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Uncertainty propagation in pore 
water chemical composition 
calculation using surrogate models
Pierre Sochala1,2*, Christophe Chiaberge2, Francis Claret2 & Christophe Tournassat3,4

Performance assessment in deep geological nuclear waste repository systems necessitates an 
extended knowledge of the pore water chemical conditions prevailing in host-rock formations. In 
the last two decades, important progress has been made in the experimental characterization and 
thermodynamic modeling of pore water speciation, but the influence of experimental artifacts 
and uncertainties of thermodynamic input parameters are seldom evaluated. In this respect, we 
conducted an uncertainty propagation study in a reference geochemical model describing the pore 
water chemistry of the Callovian-Oxfordian clay formation. Nineteen model input parameters were 
perturbed, including those associated to experimental characterization (leached anions, exchanged 
cations, cation exchange selectivity coefficients) and those associated to generic thermodynamic 
databases (solubilities). A set of 13 quantities of interest were studied by the use of polynomial chaos 
expansions built non-intrusively with a least-squares forward stepwise regression approach. Training 
and validation sets of simulations were carried out using the geochemical speciation code PHREEQC. 
The statistical results explored the marginal distribution of each quantity of interest, their bivariate 
correlations as well as their global sensitivity indices. The influence of the assumed distributions for 
input parameters uncertainties was evaluated by considering two parametric domain sizes.

Knowledge of pore water chemical composition is crucial for the building of nuclear waste repository perfor-
mance  assessments1. First, pore water chemical composition controls radionuclides solubility and adsorption 
properties on geological and engineered materials. Second, pore water chemical composition influences the 
transport and mechanical properties of clayey materials, which are essential constituents of existing multi-barrier 
 concepts2. Third, pore water chemical composition dictates the nature and kinetics of chemical alteration pro-
cesses of repository exogenous materials, such as concrete and nuclear  glass3. But pore water chemical compo-
sition models contain a significant number of input parameters, exhibit strong nonlinearities, and have tightly 
coupled output results. For these reasons, it is difficult to estimate uncertainties on each of the input parameters 
and to evaluate the uncertainties of the model outputs, using e.g. error propagation methods. A direct sampling 
of clay pore water that retains the main characteristics representative of in situ conditions is particularly complex 
because of a range of side reactions taking place during sampling  procedures4. Consequently, confidence in the 
knowledge of pore water chemical composition must be built on a consistent combination of several factors, 
which includes in situ seepage water collection and characterization, experimental water rock interactions results, 
and geochemical modeling results linking observations about solid material composition and reactivity with 
quantitative thermo-kinetic  concepts5. While considerable effort with this experimental and modeling coupled 
approach enabled to produce predictive models for claystone pore water chemical composition that are consistent 
with experimental characterization, little attention has been directed to evaluate the model output uncertainties 
induced by input parameters uncertainties. Indeed, although the treatment of uncertainties in the performance 
assessment of geologic high-level radioactive waste repositories is recognized as an important topic for more 
than three  decades6, most of the studies focus on uncertainties related to retention  processes7. Using Monte Carlo 
methods, the effects of database parameter uncertainty have been evidenced on geochemical equilibrium calcula-
tions but limited to very simple (as stated by the authors) modeling  scenarios8. The goal of the present study is 
the implementation of a methodology based on surrogate models designed to propagate parametric uncertainties 
into a pore water chemical composition model with a moderate number of input parameters (around twenty).

Propagation of uncertainty gained wide popularity in many geosciences  disciplines9–12. Its principle consists 
in perturbing a set of input parameters and then estimating the ensuing effects on the output quantities. The 
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interest of such statistical framework is to produce richer and more useful information than a single determin-
istic simulation can deliver. Parametric uncertainty analyses in geochemistry are motivated by different sources 
of uncertainty such as reaction kinetic rate constants, thermodynamic constants (e.g. solubility and aqueous 
complex formation constants), initial and boundary conditions, and transport  properties13–16. Among available 
approaches, surrogate models have the advantage of providing a fast approximation everywhere in the parametric 
domain from a small ensemble of simulations, whereas Monte-Carlo techniques evaluate the direct model for 
a finite number of samples and require a large ensemble to achieve the convergence of the statistical estimators.

In this study, we are interested in using a surrogate model approach to propagate uncertainty into a pore 
water chemical composition model of the Callovian-Oxfordian (COx) clay formation in the Paris Basin (France), 
which has been the target of many studies investigating the feasibility of deep nuclear waste  repository17. First, 
we briefly summarize the geochemical model and the parametric domain on which statistical approximations of 
the different quantities of interest (QoI) were built. Second, we describe the construction and validation of the 
surrogate models, with a Polynomial Chaos (PC) method and an orthogonal matching pursuit procedure, which 
are particularly efficient if the QoI exhibit smooth variations when the uncertain inputs vary. At last, we focus 
discussion on moments, marginal distributions, correlations and joint distributions as well as on global sensi-
tivity indices, which quantify the influence of the input parameter distributions onto the variance of the QoIs.

Framework
Pore water composition model. The estimation of pore water chemical composition in the COx claystone 
relies on a geochemical model, of which complete description can be found  in4. The model is briefly presented 
and made available in the form of a  PHREEQC18 input file and its associated database (THERMOCHIMIE 
 v9b19) in the supplementary information file. The complete list of pore water chemical composition model input 
parameters are: Cl− and SO2−

4  total concentration obtained from core sample leaching measurements; measured 
sodium Na+ , potassium K+ , calcium Ca2+ , magnesium Mg2+ , and strontium Sr2+ exchangeable concentrations; 
related Na+/K+ , Na+/Ca2+ , Na+/Mg2+ , Na+/Sr2+ cation exchange selectivity coefficients; and solubilities of 
Celestite, Calcite, Dolomite, Goethite, Quartz, Pyrite, Ripidolite, and Illite (corresponding to illite_Imt-2 of the 
database). The reference values of these N = 19 parameters are reported in Table 1.

Uncertainty model. Once the uncertain input parameters have been identified, the next step is to 
determine their statistical distributions. For a scalar parameter, it consists of specifying a range (or support) 
and an associated probability density function. The N uncertain inputs were collected into a random vector 
ξ = (ξ1, . . . , ξN ) ∈ � ⊂ R

N whose components ξi were assumed to be independent and uniformly distributed 
over the range [ξ−i , ξ+i ] , namely

(1)ξi ∼ U
(
ξ−i , ξ+i

)
, ξi ⊥ ξj if i �= j.

Table 1.  List of the 19 uncertain input parameters with their reference values µ (unperturbed state of the 
geochemical model).

# Type Species Unit µ

1
Leached parameter

Cl− mmol L−1 41

2 SO2−
4 mmol L−1 66

3

Exchanged cation

Na+ mol L−1 1.0824

4 K+ mol L−1 0.417

5 Ca2+ mol L−1 1.549

6 Mg2+ mol L−1 0.602

7 Sr2+ mol L−1 0.0737

8

Selectivity coefficients ( logKex value)

Na+/K+ – 1.2

9 Na+/Ca2+ – 0.7

10 Na+/Mg2+ – 0.7

11 Na+/Sr2+ – 0.6

12

Solubility ( logK value)

Celestite – −6.62

13 Calcite – −8.48

14 Dolomite – −17.12

15 Goethite – 0.39

16 Quartz – −3.74

17 Pyrithe – −58.78

18 Ripidolite – 61.35

19 Illite – 11.54
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The assumption of independence implies that the joint distribution pξ of the vector ξ and therefore its range 
� factorizes to

In case of a uniform distribution, the probability density function of each parameter ξi is defined as

The extreme values ξ−i  and ξ+i  of the ith parameter are defined as

where the mean µi = E(ξi) corresponds here to the reference value indicated in Table 1 and the standard devia-
tion σi =

√
V(ξi) is reported in Table 2. Recall that the mean E(·) and the variance V(·) of a random variable u 

are defined as

We have chosen the uniform distribution since it is the maximum entropy  distribution20,21 among all con-
tinuous distributions which are supported in a given finite range. The maximum entropy distribution is often 
preferred because it represents the least informative distribution but other types of distributions can be adopted. 
Two cases were considered in order to investigate the effect of the amplitude of perturbations around the reference 
values onto the uncertainty of the QoIs. Hereafter, these cases are referred to as the “small range case” and “large 
range case”, respectively. Each parameter range of the latter case is twice the range of the former case, implying 
from Eq. (2) that the measure (or area) of the parametric domain � in the large range case is 2N ≃ 5 · 105 times 
higher than in the small range case.

Quantities of interest. We are interested in pH , pe+ pH where pe is the redox potential, total aqueous 
concentrations of sodium ( Na+ ), potassium ( K+ ), calcium ( Ca2+ ), magnesium ( Mg2+ ), strontium ( Sr2+ ), iron 

(2)pξ (ξ) =
N∏

i=1

pξi (ξi; ξ
−
i , ξ+i ) and � =

N∏

i=1

[
ξ−i , ξ+i

]
.

(3)pξi (ξi; ξ
−
i , ξ+i ) :=

{
1/(ξ+i − ξ−i ), ξi ∈

[
ξ−i , ξ+i

]
,

0, otherwise.

(4)ξ−i = µi −
√
3σi and ξ+i = µi +

√
3σi ,

(5)E(u) :=
∫

�

u(ξ)pξ (ξ)dξ ,

(6)V(u) := E
[
(u− E(u))2

]
.

Table 2.  Standard deviation σ , minimal value ξ− and maximal value ξ+ of the 19 uncertain input parameters 
for the small range case and the large range case.

Species

Small range case Large range case

σ ξ− ξ+ σ ξ− ξ+

Cl− 2.05 (5%) 37.4 44.6 4.10 (10%) 33.9 48.1

SO2−
4

3.30 (5%) 60.3 71.7 6.60 (10%) 54.6 77.4

Na+ 0.05 (5%) 0.99 1.17 0.1 (10%) 0.91 1.25

K+ 0.02 (5%) 0.38 0.45 0.04 (10%) 0.35 0.49

Ca2+ 0.08 (5%) 1.41 1.69 0.16 (10%) 1.27 1.83

Mg2+ 0.03 (5%) 0.55 0.65 0.06 (10%) 0.50 0.70

Sr2+ 0.04 (5%) 0.067 0.081 0.08 (10%) 0.06 0.088

Na+/K+ 0.1 (8%) 1.03 1.37 0.2 (16%) 0.85 1.55

Na+/Ca2+ 0.1 (14%) 0.53 0.87 0.2 (28%) 0.35 1.05

Na+/Mg2+ 0.1 (14%) 0.53 0.87 0.2 (28%) 0.35 1.05

Na+/Sr2+ 0.1 (17%) 0.43 0.77 0.2 (34%) 0.25 0.95

Celestite 0.05 −6.71 −6.53 0.1 −6.79 −6.45

Calcite 0.05 −8.57 −8.39 0.1 −8.65 −8.31

Dolomite 0.2 −17.5 −16.8 0.4 −17.8 −16.4

Goethite 0.2 0.044 0.74 0.4 −0.30 1.08

Quartz 0.05 −3.83 −3.65 0.1 −3.91 −3.57

Pyrite 0.2 −59.1 −58.4 0.4 −59.5 −58.1

Ripidolite 0.5 60.5 62.2 1 59.6 63.1

Illite 0.5 10.7 12.4 1 9.81 13.3
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( Fe ), silicium ( Si ), aluminum ( Al ), sulphate ( S(VI) ) and sulfur ( S(−II) ), as well as the log10 of CO2 partial pres-
sure log10 pCO2 . The set of these N = 13 QoI is denoted U,

Surrogate model
The non-intrusive construction of a surrogate model relies on a training set X := {ξ (m)} that samples 
the parametric domain. The corresponding outputs were computed using PHREEQC, and we obtained 
U := {u(m) := u(ξ (m))} for each u ∈ U . The input-output relations ξ (m) → u(m) were then exploited to build 
an approximation of u over the whole parametric domain. Several families of methods have been developed 
over the past decades to construct surrogate models including Gaussian  processes22 and (possibly deep) neural 
 networks23. In this study, in which 19 input parameters were perturbed, we chose polynomial chaos  surrogates24,25 
for their relatively low computational costs of construction in moderate dimensional case. In this section, after a 
brief description of PC expansions and a short reminder on the least squares method, we present the orthogonal 
matching pursuit procedure as well as the validation of the surrogate models.

Polynomial chaos. Any random variable u with finite variance can be approximated by a spectral 
 expansion26,27 of the form

where {uk} is the set of spectral coefficients of uK and {φk(ξ)} is a complete orthogonal set constituting a basis 
of L2(�, pξ ) . The φk(ξ) are N-variate Legendre polynomials for uniform distributions as is the case here. Each 
multivariate polynomial is defined by an integer-valued multi-index k = (k1, . . . , kN ) ∈ N

N where ki is the poly-
nomial degree associated to the ith variable ξi . The truncated PC expansion (8) is then defined using a finite set 
K of multi-indices and we denote Nb :=

∣∣K
∣∣ the PC basis dimension. Sets of multi-indices are often chosen by 

prescribing a maximal degree d◦ leading to

Least squares method is an efficient approach to estimate the spectral coefficients but cannot be applied if 
the sample size M is much lower than the PC basis dimension Nb . In this case, more advanced methods are used 
to produce sparse PC.

Ordinary least squares. A first way of estimating the spectral coefficients of a PC expansion is to use the 
Ordinary Least Squares (OLS) method that consists of minimizing the squared norm of the residual,

where A ∈ R
M,Nb is the matrix of basis functions φk(ξ (m)) , u ∈ R

Nb collects the spectral coefficients uk and 
u ∈ R

M is the vector of model output u(ξ (m)) . The solution of the minimization problem (10) satisfies the system 
of normal equations

provided that the matrix A⊤A is invertible.

Orthogonal matching pursuit. When dealing with high dimensional case, sparse approximation theory 
has been developed for finding solutions to underdetermined linear systems under sparsity constraint. Such 
parsimonious solutions can be justified by the sparsity-of-effects principle stating that most models are usually 
dominated by main effects and low-order  interactions28. This principle is illustrated in PC by sparse expansions 
in which most of the coefficients are zeroes.

Numerous algorithms have been developed recently for the computation of sparse PC expansions  (see29 for 
a review of the existing methods). We relied here on the Orthogonal Matching Pursuit (OMP) method that is a 
classical greedy algorithm to select a set of active basis functions among a large set (or dictionary) of functions. 
Initially developed in signal  processing30, the matching pursuit algorithm starts with an empty approximation 
and adds sequentially the most correlated basis function to the current residual. The index γ k of the new basis 
function satisfies (for k ≥ 1),

where dj ∈ R
M is the j-th column of the dictionary D and rk−1 ∈ R

M the current residual. The orthogonal ver-
sion of the  method31 computes the coefficients of the approximation to ensure that the residual is orthogonal to 
the span of the active functions,

(7)U :=
{
pH, pe+ pH,Na+, K+, Ca2+,Mg2+, Sr2+, Fe, Si, Al, S(VI), S(−II), log10 pCO2

}
.

(8)uK(ξ) =
∑

k∈K
ukφk(ξ),

(9)K(d◦) =
{
k ∈ N

N , �k�1 ≤ d◦
}

and Nb(d
◦) =

(N + d◦)!
N !d◦!

.

(10)min
u

�Au− u�22,

(11)A⊤Au = A⊤
u,

(12)γ k = argmax
j

(∣∣∣d⊤
j r

k−1
∣∣∣
)
,
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where Ak ∈ R
M,k is the matrix of the active basis functions at iteration k. The OMP method is a least-squares for-

ward stepwise regression approach that can be easily implemented (see Supplementary material for the detailed 
algorithm). Several criteria are possible to stop the iterations, such as the residual norm or cross-validation 
errors. Here, we compute every ten iterations (until 1500) the Mean Squared Error (MSE) using a validation set 
X∗ of M∗ realizations, MSE :=

∑
ξ∈X∗

(
u
(
ξ
)
− uK

(
ξ
))2

/M∗, and then select the number of active functions 
that minimizes the MSE.

Validation. We assessed and compared the PC expansions computed using either the OLS or OMP methods. 
Except for pH , pe+ pH, S(VI) and log10 pCO2 , a logarithmic transformation improved the surrogate approxima-
tions. Indeed, the log variables exhibited smoother dependences with respect to the uncertain input parameters 
than the original ones, and their use reduced the approximation errors of the original variables. In practice, the 
change of variable is trivial and consists of (i) building a PC expansion vK(ξ) of v(ξ) := log(u(ξ)) using the set 
V of logarithmically transformed outputs

and (ii) applying the backward transformation to retrieve the original variables

The PC expansions were built with a training set X of M = 104 Monte-Carlo realizations and their errors were 
estimated using an independent validation set X∗ of M∗ = 104 Monte-Carlo realizations. The accuracy of four PC 
expansions were compared with three obtained with the OLS method in which different maximal degrees were 
used d◦ = 1, 2, 3 , and one obtained with the OMP using a dictionary of Nb(5) = 42504 functions. The number 
of PC basis functions for the OLS method is Nb(1) = 21 , Nb(2) = 210 , Nb(3) = 1540 while the number of active 
functions retained in the OMP method depends on the QoI and is reported in Table 3.

Two error metrics were used to estimate the accuracy of the approximations (Fig. 1): the root mean squared 
error normalized by the empirical variance V̂X∗(·) of the QoI,

and the root mean squared relative error,

The global normalization of error e1 allows to express the approximation error of the QoI in comparison with 
its uncertainty level whereas the local normalization of error e2 is suitable when the approximation error and/or 
the QoI have different magnitudes across the parametric domain. The error levels obtained for the large range 
case were higher than for the small range case (roughly one order of magnitude) because large variations of input 
parameters induced more complex dependencies in geochemical reactions. As expected, the errors associated 
with the OLS method decreased when the maximal degree increased since the addition of higher order terms 
improved the approximations of the stochastic nonlinearities. A further increase of the maximal degree was not 
an option to reduce the error because the number of basis functions Nb(4) = 8855 was too close to the sample 
size M = 104 , thereby producing an ill-conditioned matrix A⊤A in (11). On the contrary, the PC expansions 
obtained by the OMP method exhibited a higher accuracy and a lower number of terms (Table 3). Therefore, in 
subsequent analyses, we used the OMP surrogate models for which the error level was at most 1% for e1 and 0.5% 
for e2 in the small range case and 10% for e1 and 7% for e2 in the large range case. Lastly, we note that the input 
parameters distributions can be changed retroactively on a subset of the parametric domain provided that the 
surrogate model error is sufficiently low over this subset.

(13)
(
Ak

)⊤
Ak

u
k =

(
Ak

)⊤
u,

(14)V :=
{
v(m) := log

(
u(m)

)}
,

(15)uK(ξ) := exp
(
vK(ξ)

)
.

(16)e1 :=



 1

M∗

�

ξ∈X∗

�
u
�
ξ
�
− uK

�
ξ
��2

�VX∗(u)




1/2

,

(17)e2 :=



 1

M∗

�

ξ∈X∗

�
u
�
ξ
�
− uK

�
ξ
�

u
�
ξ
�

�2



1/2

.

Table 3.  Number of terms retained in the OMP method for each QoI.

QoI # 1 2 3 4 5 6 7 8 9 10 11 12 13

Small range case 320 530 820 860 380 460 1130 420 1210 640 1170 960 190

Large range case 320 490 640 790 530 460 820 370 780 820 890 900 180
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Results and discussion
A direct exploitation of the PC coefficients was not feasible because of the logarithmic transformation. Statistical 
information were then derived promptly from extensive samplings of the surrogate models. We processed each 
QoI individually by studying their moments and marginal distributions. We then computed the correlations 
and plotted the joint distributions of the most correlated pairs of QoI. In closing, a global sensitivity analysis was 
carried out in order to rank the contribution of the uncertain input parameters onto the variance of each QoI.

Moments. The empirical estimators of the mean µ , the standard deviation σ and the coefficient of variation 
cv = σ/µ of each QoI (Table 4) were obtained from a set Y of N = 106 Monte-Carlo realizations of the surrogate 
models,

For most QoI, mean values and standard deviations had the same characteristics as the uncertain input 
parameters for the large and small range cases, i.e. the means were roughly identical while the standard devia-
tions were multiplied by a factor 2. Iron and Aluminum concentrations were an exception because their mean 
were respectively 4 (Fe) and 1.7 (Al) times higher for the large range case than for the small range case. The ratio 
is 13 (Fe) and 3.5 (Al) for their standard deviation. Except for Al in the small range case, their standard devia-
tions were larger than their mean values, pointing out a high dependence of Al and Fe concentrations to input 
model parameters variations. Low concentration of these two elements and a tight coupling of solubility controls 
exerted by two mineral phases, Ripidolite and Illite, for which the chosen uncertainty on solubility products 
were the highest, explained these findings (Table 2). On the contrary, pH values were remarkably stable despite 
the complex coupled control on this parameter exerted by many phases in the  system5, thus showing a strong 
thermodynamic buffering of this parameter by the mineralogical assemblage.

(18)�µ = �E(uK) :=
1

N

�

ξ∈Y
uK(ξ) and �σ :=



 1

N − 1

�

ξ∈Y

�
uK(ξ)− �µ

�2



1/2

.

Figure 1.  Validation errors for different PC expansions.
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Marginal distributions. Small range case results exhibited three types of empirical marginal distribution 
profiles (Fig. 2): bell-shaped distributions for pH , pe+ pH (not shown), Na+ , K+ , Ca2+ , Mg2+ , Sr2+ , S(VI) , and 
log10 pCO2 ; right-skewed distributions for Al , S(−II) , and Fe ; and a piecewise linear distribution for Si . Large 
range case results led to a flattening of the distributions (except for Fe ), which was coherent with variances 
increase. The shape of a distribution can be described by skewness s and kurtosis k that are defined as the third 
and fourth standardized moments, respectively. The empirical estimators of s and k, indicated in Table 4, are

The skewness of a distribution measures its asymmetry and a distribution is commonly said to be fairly sym-
metrical if |s| ≤ 1/2 , moderately skewed if 1/2 ≤ |s| ≤ 1 and highly skewed if |s| ≥ 1 . In the small range case, we 
observed a slight asymmetry for Ca2+ and Mg2+ and a high asymmetry for Al , S(−II) , and Fe . In the large range 
case, the asymmetry became important for all the QoIs except for pH , pH+ pe , Si and log10 pCO2 . The kurtosis 
of a distribution measures the combined weight of the tails relative to the rest of the distribution. It is common to 
compare the kurtosis to 3 which is the kurtosis of a normal distribution; a high kurtosis ( k > 3 ) indicates heavy 
tails while low kurtosis ( k < 3 ) denotes light tails. In the small range case, the kurtosis is between 2 and 4 except 
for Fe and S(−II) which have strong heavy-tailed distributions and Si due to its piecewise linear distribution. In 
the large range case, we observed that the kurtosis of each distribution increases substantially (except for pH , 
pH+ pe , Si and log10 pCO2 ), meaning that the heaviness of the tails grows in importance. We noted that Fe was 
the only quantity of which the distribution was more peaked for the larger parametric domain; the mean values 
obtained with each of these cases were significantly different but the medians were very close (Fig. 2).

Linear correlations. Linear correlation between two random variables u and v were measured with the 
Pearson’s correlation coefficient r(u, v) ∈ [−1, 1] defined as follows

where Cov(u, v) := E[(u− E(u))(v − E(v))] is the covariance between u and v. The square of Pearson’s coeffi-
cient is the coefficient of determination R2(u, v) := r(u, v)2 ∈ [0, 1] , which represents the percentage of variation 
of u due to a linear variation of v.

Empirical estimates of r(u, v) and R2(u, v) are plotted on Fig. 3 in which the lower (resp. upper) parts of the 
matrices correspond to the small (resp. large) range case. Three pairs presented a particularly strong correlation 
regardless of the parametric domain size: the pairs (pH, pe+ pH) and (pH, log10 pCO2) were negatively correlated 
with R2 = 88% and R2 = 97% respectively, whereas the pair (pe+ pH, log10 pCO2) was positively correlated with 
R2 = 80% . The (pH, log10 pCO2) pair correlation can be understood by noting that the standard deviation of Ca2+ 
concentration (Table 2) was small compared to its mean value (Table 1) and that the log10 pCO2 value is directly 
related to pH by the Calcite equilibrium reaction. The correlation in the pair (pH, pe+ pH) cannot be explained 
by the known negative correlation of the pair (pe, pH) at constant dioxygen or dihydrogen fugacity through 
corresponding Nernst’s equation, which results in a −1 slope in the pe− pH diagram representation: the QoI 
transformation from pe to pe+ pH was indeed meant to suppress this correlation. Consequently, the observed 
negative correlation must be attributed to particular equilibrium reactions. Goethite equilibrium, the reaction 
of which results in a −3 slope in a pe− pH diagram, may explain the observed correlation.

(19)ŝ :=
Ê

[(
uK(ξ)− µ̂

)3]

σ̂ 3
and k̂ :=

Ê

[(
uK(ξ)− µ̂

)4]

σ̂ 4
.

(20)r(u, v) :=
Cov(u, v)

σ (u)σ (v)
,

Table 4.  Empirical mean µ̂ , standard deviation σ̂ , skewness ŝ  , kurtosis k̂ and coefficient of variation ĉv 
estimated with 106 realizations of the surrogate models.

QoI

Small range case Large range case

µ̂ σ̂ ŝ k̂ ĉv [%] µ̂ σ̂ ŝ k̂ ĉv [%]

pH 7.17 0.20 −0.004 2.66 3 7.19 0.39 −0.03 2.68 5

pe+ pH 4.20 6.13 · 10−2 0.043 2.79 1.5 4.20 1.26 · 10−1 0.17 2.97 3

Na+ 4.29 · 10−2 3.05 · 10−3 0.2 2.93 7 4.43 · 10−2 7.07 · 10−3 0.94 5.85 16

K+ 1.04 · 10−3 2.50 · 10−4 0.38 2.27 24 1.17 · 10−3 5.75 · 10−4 0.92 3.85 49

Ca2+ 8.46 · 10−3 2.21 · 10−3 0.52 3.16 26 9.33 · 10−3 4.80 · 10−3 1.48 7.89 51

Mg2+ 5.91 · 10−3 2.14 · 10−3 0.62 3.13 36 6.68 · 10−3 5.06 · 10−3 2.61 21.0 76

Sr2+ 2.10 · 10−4 2.87 · 10−5 0.45 3.08 14 2.17 · 10−4 6.42 · 10−5 1.05 4.95 30

Fe 4.59 · 10−5 5.48 · 10−5 3.33 20.0 119 1.85 · 10−4 6.99 · 10−4 13.1 319.0 378

Si 1.83 · 10−4 2.11 · 10−5 0.14 1.83 12 1.87 · 10−4 4.29 · 10−5 0.28 1.89 23

Al 9.34 · 10−8 5.25 · 10−8 1.05 3.83 56 1.55 · 10−7 1.83 · 10−7 2.38 10.9 117

S(VI) 1.46 · 10−2 3.00 · 10−3 0.32 2.84 21 1.66 · 10−2 8.63 · 10−3 2.43 18.3 52

S(−II) 7.50 · 10−10 3.93 · 10−10 1.80 8.15 52 1.31 · 10−9 1.84 · 10−9 5.65 62.2 141

log10 pCO2 −2.07 0.41 −0.014 2.66 −20 −2.11 0.79 −0.058 2.62 −38
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Four pairs had a moderate correlation for the small range case that significantly decreased for the large 
range case: the pairs (pH, Fe) and (pe+ pH, S(−II)) were negatively correlated with R2 = 57% and R2 = 70% . 
The correlation is well explained by the sensitivity of S(−II) and Fe concentration to redox conditions. The 
pairs (Fe, log10 pCO2) and (pe+ pH, Fe) were positively correlated with R2 = 53% and R2 = 60% . Inversely, the 
correlation of some pairs involving S(VI) was higher for the large range case: (Fe, S(VI)) , (Ca2+, S(VI)) , and 
(Mg2+, S(VI)) with R2 = 46% , R2 = 42% , and R2 = 40% , respectively (instead of 0.5% , 35% , and 19% for the 
small range case). These observations can be related to the charge balance requirement in aqueous solution during 
the calculation. In the model, Na+ and Cl− total concentrations (aqueous + exchange) are stabilized at their final 
values before the reaction step with minerals. Mineral phases exert no further control on their concentrations. 
Hence, a variation of S(VI) concentration, which is the second major anion in solution, must be compensated 
by an equivalent variation of cations concentrations to fulfill solution electroneutrality. This compensation is 
mostly achieved by Ca2+ , Mg2+ , and Fe because Na+ total concentration is fixed by the amount available on the 

Figure 2.  Marginal distributions and means of the QoI for the small range case (black curves) and the 
large range case (blue curves) estimated with 106 realizations of the surrogate models and the kernel density 
estimation  method32.
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cation exchanger, and because Sr2+ concentration is controlled by Celestite solubility, which is itself linked to 
S(VI) concentration.

Bivariate distributions. The shapes of the isolines contours of the most correlated pairs of QoI ( R2 > 50% ) 
were clearly consistent with the sign of the correlation coefficient (Fig.  4), namely negative for the pairs 
(pH, log10 pCO2) , (pH, Fe) , (pe+ pH, S(−II)) and positive for the pairs (pe+ pH, log10 pCO2) , (Fe, log10 pCO2) , 
(pe+ pH, Fe) . Also, the pairs (pH, log10 pCO2) and (pe+ pH, log10 pCO2) followed a bivariate normal distribution 
whereas the other pairs exhibited more complex asymmetrical distributions. Isolines of the pair (pH, pe+ pH) 
had the same pattern as those of the pair (pH, log10 pCO2) (not shown).

Global sensitivity analysis. An essential aspect of uncertainty propagation is the global sensitivity 
 analysis33,34, which quantifies the relative contribution of each uncertain input parameter (or group of input 
parameters) to the variance of the QoI. This analysis across the whole parametric domain should not be con-
fused with local sensitivity  analysis35, which estimates the effect of small perturbations around specific input 
values by means of the partial derivatives of the model. The global sensitivity analysis was based on the decom-
position of the total  variance36 into 2N − 1 terms ( N = 19 in this study), as follows

where {Vi} are the first-order interaction terms, {Vij} the second order terms, and so on. Of particular interest 
are the Vi which measure the own effects of the input parameter ξi on the output variance. Typically, these effects 
are normalized by the total variance defining the first-order sensitivity indices Si by

The first-order sensitivity indices were estimated from the Monte-Carlo pick-freeze  algorithm33,37, which 
requires a sample of size M of the input variables (Fig. 5). For a given case, the number of surrogate model evalu-
ations was M(N + 1) = 2 · 107 for each QoI. A sum of the first-order indices close to one is representative of low 
interactions between parameters and of an essentially additive model. Interaction effects were minor for the small 
range case (except for Fe and S(−II) ), but increased significantly for the large range case. The first-order sensitivity 
indices of eight quantities, pH , pe+ pH , Mg2+ , Fe , Si , Al , S(−II) , log10 pCO2 were mainly governed by solubilities, 
while four other quantities, Na+ , Ca2+ , Sr2+ , S(VI) , depended on the four input categories. In addition, three 
QoIs were strongly dependent on a single parameter: logKNa+/K+

ex  for K+ consistently with the known control 
of K+ concentration by cation exchange reactions in clay minerals rich  systems38; quartz for Si consistently with 
the negligible variation of quartz solubility product and with Si aqueous speciation in the explored range of pH 
variations; and Illite for Al consistently with the fact that only Illite and Ripidolite react with Al.

Conclusion
Our uncertainty propagation study using surrogate models proved to be successful in analyzing the sensitivity of 
a reference pore water geochemical model to its various input parameters. The results, and validation with direct 
Monte-Carlo simulations, show that sparse polynomial chaos are well-adapted to approximate the quantities of 
interest. Most significant correlations and anti-correlations were tractable from geochemical constraints, giving 

(21)V(u) =
N∑

i=1

Vi +
∑

i<j

Vij + · · · + V1...N ,

(22)Si :=
Vi

V
.

Figure 3.  Matrices of correlation coefficient r(u, v) and coefficient of determination R2(u, v) for the small range 
case (lower part of matrices) and the large range case (upper part of matrices) estimated with 106 realizations of 
the surrogate models.
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confidence in the overall analysis. The method makes it possible not only to quantify the uncertainties of the 
quantities of interest for future performance evaluation calculations, but also to identify the main influential input 
parameters. This latter information is particularly valuable to guide further research efforts in view of reducing 
uncertainties on specific aspects of performance assessment analyses. Because pore water chemistry influences 
many important parameters such as radionuclides transport and retardation by adsorption and precipitation, 
uncertainty analyses of reactive transport modeling outcomes would certainly benefit from a coupling with our 
surrogates models to decipher uncertainties in adsorption models predictions, and to speed up calculations in 
fully coupled approaches.

Figure 4.  Isolines of bivariate distributions and medians (asterisks) estimated with 106 realizations of the 
surrogate models and the kernel density estimation method for the most correlated pairs of QoI (small range 
case). The plots are ordered according to the value of R2.
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Data availability
All data generated or analysed during this study are included in this published article and its supplementary 
information files.
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Figure 5.  First-order sensitivity indices Si (own effects). The color depends on the input parameter category: 
blue for the leached parameters, red for the exchanged cations, green for the selectivity coefficients, and gray for 
the solubilities. The color shade varies within each category.
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