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Abstract. GRACE (Gravity Recovery and Climate Experi-
ment) and its follow-on mission have provided since 2002
monthly anomalies of total water storage (TWS), which are
very relevant to assess the evolution of groundwater stor-
age (GWS) at global and regional scales. However, the use of
GRACE data for groundwater irrigation management is lim-
ited by their coarse (' 300 km) resolution. The last decade
has thus seen numerous attempts to downscale GRACE data
at higher – typically several tens of kilometres – resolu-
tion and to compare the downscaled GWS data with in situ
measurements. Such comparison has been classically made
in time, offering an estimate of the static performance of
downscaling (classic validation). The point is that the perfor-
mance of GWS downscaling methods may vary in time due
to changes in the dominant hydrological processes through
the seasons. To fill the gap, this study investigates the dy-
namic performance of GWS downscaling by developing a
new metric for estimating the downscaling gain (new valida-
tion) against non-downscaled GWS. The new validation ap-
proach is tested over a 113 000 km2 fractured granitic aquifer
in southern India. GRACE TWS data are downscaled at
0.5◦ (' 50 km) resolution with a data-driven method based
on random forest. The downscaling performance is evalu-
ated by comparing the downscaled versus in situ GWS data
over a total of 38 pixels at 0.5◦ resolution. The spatial mean
of the temporal Pearson correlation coefficient (R) and the
root mean square error (RMSE) are 0.79 and 7.9 cm respec-

tively (classic validation). Confronting the downscaled re-
sults with the non-downscaling case indicates that the down-
scaling method allows a general improvement in terms of
temporal agreement with in situ measurements (R = 0.76
and RMSE= 8.2 cm for the non-downscaling case). How-
ever, the downscaling gain (new validation) is not static. The
mean downscaling gain in R is about +30 % or larger from
August to March, including both the wet and dry (irrigated)
agricultural seasons, and falls to about +10 % from April to
July during a transition period including the driest months
(April–May) and the beginning of monsoon (June–July). The
new validation approach hence offers for the first time a stan-
dardized and comprehensive framework to interpret spatially
and temporally the quality and uncertainty of the downscaled
GRACE-derived GWS products, supporting future efforts in
GRACE downscaling methods in various hydrological con-
texts.

1 Introduction

Groundwater is an essential resource for irrigation, especially
in arid and semi-arid areas. Aquifers have suffered depletion
in several areas of the world these last decades, and this re-
source is expected to be scarcer in the future (Wada et al.,
2012). Monitoring and cautious management of this resource
are therefore crucial. Groundwater monitoring is tradition-
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ally achieved with networks of observation wells, but this
can be challenging due to their sparse coverage, the punc-
tual nature of the data, and the progressive abandonment of
some wells or measurement difficulties and bias (Hora et al.,
2019). In the meantime, new techniques for water storage
monitoring have emerged with the Gravity Recovery and
Climate Experiment (GRACE) satellite mission of US and
German space agencies (NASA and DLR). The twin satel-
lites of the GRACE mission were launched in 2002, and the
continuity of the mission as covered by the GRACE Follow-
On mission (GRACE-FO) launched in 2018. The gravimet-
ric data retrieved from these missions have provided spa-
tialized monthly anomalies of total water storage (TWS) for
2 decades, available worldwide. GRACE data were widely
used in hydrology to study the long-term evolution of TWS
or groundwater storage (GWS) by removing the contribu-
tions of other surface and sub-surface compartments from
GRACE TWS at global and regional scales (Breña-Naranjo
et al., 2014; Cao and Roy, 2020; Frappart et al., 2019; Papa
et al., 2015; Rodell et al., 2018; Rzepecka and Birylo, 2020;
Tiwari et al., 2009; Zhang et al., 2020). Nevertheless, their
application at local scale for agricultural purposes remains
limited due to the very low native resolution (about 400 km)
of GRACE observations (Schmidt et al., 2008; Tapley et al.,
2004).

During the past decade or so, several studies have pro-
posed methods to downscale GRACE TWS data to obtain
GWS maps at a spatial resolution (typically several tens
of kilometres) higher than that of GRACE observations.
Those downscaling approaches can be separated into two cat-
egories: model-based downscaling and data-based downscal-
ing (also referred in the literature as “dynamic downscaling”
and “statistical downscaling” respectively). The model-based
downscaling approach consists in assimilating GRACE TWS
data in physically based land surface or hydrological models
to obtain GWS at the temporal and spatial resolutions of the
model, which are generally higher than GRACE’s (Girotto
et al., 2016; Houborg et al., 2012; Nie et al., 2019; Schu-
macher et al., 2018; Tian et al., 2017; Zaitchik et al., 2008).
Yet this approach suffers from (i) the discrepancy between
GRACE and model input data resolutions and (ii) the limita-
tions inherent to models: model hypothesis and parametriza-
tion, the uncertainty of meteorological forcing, and particu-
larly the lack of representation of anthropogenic processes
such as crop irrigation (Long et al., 2013). The data-based
downscaling approach consists in (i) deriving a statistical
model of TWS from ancillary data available at high resolu-
tion (HR), (ii) calibrating it at low resolution (LR), (iii) ap-
plying it at HR, and (iv) removing the contribution of sur-
face and soil moisture water stocks to isolate GWS. This
data-driven approach rests on the hypothesis that the hydro-
logical and physical processes that link those variables are
identical at all resolutions (Ali et al., 2021; Jyolsna et al.,
2021; Karunakalage et al., 2021; Sahour et al., 2020; Seyoum
and Milewski, 2017; Vishwakarma et al., 2021; G. Zhang

et al., 2021; J. Zhang et al., 2021). In the literature, data-
driven methods have been used to downscale GRACE data
at various scales, either at the watershed scale for a the-
matic approach as in Seyoum and Milewski (2017) (5000 to
20 000 km2) or grid-based, with a downscaling resolution of-
ten limited by the coarsest resolution among the predictors
(Ali et al., 2021; Jyolsna et al., 2021; Ning et al., 2014; Sey-
oum et al., 2019; G. Zhang et al., 2021; Zhong et al., 2021;
Sahour et al., 2020).

To evaluate the GRACE data downscaled from the above
approaches, different strategies have been used. Table 1 lists
the validation methods used in recent papers downscaling
GRACE with either model-based or data-based approaches.
For both method categories, the validation of downscaled
GWS mostly relies on the in situ measurements of ground-
water levels (GWLs), converted or not into GWS anoma-
lies using a specific yield (Sy) representative of the study
area. Note that the GWS simulated by models has been oc-
casionally used as a reference (Houborg et al., 2012; Sey-
oum and Milewski, 2017). In most studies, the quality of the
downscaled GWS is evaluated by comparing its time series
with that of GWL or GWS derived from in situ measure-
ments for each HR unit (spatialized – HR pixel – or local-
ized observation well) with one or several metrics, includ-
ing the coefficient of determination (R2) or Nash–Sutcliffe
efficiency coefficient (NSE), the Pearson correlation coeffi-
cient (R), the root mean squared error (RMSE), or the mean
absolute error (MAE) (Ali et al., 2021; Jyolsna et al., 2021;
Karunakalage et al., 2021; Sahour et al., 2020; Yin et al.,
2018; J. Zhang et al., 2021; G. Zhang et al., 2021; Zuo et al.,
2021). In those studies, the downscaling procedure is consid-
ered efficient if those metrics fall within an acceptable range
or if the downscaled product qualitatively restitutes the long-
term trends of in situ data. The point is that any downscal-
ing method can improve or degrade the accuracy of GRACE
data at the targeted downscaling resolution depending on
(i) the sub-pixel spatial variability of TWS/GWS and (ii) the
uncertainties in input model parameters and forcing. More-
over, comparing the performances metrics with a “reference
hypothesis” (here the “non-downscaled” case) allows us to
quantitatively judge whether the downscaled product is better
or worse in terms of accuracy at the targeted (fine) resolution
and to evaluate whether the downscaling process is efficient.
Therefore, quantifying the improvement against the GRACE
data at their original resolution is crucial for properly evalu-
ating downscaling methods. Among the 14 data-based meth-
ods listed in Table 1, only a few studies (Chen et al., 2019;
Ning et al., 2014; J. Zhang et al., 2021; Zhong et al., 2021)
quantify the improvement of the temporal agreement with in
situ data of a downscaled product over the original LR data.
Regarding the model-based approaches, all of them evaluate
the temporal agreement of the downscaled GWS with in situ
data against open-loop outputs (without the assimilation of
GRACE data), but the results of the comparison against the
LR GRACE TWS are not presented. Note that the primary

Hydrol. Earth Syst. Sci., 26, 4169–4186, 2022 https://doi.org/10.5194/hess-26-4169-2022



C. Pascal et al.: Evaluating downscaling methods of GRACE data 4171

goal of the latter methods is to improve the model simula-
tions using GRACE data and not specifically to downscale
GRACE data, even though equivalence between both objec-
tives may be argued.

For each downscaling method, Table 1 also indicates
whether the evaluation of the downscaled dataset is under-
taken in time or in both time and space. Zhong et al. (2021)
are the only ones proposing a validation strategy combining
the time and space dimensions by measuring the improve-
ment of RMSE and R (with monthly in situ data) from LR
to downscaled GWS using 42 observation wells within the
GRACE pixel and for all months of the time series. This val-
idation approach thus combines spatial and temporal eval-
uations but does not isolate their individual contributions. In
particular, to the knowledge of the authors, none of the previ-
ous studies has specifically evaluated the capability of down-
scaled products to restitute the GWS spatial variations within
the GRACE pixel at the temporal observation scale (1 month
in our case).

Another issue in the application and validation of current
downscaling studies is the scale at which the GRACE data
are used at input. The combination of the ground tracks of
the GRACE twin satellites over a period of 1 month allows a
native spatial resolution of 300 to 400 km for GRACE data,
both for spherical harmonic (Schmidt et al., 2008; Tapley
et al., 2004) and mascon solutions from the Jet Propulsion
Laboratory (JPL) (Watkins et al., 2015). The GRACE TWS
grids are however provided with scaling factors with resolu-
tions of 1 and 0.5◦ for the harmonic (Landerer and Swenson,
2012) and JPL mascon (Wiese et al., 2016) solutions respec-
tively. Such scaling factors were originally designed to re-
store the lost signal of GRACE due to post-processing and to
allow for averaging of the 1- or 0.5◦-resolution oversampled
TWS data over user-defined regions with a minimum extent
similar to a 300–400 km-resolution GRACE pixel (Landerer
and Swenson, 2012). In particular, scaling factors are not ex-
pected to efficiently downscale GRACE TWS data as neigh-
bouring pixels are highly dependent (Landerer and Swenson,
2012). Yet many studies directly use GRACE harmonics so-
lutions at 1◦ resolution (Ali et al., 2021; Jyolsna et al., 2021;
Karunakalage et al., 2021; Ning et al., 2014; Seyoum et al.,
2019; Yin et al., 2018; J. Zhang et al., 2021; G. Zhang et al.,
2021; Zuo et al., 2021) or mascon solutions at 0.5◦ resolu-
tion (Karunakalage et al., 2021; Nie et al., 2019; Tian et al.,
2017) as LR input data, which is far finer than their actual
resolution. There is no study evaluating the uncertainty in
downscaled GRACE data associated with the above assump-
tion, i.e. neglecting the scale discrepancy between the actual
resolution of GRACE observations and the grid size of the
delivered oversampled GRACE data.

In this context, the objective of this study is to propose a
consistent and complete validation framework covering the
spatial and temporal aspects to quantify the supplementary
information of downscaled GWS from GRACE compared
with the LR original data. We test this framework on GRACE

data downscaled over a granitic aquifer of 113 000 km2 in
Telangana in southern India. We use a data-based approach
to downscale GRACE mascon solution RL06M at a 0.5◦

resolution with two different models: a multilinear regres-
sion model and random forest. We also use this validation
framework to evaluate the downscaling potential of the scal-
ing factor at 0.5◦ resolution provided with the mascon solu-
tion (hence evaluating the choice of using the GRACE data
oversampled at 0.5◦ resolution as a downscaled product). We
compare the conclusions drawn from the classic validation
techniques and the new validation framework proposed in
this study.

2 Data and study area

2.1 Study area

Telangana is a highly irrigated and densely populated (about
335 inhabitants per square kilometre in 2020 according to the
Unique Identification Authority of India – UIDAI) region in
southern India covering 114 800 km2. It is dominated by a
semi-arid climate, where the monsoon precipitation occurs
between July and October and ranges from 540 to 1300 mm
with a mean of 879 mm (Indian Meteorological Department).
The strong water demand in this area for domestic uses and
the irrigation of two growing seasons a year is met with the
surface water stored from monsoon rainfall and groundwa-
ter. The majority (67 000 km2) of the state is a shallow frac-
tured granitic aquifer characterized by high fluctuations due
to water pumping (Maréchal et al., 2006). It is usually com-
posed of two layers: the first layer is saprolite, with a high
effective porosity (Sy of 10 %), extending up to 10 to 15 m,
and it is followed by a layer of fractured granite with a low
capacity (Sy around 1 %) (Dewandel et al., 2017; Maréchal
et al., 2006). This aquifer has a low capacity but strong dy-
namics as it fills and empties almost completely every year
with monsoon rainfall and intense pumping. While continu-
ous groundwater depletion has been observed with GRACE
or observation wells in northern India (Asoka et al., 2017;
Chen et al., 2014; Tiwari et al., 2009), northern China (Feng
et al., 2013; Huang et al., 2015), Texas (Long et al., 2013),
and many other parts of the world (Rodell et al., 2018), it
is challenging to identify a long-term trend for groundwater
storage in Telangana.

This study focuses on the granitic area of Telangana con-
toured with the 0.5◦-resolution GRACE RL06M scaling fac-
tor grid. The study area is estimated at 113 000 km2, which
is similar to the actual size of a GRACE pixel. Note that the
GRACE RL06M pixels were extracted by selecting the 0.5◦

pixels falling within the granitic area of Telangana (pixels
within the pink dotted line in Fig. 1).

https://doi.org/10.5194/hess-26-4169-2022 Hydrol. Earth Syst. Sci., 26, 4169–4186, 2022



4172 C. Pascal et al.: Evaluating downscaling methods of GRACE data

Table
1.V

alidation
strategies

of
existing

–
either

data-based
or

m
odel-based

–
dow

nscaling
m

ethods
of

G
R

A
C

E
data.T

he
dow

nscaling
m

ethod
is

either
data-based

(D
)

or
m

odel-
based

(M
).T

he
tw

o
resolutions

reported
are

the
initialresolution

of
G

R
A

C
E

data
(G

R
A

C
E

)
and

the
targetdow

nscaling
resolution

(Target).G
W

L
:in

situ
groundw

ater
level.G

W
S:in

situ
derived

groundw
aterstorage.T

he
“C

om
p.”

colum
n

indicates
w

hethererrorstatistics
ofthe

dow
nscaled

productare
com

pared
w

ith
those

ofanotherreference
product:G

R
A

C
E

data
atoriginallow

resolution
(L

R
)orthe

m
odelrun

in
open

loop
(O

L
).

R
eference

R
esolution

V
alidation

data
V

alidation
m

etric
V

alidation
in

C
om

p.

D
ow

nscaling
G

R
A

C
E

in
m

odel
R

R
2

R
M

SE
Trend

Tim
e

Space
m

ethod
Target

situ
output

changes

A
lietal.(2021)

D
1
◦

0.25
◦

G
W

S
X

X
X

X
C

hen
etal.(2019)

D
1
◦

0.25
◦

G
W

L
X

X
L

R
Jyolsna

etal.(2021)
D

1
◦

0.25
◦

G
W

S
X

X
X

K
arunakalage

etal.(2021)
D

1
and

0.5
◦

0.25
◦

G
W

L
X

X
N

ing
etal.(2014)

D
1
◦

0.25
◦

G
W

L
X

X
L

R
Sahouretal.(2020)

D
13

700
to

59
200

km
2

0.125
◦

G
W

L
X

X
Seyoum

etal.(2019)
D

1
◦

0.25
◦

G
W

S
X

X
X

Seyoum
and

M
ilew

ski(2017)
D

500
000

km
2

5000
to

20
000

km
2

G
W

S
G

W
S

X
X

X
X

V
ishw

akarm
a

etal.(2021)
D

62
518

to
4

672
876

km
2

0.5
◦

Y
in

etal.(2018)
D

1
◦

2
km

G
W

L
X

X
X

G
.Z

hang
etal.(2021)

D
1
◦

0.25
◦

G
W

L
X

X
X

X
L

R
J.Z

hang
etal.(2021)

D
1

and
0.25
◦

1
km

G
W

L
X

X
X

X
L

R
Z

hong
etal.(2021)

D
3
◦

5
km

G
W

S
X

X
X

X
X

L
R

Z
uo

etal.(2021)
D

1
◦

1
km

G
W

L
X

X
X

X
X

G
irotto

etal.(2016)
M

1
◦

36
km

G
W

S
X

X
X

O
L

H
ouborg

etal.(2012)
M

basin
4000

km
2

G
W

S
G

W
S

X
X

X
O

L
N

ie
etal.(2019)

M
0.125

◦
0.125

◦
G

W
S

X
X

X
X

O
L

Schum
acheretal.(2018)

M
1

060
000

km
2

0.5
◦

G
W

S
X

X
X

X
O

L
Tian

etal.(2017)
M

0.5
◦

0.5
◦

G
W

L
X

X
O

L
Z

aitchik
etal.(2008)

M
>

500
000

km
2

4000
km

2
G

W
S

X
X

X
O

L

Hydrol. Earth Syst. Sci., 26, 4169–4186, 2022 https://doi.org/10.5194/hess-26-4169-2022



C. Pascal et al.: Evaluating downscaling methods of GRACE data 4173

Figure 1. Location of the study area (dotted pink line, 113 000 km2) that delineates the granitic area of Telangana (pink area, 67 000 km2,
identified from Phani, 2014) with the target 0.5◦ resolution. The number of available observation wells (black triangles) monitored by the
Groundwater Department of Telangana is indicated in the centre of each of the 38 0.5◦ pixels. The grey area indicates the extent of Hyderabad,
the capital city of the state. The main rivers are indicated in blue.

2.2 Data

All data used and their sources are summarized in Table 2.
Figure 2 shows time series of some of the data presented be-
low as well as their intra-annual and interannual periodicities.

2.2.1 GRACE TWS

We used the state-of-the-art GRACE mascon solution
from JPL (RL06M) with the Coastal Resolution Improve-
ment (CRI) filter in this study. The mascon solution uses
a priori information derived from near-global geophysical
models to prevent striping. Moreover, it suffers less from
leakage errors than the harmonic solution (Watkins et al.,
2015) (https://grace.jpl.nasa.gov/data/choosing-a-solution/,
last access: 19 January 2022). Each mascon is 3◦× 3◦, and
the scaling factor grid used to restore the lost signal has a
0.5◦ resolution. After multiplication of the mascon grid by
the scaling factor grid, all the 0.5◦-resolution pixels within
the study area are spatially averaged over the study area to
produce a LR TWS time series at 113 000 km2 scale. The
baseline of TWS anomalies was modified by subtracting the
long-term mean of the 2007-2015 period.

2.2.2 Ancillary data

We use ancillary variables from three different datasets to
predict GRACE TWS: the monthly rainfall from the TRMM
mission at a 0.25◦ resolution, the normalized difference veg-
etation index (NDVI) from MODIS at 1 km and the remotely
sensed surface soil moisture data from the ESA CCI product

(combining passive microwave-derived soil moisture prod-
ucts) at 0.25◦. All these datasets provide monthly data ex-
cept the CCI soil moisture (SM CCI) product, which was
temporally aggregated at a monthly scale. The temporal win-
dow aggregation varies for GRACE TWS and is not always
the same as those of ancillary data, but we assumed that
the effects of slightly varying windows were negligible. All
datasets were aggregated with bilinear resampling both at
the downscaling target resolution (0.5◦) and at regional scale
(113 000 km2). The values were converted into anomalies by
subtracting the long-term mean of the 2007–2015 period.

2.2.3 Deconvolution of GRACE TWS with GLEAM

GWS is a sub-compartment of TWS, and hence the down-
scaled GRACE TWS is not directly comparable with in situ
derived GWS. In semi-arid areas, a common assumption
is generally made that the essential contributions to TWS
are GWS and soil moisture (SM) storage, thus neglecting
canopy, snow and surface water storage (Eq. 1):

1TWS=1GWS+1SM, (1)

with 1 representing the anomalies regarding a baseline, the
2007–2015 average in our case. In Telangana, the rivers (ex-
cept the major rivers Godavari and Krishna; see Fig. 1) are
not perennial and only flow for a few months during and
after the monsoon. Surface water stocks are composed of
large dams built on major rivers, with a cumulative capac-
ity estimated at 113 mm (Indian National Register of Large
Dams) and small reservoirs in the upstream part, with a

https://doi.org/10.5194/hess-26-4169-2022 Hydrol. Earth Syst. Sci., 26, 4169–4186, 2022
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Table 2. Summary of all data used.

Variable Source Native spatial Usage
resolution

TWS GRACE RL06M 3◦ Target variable
Rainfall TRMM 3B43 V7 0.25◦ Predictor
NDVI MOD13A3v006 1 km Predictor
Surface soil moisture ESA CCI v06.1 passive product 0.25◦ Predictor
RZSM GLEAM v3.5 0.25◦ Deconvolution of GRACE TWS
GWS Telangana State Groundwater Board Punctual data Validation

Figure 2. Time series of low-resolution (a) GRACE TWS with its uncertainty envelope (average of the mascon uncertainty resampled at
0.5◦ provided with GRACE data) and GWS anomalies derived from in situ measurements (GWS-OW) in centimetres and (b) rainfall, NDVI
and SM CCI. Those three predictors were scaled between 0 and 1 to compare their temporal cycles. The envelope for GRACE TWS is the
uncertainty provided with the mascon solution, and those for GWS-OW, rainfall, NDVI and SM CCI correspond to the lowest and highest
values found in high-resolution (0.5◦) pixels at each time step. The months of June (beginning of the monsoon) are marked by dotted vertical
lines.

capacity estimated at 30 mm in a previous study (Pascal
et al., 2021). This potential reservoir of 143 mm represents
24 % of GRACE TWS annual fluctuation in this area dur-
ing the 2002–2021 time period (600 mm), yet the reservoirs
are rarely simultaneously full and, most of the time, sur-
face water storage can be neglected. Most studies use model
outputs of SM to deconvolute GRACE TWS (Ali et al.,
2021; Chen et al., 2019; Jyolsna et al., 2021; Karunakalage
et al., 2021; Yin et al., 2018; J. Zhang et al., 2021; Zuo

et al., 2021; Sahour et al., 2020; Seyoum and Milewski,
2017; Zhong et al., 2021). We used the Global Land Evap-
oration Amsterdam Model (GLEAM) v3.5b monthly root
zone soil moisture (RZSM) dataset to simulate SM storage,
which we transform into anomalies to the baseline 2007–
2015. GLEAM v3.5b is a model driven by satellite data that
estimates evapotranspiration and soil moisture over a 0.25◦-
resolution grid for the period 2003–2020 (Martens et al.,

Hydrol. Earth Syst. Sci., 26, 4169–4186, 2022 https://doi.org/10.5194/hess-26-4169-2022
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2017; Miralles et al., 2011). RZSM anomalies were com-
puted by retrieving the 2007–2015 mean.

2.2.4 Validation GWS data (GWS-OW)

We use GWL data from the Groundwater Department
of Telangana (India Water Resources Information System,
https://indiawris.gov.in/wris, last access: 19 January 2022)
for the period 2007–2019. These data provide monthly sur-
veys of instantaneous GWL of 1006 wells distributed over
the study area (see Fig. 1). Maps of GWL at 0.5◦ were pro-
duced from the interpolation of well data with the inverse
distance weighting (IDW) method (which avoids kriging bias
and provides more accurate values on data points) and were
converted into a GWL anomaly by retrieving the long-term
mean of the 2007–2015 period. These maps were converted
to GWS maps by multiplying by a Sy that was calibrated with
a linear fitting between GRACE TWS deconvoluted with
GLEAM RZSM and the GWL anomaly at regional scale. The
Sy was estimated at 4.7 %, which is an intermediate and con-
sistent value between the Sy of both layers (saprolite at 10 %
and fractured granite at 1 %) composing the aquifer in the
study region. In the following, we designate these computed
GWS anomalies as GWS-OW.

3 Downscaling and validation methods

This section details the validation method developed in this
study (Sect. 3.1) that consists of a validation against an
LR reference in both spatial and temporal aspects. This
framework is tested on state-of-the-art statistical downscal-
ing methods that are detailed in Sect. 3.2.

3.1 Evaluation of downscaled data

3.1.1 Gain against the “null hypothesis”

As highlighted in the introduction, a lack in the majority
of publications on GRACE downscaling is the comparison
of the downscaled GWS with a null hypothesis. In partic-
ular, current evaluation methods check whether metrics fall
within an acceptable range that is qualitatively defined but
do not quantify the improvement provided by the downscal-
ing process from a reference hypothesis. To fill the gap of
current validation strategies of the downscaling methods of
GRACE data, new metrics are proposed herein to quantita-
tively assess the accuracy of the downscaled data compared
with the data at the original GRACE resolution (null hy-
pothesis). In this case, two LR TWS references are possi-
ble: either the spatially averaged TWS value (produced as ex-
plained in Sect. 2.2.1) or the product of the mascon solution
and its scaling factor grid at 0.5◦ resolution. In both cases,
the contribution of SM to TWS is removed (using GLEAM
RZSM estimates used at the 0.5◦ target resolution) to obtain
GWS, comparable with in situ data. We chose to use the aver-

aged TWS deconvoluted with the 0.5◦ GLEAM RZSM (fur-
ther called GWS-LRref) as the LR reference. The 0.5◦-scale
factor-based product (further called SF) is used as the down-
scaling first guess whose performance will be compared with
the downscaling techniques proposed in this paper.

We chose to compute a relative gain similarly to Merlin
et al. (2015). For a given metric M measuring the agreement
with the validation data (e.g. R, RMSE), the gain G is com-
puted as follows (Eq. 2):

G=
|Mopt−MLR| − |Mopt−MHR|

|Mopt−MLR| + |Mopt−MHR|
, (2)

with MLR the value of the metric for the GWS-LRref,
MHR its value for the downscaled GWS, and Mopt the op-
timal value of this metric (e.g. 1 for R, 0 for RMSE). The
gain of Eq. (2) can be computed in time or in space.

3.1.2 Temporal gain at high spatial resolution

For the temporal analysis, we compute this gain in the time
series of GWS on all HR pixels and for three metrics: R,
R2, and RMSE (Eqs. 3–5). These are temporal gains, as they
measure the improvement of the agreement of the time se-
ries on each HR (0.5◦) pixel where in situ measurements are
available.

GR =
|1−RLR| − |1−RHR|

|1−RLR| + |1−RHR|
(3)

GR2 =
|1−R2

LR| − |1−R
2
HR|

|1−R2
LR| + |1−R

2
HR|

(4)

GRMSE =
RMSELR−RMSEHR

RMSELR+RMSEHR
(5)

3.1.3 Spatial gain at monthly scale

For the spatial analysis, we compare the monthly maps of
downscaled GWS with reference maps of GWS-OW. For
each time step, we compute a gain over the LR reference on
four metrics: the slope S of the linear regression (Eq. 6), the
mean bias B (Eq. 7), R (Eq. 3), and RMSE (Eq. 5).

GS =
|1− SLR| − |1− SHR|

|1− SLR| + |1− SHR|
(6)

GB =
|BLR| − |BHR|

|BLR| + |BHR|
(7)

We expect S and R to be closer to 1 and B and RMSE
closer to 0 for the downscaled product than for the LR ref-
erence. The slope is a common indicator to evaluate down-
scaled products, in particular for soil moisture downscaling
(Merlin et al., 2015; Sabaghy et al., 2020). Indeed, the vari-
ability of GWS is expected to be higher at HR and closer to
that of in situ measurements than at LR. Computing metrics
for each time step rather than on the whole time series (all
time steps and all HR pixels mixed) allows us for the first
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time to eliminate the contributions of intra-annual and inter-
annual variations and to specifically isolate the contribution
of GWS spatial variability in the GRACE sampling period.

3.2 Statistical downscaling method

We use a data-based downscaling method that consists in
training a model at LR between TWS and ancillary variables
resampled at LR (113 000 km2). This model and ancillary
variables at HR (0.5◦) are then used to predict TWS at 0.5◦.
An additive correction is applied at LR to force the average
of HR TWS predicted by the model to be equal to the TWS
observed at LR (GRACE observation). The corrected TWS
at 0.5◦ is finally deconvoluted into GWS with the GLEAM
RZSM. We compare the two models often used in the liter-
ature: the multilinear regression model and the random for-
est model. The downscaling process is summarized in the
flowchart of Fig. 3.

3.2.1 Variable selection

For this data-driven approach, we selected remote sens-
ing predictors that have a hydrological meaning. Also, we
avoided model outputs, as irrigation is often not well repre-
sented in models. The predictors considered herein are pre-
cipitation (TRMM), surface SM (CCI), NDVI (MODIS) as
an indicator of crop fraction, and the monthly variation of
NDVI (1NDVI). We also used as predictors the cumulative
sum over the past year for all variables (except 1NDVI) by
considering that it provides information about the state of the
aquifer before the start of the irrigation season. Note that
some predictors lag behind GRACE TWS due to the time
that hydrological processes take. We determined the optimal
time lag between TWS and each variable from 0 to 3 months
by maximizing their temporal correlation coefficients (Sa-
hour et al., 2020; Seyoum and Milewski, 2017). For both
multilinear regression and random forest approaches, parsi-
monious models are obtained by selecting the optimal num-
ber of the most meaningful variables that allow prediction
of the TWS. We used the RFECV (recursive feature elim-
ination with cross-validation) algorithm, which is a greedy
feature elimination algorithm similar to sequential backward
selection.

3.2.2 Multilinear regression model

The multilinear (ML) regression model fits a linear relation-
ship between the target variable Y (here TWS) and p predic-
tors X1, X2, . . . Xp (Eq. 8):

Y = β0+β1X1+ . . . +βpXp +E. (8)

The β0, β1, . . . ,βp are determined by minimizing the mean
squared error between the data and the model predictions.
This model has the advantage of being easily interpretable
but is limited by the assumptions that relationships between

variables are linear. Before training the ML model, the is-
sue of multicollinearity (the existence of linear relationships
between variables) was addressed. The elimination of redun-
dant variables increases the precision of the coefficients of
the regression and helps to properly identify the contribu-
tion of the remaining variables to the target variable (here
TWS), and especially the signs of the coefficients. We used
the variance inflation factor (VIF) (Alin, 2010) as in Sahour
et al. (2020) to detect multicollinearity, and predictors with
VIF> 10 were removed.

3.2.3 Random forest regressor

The random forest (RF) algorithm (Breiman, 2001) is a su-
pervised ensemble learning algorithm composed of indepen-
dent decision trees. Each decision tree learns with a subset of
the predictors (here the square root of the maximum number
of predictors) using a bootstrap sampling. This method soft-
ens the relationship constraints between variables but loses
in interpretability. There is no need to remove some variables
before training the model as the RF algorithm deals well with
collinearity.

3.2.4 Additive correction

After predicting HR TWS with the ML or RF model, we cor-
rected the TWS values so that the spatial average of HR TWS
at each time step would be equal to LR TWS. We add an off-
set value to correct the HR TWS at each month of the time
series that corresponds to the difference between LR GRACE
TWS and the spatial average of HR TWS predictions at the
same date (Eq. 9):

TWScorr
HR,t,i = TWSHR,t,i +TWSLR,t −

∑
i

TWSHR,t,i

npix
, (9)

with TWSHR,t,i the HR TWS predicted by the model for
month t and pixel i, TWScorr

HR,t,i the bias-corrected TWS,

TWSLR,t the LR TWS at date t , and

∑
i

TWSHR,t,i

npix
the spatial

average of HR TWS at date t .

4 Results

This section aims at evaluating the efficiency of the two data-
based downscaling methods, i.e. ML and RF models against
GWS-OW. In each case, we compare these results with the
first-guess downscaling product, i.e. the product of the mas-
con solution and its scaling factors at 0.5◦ resolution (SF).
After commenting on the results of the model calibration
at LR in Sect. 4.1, we analyse the conclusions drawn from the
classic evaluation methods found in the literature (Sect. 4.2)
and then from the new validation method proposed in this
study (Sect. 4.3). The synthesis of the different conclusions
is presented in Sect. 4.4.
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Figure 3. Flowchart of the downscaling method.

Table 3. Correlation coefficients of ancillary variables with GRACE
TWS. The optimal time lag is indicated by bold correlations. The
underlined correlations are not statistically significant.

Lag Rainfall NDVI SM CCI 1NDVI

0 0.90 0.30 0.79 0.10
−1 0.85 0.68 0.91 0.51
−2 0.54 0.79 0.71 0.68
−3 0.16 0.68 0.34 0.63

4.1 Variable selection and model calibration at LR

The correlation coefficients of the ancillary variables with
GRACE TWS at LR are reported in Table 3. The bold corre-
lations indicate which time lag was chosen for each variable:
no lag for NDVI, 1-month lag for CCI soil moisture, 2-month
lag for 1NDVI and rainfall. The selected variables for each
model are indicated in Table 4. Four variables were selected
for the ML model:1NDVI, NDVI, SM CCI, and SM CCI ac-
cumulated over a year. The RF model selected two additional
variables: monthly rainfall and rainfall accumulated over a
year.

ML and RF models are trained on a random sample of
80 % of the whole time series (174 points in total). The se-
lected variables and the model performances are reported in
Table 4. The RF model has a better R2 than the ML model

(0.97 against 0.90), yet the RMSE and R2 on the test set are
far larger (lower) than on the train set (4.6 cm against 1.9 cm
and 0.93 against 0.98). This reveals that the RF model suf-
fers from overfitting due the quality of the data and the small
amount of data (139 points) used to train the model, resulting
in poor generalization. The RMSE on the train set is respec-
tively 5.0 and 4.6 cm for the ML model, which represents
7 % and 6 % of the GRACE TWS total amplitude over the
region during the study period (71 cm). Both models seem
to be able to predict GRACE TWS with good performance.
However, the performance is lower when compared with in
situ data. As an example, the R2 between in situ derived
TWS (sum of GWS-OW and RZSM GLEAM) aggregated
at LR and GRACE TWS is 0.80. This shows that only lim-
ited agreement can be expected between satellite data (or
modelled from satellite data) and in situ data, because of
(i) the inherent uncertainties of the data, (ii) the interpola-
tion of in situ data, and more generally (iii) the diversity of
data sources. All those uncertainty sources also apply to the
TWS predicted by models at both low and high resolutions.
The R2 with in situ derived TWS falls from 0.90 and 0.97
to 0.78 and 0.82 for the ML and RF predictions respectively.
This can be due to the existing uncertainty mentioned earlier
but also to the possible lack of representativeness of in situ
measurements at the GRACE spatial resolution.
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Table 4. Variable selection and model performance at LR. The number in parentheses is the number of lag months. Variables with the suf-
fix “cum.” are cumulated over the last year. The underlined variables were eliminated with the VIF selection method. The model performance
is evaluated against GRACE TWS with the R2 and the RMSE on train and test sets. The R2 with in situ derived TWS (sum of GWS-OW
and GLEAM RZSM at LR) is also shown.

Model Variable selection Model performances

Rainfall NDVI SM 1NDVI Rainfall NDVI SM RMSE RMSE R2 R2 R2 with R2 with in
(2) (0) CCI (2) cum. cum. CCI train test train test GRACE TWS situ derived

(1) cum. (cm) (cm) (train+ test) TWS
(train+ test)

ML X X X X 5.2 5.0 0.89 0.91 0.90 0.78
RF X X X X X X 1.9 4.6 0.98 0.93 0.97 0.82

Figure 4. (a) Spatial distribution of R2, R, and RMSE for the downscaling with the random forest model with bias correction (RF CORR).
The numerical value of the metric is indicated in the grid. The abscissa is the east longitude and the ordinate the north latitude. (b) Boxplot
(median and quartiles) of R2, R, and RMSE between GWS-OW and the scaling factor product (SF), linear (ML), and random forest (RF)
model-downscaled products with bias correction (CORR) and the low-resolution reference GWS-LRref (LR). The RMSE is an equivalent
water height in centimetres.

4.2 Classic evaluation

The temporal agreement between GWS-OW and downscaled
products was evaluated on every HR pixel with R2, R, and
RMSE for the SF downscaling and both the ML and RF mod-
els with correction by the LR offset value (CORR). Fig-
ure 4a shows the spatial distribution of these three metrics
for the RF CORR-downscaled GWS for visualization and
Fig. 4b the distribution of the three metrics on all pixels
for all the downscaling methods. The temporal agreement
of the SF product with GWS-OW seems to be the worst
given the wide distribution of R2 with an average of 0.21
and some outliers in negative values and an average RMSE
of 9.1 cm. The SF product appears to perform less well than
the LR reference GWS-LRref (average R2, R, and RMSE

of 0.38, 0.76, and 8.2 cm). The R and R2 are better on av-
erage for ML CORR (0.79 and 0.42) and RF CORR (0.79
and 0.43), and the reduced variability of R and RMSE for
ML CORR and RF CORR suggests that the bias correction
produces results with a more uniform quality. The RMSE
is still relatively large, ranging from 6.3 to 9.3 cm (6.4 to
9.3 cm) for the ML (RF) model. As a reference, the ampli-
tude of GWS-OW in this area during the 2007–2019 time
period ranges from 33 to 70 cm on all 38 HR pixels.

4.3 Evaluation with temporal and spatial gains

The temporal gains are computed as explained in Sect. 3.1
and are shown for the particular case of RF CORR in Fig. 5
for visualization. The spatial gains are computed at each
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Figure 5. Spatial distribution of the gains of R2, R, and RMSE for the downscaling with RF CORR. The numerical value of the metric is
indicated on the grid. The abscissa is the east longitude and the ordinate the north latitude.

Figure 6. Illustration of the spatial gain for the month of January 2008. (a) Maps of HR in situ derived GWS (GWS-OW), RF CORR-
downscaled GWS, and LR reference GWS (GWS-LRref). The abscissa is the east longitude and the ordinate the north latitude. (b) Scatterplot
of the GWS-LRref (grey points) and RF-downscaled GWS (black points) against GWS-OW. The identity function is indicated by a dashed
red line. The slope of the two linear regression fits on grey and black points are used to compute the gain in the slope. The differences in
dispersion, uncertainty, and bias of the two point clouds are evaluated with gains in R, RMSE, and mean bias.

time step between the two point clouds of GWS-OW and
GWS-LRref or downscaled GWS, as illustrated in Fig. 6.
The boxplots of temporal gains in all HR pixels and the
boxplot of spatial gains in the whole time series are shown
in Fig. 7. ML CORR and RF CORR show the best results:
average gains in R2, R, and RMSE are respectively 3.2 %,
6.5 %, and 1.55 % for ML CORR and 4.0 %, 6.7 %, and
1.9 % for RF CORR. In particular, the temporal gains for
the RF CORR product seem to be positive in the north and
south of the study area (cf. Fig. 5), which coincides with the
two main river basins of the state but also concerns pixels
with mixed geology and where the least number of obser-

vation wells are available (see Fig. 1). The pixel at 17◦ N,
78◦ E contains the major part of the capital city of the state,
Hyderabad, a heavily urbanized area where natural hydro-
logical processes as well as observation well measurements
are highly perturbed by domestic water use, explaining the
negative gains in R2, R, and RMSE (−4.4 %, −6.3 %, and
−2.2 % respectively).

In the spatial domain (see Fig. 7b), the quality of the SF-
downscaled GWS is questionable. The quasi-null gain in
bias was expected, as the only difference between LR and
SF TWS is a multiplicative factor generally close to 1. The
SF-downscaled GWS shows positive gains for slope and
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Figure 7. Boxplots (median and quartiles) of (a) temporal and (b) spatial gains for the SF, ML and RF model downscaling approaches. The
CORR designation indicates that the downscaled TWS is corrected for the LR bias from GRACE data.

Figure 8. Monthly medians of spatial gains (black curves) on slope, R, and RMSE for downscaled GWS with the RF CORR model (left axis)
with, on the right axis, (a) average± standard deviation (SD) of low-resolution rainfall, NDVI, SM from the CCI dataset, and in situ derived
GWS and TWS scaled between 0 and 1 and (b) interannual average±SD of the monthly spatial variability divided by the grid maximum of
rainfall, NDVI, SM from the CCI dataset, and in situ derived GWS, scaled between 0 and 1. (c) Time series of the monthly spatial variability
of in situ derived GWS (red curve) with monthly cumulative rainfall (grey). The abnormally dry monsoons of 2009 and 2015 and the high
GWS spatial variability during the following dry season are highlighted in black.

R on most of the time series (12.9 % and 13.9 % respectively
on average) but at the cost of higher uncertainty (−8.5 %
gain in RMSE). Monthly scatterplots (results not shown) in-
dicate that the slope getting closer to 1 is most of the time
a consequence of an increased dispersion due to what ap-
pears to be additional noise at each time step brought by
the scaling factor grid. The improvement of spatial repre-
sentativity of GWS with data-based downscaling methods

(ML CORR and RF CORR) is shown by overall positive
gains in slopes and R (22.9 % and 28.8 % for ML CORR,
18.2 % and 27.2 % for RF CORR) while maintaining a gen-
eral positive gain in RMSE as well (2.0 % and 2.2 % for
ML CORR and RF CORR respectively). The bias correc-
tion at LR adjusts the HR TWS predicted by the model to
the GRACE TWS amplitude, explaining the null gain in bias
for both models.
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Complementary to the spatial analysis of temporal met-
rics (e.g. in Fig. 5), the spatial gains can be analysed in time.
Figure 8 shows the monthly medians of the gains in slope,
R, and RMSE for RF CORR downscaled GWS. It appears
that gains in slope and R are lowest during the month of July
(beginning of the monsoon). Gains in both slope and R in-
crease until January–February (beginning of the second crop
season that ends in April) and decrease again. The monthly
gains of RMSE have lower amplitudes than those of slope
and R but have a similar pattern. The periodicity in down-
scaling performances is due to the capacity or incapacity of
the model trained at LR to restitute the spatial variability of
some intermittent processes. In this paper, the tested down-
scaling methods are empirical, like the majority of existing
methods (Ali et al., 2021; Jyolsna et al., 2021; Sahour et al.,
2020; Seyoum and Milewski, 2017). Therefore, we are not
able to represent explicitly the underlying hydrological pro-
cesses that explain (in the downscaling procedure) the spa-
tial variability of GWS at a given time. However, the perfor-
mance of the downscaling methods essentially relies on their
capability to represent implicitly the discharge and recharge
of the aquifer at 0.5◦ resolution. This is the reason why the
temporal variability in the downscaling performance can be
interpreted in terms of taking into account the dominant hy-
drological processes and their seasonal dynamics.

In Telangana, the year can be divided into several peri-
ods given their dominant hydrological processes. The month
of August marks the start of aquifer recharge by the rainfall
that occurs 2 to 3 months after the beginning of the monsoon
(which lasts generally from August to October; see Fig. 8a).
It is also the beginning of the growing season (which typi-
cally lasts from July to November), when the monsoon rain-
fall stored at the surface and in the aquifer are used for ir-
rigation. The higher spatial gains in slope, R, and RMSE
during this period show that the recharge process in space
is correctly represented with the precipitation data at 0.5◦

(having mainly a north–south gradient). The period between
January and March, during the dry season, is marked by the
heavy pumping and use of surface water for crop irrigation.
This process is relatively well represented by the downscal-
ing model from SM CCI and NDVI data, which provide in-
direct information on irrigation and crop stage respectively.
During this period, the spatial variability of both predictors
(illustrated by Fig. 8b, which represents the interannual av-
erage of the monthly spatial variability) is relatively large,
accounting for the differences in crop fraction and type that
highly depend on surface water availability. By April–May,
irrigation stops and groundwater reaches its lowest level. The
downscaling gains obtained at that time of year are rela-
tively low. The model probably fails to restitute the diversity
of HR GWS when the water availability and thus water ex-
changes are very scarce and hardly inferable from the chosen
predictors. At the beginning of the monsoon in June–July,
heavy rainfall occurs and fills rivers and reservoirs. However,
at this early stage of the monsoon, rainfall has not reached the

aquifers and GWS remains low as in April and May. Also,
surface water is an important component of the water col-
umn at this time of year (potentially up to 24 % of the an-
nual fluctuation of TWS; see Sect. 2.2.3), yet runoff is not
directly modelled by any of the variables of the RF model,
which could also mislead the model into attributing surface
water stocks to groundwater.

The use of a spatial gain also highlights the difficulties
of state-of-the-art “static” downscaling methods (calibrated
with constant parameters) to restitute an interannual variabil-
ity. This is illustrated by Fig. 8b, which represents the in-
terannual average (curve) and variability (envelope) of the
monthly spatial variability of GWS. The interannual variabil-
ity, which is lowest from August to January and highest from
April to July for GWS, is inversely proportional to the down-
scaling performance. This result indicates that this kind of
method is unable to represent the interannual variation of the
dominant hydrological processes. Such a difference in inter-
annual variability during the end of the dry season can be
explained by the succession of drier and wetter periods dic-
tated by El Niño and La Niña phenomena (Asoka et al., 2017;
Vissa et al., 2019). This involves differences in yearly cumu-
lative rainfall that determine the types of crops according to
their water needs. During the driest years in particular, dif-
ferences in water availability widen the gap between 0.5◦ re-
gions, explaining higher spatial variabilities of GWS. This
is illustrated in Fig. 8c by the abnormally high GWS spatial
variability following the dry monsoons of 2009 and 2015.

4.4 Comparative analysis of both validation methods

The thresholds to decide whether temporal metrics are poor,
satisfactory, or good are often arbitrarily decided and are dif-
ferent with the context of the study and the authors’ choices.
In our case, all downscaled GWS products have correlation
coefficients with GWS-OW systematically larger than 0.57
on each of the 38 HR pixels, which can be considered a
quite satisfactory result. With the R2 criteria, ML CORR
and RF CORR seem to have the best performance, with at
least half of the HR pixels having R2 larger than 0.5. For
ML CORR and RF CORR, the RMSE does not go below
6.3 and 6.7 cm respectively, with a median RMSE of 8.1 cm
for both methods, which still represent a non-negligible
18 % (16 %) error against GWS-OW (GWS-LRref) ampli-
tude at LR.

Those above appreciations of temporal metrics do not in-
dicate the superiority and the downscaling capacity of these
downscaled GWS maps over GWS-LRref. With spatial and
temporal gains, it was shown that ML CORR and RF CORR
products are able to improve the temporal agreement with
in situ data for most of the HR pixels. In the spatial as-
pect, ML CORR and RF CORR both improve the spatial
representativity of GWS for most of the time series (posi-
tive gains in slope and R), with a slightly lower uncertainty
(gain in RMSE mostly positive). In addition to the compar-
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ison against the LR reference, the validation in both time
and space allows a better understanding of the downscal-
ing strengths and flaws depending on local characteristics of
some HR pixels (e.g. presence of rivers, agricultural prac-
tices, climatological variability, or large cities) or the time of
year (e.g. wet or dry season). In the temporal domain, the
RF CORR downscaled GWS seems to be better correlated
with in situ data in the north and south of the study area near
large rivers. This suggests that the model trained at LR has
difficulties in modelling certain processes, e.g. the hydrolog-
ical response to anthropic pressure that is localized and thus
smoothed when averaged over a larger region. In the spa-
tial domain, our validation method shows that the RF CORR
downscaled GWS performed less during the dry season and
the beginning of the wet season, supposedly because the
model fails to represent the spatial variability of GWS when
GWS is low or when surface water represents an important
fraction of TWS. This highlights the weaknesses of a static
model trained on a whole time series with no regards for the
specificities of the hydrologically dominant processes at sev-
eral times of the year.

5 Discussion

Here we discuss how downscaled products can be im-
pacted by (i) the resolution at which GRACE data are used
(Sect. 5.1) and (ii) the uncertainty issues when combining
data from heterogeneous sources (Sect. 5.2).

5.1 Impact of the GRACE actual resolution on
downscaled results

The validation framework proposed in this article was used to
evaluate the downscaling potential of the scaling factor built
from mascon solution RL06M. The scaling factor is built by
fitting a unique factor between the TWS from the GLDAS
CLM model at 0.5◦ and aggregated at mascon scale (3◦) to
evaluate the signal loss over the entire time series. Although
it is not meant to downscale the mascon solution, several re-
cent articles in the literature have used the oversampled TWS
(spherical harmonics at 1◦ or mascon solution at 0.5◦) as the
LR input data. Our validation framework clearly showed that
the product of GRACE TWS mascons and their scaling fac-
tor grid (SF method) degrades the temporal agreement with
in situ data and is noisy at a monthly timescale. Such results
indicate that this product should not be used at the 0.5◦ reso-
lution.

5.2 Other uncertainty sources in the validation exercise

Another point that should be highlighted is the difficulty
in validating downscaled products with in situ data. Down-
scaled GWS is built from remote sensing data with various
acquisition processes, while validation data are derived from
water-level depth acquired by local piezometers with a het-

erogenous distribution in the study area (see Fig. 1). Each
methodological step before a possible comparison between
spatialized in situ and remote-sensing-derived GWS adds un-
certainties at LR, illustrated by a low R2 (0.63) and high
RMSE (6.1 cm) between GWS-OW and GWS-LRref.

The in situ data have their own uncertainties. First, the
GWS derived from GWL measurements is highly dependent
on the value of the Sy used. Here we used a horizontally
and vertically homogeneous Sy, obtained with a linear ad-
justment between LR GWL and GWS-LRref. Some authors
avoid this issue by directly comparing GRACE-downscaled
GWS with GWL measurements (Karunakalage et al., 2021;
Ning et al., 2014; Tian et al., 2019, 2017; Yin et al., 2018;
J. Zhang et al., 2021; G. Zhang et al., 2021; Zuo et al., 2021).
Another issue is that instantaneous GWL can be impacted
by short- or long-term effects such as the neighbourhood
pumping intensity at the moment of piezometer measure-
ment, which cannot be detected or rectified with the monthly
temporal frequency of acquisition.

The acquisition mode for GRACE is also different from in
situ data – unique instantaneous measurement – and other re-
mote sensing predictors – the average or sum of higher tem-
poral frequency products. GRACE has a heterogeneous re-
visit frequency, where each 300× 300 km2 pixel is informed
by approximately three overpasses of the GRACE satellites
during the month (Tapley et al., 2004; Zaitchik et al., 2008).
This can lead for example to smoothening of the GRACE
anomaly by skipping extremes. Another issue in GRACE ac-
quisition is the exclusively vertical sampling of the gravita-
tional field that produces striping in the solution and requires
post-processing that alters the signal.

6 Conclusions

To date, validation strategies for GRACE-derived down-
scaled products have rested essentially on the appreciation
of temporal metrics or trends between downscaled prod-
ucts and localized in situ measurements. Yet such a valida-
tion approach is insufficient to fully assess the usefulness of
the downscaling method as it suffers from a lack of (i) ap-
propriate validation of the spatial distribution of the down-
scaled GRACE-derived GWS within the GRACE pixel and
(ii) comparison with the results that would be obtained with-
out downscaling (by directly using GRACE TWS at the fine
scale). This article reviews the validation methods of ex-
isting downscaling methods of GRACE data, both model-
based and data-based, and proposes a more extensive vali-
dation framework. In particular, a set of gains is used to eval-
uate the improvement of downscaled products against a low-
resolution (LR) reference, including both temporal and, for
the first time, spatial aspects. Such gains aim at fully deter-
mining the quality and uncertainty of downscaled GRACE-
derived GWS products in a more comprehensive way.
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The new validation framework is tested to evaluate the per-
formance of two data-based downscaling approaches with
multilinear (ML) and random forest (RF) models over a
113 000 km2 fractured aquifer in southern India to the target
resolution of 0.5◦. The HR TWS predicted by each model
is bias-corrected at each time step from the difference be-
tween the LR GRACE TWS and the average of HR TWS.
We use GRACE TWS from the RL06M mascon solution for
this study, which is multiplied by its 0.5◦ scaling factor grid
and averaged over the study area to produce the LR reference
series. A secondary objective of the paper is to also assess
the downscaling potential of the scaling factor by consider-
ing the product of mascon and scaling factor (SF) at the 0.5◦

resolution to be a downscaled product. The comparison of
the two data-based downscaling methods (bias-corrected ML
and RF) with the LR reference shows an improvement in
terms of correlation with in situ measurements. In the tem-
poral domain, the spatial average gains in Pearson correla-
tion coefficients (R) and root mean squared error (RMSE)
are +6.5 % and +1.6 % (+6.% and +1.9 %) for ML (RF).
In the spatial domain, the gains in R and RMSE are+28.8 %
and +2 % (+27.2 % and +2.2 %) for ML (RF) respectively.
The new validation method also confirms that the SF product
cannot be used at 0.5◦ resolution. Although the average R
in HR pixels is similar for all methods (0.74, 0.74, and 0.76
for SF, ML, and RF respectively), the SF product degrades
both temporal and spatial accuracies at 0.5◦ resolution com-
pared with the LR (without downscaling) case, showing that
it cannot be used as a valid downscaling approach. The spa-
tial analysis of temporal gains reveals a spatial heterogene-
ity in downscaling performances, which are particularly poor
over urbanized areas. The spatial evaluation originally pro-
posed in this study is also able to analyse the seasonality of
the downscaling performance. The RF downscaling perfor-
mance is lower (gains in R below +10 %) during the end of
the dry season when GWS is at its lowest and at the begin-
ning of the monsoon when surface flow, not included in the
RF model, is a major process. In particular, the spatial val-
idation presented in this study highlights, for the first time,
the flaws of static GRACE downscaling methods in contexts
where the dominant hydrological processes are not the same
throughout the year (such as a highly irrigated semi-arid re-
gion with a wet season and a dry season as in the case of this
study). This shows how complete and comprehensive vali-
dation approaches are an essential tool to interpret spatially
and temporally the quality and uncertainty of the downscaled
GRACE-derived GWS products and hence to better under-
stand and improve downscaling models and their hypotheses
in the future.

While the GRACE-FO mission provides continuity of
spaceborne gravity change measurements, upcoming similar
missions (MARVEL, Lemoine and Mandea, 2020; Lemoine
et al., 2020; MAGIC, Massotti et al., 2021) plan to signifi-
cantly improve the precision and quality of gravimetric esti-
mates by proposing new configurations for the satellite con-

stellations. Nevertheless, the specified spatial resolution for
those future data still undergo strong technical limitations.
Therefore, the recourse to downscaling techniques will be, at
least in the medium term, the only way to obtain TWS prod-
ucts at a finer scale useful for basin-scale water management.
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