, which eventually can
be used for bringing in new ideas or identifying new issues
for inquiry.

4 Results

As the first block of qualitative questions was only aimed
at preparing the experts to make quantitative decisions on
model probabilities, only the probability results for the sec-
ond block of quantitative questions will be presented (see
questionnaire in the Supplement).

4.1 Aggregated probabilities – hydrological model
results

As for the hydrological modelling group, both the number
of case studies and the number of models in the hydrologi-
cal ensembles was lower, results will first be shown for this
group. The individual results from steps 1 and 2 of the elic-
itation were aggregated mathematically, while for step 3 the
group discussion led to behavioural aggregation (Fig. 2).

Probabilities for the three models in the French case study
had little spread compared to the other case studies (Fig. 3a).
For the first individual elicitation, the GR4J model was as-
signed the highest 50th percentile of probabilities with 0.35.
The experts assigned a slightly lower value of 0.33 to GR6J,
while TOPMO got 0.3. During the second round of indi-
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vidual elicitation, all models were assigned the same 50th-
percentile probability of 0.33. The third group elicitation
made a slight differentiation of the models: again the GR4J
and GR6J models both got a consensus probability of 0.35
and 0.35, respectively, while TOPMO was assigned a proba-
bility of 0.3 (Fig. 3a, Table 4).

For the first round of individual elicitation in the Danish
case study, the 50th percentile of probabilities was the high-
est for the two-layer model with 0.40, slightly lower for the
Richards equation with 0.35 and considerably lower for the
gravity flow model with 0.20 (Fig. 3b). The ranking remained
the same for the second round of individual elicitation with
a slight change in probabilities as four out of six experts re-
vised their probability values. Thus, the two-layer model had
the highest 50th percentile of 0.38, while the probabilities
of the Richards equation model remained approximately the
same and probabilities for the gravity flow model increased
to 0.25. In the third round of elicitation, the group of hy-
drological modelling experts reached a consensus about the
model probabilities assigning a probability of 0.38 to the
two-layer model, 0.35 to the Richards equation model and
0.27 to the gravity flow model (Fig. 3b, Table 4).

In the Spanish case, the first round of individual elicitation
resulted in a 50th percentile of 0.45 for the SWAT model,
while the WiMMed model was assigned a value of 0.42; the
HYPE model was clearly deemed the least probable model
(Fig. 3c). In the second round of individual elicitation the as-
signed probabilities for the HYPE model slightly increased to
0.25, while the experts differentiated more clearly the SWAT
and WiMMed models, assigning the highest probabilities of
0.40 to the WiMMed model. This distribution of probabilities
was maintained also in the third round of elicitation where
the group assigned a consensus probability of 0.45, 0.30 and
0.25 to the WiMMed, SWAT and HYPE models, respectively
(Fig. 3c).

The experts of the hydrological modeller group gave vari-
able probabilities to all models of the ensemble, although for
the French case the probabilities had a small spread (Fig. 3a).
None of the experts assigned zero probability to models.
In summary, expert judgement about hydrological models
stayed rather stable along the multiple steps of the elicitation.
Although discussions between experts led to small adjust-
ments in the probabilities of a few models (e.g. HYPE and
SWAT in the Spanish case study), the overall model ranking
did not change through the elicitation steps (Fig. 3). The ex-
perts also reached a consensus rather easily as a group in the
last phase. The willingness to assign variable probabilities
and the ease with which the experts reached consensus in the
last step of elicitation could also be attributed to the small
number of models in the ensemble or because they found
it easy to develop a constructive consensus process. For in-
stance, for the Spanish case, the expert who had more expe-
rience developing studies in the area gave a detailed expla-
nation on why and how they assigned the probabilities to the
models. Even though the expert explained and shared strong

motives, the other experts were also involved in the discus-
sion, exchanging comments and finally reaching a consensus
that gave probabilities close to (but not the same as) the ones
assigned by the expert that detailed their selection process.

4.2 Mathematically aggregated probabilities – climate
model results

For the Danish case study, when calculating the 50th per-
centile of the probabilities given by experts for the seven cli-
mate models, the highest probability of 0.21 was assigned to
the EC-EARTH–CCLM GCM–RCM modelling chain in the
first round and of 0.19 to the EC-EARTH–RACMO model
combination in the second individual round of elicitation
(Fig. 4a). The lowest probability of both the first and sec-
ond round of individual elicitation was assigned to the mod-
els EC-EARTH–RCA4 and MPI-ESM–RCA4 with values of
0.09 and 0.08, respectively (Table 5).

For the French case study, the EC-EARTH–CCLM GCM–
RCM combination had the highest 50th-percentile probabil-
ity, 0.20 and 0.18, respectively, for both rounds of individ-
ual elicitation, whereas in the second round of elicitation the
MPI-ESM–REMO models was also assigned a similarly high
calculated probability value (Fig. 4b). The MPI-ESM–RCA4
received the lowest probability of 0.10 in the first individual
round of elicitation, while EC-EARTH–RACMO obtained a
similarly low probability in the second round of elicitation
(Table 5).

For the Spanish Sierra Nevada case study of water resource
allocation, the 50th percentile of probabilities was the highest
for the EC-EARTH–CCLM and HadGEM–RACMO models
in the first round with a value of 0.14 (Fig. 4c). While in
the second round, the highest probability was 0.16 for the
EC-EARTH–CCLM models. The MPI-ESM–RCA4 model
combination received the lowest probability of 0.08 for both
individual elicitation rounds (Table 5).

For the Guadalfeo River case study of fluvial and coastal
interactions in Spain, the MPI-ESM–RCA4 combination re-
ceived the lowest probabilities of 0.08–0.09 for both indi-
vidual elicitation rounds (Table 5). The 50th percentile was
the highest for EC-EARTH–RACMO models in the first
round with a probability of 0.15. In the second individ-
ual round both the EC-EARTH–CCLM and EC-EARTH–
RACMO combinations were ranked the highest with prob-
abilities of 0.16 for the 50th percentile of probabilities
(Fig. 4d).

For the Swedish case study, the 50th percentile of prob-
abilities was the highest for the HadGEM–RACMO combi-
nation with 0.18 and 0.19 in the first and second elicitation
round, respectively (Fig. 4e). The EC-EARTH–RCA4 com-
bination was assigned the lowest probabilities of 0.08–0.1 in
both elicitation rounds (Table 5).

During the first two rounds of elicitation, expert 3 gave
equal probability to each of the climate models irrespective
of the case study, while another expert also assigned zero
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Table 4. Assessed probabilities by hydrological model experts.

Danish case study Step 1 50th percentile Step 2 50th percentile Group consensus

Two-layer 0.4 0.38 0.38
Gravity flow 0.2 0.25 0.27
Richards equation 0.35 0.35 0.35

French case study Step 1 50th percentile Step 2 50th percentile Group consensus

GR4J 0.35 0.33 0.35
GR6J 0.33 0.33 0.35
TOPMO 0.30 0.33 0.3

Spanish case study Step 1 50th percentile Step 2 50th percentile Group consensus

HYPE 0.18 0.35 0.25
SWAT 0.45 0.37 0.30
WiMMed 0.42 0.40 0.45

Figure 3. Probabilities assigned by the experts for the three alternative hydrological model structures in the French (a), Danish (b) and
Spanish (c) case studies after the first and second rounds of individual elicitation and group elicitation.
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Figure 4. Probabilities assigned by the experts to the seven selected climate models in the Danish (a), French (b), Spanish Sierra Nevada (c),
Spanish Granada (d) and Swedish (e) case studies after the first and second rounds of individual elicitation and group elicitation.
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Table 5. Assessed probabilities by climate model experts.

Danish case study Step 1 50th percentile Step 2 50th percentile Group consensus

1-EC-EARTH–CCLM 0.21 0.16 0.14
2-EC-EARTH–RACMO 0.13 0.19 0.14
3-EC-EARTH–RCA4 0.09 0.08 0.14
4-HadGEM–RACMO 0.18 0.17 0.14
5-HadGEM–RCA4 0.14 0.14 0.14
6-MPI-ESM–RCA4 0.09 0.08 0.14
7-MPI-ESM–REMO 0.14 0.14 0.14

French case study Step 1 50th percentile Step 2 50th percentile Group consensus

1-EC-EARTH–CCLM 0.20 0.18 0.14
2-EC-EARTH–RACMO 0.12 0.10 0.14
3-EC-EARTH–RCA4 0.11 0.13 0.14
4-HadGEM–RACMO 0.15 0.15 0.14
5-HadGEM–RCA4 0.12 0.14 0.14
6-MPI-ESM–RCA4 0.10 0.12 0.14
7-MPI-ESM–REMO 0.15 0.18 0.14

Spanish case study 1 (Sierra Nevada) Step 1 50th percentile Step 2 50th percentile Group consensus

1-EC-EARTH–CCLM 0.14 0.16 0.14
2-EC-EARTH–RACMO 0.13 0.15 0.14
3-EC-EARTH–RCA4 0.12 0.14 0.14
4-HadGEM–RACMO 0.14 0.14 0.14
5-HadGEM–RCA4 0.13 0.14 0.14
6-MPI-ESM–RCA4 0.08 0.08 0.14
7-MPI-ESM–REMO 0.09 0.09 0.14

Spanish case study 2 (Guadalfeo) Step 1 50th percentile Step 2 50th percentile Group consensus

1-EC-EARTH–CCLM 0.14 0.16 0.14
2-EC-EARTH–RACMO 0.15 0.16 0.14
3-EC-EARTH–RCA4 0.11 0.10 0.14
4-HadGEM–RACMO 0.15 0.15 0.14
5-HadGEM–RCA4 0.14 0.10 0.14
6-MPI-ESM–RCA4 0.09 0.09 0.14
7-MPI-ESM–REMO 0.11 0.12 0.14

Swedish case study Step 1 50th percentile Step 2 50th percentile Group consensus

1-EC-EARTH–CCLM 0.14 0.18 0.14
2-EC-EARTH–RACMO 0.14 0.15 0.14
3-EC-EARTH–RCA4 0.10 0.09 0.14
4-HadGEM–RACMO 0.18 0.19 0.14
5-HadGEM–RCA4 0.14 0.16 0.14
6-MPI-ESM–RCA4 0.11 0.12 0.14
7-MPI-ESM–REMO 0.14 0.15 0.14

probability to several climate models and a very high proba-
bility to others or, in the two Spanish case studies, zero to all
the listed climate models. The remaining four experts gave
varying probabilities to the climate models depending on the
case studies (Fig. 4). It is assumed that the six experts had
two different approaches to assigning probabilities to cli-
mate models. Experts 3, 5 and 6 assigned all model com-
binations of the ensemble, irrespective of the case study, the
same probability values or values only slightly different from

equal probability, while the other three experts had a wider
range of probability values. This distinction between the ap-
proaches is most apparent for the two Spanish case studies
(Fig. 4c, d) and is probably related to the potential influence
of snow and wind in these two case studies as mentioned by
several experts during the group discussion.
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4.3 Change of probabilities between the two individual
elicitation rounds

Individual expert opinions were elicited in two consecutive
steps (Fig. 2), thus giving an opportunity to experts to re-
vise their opinion. This revision in individual opinions could
be due to a change in opinion as new ideas were introduced
by other experts or also to a clearer understanding of elicita-
tion concepts, notions or elicitation questions. This revision
of subjective opinions however is deemed necessary in the
iterative elicitation approach.

Considering the climate modellers, two or three out of six
experts changed their opinion between the first and second
round of individual elicitation depending on the case study.
Experts 1 and 2 made the largest changes in their probabil-
ity assessment between the elicitation rounds (Fig. 4). The
largest change in probability was recorded for the French
case study by expert 2, while for the Spanish case study
of fluvial and coastal interactions, the change between the
first and second elicitation rounds was minimal. For the hy-
drological modellers, three or four experts out of six altered
their assigned probabilities also depending on the case study
(Fig. 3). The largest change in assigned probabilities was ob-
served for expert 4 in the Spanish case study. The small-
est change between elicitation rounds was observed in the
French case study, where only expert 3 made large changes
in the probability distribution (Fig. 3a). The expert leaving
the study did not wish to modify the assigned probabilities
based on the input of the workshop. One of the main reasons
mentioned for quitting the workshop was that the workshop
and the discussions did not contribute any more relevant in-
formation than the previously studied training material, thus
not being helpful in reaching a more sound assessment of the
studied hydrological models. Coupled with the logistical dif-
ficulties of participating from home in a virtual workshop,
this resulted in the decision to leave the study.

Compared to the climate modeller group, the hydrological
modelling experts were more willing to change their opinion
between the elicitation rounds and also issued larger changes
in probabilities. This could be due to the lower number of
models in the ensemble or to the fact that differences between
the assigned probabilities between the experts were smaller.

4.4 Behavioural aggregation of probabilities – reaching
consensus

In the last step of elicitation (Fig. 2), the groups were asked
to reach a consensus about the probabilities of the ensem-
ble members for each case study; thus expert opinion was
expressed through a behavioural aggregation. For the cli-
mate modeller group, in the group elicitation step the ex-
perts reached a consensus where all climate models within
the ensemble had the same probability of 0.14 for each case
study (Fig. 4), reflecting that it is not possible to differentiate
the reliability of model ensemble members to project climate

change based on the available information on their ability to
simulate past climate. This result agrees with the individual
opinion of expert 3, who maintained an equal-probability ap-
proach throughout the entire elicitation study. Thus, the opin-
ion of this expert clearly influenced the group decision, while
experts 5 and 6 also showed a similar approach, assigning
only slightly different probabilities to the ensemble members
in the first two elicitation rounds (Fig. 4). At the same time,
instead of ranking the members of the model ensemble, the
experts raised the idea of potentially excluding some models
which were deemed to be less likely. Due to the influence of
snow in the French and one of the Spanish Guadalfeo River
catchment case studies, the experts had a lengthy discussion
about potentially downranking some climate models due to
temperature biases but finally stated that the observational
basis was too weak to support the rejection of any of the
models.

Our assumption is that this change in results between the
second round of individual elicitation and group elicitation
can mostly be attributed to the principles of model democ-
racy and to the fact that weighting of ensemble members is a
controversial issue in scientific literature with recent research
on the methods of optimal weighting of local- to regional-
scale climate models. This also encompasses the fact that
climate experts were not comfortable with the EE methodol-
ogy as a potential way to assign weights to individual climate
models. This could be due to a general lack of confidence
due to the subjectivity of the method, an unfortunate phras-
ing of the aim and questions of elicitation, a lack of time or as
raised by some of the experts the lack of relevant information
in the training material. Some experts were concerned that
the model performance information provided in the training
material was not sufficiently relevant to judge the model per-
formance for the specific case studies and therefore did not
serve as a robust basis for downranking individual models.

In the hydrological modellers group, the experts assigned
variable probabilities to the models, keeping the ranking of
the individual elicitation rounds (Fig. 3). It was observed that
some experts had a geographical expertise about the case
study areas or some of the models in the ensemble (as was
required as an expert selection criterion). During the group
discussion, the experts were candid about their expertise and
the group took advantage of this specialized knowledge when
reaching consensus about probability values. Thus, while
some experts were more involved in group decisions than
others for specific case studies, there was not one expert who
dominated the whole discussion. The opposite was also ob-
served, experts who did not have previous experience with a
member of the model ensemble clearly accepted the group
opinion without trying to influence it. This kind of influence
or lack of argument was mostly observed in relation to the
models of the ensemble and not the geographical experience
with the case study areas. As a general conclusion, hydro-
logical modelling experts were more willing to acknowledge
that all models may not have an equal probability of predict-
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ing changes in a future climate while also trying to accom-
modate EE as a potential method to assign probabilities to
hydrological models.

The group consensus results were also compared to the
results of the second elicitation round. For the hydrologi-
cal modelling experts, the 50th percentile of the probability
distribution had similar results to the group consensus, with
the largest difference of 0.065 in probability for the SWAT
model for the Spanish case study (Fig. 3). The ranking of
model probabilities did not change between the second in-
dividual elicitation round and the group consensus; however
the relative difference in the probability of the models was re-
vised (Table 4). Due to this slight change and the discussion
which allowed for a better understanding of challenges in re-
lation to the models and geographical areas, it is assumed
that the group discussion was a necessary part of the elici-
tation despite the minor changes in probabilities. In the case
of the climate modelling group, it was only during the last
step of group elicitation where the collective opinion of cli-
mate modellers transpired leading to equal probabilities to
all members of the climate model ensemble (Table 5). There-
fore, it can be concluded that the elicitation could not have
been successfully made in less steps as it would not have
truthfully reflected the opinion of climate experts.

During the discussion of the elicitation results, the hydro-
logical modelling experts expressed their doubts about as-
signing probabilities to the models as the models’ capability
to project future hydrological processes depends on the pa-
rameterization and the purpose of the case study. Here, it was
questioned if the experts are assigning similar probabilities
because the models have a similar capability of predicting
future hydrological processes or because they cannot distin-
guish between the models. Such could be the case for the
Danish case study where the same hydrological modelling
software was used with a different representation of the un-
saturated zone and evapotranspiration.

In both the hydrological and climate modeller groups, peer
pressure was present as all experts wished to reach a con-
sensus by the end of the allocated time frame. This was
especially observed for the hydrological modelling group,
where experts assigned variable probabilities to the models,
thus having a lengthier discussion for each case study. Even
though the climate modelling experts first agreed to assign
equal probability to all climate models for each case study,
they nevertheless had discussions regarding whether some
members of the climate model ensemble could have slightly
differing probability values. A factor frequently mentioned,
most likely leading to variable probabilities, was the repre-
sentation of snow by the climate model, when relevant for
the case study.

5 Discussion

5.1 Expert elicitation as a tool for uncertainty
assessment

EE is frequently used to quantify uncertainties in decision-
making in case of scarce or unobtainable empirical data (Bo-
nano et al., 1989; Curiel-Esparza et al., 2014). In the context
of this study, EE is used to assign weights to an ensemble of
climate and hydrological models to identify more trustwor-
thy models. In our opinion expert elicitation does not add
an extra layer of uncertainty to the uncertainty cascade of
hydrological-impact modelling. As experts tend to focus on
large uncertainties that are not easily quantifiable by direct
metrics, they rather point out uncertainties that are not neces-
sarily obvious, thereby increasing our knowledge about un-
certainties and assisting decision-making. The main advan-
tage of using EE probabilities instead of “objective tests” is
for the obvious reason that no data exist for the unknown fu-
ture. Of course, by using historical data, it may be possible
to perform numerical tests for present conditions or also past
changes (Refsgaard et al., 2014; Kiesel et al., 2020). In a cli-
mate change context however, these tests are not entirely reli-
able, due to the large uncertainties associated with future cli-
mate projections. Moreover, expert elicitation as conducted
in this study as a dialogue between experts in a group set-
ting incorporates more than just the subjective, individual
opinion of different experts in the uncertainty assessment.
Through an individual elicitation, experts can work with un-
predictability and incomplete knowledge, but in a group elic-
itation and dialogue, experts can in addition exchange and
deal with multiple knowledge frames and modify their opin-
ion on the basis of common knowledge (Brugnach et al.,
2009). Hereby, EE can potentially provide additional infor-
mation and knowledge that is absent from modelling ap-
proaches (Grainger et al., 2022).

Another advantage of expert elicitation could be that it is
computationally not demanding, as it is based on previously
acquired knowledge, such as already existing models. Thus,
it could require less time to obtain some results about the ca-
pability of models to reliably predict climate change than to
run several models in an ensemble, calculating comparable
statistics and in the case of hydrological models, also cali-
brating the models. At the same time, due to its subjectivity,
expert elicitation is also prone to biases. In this study, anchor-
ing was observed as some experts did not wish to revise their
initial opinion about probabilities. This bias is however con-
sidered of small importance for the hydrological modelling
part as the final results were reached during the group dis-
cussion which is independent of the experts’ initial opinion.
For the climate modeller group, the final results agree with
the principles of model democracy, assigning equal weight
to all models of the ensemble, reflected by three experts who
maintained this opinion throughout the elicitation, thus po-
tentially influencing the outcome of the group discussion.
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The virtual-elicitation workshop was logistically simple,
more cost-efficient and environmentally friendly as experts
did not need to travel to the same venue. Thus, depending
on the form of elicitation, more experts could potentially be
involved in a virtual-elicitation study. As opposed to virtual
elicitation, physical meetings are more natural, and experts
are more engaged in informal dialogues and the elicitation.
It is assumed that during an in-person meeting, experts are
more inclined to ask questions, thus it is easier to anticipate,
recognize and clear up misunderstandings or handle conflicts
(such as in this study, one of the experts quitting the work-
shop). The practical experience with the virtual workshop
was that it required more effort from the moderators to make
sure that all the experts are involved in the discussion. Simi-
larly, due to the lack of non-verbal communication, reaching
consensus was also more time-consuming as experts had to
be individually asked to provide their opinion or agreement.
Facilitators need to be more prepared to moderate meetings
and engage experts. This necessitates increased awareness
and also potentially, such as in this project, the involvement
of background personnel who also monitored the discussion,
helping the moderator with background comments. Despite
all the differences, based on our study it can be concluded
that next to the traditional in-person meetings and work-
shops, the expert elicitation method can also be transferred
to a virtual meeting.

Our study suggests that expert elicitation can be a suitable
methodology to assign probabilities to hydrological mod-
els applied for climate change impact assessments as these
probabilities are variable and robust across the expert panel
and across the different elicitation steps and discussions (Ta-
ble 4). This finding is in line with Ye et al. (2008), who used
expert elicitation to assign probabilities to recharge models
used to simulate regional flow systems. The results from us-
ing expert elicitation to discriminate between climate models
were less conclusive. As during the group discussion, experts
were not willing to rank or even exclude climate models of
the ensemble, expert elicitation in the form of our study is
not suitable to select a sub-set of GCM–RCM climate change
projections for the future based on their performance in re-
producing aspects of the historical climate.

5.2 Different outcomes from the climate and
hydrological model groups

Even though the elicitation questionnaire had the same ap-
proach and structure both for the climate and hydrological
modeller groups, there is a distinct difference in the recep-
tion of the elicitation methodology and the responses to the
questionnaire between the climate and hydrological modeller
groups. With the exception of the expert who left the study
after the first day of the workshop, hydrological modellers
were more ready to assign variable probabilities to different
hydrological models, acknowledging that some models have
a higher probability of correctly projecting climate change

when using the same climate model input. At the same time,
climate modelling experts agreed that based on the informa-
tion available at the elicitation all climate models should have
equal probability of accurately projecting the future climate;
thus, an ensemble could reach a wide range of potential cli-
mate projections. However, in the climate modelling com-
munity there is currently a significant effort on sub-selecting
or weighting models based on suitable quantitative informa-
tion (Wilcke and Bärring, 2016; Donat et al., 2018; Hall
et al., 2019), and for impact studies with adaptation pur-
poses such approaches are widely accepted among modellers
(Krysanova et al., 2018).

This difference between the approach of the climate and
hydrological modelling group could have several reasons.
There are many hydrological model codes in use, and re-
search groups routinely create, develop or modify model
codes according to their site-specific modelling purposes
(Pechlivanidis et al., 2011). Thus, some model codes are only
used by a small fraction of the hydrological modelling com-
munity. As an example, in the hydrological model ensemble
for the Danish case study, all models had the same basis, only
the conceptualization of the unsaturated zone was different.
In contrast, as the climate models are applied at regional to
global scales with increasing computational demand, there
are fewer models in use, often sharing common parameter-
izations. These climate models also frequently require col-
laboration of research groups and were generally applied on
much coarser spatial scales. Climate models in general are
also more complex and have higher dimensionality than hy-
drological models; thus climate modellers are less likely to
be familiar with all aspects of a climate model, which could
in turn significantly affect climate impacts.

Hydrological models are typically used to make quanti-
tative predictions. Thus, they are calibrated by optimizing
model parameter values and only accepted as suitable if they
reasonably match observation data. Classical hydrological
modelling studies use one hydrological model code to make
predictions, but in recent decades there has been an increas-
ing tendency for model intercomparison studies (Dankers et
al., 2014; Krysanova et al., 2017; Christierson et al., 2012;
Chauveau et al., 2013; Giuntoli et al., 2015; Vidal et al.,
2016; Warszawksi et al., 2014) attempting to evaluate model
uncertainties or which model codes are the most suitable for
making such predictions. This also means that hydrological
modellers are used to the idea of evaluating model results
or even assigning weights to models. Climate models often
stem from short-term forecast models, which have evolved
over decades as part of the process of changing emphasis
from an initial-value problem to a boundary condition prob-
lem, which also shifts focus from calibration of the predicted
surface variables to the main energy and water budget and
main climate processes (Hourdin et al., 2017). We note that
the initial-value problem is again introduced in decadal pre-
dictions (Boer et al., 2016; Meehl et al., 2021); however, here
we focus on the applications to long-term climate change.
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Therefore, the kinds of uncertainties typically explored in
a climate model ensemble relate to the climate processes
and not so much to bias in surface parameters used in hy-
drology. A climate model may have merit in describing the
changing climate, even if it displays bias in the historical pe-
riod. Still, several studies have investigated different means
of reducing the climate model ensemble by their interdepen-
dencies (e.g. Knutti et al., 2013), their bias in specific vari-
ables (e.g. Christensen et al., 2010) or the information con-
tent in individual ensemble members (e.g. Pechlivanidis et
al., 2018). Studies that attempt sub-selection of climate mod-
els generally find a strong dependence on the variables used,
location, season and future scenario (Wilcke and Bärring,
2016; Pechlivanidis et al., 2018).

One of the key findings from the EE experiment was that
the climate modellers were reluctant to discriminate or as-
sign probabilities for the different climate models. Instead,
they agreed on assigning equal weights. When taking a closer
look at the discussion in the climate model group, it be-
comes clear that this finding is conditional on the informa-
tion about case studies and hydrological models presented
in the training material. Experts lacked more comprehensive
material potentially including model evaluation data on sim-
ulated changes and variabilities supplying available informa-
tion given on mean states and biases. An additional need for
information such as that representative of surface energy bal-
ance, large-scale atmospheric circulation and cloudiness was
mentioned. In this elicitation study, evaluating climate mod-
els proved to be a task that requires a broader view of model
specificities than the information relative to the case studies
provided in the training material. For this reason, expecting
experts of the climate groups to assess different weights of
the models was possibly inadequate.

Another piece of feedback from the dialogue in the climate
modeller group was that seven climate models is not enough
and that more information/a matrix is required for providing
probabilities (anonymous quotes):

Individually they [the climate models] only make
sense when the rest of them is [sic] also there. . . .
Doing a probability assessment for these, there is
no objective way to do that; the only objective way
to go ahead is to say . . . ok, we have a set of seven
experiments, in order to make sense of any one of
them, all the other ones have to be there as well.
. . . In the sense that we don’t have a qualifier to
disregard any of the models; we have to accept all
of them.

This exercise reminds me about . . . the ENSEM-
BLES project [note: Hewitt et al., 2005]. If we re-
ally want to provide a weight, we need to have
a matrix. . . . We don’t have a matrix; we only
have our gut feeling. . . . I don’t think at this point
we can really provide numbers. . . . I found really
small differences between different models. . . .

The climate modellers supposedly would have been much
more willing to give specific advice based on expert elici-
tation if they would have had many more models to work
from. Whether they would recommend removing some of
the worst models from an ensemble is a possibility. Instead,
we searched for another way forward by asking the climate
modellers for their recommendations if they were to select
a sub-set of models. Below answers from three experts are
quoted about selecting only four models from an ensemble
of seven:

There are quite many people working on that. How
to select from different ensembles, . . . span some
kind of uncertainty ranges in different dimensions,
. . . not just look whether models are realistic or
not but also looking at some kind of span, looking
at ranges. . . .

My advice would be that you don’t use models.
You just tell your gut feeling about the result – and
that is as good as any model – because four models
will not provide robust information. . . . I would not
bet my property on four models. . . . You need a
[sic] much more qualified information. . . .

It is not a proper way to portray uncertainty. . . .

We believe that with a different design for the expert elic-
itation that provides climate experts with more information
on hydrological-impact simulations and aims at clarifying
how to best select a few RCM projections that best sample
the spread of climate projections, the elicitation could po-
tentially have resulted in downranking some model combi-
nations of the ensemble. The conclusion of our study is that
in this expert elicitation setting climate modellers deem each
climate model to have equal probability and are very unlikely
to exclude or downrank any climate model. Instead of model
democracy, impact studies in practice are recommended to
use a range or sub-set of available climate models to reduce
computational time and effort (Wilcke and Bärring, 2016).
For sub-selecting models, more objective methods than the
present elicitation study are preferred.

6 Conclusions

As part of the AQUACLEW research project an expert elici-
tation experiment with a group of six climate model experts
and another group of six hydrological model experts was car-
ried out in May–June 2020 in a virtual setting. The aim of the
elicitation was to assign weights to members of climate and
hydrological model ensembles following a strict, multi-step
protocol including two steps of individual and one final step
of group elicitation with the same structure but separate ses-
sions for climate and hydrological modellers.

The experiment resulted in a group consensus among the
climate modellers that all models should have an equal prob-
ability (similar weight) as it was not possible to discriminate
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between single climate models, while also maintaining the
importance of using as many climate models as possible in
order to cover the full uncertainty space in climate model
projection. The hydrological modellers also reached consen-
sus after the group elicitation. However, the agreement here
did result in different probabilities for the three hydrological
models in each of the three case studies. For the hydrologi-
cal modellers, the final group consensus results did not differ
significantly from the results of the second individual elicita-
tion round. Based on the results of this study, expert elicita-
tion can be an efficient way to assign weights to hydrological
models, while for climate models, the elicitation in the for-
mat of this study only re-established model democracy.

Due to the COVID-19 pandemic we were forced to shift
the setting from an in-person to a virtual workshop. We con-
clude that the design and protocol used for the expert elicita-
tion was satisfactory also in the virtual setting, where the new
virtual platforms provide an alternative to in-person meet-
ings. However, the virtual setting was more demanding for
the moderators to ensure the equal engagement of each par-
ticipating expert and for all participants due to practical is-
sues of working from home in the very early stages of the
pandemic.
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