OGC ELFIE

Objectives:

• Demonstrate integration of environmental observation data with domain features (ReSTful and Linked Data principles)

• Prepare OGC engineering report on interlinkages identified between observation data and domain features ○ Data provisioning technically simpler for the WFS 2.0 and the upcoming WFS3 server applications.

Simple, Interoperable GML + GeoJSON

• Simplified encodings for the O&M 2.0 Observation model compliant with the GML Simple Features Profile 2.0 and the GeoJSON specification (IETF RFC 7946)

• Follows the O&M model structure and property naming as far as possible, some properties split to keep the encoding flat.

○ GML encoding uses SF-0 when possible, SF-1 when necessary (like repeated properties for timeseries).

○ GeoJSON encoding uses the standard "properties" object for the O&M properties, interoperable plain GeoJSON.

• A WFS3 server for serving these encodings is being implemented in a Vaisala/Finnish Meteorological Institute co-funded PoC project.

• More info at https://github.com/opengeospatial/omsf-profile • Independent of the APIs to be used for providing the data ○ The sama data encoding to be used for WFS 2.0, Atom etc.

 : "http://sws.geonames.org/843429/about.rdf", "unitOfMeasureName": "Degree Celsius", "unitOfMeasureReference": "http://www.opengis.net/def/uom/UCUM/degC" "http://xml.fmi.fi/process/met-surface-observations" xlink:title="Surface observations" /> <omsf:observedProperty xlink:href="http://vocab.nerc.ac.uk/collection/P07/current/CFSN0023/" xlink:title="air_temperature" /> <omsf:geometry> <gml:Point gml:id="p-1" srsName="http://www.opengis.net/def/crs/EPSG/0/4258" srsDimension="2"http://sws.geonames.org/843429/about.rdf"

2017-08-17T12:00:00Z", "resultTime": "2017-08-17T12:01:25Z", "usedProcedureName": "Meteorological surface observations", "usedProcedureReference": "http://xml.fmi.fi/process/met-surface-observations", "observedPropertyName": "Air temperature", "observedPropertyReference

 Designed to be easily usable by application developers, flat data structure, simple property values. • Strong standard basis in the ISO 19156 (Observations & Measurements).

	OMSF GeoJSON Example (MeasureObservation) Part 2. O&M clinic Issue / problem Cure: O&M Simple Feature encodings
	• How to provide simple, O&M based data in a format that's directly usable by existing, generic GIS client applications / libraries?
	• Can I use my existing server software / files-based access (WFS 2.0, Atom etc.)?
	• Can I also use it with WFS3 in the future?

{

"type": "Feature", "id": "f-1", "geometry": { "type": "Point", "coordinates": [24.96131, 60.20307] }, "properties": { "observationType": "MeasureObservation", "phenomenonTime": "": "http://vocab.nerc.ac.uk/collection/P07/current/CFSN0023/", "ultimateFeatureOfInterestName": "Helsinki Kumpula", "ultimateFeatureOfInterestReference": "http://sws.geonames.org/843429/about.rdf", "unitOfMeasureName": "Degree Celsius", "unitOfMeasureReference": "http://www.opengis.net/def/uom/UCUM/degC" "result": 12.5

•

WFS3 PoC Design & Technologies

• Common core server delegating to runtime-integrated backend modules. Implementation is based on node.js (using Google's V8 high-performance JavaScript engine). • TypeScript likely to be used for coding the core (automatically compiled into portable JavaScript). • Core server code licenced under a permissible open source license.

• Docker images to be provided for simple deployment.

• The implementation started in the end of August 2018, the first public release expected in Dec 2018. • Code, documentation and issues available at https://github.com/spatineo/sofp-core (may change yet).

FROST-server

• Complete SensorThings API implementation How everything fits together

Many commonalities

All examples are based on the same abstract model (O&M) JSON is increasingly the preferred data encoding RESTful approach (incl. groupings of observations -Offering, Datatream, data-specific api endpoint)

Need help with your observation data? Ask us … THANK YOU!