Management, analysis, and visualisation of information in Scientific Infrastructures Architectural Patterns for web-based information processing
Rainer Haener, Martin Hammitzsch, Joachim Waechter

To cite this version:
Rainer Haener, Martin Hammitzsch, Joachim Waechter. Management, analysis, and visualisation of information in Scientific Infrastructures Architectural Patterns for web-based information processing, European Geosciences Union - General Assembly 2018, Apr 2018, Vienne, Austria. hal-03788473

HAL Id: hal-03788473
https://brgm.hal.science/hal-03788473
Submitted on 26 Sep 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Management, analysis, and visualisation of information in Scientific Infrastructures

Architectural Patterns for web-based information processing

Rainer Haener, Martin Hammitzsch, and Joachim Waechter
Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Potsdam, Germany
Overview and briefly introducing the European Plate Observing System (EPOS)

• Introduction and Challenges
• Establishing Collaboration & Interoperability
• Architectural Patterns & Design Principles
 • Semantic Enablement
 • Encoding
 • Integration & Communication
• Automation of Integration & Infrastructures
• Conclusion

• aims at creating a pan-European infrastructure for solid Earth-Science to support a safe and sustainable society.
• enables innovative multidisciplinary research for a better understanding of the Earth’s physical and chemical processes that control earthquakes, volcanic eruptions, ground instability, tsunami, and all those processes driving tectonics & Earth’s surface dynamics.
• allows scientists to make a step change in developing new geo-hazards and geo-resources concepts and Earth-Science applications to help address key societal challenges (through the integration of research infrastructures and data)
Challenge
Current developments in Scientific Infrastructures reveal ...

- a very high **variety** regarding **amount** and **kind** of data as well as

- a very high **degree** of **heterogeneity** concerning their **interfaces** provided by the data suppliers

... and also show a still present **lack of standardisation** concerning the encoding of data, metadata, and semantics due to a **proliferation** of domain & even application specific formats:

1. Well established: GML, Observations & Measurements, SensorML
2. Application Profiles: BoreholeML, GeoSciML, **GroundwaterML**, WaterML
3. Industrial: WITSML
A Lithology-Log encoded via **GroundwaterML**

```xml
<om:result xmlns:ns="http://www.opengis.net/gwml-well/2.2" xmlns:gml="http://www.opengis.net/gml/3.2"
xmlns:swe="http://www.opengis.net/swe/2.0" xmlns:xlink="http://www.w3.org/1999/xlink"
xsi:type="ns:GW_GeologyLogCoveragePropertyType">
  <ns:GW_GeologyLogCoverage gml:id="gwglc_pv1596478">
    <ns:element>
      <ns:LogValue>
        <ns:fromDepth>...</ns:fromDepth>
        <ns:toDepth>...</ns:toDepth>
        <ns:value>
          <swe:DataRecord>
            <swe:field name="earthMaterial">
              <swe:Text definition="http://www.opengis.net/def/gwml/2.0/observedProperty/earthMaterial">
                <swe:label>earthMaterial</swe:label>
                <swe:description>Lithology of the observed level</swe:description>
                <swe:value>clayey silt</swe:value>
              </swe:Text>
            </swe:field>
          </swe:DataRecord>
        </ns:value>
      </ns:LogValue>
    </ns:element>
  </ns:GW_GeologyLogCoverage>
</om:result>
```
A Lithology-Log encoded via **GroundwaterML** cont’d

```xml
<om:result xmlns:ns="http://www.opengis.net/gwml-well/2.2" xmlns:gml="http://www.opengis.net/gml/3.2"
xmlns:swe="http://www.opengis.net/swe/2.0" xmlns:xlink="http://www.w3.org/1999/xlink"
xsi:type="ns:GW_GeologyLogCoveragePropertyType">
  <ns:GW_GeologyLogCoverage gml:id="gwglc_pv1596478">
    <ns:element>
      <ns:LogValue>
        <ns:fromDepth>
          <swe:Quantity definition="fromDepth">
            <swe:label>fromDepth</swe:label>
            <swe:uom code="m" xlink:title="metre" xlink:href="#Meter"/>
            <swe:value>0.6</swe:value>
          </swe:Quantity>
        </ns:fromDepth>
        <ns:toDepth>...
          <ns:value>...
        </ns:value>
      </ns:LogValue>
      </ns:element>
    </ns:GW_GeologyLogCoverage>
  </om:result>
```
A Lithology-Log encoded via BoreholeML

```xml
  <bml:Interval>
    <bml:from uom="m">0.6</bml:from>
    <bml:to uom="m">2.1</bml:to>
    <bml:lithology>
      <bml:Lithology>
        <bml:rockName codeSpace="http://bml/codelists/RockNames">clayey silt</bml:rockName>
      </bml:Lithology>
    </bml:lithology>
    <bml:stratigraphy>
      <bml:Stratigraphy>
        <bml:chronoStratigraphy codeSpace="http://bml/codelists/ChronoStratigraphy">Q</bml:chronoStratigraphy>
        <bml:lithoStratigraphy>
          <gmd:LocalisedCharacterString>Quarternary</gmd:LocalisedCharacterString>
        </bml:lithoStratigraphy>
      </bml:Stratigraphy>
    </bml:stratigraphy>
  </bml:Interval>
</bml:layer>
```
Semantic Enablement, provided by a Registry establishing ...

1. Common understanding of the meaning of information exchanged
2. Discovery of Resources
3. Inferable knowledge (statements) about Resources
4. Domain Controlled Vocabularies (Dictionaries of Terms)
5. Further processing of information
6. Data Mining & Fusion (Correlation)

... across domain specific contexts
Collaboration & Interoperability

What does that mean?
Collaboration & Interoperability ...

- **Urban Planning**,
- Geotechnical Engineering,
- Climatology,
- Meteorology,
- Geology,
- Geography,
- Geophysics,
- Facility Management, and
- **Numerical Modelling**

... on the example of Risk Management
Establishing Collaboration & Interoperability

Collaboration in this context requires ...

- the **seamless & easy exchange** of information
- that information & resources can be **found** (discovered)
- that information can be **further processed**, and
- easily **utilised & integrated** into existing workflows

... not only across system, but also **across domain boundaries**
Reference Architecture

Semantics
Registry: Discovery of - and Access to Resources
Registry: Domain Controlled Vocabulary
Reference Architecture

Encoding
Design Implications regarding the specification of encodings (DbC) ...

1. **Strict separation** of Data, Metadata and Semantics

2. Use of a **small, reduced set of well-established & commonly accepted encodings**

3. Delegate responsibility and **re-use well-established standards** like GML or X3D for e.g., geometries

4. Favour **composition** over inheritance

5. Characterise **common elements** (e.g. measure) via attributes unlike naming the elements themselves

... on the example of **Subsurface & Risk Management**
Interoperability: Classification of Data & Encoding

- **Structure**
 - Charts, Tables
 - XML
 - JSON

- **Data**
 - CSV
 - O&M, GML, ...
 - X3D, SVG, ...

- **Metadata**
 - ISO 19115/19139
 - SensorML

- **Semantics**
 - RDF/XML, OWL, ...
 - ISO 19135
Correlation of Borehole Logs, Geological Models and Machine Learning

- Implicit Modelling
- Explicit Modelling
- Kriging
- Triangulation
- Neural Network Cluster Analysis

Source: Scientific Research
A Landslide, observed (numerically modelled)

<?xml version="1.0" encoding="UTF-8"?>
<om:OM_Observation gml:id="landslide">
 <om:procedure xlink:href="Modelling of Ground Instability"/>
 <om:observedProperty xlink:href="Landslide"/>
 <om:featureOfInterest xlink:href="Populated Mountainous Area"/>

 <om:result xlink:href="Link to Data">
 <gml:TriangulatedSurface gml:id="not of interest here">
 <gml:patches>
 <gml:Triangle>
 <gml:exterior>
 <gml:LinearRing>
 <gml:posList>0 1 1 2 3 5 8 13 21 34 55 89 144</gml:posList>
 </gml:LinearRing>
 </gml:exterior>
 </gml:Triangle>
 </gml:patches>
 </gml:TriangulatedSurface>
 </om:result>
</om:OM_Observation>
A Building, observed as well

```xml
<?xml version="1.0" encoding="UTF-8"?>
<om:OM_Observation gml:id="town">
  <om:procedure xlink:href="3D Scanner"/>
  <om:observedProperty xlink:href="Buildings"/>
  <om:featureOfInterest xlink:href="Town in area prone to Landslides"/>
  <om:result xlink:href="Link to Data">
    <gml:Surface gml:id="might not be of interest in our context">
      <gml:patches>
        <gml:PolygonPatch>
          <gml:exterior>
            <gml:LinearRing>
              <gml:posList>4 8 15 16 23 42</gml:posList>
            </gml:LinearRing>
          </gml:exterior>
        </gml:PolygonPatch>
      </gml:patches>
    </gml:Surface>
  </om:result>
</om:OM_Observation>
```
Reference Architecture
Integration & Communication
Design Principles regarding Integration & Communication Infrastructures ...

The patterns proposed, are based on the architectural paradigms for a functional integration of web resources:

1. Resource Oriented Architecture (ROA), based on Representational State Transfer (REST), and
2. Event-Driven Service-Oriented Architectures (SOA 2.0)

... on the example of Tsunami Early Warning
Tsunami Sources Submarine Earthquakes M > 7.0 (about 90 %)

But: only 20% of strong submarine quakes trigger Tsunamis!
Challenge Indian Ocean

To make matters worse, extremely exposed

Tectonic situation extremely prone to earthquakes

Travel times
... and the idea is ...

a comprehensive view of all phenomena that cause a tsunami and are related to it
Sensor Concept of the German Indonesian Tsunami Early Warning System (GITEWS)
GITEWS Sensors Deep Ocean Observation System (DOOS)
GITEWS Concept of Early Warning
Decision Support System (DSS)

Seismic Monitoring GPS Tide Gauges Ocean Bottom Units Buoys EO Data

Observations

Simulation

Assessment and Decision Support

- Local Authorities
- People at Risk
- Other national and international recipients

Source: Deutsches Zentrum für Luft und Raumfahrt e.V. (DLR)
Automation of Integration & Infrastructures

A Blueprint
Automation of Integration & Infrastructures ...

- Share pool of physical and/or virtual resources rather than deploying them locally
 - Provide pre-processed results (Resources), e.g., Simulation or Neural Networks
 - Establish Scientific Computing in Research Infrastructures
- Enable collaboration (Workflows) across domain and system boundaries
 - Provide & utilise standardised processing algorithms (Functionality, Services)
 - Establish Virtual Research Environments

... on the example of the TRIDEC Cloud
ROA and SOA 2.0 as workflow engine

Service Bus (REST and SOAP)

Get
Consume

Processing Workflow

Post
Publish

A
ctors and (Event-) Streams

Response → Request

Request → Response

Publish
Consume

data/result series

result/data series

Diagram based on the Fundamental Modelling Concept (FMC)

Adapted from Presentation EGU 2018, ESSI2.6
Establishing Interoperability on the basis of conversations (Design by Contract)
Workflow Automation (Choreography), REST & SOA

Sensor Network → Data Mining & Fusion → Processing Client → Early Warning System

- Sensor Network: publish sensor data
- Data Mining & Fusion: consume & process sensor data, models, publish risk assessment
- Processing Client: consume & process risk assessment, publish warnings
- Early Warning System

Diagram based on the Business Process Model Notation (BPMN) Adapted from Presentation EGU 2018, ESSI2.6
Reference Architecture for Scientific Infrastructures

- **Scientists**
 - Graphical User Interfaces & Visualisation
 - Standardised Protocols & Encoding
- **Business Logic Integration Platform**
 - Scientific Integration, Workflow- and Event-Processing
 - Standardised Protocols & Encoding
- **Cloud & Computing Platform (PAAS/IAAS/SAAS)**
 - 2D/3D/4D Visualisation
 - Download/Publishing
 - Map, Catalog, Feature
 - Events/Warnings
- **Service & Event Platform**
 - Data & Model Management
 - Knowledge Management
 - Scientific Processing (Mining & Fusion)
 - Monitoring

Resources
- Domain Data & Models
- Ontologies & Vocabularies
- Metadata
- Sensors
SOA Principles & REST API in the TRIDEC Cloud

- REST: GET data
 - Embed resources like pre-processed maps, events, and notifications
 - Integration in – and automation of workflows
 - Embed for further use in any other system
 - Processing workflow composition and automation

- REST: POST data
 - Publish simulation & modelling results, and latest processed events
 - Distributed Event Detection and Processing
 - Publish (historic) archives of earthquakes and sea level measurements
 - Integration in – and automation of workflows

- SOA: Complex Event Processing and Composable Web Services
 - Get (be notified) and embed data automatically
 - Distributed Event Detection and Processing
 - Publish and Monitor (access) sensor events and simulation results
 - Sensor Web Technology, Integration into workflows
 - Start simulation or analysis processes (instantly) via REST as well
 - Distributed and web-based geo-processing
Thank you for your attention

Rainer Häner (rainer.haener@gfz-potsdam.de)
Helmholtz Centre Potsdam GFZ (German Research Centre for Geosciences)
eScience Centre

Simulation

• Forecasts of the potential propagation of a tsunami
 • Tsunami travel times (TTT),
 • Estimated times of arrivals (ETA),
 • Wave jets and estimated wave heights (EWH/SSH), and
 • Mareograms

• Visualization of isochrones and tsunami-jets

• Analysis of time series

• Processing of tsunami forecast points (TFP) and tsunami forecast zones (CFZ) for further use, e.g. for generating warning messages
Interactive Visualisation of the Gravity Field
Gravity Field (Height Anomaly)
Approximated Geological Structure, Chile
Earthquakes: Spatial Cluster Analysis, Chile
Earthquakes: Hexagonal Binning, Heatmap, Features
GNSS: Displacement Vector ("Wind-Rose") based on CGPS
Subsurface Management: Lithology-Log
Subsurface Management: Tertiary Basis Brandenburg
Subsurface Management: Borehole Geometry