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Abstract. GRACE (Gravity Recovery and Climate Experi- tively (classic validation). Confronting the downscaled re-
ment) and its follow-on mission have provided since 2002 sults with the non-downscaling case indicates that the down-
monthly anomalies of total water storage (TWS), which arescaling method allows a general improvement in terms of
very relevant to assess the evolution of groundwater stortemporal agreement with in situ measurememd(0:76
age (GWS) at global and regional scales. However, the use acind RMSED 8.2 cm for the non-downscaling case). How-
GRACE data for groundwater irrigation management is lim- ever, the downscaling gain (new validation) is not static. The
ited by their coarse’ ( 300 km) resolution. The last decade mean downscaling gain iR is aboutC30 % or larger from
has thus seen numerous attempts to downscale GRACE datsugust to March, including both the wet and dry (irrigated)
at higher — typically several tens of kilometres — resolu- agricultural seasons, and falls to ab@&0 % from April to
tion and to compare the downscaled GWS data with in situJuly during a transition period including the driest months
measurements. Such comparison has been classically madapril-May) and the beginning of monsoon (June—July). The
in time, offering an estimate of the static performance of new validation approach hence offers for the rst time a stan-
downscaling (classic validation). The point is that the perfor-dardized and comprehensive framework to interpret spatially
mance of GWS downscaling methods may vary in time dueand temporally the quality and uncertainty of the downscaled
to changes in the dominant hydrological processes througleRACE-derived GWS products, supporting future efforts in
the seasons. To Il the gap, this study investigates the dy-GRACE downscaling methods in various hydrological con-
namic performance of GWS downscaling by developing atexts.
new metric for estimating the downscaling gain (new valida-
tion) against non-downscaled GWS. The new validation ap-
proach is tested over a 113 000%kfractured granitic aquifer
in southern India. GRACE TWS data are downscaled atl Introduction
0.5 (' 50km) resolution with a data-driven method based
on random forest. The downscaling performance is evaluGroundwater is an essential resource for irrigation, especially
ated by comparing the downscaled versus in situ GWS datén arid and semi-arid areas. Aquifers have suffered depletion
over a total of 38 pixels at 0.5esolution. The spatial mean in several areas of the world these last decades, and this re-
of the temporal Pearson correlation coef cief®)(and the  source is expected to be scarcer in the future (Wada et al.,
root mean square error (RMSE) are 0.79 and 7.9 cm respec2012). Monitoring and cautious management of this resource
are therefore crucial. Groundwater monitoring is tradition-
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ally achieved with networks of observation wells, but this et al., 2021; J. Zhang et al., 2021). In the literature, data-
can be challenging due to their sparse coverage, the punariven methods have been used to downscale GRACE data
tual nature of the data, and the progressive abandonment @t various scales, either at the watershed scale for a the-
some wells or measurement dif culties and bias (Hora et al.,matic approach as in Seyoum and Milewski (2017) (5000 to
2019). In the meantime, new techniques for water storage0 000 kn?) or grid-based, with a downscaling resolution of-
monitoring have emerged with the Gravity Recovery andten limited by the coarsest resolution among the predictors
Climate Experiment (GRACE) satellite mission of US and (Ali et al., 2021; Jyolsna et al., 2021; Ning et al., 2014; Sey-
German space agencies (NASA and DLR). The twin satel-oum et al., 2019; G. Zhang et al., 2021; Zhong et al., 2021,
lites of the GRACE mission were launched in 2002, and theSahour et al., 2020).
continuity of the mission as covered by the GRACE Follow- To evaluate the GRACE data downscaled from the above
On mission (GRACE-FO) launched in 2018. The gravimet- approaches, different strategies have been used. Table 1 lists
ric data retrieved from these missions have provided spathe validation methods used in recent papers downscaling
tialized monthly anomalies of total water storage (TWS) for GRACE with either model-based or data-based approaches.
2 decades, available worldwide. GRACE data were widelyFor both method categories, the validation of downscaled
used in hydrology to study the long-term evolution of TWS GWS mostly relies on the in situ measurements of ground-
or groundwater storage (GWS) by removing the contribu-water levels (GWLSs), converted or not into GWS anoma-
tions of other surface and sub-surface compartments fronlies using a speci ¢ yield (Sy) representative of the study
GRACE TWS at global and regional scales (Brefia-Naranjoarea. Note that the GWS simulated by models has been oc-
et al., 2014; Cao and Roy, 2020; Frappart et al., 2019; Papaasionally used as a reference (Houborg et al., 2012; Sey-
et al., 2015; Rodell et al., 2018; Rzepecka and Birylo, 2020;oum and Milewski, 2017). In most studies, the quality of the
Tiwari et al., 2009; Zhang et al., 2020). Nevertheless, theirdownscaled GWS is evaluated by comparing its time series
application at local scale for agricultural purposes remainswith that of GWL or GWS derived from in situ measure-
limited due to the very low native resolution (about 400 km) ments for each HR unit (spatialized — HR pixel — or local-
of GRACE observations (Schmidt et al., 2008; Tapley et al.,ized observation well) with one or several metrics, includ-
2004). ing the coef cient of determinationR?) or Nash—Suitcliffe
During the past decade or so, several studies have proef ciency coef cient (NSE), the Pearson correlation coef -
posed methods to downscale GRACE TWS data to obtairtient (R), the root mean squared error (RMSE), or the mean
GWS maps at a spatial resolution (typically several tensabsolute error (MAE) (Ali et al., 2021; Jyolsna et al., 2021;
of kilometres) higher than that of GRACE observations. Karunakalage et al., 2021; Sahour et al., 2020; Yin et al.,
Those downscaling approaches can be separated into two c&2018; J. Zhang et al., 2021; G. Zhang et al., 2021; Zuo et al.,
egories: model-based downscaling and data-based downsc&021). In those studies, the downscaling procedure is consid-
ing (also referred in the literature as “dynamic downscaling” ered ef cient if those metrics fall within an acceptable range
and “statistical downscaling” respectively). The model-basedor if the downscaled product qualitatively restitutes the long-
downscaling approach consists in assimilating GRACE TWSterm trends of in situ data. The point is that any downscal-
data in physically based land surface or hydrological modelsng method can improve or degrade the accuracy of GRACE
to obtain GWS at the temporal and spatial resolutions of thedata at the targeted downscaling resolution depending on
model, which are generally higher than GRACE's (Girotto (i) the sub-pixel spatial variability of TWS/GWS and (ii) the
et al., 2016; Houborg et al., 2012; Nie et al., 2019; Schu-uncertainties in input model parameters and forcing. More-
macher et al., 2018; Tian et al., 2017; Zaitchik et al., 2008).over, comparing the performances metrics with a “reference
Yet this approach suffers from (i) the discrepancy betweenrhypothesis” (here the “non-downscaled” case) allows us to
GRACE and model input data resolutions and (ii) the limita- quantitatively judge whether the downscaled product is better
tions inherent to models: model hypothesis and parametrizaer worse in terms of accuracy at the targeted ( ne) resolution
tion, the uncertainty of meteorological forcing, and particu- and to evaluate whether the downscaling process is ef cient.
larly the lack of representation of anthropogenic processed herefore, quantifying the improvement against the GRACE
such as crop irrigation (Long et al., 2013). The data-basedlata at their original resolution is crucial for properly evalu-
downscaling approach consists in (i) deriving a statisticalating downscaling methods. Among the 14 data-based meth-
model of TWS from ancillary data available at high resolu- ods listed in Table 1, only a few studies (Chen et al., 2019;
tion (HR), (ii) calibrating it at low resolution (LR), (iii) ap- Ning et al., 2014; J. Zhang et al., 2021; Zhong et al., 2021)
plying it at HR, and (iv) removing the contribution of sur- quantify the improvement of the temporal agreement with in
face and soil moisture water stocks to isolate GWS. Thissitu data of a downscaled product over the original LR data.
data-driven approach rests on the hypothesis that the hydrdRegarding the model-based approaches, all of them evaluate
logical and physical processes that link those variables ar¢he temporal agreement of the downscaled GWS with in situ
identical at all resolutions (Ali et al., 2021; Jyolsna et al., data against open-loop outputs (without the assimilation of
2021; Karunakalage et al., 2021; Sahour et al., 2020; SeyounRACE data), but the results of the comparison against the
and Milewski, 2017; Vishwakarma et al., 2021; G. Zhang LR GRACE TWS are not presented. Note that the primary
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goal of the latter methods is to improve the model simula-data downscaled over a granitic aquifer of 113 008 km
tions using GRACE data and not speci cally to downscale Telangana in southern India. We use a data-based approach
GRACE data, even though equivalence between both objecto downscale GRACE mascon solution RLO6M at a 0.5
tives may be argued. resolution with two different models: a multilinear regres-
For each downscaling method, Table 1 also indicatession model and random forest. We also use this validation
whether the evaluation of the downscaled dataset is underframework to evaluate the downscaling potential of the scal-
taken in time or in both time and space. Zhong et al. (2021)ing factor at 0.5 resolution provided with the mascon solu-
are the only ones proposing a validation strategy combiningion (hence evaluating the choice of using the GRACE data
the time and space dimensions by measuring the improveeversampled at 0.5esolution as a downscaled product). We
ment of RMSE andR (with monthly in situ data) from LR compare the conclusions drawn from the classic validation
to downscaled GWS using 42 observation wells within thetechniques and the new validation framework proposed in
GRACE pixel and for all months of the time series. This val- this study.
idation approach thus combines spatial and temporal eval-
uations but does not isolate their individual contributions. In
particular, to the knowledge of the authors, none of the previ-2
ous studies has speci cally evaluated the capability of down—2 1 Study area
scaled products to restitute the GWS spatial variations within ™~

the GRACE pixel at the temporal observation scale (1 monthTeIangana is a highly irrigated and densely populated (about

inour case). o o 335 inhabitants per square kilometre in 2020 according to the
Another issue in the application and validation of current Unique Identi cation Authority of India — UIDAI) region in

downscaling studies is the scale at which the GRACE data,, ;thern India covering 114 800 Rmit is dominated by a
are used at input. The combination of the ground tracks Ofgemi_arid climate, where the monsoon precipitation occurs

the GRACE twin satellites over a period of 1 month allows a yonyeen July and October and ranges from 540 to 1300 mm
native spatial resolution of 300 to 400 km for GRAC_E data, yith a mean of 879 mm (Indian Meteorological Department).
both for spherical harmonic (Schmidt et al., 2008; Tapley thg strong water demand in this area for domestic uses and

et al., 2004) and mascon solutions from the Jet Propulsionyg jrigation of two growing seasons a year is met with the
Laboratory (JPL) (Watkins et al., 2015). The GRACE TWS g, itace water stored from monsoon rainfall and groundwa-

grids are however provided with_scaling factors with resolu- o The majority (67 000 kR) of the state is a shallow frac-

tions of 1 and 0.5for the harmonic (Landerer and Swenson, y,req granitic aquifer characterized by high uctuations due
2012) and JPL mascon (Wiese et al., 2016) solutions respegy, \yater pumping (Maréchal et al., 2006). It is usually com-
tively. Such scaling factors were originally designed to re- posed of two layers: the rst layer is saprolite, with a high

store the lost signal of GRACE due to po;t—processing and tQrective porosity (Sy of 10 %), extending up to 10 to 15 m,
allow for averaging of the 1- or 0.&resolution oversampled 5 jt is followed by a layer of fractured granite with a low

TWS data over user-de ned regions with a minimum extent capacity (Sy around 1%) (Dewandel et al., 2017; Maréchal
similar to a 300-400 km-resolution GRACE pixel (Landerer o al., 2006). This aquifer has a low capacity but strong dy-
and Swenson_, 2012). In particular, scaling factors are not Xpamics as it lls and empties almost completely every year
pected to ef ciently downscale GRACE TWS data as neigh- yitn monsoon rainfall and intense pumping. While continu-

bouring pixels are highly dependent (Landerer and Swenson, ;s groundwater depletion has been observed with GRACE

2012). Yet many studies directly use GRACE harmonics S0~ gpservation wells in northern India (Asoka et al., 2017;

lutions at 1 resolution (Ali et 6'l|., 2021; Jyolsna et al., 2021; Chen et al., 2014: Tiwari et al., 2009), northern China (Feng
Karunal_<alage et al., 2021; Ning et al., 2014; Seyoum et al. & al., 2013; Huang et al., 2015), Texas (Long et al., 2013),
2019; Yin etal,, 2018; J. Zhang etal., 2021; G. Zhang et al..ang many other parts of the world (Rodell et al., 2018), it
2021; Zuo et al., 2021) or mascon solutions at 0£50lu- g challenging to identify a long-term trend for groundwater
tion (Karunakalage et al., 2021; Nie et al., 2019; Tian et al"storage in Telangana.

2017) as LR input data, which is far ner than their actual g study focuses on the granitic area of Telangana con-
resolution. There is no study evaluating the uncertainty iny,red with the 0.5-resolution GRACE RLO6M scaling fac-
downscaled GRACE data associated with the above assumpg, grid. The study area is estimated at 113 008 kwhich
tion, i.e. neglecting the scale discrepancy between the actugd gimjjar to the actual size of a GRACE pixel. Note that the
resolution of GRACE observations and the grid size of thegraCE RLO6M pixels were extracted by selecting the 0.5

deIivergd oversampled QRACE datq. ) pixels falling within the granitic area of Telangana (pixels
In this context, the objective of this study is to propose a,;ithin the pink dotted line in Fig. 1).

consistent and complete validation framework covering the
spatial and temporal aspects to quantify the supplementary
information of downscaled GWS from GRACE compared
with the LR original data. We test this framework on GRACE

Data and study area
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Table 1. Validation strategies of existing — either data-based or model-based — downscaling methods of GRACE data. The downscaling method is either data-based onﬁ model-
based (M). The two resolutions reported are the initial resolution of GRACE data (GRACE) and the target downscaling resolution (Target). GWL: in situ groundwater level. @NS: in
situ derived groundwater storage. The “Comp.” column indicates whether error statistics of the downscaled product are compared with those of another reference product: GISACE data

at original low resolution (LR) or the model run in open loop (OL). Q
o
o
Reference Resolution Validation data Validation metric Validationin ~ Comp. M
Downscaling GRACE in model R R? RMSE Trend Time Space m.
method Target situ output changes
Ali et al. (2021) D 1 0.25 GWS X X X X
Chen et al. (2019) D 1 0.25 GWL X X LR
Jyolsna et al. (2021) D 1 0.25 GWS X X X
Karunakalage et al. (2021) D 1land0.5 0.25 GWL X X
Ning et al. (2014) D 1 0.25 GWL X X LR
Sahour et al. (2020) D 13700t059200km 0.125 GWL X X
Seyoum et al. (2019) D 1 0.25 GWS X X X
Seyoum and Milewski (2017) D 500000 Bm 5000 to 20 000 kr GWS GWS X X X X
Vishwakarma et al. (2021) D 62518t046728764m0.5
Yin et al. (2018) D 1 2km GWL X X X
G. Zhang et al. (2021) D 1 0.25 GWL X X X X LR
J. Zhang et al. (2021) D 1and0.25 1km GWL X X X X LR
Zhong et al. (2021) D 3 5km GWS X X X X X LR
Zuo et al. (2021) D 1 1km GWL X X X X X
Girotto et al. (2016) M 1 36 km GWS X X X OL
Houborg et al. (2012) M  basin 4000 Bm GWS GWS X X X oL
Nie et al. (2019) M 0.125 0.125 GWS X X X X oL
Schumacher et al. (2018) M  1060000%m 0.5 GWS X X X X oL
Tian et al. (2017) M 0.5 0.5 GWL X X oL
Zaitchik et al. (2008) M > 500000 kn? 4000 knf GWS X X X oL
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Figure 1. Location of the study area (dotted pink line, 113 OO(?kmhlat delineates the granitic area of Telangana (pink area, 67 090 km
identi ed from Phani, 2014) with the target 0.5esolution. The number of available observation wells (black triangles) monitored by the
Groundwater Department of Telangana is indicated in the centre of each of the $8@I5. The grey area indicates the extent of Hyderabad,
the capital city of the state. The main rivers are indicated in blue.

2.2 Data (combining passive microwave-derived soil moisture prod-
ucts) at 0.25. All these datasets provide monthly data ex-
All data used and their sources are summarized in Table 2gept the CCI soil moisture (SM CCI) product, which was
Figure 2 shows time series of some of the data presented beemporally aggregated at a monthly scale. The temporal win-
low as well as their intra-annual and interannual periodicities.dow aggregation varies for GRACE TWS and is not always
the same as those of ancillary data, but we assumed that
2.2.1 GRACETWS the effects of slightly varying windows were negligible. All
. datasets were aggregated with bilinear resampling both at
We used the state-of-the-art GRACE mascon solutiony,e qonscaling target resolution (0)&nd at regional scale
from JPL (RLO6M) with the Coastal Resolution Improve- (113000 km). The values were converted into anomalies by

ment (CRI) lter in this study. The mascon solution USeS g ,piracting the long-term mean of the 2007—2015 period.
a priori information derived from near-global geophysical

models to prevent striping. Moreover, it suffers less from2 2.3 Deconvolution of GRACE TWS with GLEAM
leakage errors than the harmonic solution (Watkins et al.,

2015) (https://grace.jpl.nasa.gov/data/choosing-a-solution/GWS is a sub-compartment of TWS, and hence the down-
last access: 19 January 2022). Each mascon is3, and  scaled GRACE TWS is not directly comparable with in situ
the scaling factor grid used to restore the lost signal has alerived GWS. In semi-arid areas, a common assumption
0.5 resolution. After multiplication of the mascon grid by is generally made that the essential contributions to TWS
the scaling factor grid, all the 0.5esolution pixels within  are GWS and soil moisture (SM) storage, thus neglecting
the study area are spatially averaged over the study area teanopy, snow and surface water storage (Eq. 1):

produce a LR TWS time series at 113 000%stale. The

baseline of TWS anomalies was modi ed by subtracting thel TWSD 1 GWSC 1 SM; (1)

long-term mean of the 2007-2015 period. ) ) ) _ )
with 1 representing the anomalies regarding a baseline, the

2.2.2 Ancillary data 2007-2015 average in our case. In Telangana, the rivers (ex-
cept the major rivers Godavari and Krishna; see Fig. 1) are
We use ancillary variables from three different datasets tonot perennial and only ow for a few months during and
predict GRACE TWS: the monthly rainfall from the TRMM after the monsoon. Surface water stocks are composed of
mission at a 0.25resolution, the normalized difference veg- large dams built on major rivers, with a cumulative capac-
etation index (NDVI) from MODIS at 1 km and the remotely ity estimated at 113 mm (Indian National Register of Large
sensed surface soil moisture data from the ESA CCI producbams) and small reservoirs in the upstream part, with a
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Table 2. Summary of all data used.

Variable Source Native spatial Usage
resolution
TWS GRACE RLO6M 3 Target variable
Rainfall TRMM 3B43 V7 0.25 Predictor
NDVI MOD13A3v006 1km Predictor
Surface soil moisture  ESA CCI v06.1 passive product 0.25 Predictor
RZSM GLEAM v3.5 0.25 Deconvolution of GRACE TWS
GWS Telangana State Groundwater Board Punctual data  Validation

Figure 2. Time series of low-resolutiog) GRACE TWS with its uncertainty envelope (average of the mascon uncertainty resampled at
0.5 provided with GRACE data) and GWS anomalies derived from in situ measurements (GWS-OW) in centimetip@saintill, NDVI

and SM CCI. Those three predictors were scaled between 0 and 1 to compare their temporal cycles. The envelope for GRACE TWS is the
uncertainty provided with the mascon solution, and those for GWS-OW, rainfall, NDVI and SM CCI correspond to the lowest and highest
values found in high-resolution (0.ppixels at each time step. The months of June (beginning of the monsoon) are marked by dotted vertical
lines.

capacity estimated at 30 mm in a previous study (Pascakt al., 2021; Sahour et al.,, 2020; Seyoum and Milewski,
et al., 2021). This potential reservoir of 143 mm represents2017; Zhong et al., 2021). We used the Global Land Evap-
24 % of GRACE TWS annual uctuation in this area dur- oration Amsterdam Model (GLEAM) v3.5b monthly root
ing the 2002—-2021 time period (600 mm), yet the reservoirszone soil moisture (RZSM) dataset to simulate SM storage,
are rarely simultaneously full and, most of the time, sur-which we transform into anomalies to the baseline 2007—
face water storage can be neglected. Most studies use mod2015. GLEAM v3.5b is a model driven by satellite data that
outputs of SM to deconvolute GRACE TWS (Ali et al., estimates evapotranspiration and soil moisture over a 0.25
2021; Chen et al., 2019; Jyolsna et al., 2021; Karunakalageesolution grid for the period 2003-2020 (Martens et al.,
et al.,, 2021; Yin et al., 2018; J. Zhang et al., 2021; Zuo
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2017; Miralles et al., 2011). RZSM anomalies were com-aged TWS deconvoluted with the 0.6LEAM RZSM (fur-

puted by retrieving the 2007-2015 mean. ther called GWS-LRref) as the LR reference. The &8ale
o factor-based product (further called SF) is used as the down-
2.2.4 Validation GWS data (GWS-OW) scaling rst guess whose performance will be compared with

the downscaling techniques proposed in this paper.
We use GWL data from the Groundwater Department \ye chose to compute a relative gain similarly to Merlin

of Telangana (India Water Resources Information Systemet g1 (2015). For a given metrd measuring the agreement

https://indiawris.gov.in/wris, last access: 19 January 2022),ith the validation data (e.R, RMSE), the gairG is com-
for the period 2007-2019. These data provide monthly surpyted as follows (Eq. 2):

veys of instantaneous GWL of 1006 wells distributed over

the study area (see Fig. 1). Maps of GWL at Oafere pro- GD jMopt  MLRj ] Mopt MpRj @
duced from the interpolation of well data with the inverse jMopt  MiRjCjMopt Mgj’

distance weighting (IDW) method (which avoids kriging bias

and provides more accurate values on data points) and wef@ith Mg the value of the metric for the GWS-LRref,
converted into a GWL anomaly by retrieving the long-term Mur its value for the downscaled GWS, aMbp: the op-
mean of the 2007—2015 period. These maps were convertedmal value of this metric (e.g. 1 foR, 0 for RMSE). The
to GWS maps by multiplying by a Sy that was calibrated with gain of Eq. (2) can be computed in time or in space.

a linear tting between GRACE TWS deconvoluted with ) ) ) )

GLEAM RZSM and the GWL anomaly at regional scale. The 3-1.2  Temporal gain at high spatial resolution

Sy was estimated at 4.7 %, which is an intermediate and con- . . o .
sistent value between the Sy of both layers (saprolite at 10 %:or. the temporal analysis, we compute this gain in the time

and fractured granite at 1 %) composing the aquifer in the>S1eS of GWS on all HR pixels and for three metrigs:

2 | .
study region. In the following, we designate these computeaR , and RMSI_E (Egs. 3-5). These are temporal gains, as they
. measure the improvement of the agreement of the time se-
GWS anomalies as GWS-OW.

ries on each HR (0.9 pixel where in situ measurements are

available.
3 Downscaling and validation methods Gr D j1 Rirjj 1 RyRj 3)
This section details the validation method developed in this J_l RLEJF:_J 1 RHZRJ.
study (Sect. 3.1) that consists of a validation against an; i1 RiRii 1 R{ri @
LR reference in both spatial and temporal aspects. This * j1 RZ%:jCjl R2Zgi
framework is tested on state-of-the-art statistical downscal- RMSERr RMSEiR
ing methods that are detailed in Sect. 3.2. GRrMsE RMSE g C RMSEir ®)
3.1 Evaluation of downscaled data 3.1.3 Spatial gain at monthly scale
3.1.1 Gain against the “null hypothesis” For the spatial analysis, we compare the monthly maps of

o _ _ _ _ .. downscaled GWS with reference maps of GWS-OW. For
As highlighted in the introduction, a lack in the majority each time step, we compute a gain over the LR reference on
of publications on GRACE downscaling is the comparison {oyr metrics: the slop& of the linear regression (Eg. 6), the

of the downscaled GWS with a null hypothesis. In partic- mean bias (Eq. 7),R (Eq. 3), and RMSE (Eq. 5).
ular, current evaluation methods check whether metrics fall

within an acceptable range that is qualitatively de ned but 11 SRrij 1 SuR 6
do not quantify the improvement provided by the downscal- ~ S i1 SRriCjl SuRj (©)
ing process from a reference hypothesis. To |l the gap of iBLRj j BHRi
current validation strategies of the downscaling methods ofCs m )
GRACE data, new metrics are proposed herein to quantita-

tively assess the accuracy of the downscaled data compared We expectS andR to be closer to 1 an® and RMSE
with the data at the original GRACE resolution (null hy- closer to 0 for the downscaled product than for the LR ref-
pothesis). In this case, two LR TWS references are possierence. The slope is a common indicator to evaluate down-
ble: either the spatially averaged TWS value (produced as exscaled products, in particular for soil moisture downscaling
plained in Sect. 2.2.1) or the product of the mascon solutionMerlin et al., 2015; Sabaghy et al., 2020). Indeed, the vari-
and its scaling factor grid at 0.5esolution. In both cases, ability of GWS is expected to be higher at HR and closer to
the contribution of SM to TWS is removed (using GLEAM that of in situ measurements than at LR. Computing metrics
RZSM estimates used at the Ofarget resolution) to obtain for each time step rather than on the whole time series (all
GWS, comparable with in situ data. We chose to use the avertime steps and all HR pixels mixed) allows us for the rst
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time to eliminate the contributions of intra-annual and inter- variables are linear. Before training the ML model, the is-
annual variations and to speci cally isolate the contribution sue of multicollinearity (the existence of linear relationships
of GWS spatial variability in the GRACE sampling period. between variables) was addressed. The elimination of redun-
dant variables increases the precision of the coef cients of
3.2 Statistical downscaling method the regression and helps to properly identify the contribu-
. _ tion of the remaining variables to the target variable (here
We use a data-based downscaling method that consists iWS), and especially the signs of the coef cients. We used
training a model at LR between TWS and ancillary variablesne variance in ation factor (VIF) (Alin, 2010) as in Sahour

resampled at LR (113 000K This model and ancillary et 51, (2020) to detect multicollinearity, and predictors with
variables at HR (0.9 are then used to predict TWS at 0.5 \/|E > 10 were removed.

An additive correction is applied at LR to force the average

of HR TWS predicted by the model to be equal to the TWS3,2.3 Random forest regressor

observed at LR (GRACE observation). The corrected TWS

at 0.5 is nally deconvoluted into GWS with the GLEAM  The random forest (RF) algorithm (Breiman, 2001) is a su-
RZSM. We compare the two models often used in the liter-pervised ensemble learning algorithm composed of indepen-
ature: the multilinear regression model and the random for-dent decision trees. Each decision tree learns with a subset of
est model. The downscaling process is summarized in théhe predictors (here the square root of the maximum number

owchart of Fig. 3. of predictors) using a bootstrap sampling. This method soft-
ens the relationship constraints between variables but loses
3.2.1 Variable selection in interpretability. There is no need to remove some variables

before training the model as the RF algorithm deals well with
For this data-driven approach, we selected remote sensollinearity.

ing predictors that have a hydrological meaning. Also, we

avoided model outputs, as irrigation is often not well repre-3.2.4 Additive correction

sented in models. The predictors considered herein are pre-

cipitation (TRMM), surface SM (CCI), NDVI (MODIS) as After predicting HR TWS with the ML or RF model, we cor-
an indicator of crop fraction, and the monthly variation of rected the TWS values so that the spatial average of HR TWS

NDVI (1 NDVI). We also used as predictors the cumulative at each time step would be equal to LR TWS. We add an off-
sum over the past year for all variables (exc&MDVI) by set value to correct the HR TWS at each month of the time
considering that it provides information about the state of theseries that corresponds to the difference between LR GRACE
aquifer before the start of the irrigation season. Note thatT WS and the spatial average of HR TWS predictions at the
some predictors lag behind GRACE TWS due to the timesame date (Eq. 9):
that hydrological processes take. We determined the optimal P TWShre

time lag between TWS and each variable fromOto 3months_ i Rt

by maximizing their temporal correlation coef cients (Sa- TWSiRt; D TWShr;;i C TWSLr;t — O
hour et al., 2020; Seyoum and Milewski, 2017). For both P

multilinear regression and random forest approaches, parswith TWSyrt:i the HR TWS predicted by the model for
monious models are obtained by selecting the optimal nummontht and pixeli, TWS{g', thepbias-corrected TWS,
ber of the most meaningful variables that allow prediction - TWSHR;i

of the TWS. We used the RFECV (recursive feature elim-TWSir;t the LR TWS at date, and —_—— the spatial
ination with cross-validation) algorithm, which is a greedy average of HR TWS at date

feature elimination algorithm similar to sequential backward

selection.
4 Results

3.2.2 Multilinear regression model ) , . ) )
This section aims at evaluating the ef ciency of the two data-

The multilinear (ML) regression model ts a linear relation- based downscaling methods, i.e. ML and RF models against
ship between the target variabte(here TWS) ang predic- ~ GWS-OW. In each case, we compare these results with the

torsX1, Xz, ... Xp (EQ. 8): rst-guess downscaling product, i.e. the product of the mas-
con solution and its scaling factors at Osf®&solution (SF).

YD oC 1X1C:::C pXpCE: (8)  After commenting on the results of the model calibration
atLRin Sect. 4.1, we analyse the conclusions drawn from the

The o, 1,..., p are determined by minimizing the mean classic evaluation methods found in the literature (Sect. 4.2)

squared error between the data and the model predictiongnd then from the new validation method proposed in this
This model has the advantage of being easily interpretabletudy (Sect. 4.3). The synthesis of the different conclusions
but is limited by the assumptions that relationships betweeris presented in Sect. 4.4.

Hydrol. Earth Syst. Sci., 26, 4169-4186, 2022 https://doi.org/10.5194/hess-26-4169-2022



C. Pascal et al.: Evaluating downscaling methods of GRACE data 4177

Figure 3. Flowchart of the downscaling method.

Table 3.Correlation coef cients of ancillary variables with GRACE  (0.97 against 0.90), yet the RMSE aRd on the test set are
TWS. The optimal time lag is indicated by bold correlations. The far larger (lower) than on the train set (4.6 cm against 1.9 cm

underlined correlations are not statistically signi cant. and 0.93 against 0.98). This reveals that the RF model suf-
fers from over tting due the quality of the data and the small

Lag Rainfall NDVI SMCCI 1NDVI amount of data (139 points) used to train the model, resulting

0 0.90 0.30 0.79 0.10 in poor generalization. The RMSE on the train set is respec-
1 0.85 0.68 0.91 0.51 tively 5.0 and 4.6 cm for the ML model, which represents
2 0.54 0.79 0.71 0.68 7% and 6% of the GRACE TWS total amplitude over the

3 0.16 0.68 0.34 0.63 region during the study period (71 cm). Both models seem

to be able to predict GRACE TWS with good performance.
However, the performance is lower when compared with in
. . N situ data. As an example, tHR? between in situ derived
4.1 Variable selection and model calibration at LR TWS (sum of GWS-OW and RZSM GLEAM) aggregated
at LR and GRACE TWS is 0.80. This shows that only lim-

. ited agreement can be expected between satellite data (or
|GRACE, L\.’VS at ';]R are replorted in Thab'e 3% The bﬁ'd €0 modelled from satellite data) and in situ data, because of
ations Indicate which time lag was ¢ osen for each vana e'(i) the inherent uncertainties of the data, (ii) the interpola-
no lag for NDVI, 1-month lag for CCI soil moisture, 2-month

lag for 1 NDVI and rainfall. Th lected variables f h tion of in situ data, and more generally (iii) the diversity of
ag for JV/ and rainiall. 1he selected vanables 1or €ach g s soyrces. All those uncertainty sources also apply to the
model are indicated in Table 4. Four variables were selecte

) WS predicted by models at both low and high resolutions.
for the ML model1 NDVI, NDVI, SM CCl, and SM CCl ac- he R2 with in situ derived TWS falls from 0.90 and 0.97

cumulated over a year. The RF model selected two addition 00.78 and 0.82 for the ML and RF predictions respectively.

variables: monthly rainfall and rainfall accumulated over 8 This can be due to the existing uncertainty mentioned earlier

year. . but also to the possible lack of representativeness of in situ
ML and RF models are trained on a random sample Ofy g rements at the GRACE spatial resolution.
80 % of the whole time series (174 points in total). The se-

lected variables and the model performances are reported in
Table 4. The RF model has a bet®f than the ML model

The correlation coef cients of the ancillary variables with
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Table 4. Variable selection and model performance at LR. The number in parentheses is the number of lag months. Variables with the suf-
X “cum.” are cumulated over the last year. The underlined variables were eliminated with the VIF selection method. The model performance
is evaluated against GRACE TWS with tR# and the RMSE on train and test sets. Rrewith in situ derived TWS (sum of GWS-OW

and GLEAM RZSM at LR) is also shown.

Model Variable selection Model performances
Rainfall NDVI SM 1NDVI Rainfall NDVI SM RMSE RMSE RZ RZ? RZ with RZ with in
2) 0) CClI 2 cum. cum. CClI train test train  test GRACE TWS situ derived
1) cum. (cm) (cm) (trailC test) TWS
(trainC test)
ML X X X X 5.2 5.0 0.89 0.91 0.90 0.78
RF X X X X X X 1.9 4.6 0.98 0.93 0.97 0.82

Figure 4. (a) Spatial distribution oR?, R, and RMSE for the downscaling with the random forest model with bias correction (RF CORR).
The numerical value of the metric is indicated in the grid. The abscissa is the east longitude and the ordinate the norttblaituqsot

(median and quartiles) @2, R, and RMSE between GWS-OW and the scaling factor product (SF), linear (ML), and random forest (RF)
model-downscaled products with bias correction (CORR) and the low-resolution reference GWS-LRref (LR). The RMSE is an equivalent
water height in centimetres.

4.2 Classic evaluation of 0.38, 0.76, and 8.2cm). THR andR? are better on av-
erage for ML CORR (0.79 and 0.42) and RF CORR (0.79

The temporal agreement between GWS-OW and downscale@d 0.43), and the reduced variability Bfand RMSE for

products was eva|uated on every HR pixe| V\‘RFI, R, and ML CORR and RF CORR SuggeStS that the bias correction

RMSE for the SF downscaling and both the ML and RF mod-Produces results with a more uniform quality. The RMSE

els with correction by the LR offset value (CORR). Fig- is still relatively large, ranging from 6.3 to 9.3cm (6.4 to

ure 4a shows the spatial distribution of these three metric§-3cm) for the ML (RF) model. As a reference, the ampli-

for the RF CORR-downscaled GWS for visualization and tude of GWS-OW in this area during the 2007-2019 time

Fig. 4b the distribution of the three metrics on all pixels Period ranges from 33 to 70 cm on all 38 HR pixels.

for all the downscaling methods. The temporal agreement

of the SF product with GWS-OW seems to be the worst4.3 Evaluation with temporal and spatial gains

given the wide distribution oR? with an average of 0.21

and some outliers in negative values and an average RMSEhe temporal gains are computed as explained in Sect. 3.1

of 9.1cm. The SF product appears to perform less well tharand are shown for the particular case of RF CORR in Fig. 5

the LR reference GWS-LRref (averag®, R, and RMSE  for visualization. The spatial gains are computed at each
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Figure 5. Spatial distribution of the gains &2, R, and RMSE for the downscaling with RF CORR. The numerical value of the metric is
indicated on the grid. The abscissa is the east longitude and the ordinate the north latitude.

Figure 6. lllustration of the spatial gain for the month of January 20@8.Maps of HR in situ derived GWS (GWS-OW), RF CORR-
downscaled GWS, and LR reference GWS (GWS-LRref). The abscissa is the east longitude and the ordinate the north)&datierplot

of the GWS-LRref (grey points) and RF-downscaled GWS (black points) against GWS-OW. The identity function is indicated by a dashed
red line. The slope of the two linear regression ts on grey and black points are used to compute the gain in the slope. The differences in
dispersion, uncertainty, and bias of the two point clouds are evaluated with g&n&MSE, and mean bias.

time step between the two point clouds of GWS-OW andvation wells are available (see Fig. 1). The pixel at 87
GWS-LRref or downscaled GWS, as illustrated in Fig. 6. 78 E contains the major part of the capital city of the state,
The boxplots of temporal gains in all HR pixels and the Hyderabad, a heavily urbanized area where natural hydro-
boxplot of spatial gains in the whole time series are shownlogical processes as well as observation well measurements
in Fig. 7. ML CORR and RF CORR show the best results: are highly perturbed by domestic water use, explaining the
average gains iR2, R, and RMSE are respectively 3.2%, negative gains ilR2, R, and RMSE (4:4%, 6:3%, and
6.5%, and 1.55% for ML CORR and 4.0%, 6.7%, and 2:2% respectively).

1.9% for RF CORR. In particular, the temporal gains for In the spatial domain (see Fig. 7b), the quality of the SF-
the RF CORR product seem to be positive in the north anddownscaled GWS is questionable. The quasi-null gain in
south of the study area (cf. Fig. 5), which coincides with the bias was expected, as the only difference between LR and
two main river basins of the state but also concerns pixelsSF TWS is a multiplicative factor generally close to 1. The
with mixed geology and where the least number of obser-SF-downscaled GWS shows positive gains for slope and
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Figure 7. Boxplots (median and quartiles) (d) temporal andb) spatial gains for the SF, ML and RF model downscaling approaches. The
CORR designation indicates that the downscaled TWS is corrected for the LR bias from GRACE data.

Figure 8. Monthly medians of spatial gains (black curves) on sléheand RMSE for downscaled GWS with the RF CORR model (left axis)
with, on the right axis(a) average standard deviation (SD) of low-resolution rainfall, NDVI, SM from the CCl dataset, and in situ derived
GWS and TWS scaled between 0 and 1 énjdnterannual average SD of the monthly spatial variability divided by the grid maximum of
rainfall, NDVI, SM from the CCI dataset, and in situ derived GWS, scaled between 0 &r)dlime series of the monthly spatial variability

of in situ derived GWS (red curve) with monthly cumulative rainfall (grey). The abnormally dry monsoons of 2009 and 2015 and the high
GWS spatial variability during the following dry season are highlighted in black.

R on most of the time series (12.9 % and 13.9 % respectivelfML CORR and RF CORR) is shown by overall positive
on average) but at the cost of higher uncertaintyB:6 % gains in slopes an® (22.9% and 28.8% for ML CORR,
gain in RMSE). Monthly scatterplots (results not shown) in- 18.2% and 27.2 % for RF CORR) while maintaining a gen-
dicate that the slope getting closer to 1 is most of the timeeral positive gain in RMSE as well (2.0% and 2.2% for
a consequence of an increased dispersion due to what apdL CORR and RF CORR respectively). The bias correc-
pears to be additional noise at each time step brought byion at LR adjusts the HR TWS predicted by the model to
the scaling factor grid. The improvement of spatial repre-the GRACE TWS amplitude, explaining the null gain in bias
sentativity of GWS with data-based downscaling methodsfor both models.
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Complementary to the spatial analysis of temporal met-aquifers and GWS remains low as in April and May. Also,
rics (e.g. in Fig. 5), the spatial gains can be analysed in timesurface water is an important component of the water col-
Figure 8 shows the monthly medians of the gains in slopeumn at this time of year (potentially up to 24 % of the an-
R, and RMSE for RF CORR downscaled GWS. It appearsnual uctuation of TWS; see Sect. 2.2.3), yet runoff is not
that gains in slope arid are lowest during the month of July directly modelled by any of the variables of the RF model,
(beginning of the monsoon). Gains in both slope &ih- which could also mislead the model into attributing surface
crease until January—February (beginning of the second cropiater stocks to groundwater.
season that ends in April) and decrease again. The monthly The use of a spatial gain also highlights the dif culties
gains of RMSE have lower amplitudes than those of slopeof state-of-the-art “static” downscaling methods (calibrated
andR but have a similar pattern. The periodicity in down- with constant parameters) to restitute an interannual variabil-
scaling performances is due to the capacity or incapacity ofty. This is illustrated by Fig. 8b, which represents the in-
the model trained at LR to restitute the spatial variability of terannual average (curve) and variability (envelope) of the
some intermittent processes. In this paper, the tested dowmonthly spatial variability of GWS. The interannual variabil-
scaling methods are empirical, like the majority of existing ity, which is lowest from August to January and highest from
methods (Ali et al., 2021; Jyolsna et al., 2021; Sahour et al. April to July for GWS, is inversely proportional to the down-
2020; Seyoum and Milewski, 2017). Therefore, we are notscaling performance. This result indicates that this kind of
able to represent explicitly the underlying hydrological pro- method is unable to represent the interannual variation of the
cesses that explain (in the downscaling procedure) the spadominant hydrological processes. Such a difference in inter-
tial variability of GWS at a given time. However, the perfor- annual variability during the end of the dry season can be
mance of the downscaling methods essentially relies on theiexplained by the succession of drier and wetter periods dic-
capability to represent implicitly the discharge and rechargetated by El Nifio and La Nifia phenomena (Asoka et al., 2017;
of the aquifer at 0.5resolution. This is the reason why the Vissa et al., 2019). This involves differences in yearly cumu-
temporal variability in the downscaling performance can belative rainfall that determine the types of crops according to
interpreted in terms of taking into account the dominant hy-their water needs. During the driest years in particular, dif-
drological processes and their seasonal dynamics. ferences in water availability widen the gap between 05

In Telangana, the year can be divided into several peri-gions, explaining higher spatial variabilities of GWS. This
ods given their dominant hydrological processes. The months illustrated in Fig. 8c by the abnormally high GWS spatial
of August marks the start of aquifer recharge by the rainfallvariability following the dry monsoons of 2009 and 2015.
that occurs 2 to 3 months after the beginning of the monsoon
(which lasts generally from August to October; see Fig. 8a).4.4 Comparative analysis of both validation methods
It is also the beginning of the growing season (which typi-
cally lasts from July to November), when the monsoon rain-The thresholds to decide whether temporal metrics are poor,
fall stored at the surface and in the aquifer are used for ir-satisfactory, or good are often arbitrarily decided and are dif-
rigation. The higher spatial gains in sloge, and RMSE ferent with the context of the study and the authors' choices.
during this period show that the recharge process in spacé our case, all downscaled GWS products have correlation
is correctly represented with the precipitation data at 0.5 coef cients with GWS-OW systematically larger than 0.57
(having mainly a north—south gradient). The period betweeron each of the 38 HR pixels, which can be considered a
January and March, during the dry season, is marked by theuite satisfactory result. With thR? criteria, ML CORR
heavy pumping and use of surface water for crop irrigation.and RF CORR seem to have the best performance, with at
This process is relatively well represented by the downscalleast half of the HR pixels having? larger than 0.5. For
ing model from SM CCI and NDVI data, which provide in- ML CORR and RF CORR, the RMSE does not go below
direct information on irrigation and crop stage respectively. 6.3 and 6.7 cm respectively, with a median RMSE of 8.1 cm
During this period, the spatial variability of both predictors for both methods, which still represent a non-negligible
(illustrated by Fig. 8b, which represents the interannual av-18 % (16 %) error against GWS-OW (GWS-LRref) ampli-
erage of the monthly spatial variability) is relatively large, tude at LR.
accounting for the differences in crop fraction and type that Those above appreciations of temporal metrics do not in-
highly depend on surface water availability. By April-May, dicate the superiority and the downscaling capacity of these
irrigation stops and groundwater reaches its lowest level. Thelownscaled GWS maps over GWS-LRref. With spatial and
downscaling gains obtained at that time of year are relatemporal gains, it was shown that ML CORR and RF CORR
tively low. The model probably fails to restitute the diversity products are able to improve the temporal agreement with
of HR GWS when the water availability and thus water ex- in situ data for most of the HR pixels. In the spatial as-
changes are very scarce and hardly inferable from the chosgpect, ML CORR and RF CORR both improve the spatial
predictors. At the beginning of the monsoon in June—July,representativity of GWS for most of the time series (posi-
heavy rainfall occurs and llIs rivers and reservoirs. However, tive gains in slope an®), with a slightly lower uncertainty
at this early stage of the monsoon, rainfall has not reached thégain in RMSE mostly positive). In addition to the compar-
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ison against the LR reference, the validation in both timeerogenous distribution in the study area (see Fig. 1). Each
and space allows a better understanding of the downscalmethodological step before a possible comparison between
ing strengths and aws depending on local characteristics ofspatialized in situ and remote-sensing-derived GWS adds un-
some HR pixels (e.g. presence of rivers, agricultural prac-certainties at LR, illustrated by a loR? (0.63) and high
tices, climatological variability, or large cities) or the time of RMSE (6.1 cm) between GWS-OW and GWS-LRref.
year (e.g. wet or dry season). In the temporal domain, the The in situ data have their own uncertainties. First, the
RF CORR downscaled GWS seems to be better correlateWS derived from GWL measurements is highly dependent
with in situ data in the north and south of the study area neaon the value of the Sy used. Here we used a horizontally
large rivers. This suggests that the model trained at LR hasind vertically homogeneous Sy, obtained with a linear ad-
dif culties in modelling certain processes, e.g. the hydrolog- justment between LR GWL and GWS-LRref. Some authors
ical response to anthropic pressure that is localized and thuavoid this issue by directly comparing GRACE-downscaled
smoothed when averaged over a larger region. In the spacWS with GWL measurements (Karunakalage et al., 2021;
tial domain, our validation method shows that the RF CORRNing et al., 2014; Tian et al., 2019, 2017; Yin et al., 2018;
downscaled GWS performed less during the dry season and. Zhang et al., 2021; G. Zhang et al., 2021; Zuo et al., 2021).
the beginning of the wet season, supposedly because th&nother issue is that instantaneous GWL can be impacted
model fails to represent the spatial variability of GWS when by short- or long-term effects such as the neighbourhood
GWS is low or when surface water represents an importanpumping intensity at the moment of piezometer measure-
fraction of TWS. This highlights the weaknesses of a staticment, which cannot be detected or recti ed with the monthly
model trained on a whole time series with no regards for thetemporal frequency of acquisition.
speci cities of the hydrologically dominant processes at sev- The acquisition mode for GRACE is also different from in
eral times of the year. situ data — unique instantaneous measurement — and other re-
mote sensing predictors — the average or sum of higher tem-
) ) poral frequency products. GRACE has a heterogeneous re-
5 Discussion visit frequency, where each 300300 kn? pixel is informed
. . by approximately three overpasses of the GRACE satellites
Here we d,'SCUSS how .downsca.led products can be Im'oluring the month (Tapley et al., 2004; Zaitchik et al., 2008).
pacted by (i) the fesolu'uon at Wh'ch GRACE data are .us.edThis can lead for example to smoothening of the GRACE
(Sect. 5.1) and (ii) the uncertainty issues when Comb'n'nganomaly by skipping extremes. Another issue in GRACE ac-
data from heterogeneous sources (Sect. 5.2). quisition is the exclusively vertical sampling of the gravita-
tional eld that produces striping in the solution and requires

5.1 Impact of the GRACE actual resolution on ) .
post-processing that alters the signal.

downscaled results

The validation framework proposed in this article was used to
evaluate the downscaling potential of the scaling factor built

from mascon solution RLO6M. The scaling factor is built by To date, validation strategies for GRACE-derived down-
tting a unique factor between the TWS from the GLDAS scaled products have rested essentially on the appreciation
CLM model at 0.5 and aggregated at mascon scal§) 8  of temporal metrics or trends between downscaled prod-
evaluate the signal loss over the entire time series. Althoughycts and localized in situ measurements. Yet such a valida-
itis not meant to downscale the mascon solution, several retion approach is insuf cient to fully assess the usefulness of
cent articles in the literature have used the OversamPIEd Tw%e downsca”ng method as it suffers from a lack of (|) ap-
(spherical harmonics at br mascon solution at 0.pas the  propriate validation of the spatial distribution of the down-
LR input data. Our validation framework clearly showed that scaled GRACE-derived GWS within the GRACE pixel and
the product of GRACE TWS mascons and their scaling fac-(jj) comparison with the results that would be obtained with-
tor grid (SF method) degrades the temporal agreement witilyyt downscaling (by directly using GRACE TWS at the ne

in situ data and is noisy at a monthly timescale. Such resultgcale). This article reviews the validation methods of ex-
ino_licate that this product should not be used at the &5o0- isting downscaling methods of GRACE data, both model-
lution. based and data-based, and proposes a more extensive vali-
dation framework. In particular, a set of gains is used to eval-
uate the improvement of downscaled products against a low-
resolution (LR) reference, including both temporal and, for
the rst time, spatial aspects. Such gains aim at fully deter-

in validating QOwn_scaIed products Wlth. In situ da'Fa. Doyvn- mining the quality and uncertainty of downscaled GRACE-
scaled GWS is built from remote sensing data with various | . : .
derived GWS products in a more comprehensive way.

acquisition processes, while validation data are derived from
water-level depth acquired by local piezometers with a het-

Conclusions

5.2 Other uncertainty sources in the validation exercise

Another point that should be highlighted is the dif culty
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The new validation framework is tested to evaluate the per-stellations. Nevertheless, the speci ed spatial resolution for
formance of two data-based downscaling approaches witlthose future data still undergo strong technical limitations.
multilinear (ML) and random forest (RF) models over a Therefore, the recourse to downscaling techniques will be, at
113 000 kn fractured aquifer in southern India to the target least in the medium term, the only way to obtain TWS prod-
resolution of 0.5. The HR TWS predicted by each model ucts ata ner scale useful for basin-scale water management.
is bias-corrected at each time step from the difference be-
tween the LR GRACE TWS and the average of HR TWS.

We use GRACE TWS from the RLO6M mascon solution for Data availability. GRACE/GRACE-FO Mascon data are available
this study, which is multiplied by its 0.5scaling factor grid ~ at http://grace.jpl.nasa.gov (NASA, 2022a), soil moisture CCl data
and averaged over the study area to produce the LR referenc® https://www.esa-soilmoisture-cci.org (ESA, 2022), and MODIS
series. A secondary objective of the paper is to also asseégﬁa at https://appeears.ear_thdatagloud.nasa.gov (NASA, 2022b).
the downscaling potential of the scaling factor by consider-ater level data are not publicly available.

ing the product of mascon and scaling factor (SF) at the 0.5
resolution to be a downscaled product. The comparison o
the two data-based downscaling methods (bias-corrected M Methodology were developed by CP and OM. Experiments and

and RF) with the LR reference shows an improvement ing,aysis were done by CP and supervised by OM and SF. The
terms of correlation with in situ measurements. In the teM-manuscript was written by CP with contributions from OM, SF,

poral domain, the spatial average gains in Pearson correlaas, and JCM. Water-level data were provided by AP and cleansed
tion coef cients R) and root mean squared error (RMSE) by AS.

areC6:5% andC1:6 % (C6: % andC1:9 %) for ML (RF).

In the spatial domain, the gainsihand RMSE ar€28:8 %

andC2% (C27:2% andC2:2 %) for ML (RF) respectively.  Competing interestsThe contact author has declared that none of
The new validation method also con rms that the SF productthe authors has any competing interests.

cannot be used at 0.5esolution. Although the averade

in HR pixels is similar for all methods (0.74, 0.74, and 0.76

for SF, ML, and RF respectively), the SF product degradesPisclaimer. Publisher's note: Copernicus Publications remains
both temporal and spatial accuracies at @eSolution com- _neu_tral_ with regar_d to jurisdictional claims in published maps and
pared with the LR (without downscaling) case, showing thatnstitutional af liations.

it cannot be used as a valid downscaling approach. The spa-

tial analysis of temporal gains reveals a spatial heterogene-

ity in downscaling performances, which are particularly poor F_mancnal support. This rese_arch was reahzeql as part of a PhD the-
sis funded by a French national research ministry doctoral fellow-

over urlbanl_zed are"?‘s' The spatial evaluation originally pro- hip. The article processing charges for this open-access publication
posed in this §tudy is also able to analyse the segsonallty ere covered by the Horizon 2020 ACCWA project (grant agree-
the downscaling performance. The RF downscaling performent no. 823965) in the context of the Marie Sklodowska-Curie

mance is lower (gains iR belowC10 %) during the end of  yesearch and innovation staff exchange (RISE) programme.
the dry season when GWS is at its lowest and at the begin-

ning of the monsoon when surface ow, not included in the

RF model, is a major process. In particular, the spatial val-Review statementThis paper was edited by Zhongbo Yu and re-
idation presented in this study highlights, for the rst time, viewed by two anonymous referees.

the aws of static GRACE downscaling methods in contexts
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