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Abstract 

According to present knowledge, CO2 capture and valorisation are possible solutions involving economic and industrial challenges, 

for reducing atmospheric CO2 emissions.  

Chemisorption using amine-based solvents is the farthest advanced process in terms of industrial development [1-4] (performances: 

0.4 ton CO2/ton MEA; energy cost:  2.44 - 5.50 GJ/ton CO2 [3, 5-9]; 0.72 GJ/ton CO2 is hopefully to be achieved [10]). Various 

obstacles to its use must nevertheless be overcome. Notably health and environmental risks associated with the use and handling 

of amines must be duly specified and verified for industrial-scale facilities. Given this two-fold challenge, both economic and 

environmental, the development of alternative eco-compatible and efficient processes is crucial for cost-effective post-combustion 

CO2 capture/release.  

This research aims at developing a powerful technological breakthrough in the CO2 capture, using Layered Double Hydroxides 

(LDHs).  

LDHs are anion exchange materials consisting of stacks of positively charged, mixed-metal hydroxide layers between which 

hydrated anionic species are interlayered. The general structural formula of LDH is [MII
1-xMIII

x(OH)2]x(An-x/n).mH2O, in which M 

are metal cations and A exchangeable hydrated anions. The anion exchange capacity can reach 2-3 meq/g [11, 12]. 

LDH benefits from a strong affinity for CO3
2- [13-17]. Moreover, synthesized LDHs bearing electroactive metal cations within 

their sheets enable reversible electrochemical oxidation and reduction [18-22].  

LDHs aim at covering a broad spectrum of specifications with respect to CO2 capacity and selectivity [23, 24], low manufacturing 

cost [25], chemical stability for transportation and mechanical robustness under cycling [26-29].  

These specific properties make it ultimately possible to control the ion exchange capacity [21, 22] and thus to envisage breakthrough 

electrolysis processes for the capture and release of anions [30].  

The electrochemical control of the oxidation state of multiple valence cations, constituting the lamellar sheets, is the core process 

(Fig. 1A), which also includes CO2 dissolution reaction to CO3
2- from the gas effluent, as well as, after capture and release of CO3

2, 

the CO2 degassing from released CO3
2- solution. The use of a unique redox system within the electrochemical process allows the 

cancellation of the term cell voltage (i.e. Ea/i=0 – Ec/i=0), which allows the significant decrease of the electrical power needed [30]. 
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Fig. 1: A. Electrolytically supported process of capture and release of CO3
2-

 using LDHs [30] 

 

Co/Fe LDHs, in which CoIII/CoII constitutes the electroactive redox couple, were selected as materials of interest for CO3
2- capture 

and release in agreement with the ability of such LDHs to ensure 5000 electrochemical oxidation and reduction cycles [26].  

The coupling of Cyclic Voltammetry and Quartz Crystal Microbalance, for the concomitant measurement of current densities and 

mass variations using thin LDHs films, as well as, the coupling of chronoamperometry and potentiometric titration for the 

concomitant measurement of current densities and alkalinities using LDHs slurries, allowed determining the mechanism and 

quantifying the kinetics of the physico-electro-chemical reactions occurring in NaHCO3/Na2CO3 aqueous buffer solutions. 

 

Synthesis and formulation of chemically co-precipitated Co/Fe LDH was optimized to perform electrochemical cycling according 

to:  

𝑪𝒐𝟔
𝑰𝑰𝑭𝒆𝟐

𝑰𝑰𝑰(𝑶𝑯)𝟏𝟔(𝑪𝑶𝟑)𝟏,  𝒙 𝑯𝟐𝑶 + 𝟏 𝑪𝑶𝟑
𝟐−  𝑪𝒐 𝟒

𝑰𝑰𝑪𝒐𝟐
𝑰𝑰𝑰𝑭𝒆𝟐

𝑰𝑰𝑰(𝑶𝑯)𝟏𝟔(𝑪𝑶𝟑)𝟐, (𝐱 − 𝟑)𝐇𝟐𝐎 + 𝟐 𝒆− 

 

The charge modulation of the Co/Fe LDH via CoII oxidation and CoIII reduction respectively allows reversible 𝑪𝑶𝟑
𝟐− intercalation 

and deintercalation into/from the interlayer space, in agreement with a counterflux of three water molecules and reversible sheet 

collapsing and expensing. The percentage of electroactive Co ranges from 5 to 12%.The oxidation-reduction heterogeneous kinetic 

constant of the CoIII/CoII redox couple constituting the LDHs brucitic-like layers is 2.5 10-4 m/s (α = 0.6, β = 0.4).  

The mass transport coefficient of LDHs towards the electrode is 4.7210-5 m/s; the electrochemical oxidation and reduction 

constants of cobalt are respectively 1.4810-3 s-1 and 1.2710-3 s-1.  

Under optimal cycling conditions, the process efficiency, for one cycle of capture and release, is higher than 170 kg of CO2 per ton 

of LDH.  

This result suggests particularly interesting perspectives for the optimization of an electrolytically supported process of capture and 

release of CO2 using Co/Fe LDHs. 
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