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[1] We propose a model of the wide-scale growth of dynamic rupture during an
earthquake, based on our multiscale simulation of a planar crack in a three-dimensional
homogeneous elastic space. A simple slip-weakening law governs the fracture/friction
processes, and its characteristic parameters, slip-weakening distance and fracture surface
energy, have multiscale heterogeneous distributions. We consider a set of randomly
distributed circular patches, whose diameter is proportional to the fracture surface energy.
Each patch represents an asperity between irregular fault surfaces, and the size-number
relation of the patches obeys power law statistics. We assess rupture propagation from a
small instability using a boundary integral equation method with a renormalization
technique. Although most events stop shortly after their initiation, some grow, triggering
neighboring patches of similar size. Small and large events show statistically self-similar
properties of rupture growth and stop spontaneously without requiring a special stopping
mechanism. The rupture velocity locally exceeds the shear wave speed but globally
remains subshear speed due to the increase of the average fracture energy as the rupture
grows. The relation between size and frequency of events is a power law, which is
explained by the triggering probability between patches. As a consequence of statistically
self-similar random triggering growth, we observe a distinct ‘‘main phase’’ in seismic
waves similar to those of natural earthquakes, but we cannot estimate the final size of the
event from the initial part of the seismic waves. If this is true for the real earthquakes,
predicting the size of a future earthquake would be quite difficult.

Citation: Ide, S., and H. Aochi (2005), Earthquakes as multiscale dynamic ruptures with heterogeneous fracture surface energy,

J. Geophys. Res., 110, B11303, doi:10.1029/2004JB003591.

1. Introduction

[2] Earthquakes are dynamic rupture propagation along
fault planes, starting from an elastodynamic instability
within a small region. Some earthquakes grow to devastat-
ing events while most remain small. This growth process is
governed by constitutive laws of fracture/friction of the fault
planes, and these laws probably depend on the scale of the
phenomena.
[3] Seismic observation suggests that some macroscopic

characteristics of earthquakes do not change with size. For
example, the ratio between seismically radiated energy Es

and seismic moment Mo is constant or depends only weakly
on size [e.g., Ide and Beroza, 2001; Ide et al., 2003;
Kanamori and Rivera, 2004]. Es and Mo represent dynamic
and static sizes of an earthquake, respectively, and quasi-
constant Es/Mo implies the existence of similarity in the
earthquake dynamic process. If all earthquakes grow simi-

larly, can an originally small earthquake just randomly grow
to a large event?
[4] Several models for wide-scale rupture growth have

been proposed. Fukao and Furumoto [1985] proposed a
random hierarchic rupture growth model, and Frankel
[1991] calculated the spectrum of seismic waves from a
fractal circular patch model. A cascade model is one of the
end-members proposed by Ellsworth and Beroza [1995] as
an interpretation of irregular onsets in observed seismo-
grams. Another end-member is a preslip model where the
final earthquake size is explicitly related to the preslip
properties. Although there are several numerical studies of
dynamic processes following the preslip models [e.g.,
Dieterich, 1992; Shibazaki and Matsu’ura, 1992; Lapusta
et al., 2000], little has been done concerning numerical
calculations of dynamic rupture propagation that are gov-
erned by cascade-like slip behavior.
[5] In this paper, we model wide-range rupture growth

using a planar crack in a three-dimensional elastic medium
with multiscale frictional properties. First, we introduce a
circular patch model to represent multiscale frictional prop-
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erties as an analogy of asperities between fault surfaces.
Then we carry out numerical simulations of dynamic rupture
propagation from a very small instability to spontaneous
arrest using a boundary integral equation method (BIEM)
with a renormalization technique, introduced by Aochi and
Ide [2004]. We discuss the statistics and dynamic properties
of this model and confirm that this model simulates a
physically reasonable triggering sequence of patches whose
final size cannot be predicted from the initial stage.

2. Multiscale Friction Model With Circular
Patches

[6] Any macroscopic constitutive laws that do not
change with scale seem unlikely to simulate wide-range
earthquake growth. Both slip-dependent friction laws and
rate-and-state friction laws require some distance before
reaching dynamic frictional stress. This is called a char-
acteristic distance (or a slip-weakening distance in the slip-
weakening model) Dc and the work per unit surface done
before the slip reaches Dc is the fracture surface energy
Gc. We use a simple slip-weakening friction law as shown
in Figure 1. At each point, shear stress increases from the
initial value t0 to the yielding stress ty, then decreases to
the residual stress t1 linearly as slip increases to Dc. Since
the absolute value of t1 is independent of the rupture
behavior in the case of a planar shear crack, we assume
t1 = 0. Fracture energy Gc is given as tyDc/4, considering
both fault surfaces. We consider the heterogeneous distri-
bution of Dc and Gc as an intrinsic source of scale-
dependent frictional property.
[7] The average Dc of large earthquakes is found to be

about 0.1–1 m [Ide and Takeo, 1997; Olsen et al., 1997;
Mikumo et al., 2003]. Gc can be estimated more robustly
[Guatteri and Spudich, 2000] and is of the order of 1 MJ/
m2 for large earthquakes [Beroza and Spudich, 1988; Ide,
2003] and is smaller in laboratory experiments by 2–3
orders of magnitude [Scholz, 2002; Ohnaka, 2003]. Gc

increases with crack size in fracture experiments and
several mechanisms including microcracking and plastic
deformation have been suggested to explain this increasing
Gc [e.g., Lawn, 1993]. Thus it is probable that average Dc

and Gc scale with size at each moment during earthquake
rupture growth, although they should be related to some
intrinsic material properties.
[8] How can we incorporate increasing Gc in the crack

problem? We consider the irregularity of fault plane or fault
system as a source of heterogeneous Gc. Topographies of
fault planes and fracture surface are generally represented
by self-affine fractals [Brown and Scholz, 1985; Okubo and
Aki, 1987; Scholz, 2002]. In fact a natural surface is a self-
affine fractal for wavelengths shorter than a cutoff length,
which Ohnaka [2003] related to Dc. Extending this idea, we
assign Dc for each asperity on the fault plane depending on
its size in the macroscopic fault plane. Here we consider that
Gc is proportional to Dc assuming that the stress is homo-
geneous, namely t0 and ty are uniform, as demonstrated by
Aochi and Ide [2004]. This is because the scale dependency
of the stress field is not clear for real earthquakes [e.g.,
Kanamori and Anderson, 1975]. At a scale larger than a
cutoff length, only the Dc of the cut off length is effective
and governs macroscopic frictional behavior, as shown by

Ohnaka [2003]. Various physical processes including fric-
tion, fracture, comminution and abrasion are responsible for
the energy consumption during slip, though we call it
‘‘fracture energy’’. We do not discuss which process is
dominant in this paper. Rather, as a general idea, we
consider that locally consumed fracture energy depends on
the linear size of the local asperity, which is also assumed
by Matsu’ura et al. [1992] in the derivation of their slip-
weakening friction law.
[9] Practically, asperity size is defined at each point on

the fault surface topography as the minimum length of a
cross section along the macroscopic fault plane (Figure 2a).
On the basis of this definition we obtain a corresponding
spatial distribution of Gc on a planar fault. Figure 2a is an
example of self-affine fractal topography. This topography
was made assuming a power spectral decay rate b = 2.5; b
of natural surfaces is generally between 2 and 3 [Brown
and Scholz, 1985]. Gc is locally defined along this
topography as Figure 2b. We further simplify this topog-
raphy using a set of discrete line segments (Figure 2c).
Each segment has Gc that is proportional to the length of
the segment and local Gc is defined by the minimum
segment that covers the point (Figure 2d). The size and
number of line segments obeys a power law whose
exponent is related to the fractal dimension of topography.
[10] Since real faults extend in two-dimensional planes,

we use circular patches instead of line segments for model
calculation. On the basis of the above discussion, we
consider a set of circular patches whose radius obeys a
power law

rn ¼ 2nr0; ð1Þ

where rn is the radius of nth-order patch. The number of
patches Nn of this size is expressed as

Nn ¼ 2�DnN0: ð2Þ

Figure 1. Slip-weakening friction law used in this
simulation. Here ty, t0, t1, and Dc are yield stress, initial
stress, residual stress and slip-weakening distance, respec-
tively. The shaded area represents fracture energy Gc.
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Here D is a constant and it is regarded as a fractal dimension
for this size-number relation because the above two
equations give the relation

Nn / r�D
n : ð3Þ

Figure 3 is an example of random distribution with 8 orders
of circular patches with D = 2. In the present paper, we
discuss only the case where D = 2. In each circular patch, Gc

is constant and proportional to the radius. When a point is
occupied by multiple patches, Gc of the minimum patch is

assigned. It should be noted that the distribution of these
patches originates from the irregular topography but we use
a planar crack in the following numerical simulations and
do not take into account explicit geometrical irregularity.

3. Simulation With the Circular Patch Model

[11] We solve the elastodynamic equation with the spa-
tially heterogeneous friction law and homogeneous stress
state. This problem can be treated nondimensionally, but for
the purpose of easy comparison to real phenomena, we set
the size of the whole model space as 16.384 km �
16.384 km, similar to the width of the seismogenic layer
(Figure 3). The minimum (zeroth) and maximum (seventh)
radii of the circular patch, r0 and r7 are set to 22.5 m, and
2.88 km and their totals are N0 = 16384 and N7 = 1,
respectively. Dc of the zero- and seventh-order patches are
taken to be 1 mm and 128 mm. Assuming t0 = 3MPa and ty
= 5 MPa loaded in a uniform direction parallel to the
horizontal axis of figures, we obtain the Gc of the zero-
and seventh-order patches as 1.25 kJ/m2 and 0.16 MJ/m2,
respectively. The model space is covered by 4096 � 4096
spatial grids (grid size = 4m � 4m), each of which has an
intrinsic Dc and a uniform yielding stress ty. When a grid
point is not covered by any circular patches, we assign a
constant Dc for this point. This ‘‘background’’ Dc is
256 mm, which is twice of the Dc of the maximum patch,
which means that the whole model space is covered by
the eighth-order, infinite patch. Other simulation parameters
are taken such that the medium rigidity is 32.4 GPa and the
P wave and S wave velocities are 6.0 and 3.46 km/s,
respectively.
[12] Each earthquake rupture starts from an initial small

dynamic instability caused by an artificial breakage of one
of the zero-order circular patches. We introduce a circular
stress-free region with a radius of 15 m in any zero-order
patch to make this instability. Since there are numerous
zero-order patches (16,384 patches), we are able to discuss
the statistical properties by simulating the rupture progress
from all the zero-order patches. Before each simulation, the
stress field is reset to the homogeneous state. The model
space is quite large and it is not realistic to solve the
elastodynamic equation in such a space using a normal
numerical scheme with a fixed spatial grid size. To solve the
problem with limited computational resources, we adopted a
boundary integral equation method (BIEM) with a renor-
malization technique [Aochi and Ide, 2004] as explained
briefly in the following.
[13] The whole model area is represented by a set of four

subspaces as shown in Figure 3. In each subspace, crack
propagation is solved using 64 � 64 adjusted spatial grids
using the BIEM of Fukuyama and Madariaga [1998]. Slip
direction is fixed to be the same as the direction of applied
stress, namely parallel to the horizontal axis of the figures.
All the ruptures first propagate in the smallest subspace
(first scale, subspace 256 m � 256 m, grid size 4 m, time
step 0.33 ms). Some of them reach one edge of the
subspace. Once a rupture reaches the edge, the history of
the slip rate is renormalized in a larger spatial grid and a
longer time step in the next subspace, whose scale is
multiplied by 4, so that the resultant seismic moment release
from this earthquake is conserved. We also renormalize Dc

Figure 2. Illustration of relation between topography and
Gc distribution assumed in this study. (a) An example of
self-affine topography. At each point (circle), the size of
asperity is measured as the minimum length of the
horizontal section (vector length). (b) Local Gc is propor-
tional to the local size of asperities determined from
topography. (c) An approximation of topography using a set
of discrete line segments that obey power low statistics.
Each segment is drawn at the tip of asperity where the
segment can fit. (d) Approximated Gc distribution (black
dots) using the segment set (gray lines).
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and Gc to maintain energy balance. Then the rupture restarts
in the second subspace and this procedure is iterated until
the rupture stops or reaches the edge of the total model
space.
[14] We show the result in the case where there are 16384

zero-order patches in the model space, namely N0 = 16384
and the fractal dimension D = 2 (Figure 3). Figure 4 shows
the distributions of Dc, final slip distribution, and rupture
time in each scale in some examples of simulated dynamic
ruptures. In most case, a single rupture process stops shortly
after an instability artificially introduced in the zero-order
patch without propagating to other patches (Figure 4a). This
corresponds to an Mw 1.3 event. The slipped area is
restricted within the initial patch. If other patches of zero
or first orders are located closely enough to be triggered by
dynamic stress accumulation beyond the rupture front, the
rupture grows and sometimes enters into the second sub-
space (Figure 4b). In rare cases, it propagates into the larger
scales (Figures 4c and 4d) or does not stop even after
breaking the whole space (Figure 4e).
[15] Ruptures breaking the whole space are exceptional,

as we will see in the next section. The reason why rupture
does not stop is the lack of further hierarchy of larger
patches and the moderate value supposed for background
Dc. Therefore it should naturally stop if we introduce
patches of larger scale or high background Dc.
[16] Since each rupture propagates on a heterogeneous Gc

distribution, the rupture process can be quite complex. We

observe unilateral, bilateral or circular rupture propagation
(directivity) and delayed rupture (subevents), similar to the
rupture processes observed in real earthquakes. However,
all ruptured patches are connected and there is no distant
slip area as is often visible in finite fault models determined
by seismic waveform inversion.

4. Frequency-Size Relationship

[17] The relationship between the size (seismic moment)
and the cumulative number of events greater than that size
roughly follows a power law (Figure 5). In addition to the
case N0 = 16384, we simulated two cases with smaller patch
numbers, N0 = 8192 and N0 = 4096. All conditions other
than the patch number is the same. We note that the fractal
dimension of patch distribution is the same (D = 2). The
rupture of one of the smallest patch alone results in an event
of moment magnitude Mw 1.3 and the largest event that
breaks whole model space corresponds to aboutMw 6. Since
we use the discrete sizes of patches, there are inevitably
bumps corresponding to each size at Mw 1.3, 1.9, 2.5, 3.1,
3.7, 4.3, 4.9, and 5.5. One may ask a question on the
behavior of the largest events, which may seem different
from the smaller events in the case of the high density in
Figure 5; however, we note that there are not enough events
to discuss the statistical significance of any differences.
Actually, we find that all these events are related to only one
of the 6th patches, which is favorably located within the 7th

Figure 3. An example of Dc distribution in two dimensions using a set of circular patches. We randomly
distribute eight different orders of patches in 4096 � 4096 model space with periodic boundaries, which
we consider to be 16 km � 16 km. This model space is treated as four subspaces of different scale
through three renormalizations as shown at the right.
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patch to make the rupture propagate further on the back-
ground. In order to discuss the behavior of the largest event
and the effect of our assumption on background Dc, we still
need many more simulation examples by investing different
heterogeneous patch fields.

[18] The relation for the densest case looks like the
Gutenberg-Richter (GR) relation between earthquake mag-
nitude and log frequency with slope (b value) close to 1.
However, it should be noted that our result is not simply
compared to GR relation because the latter explains seis-

Figure 4. Examples of rupture sequences. In each sequence, the distributions of Dc and slip at the end
of calculation (before renormalization), and rupture times in each scale are shown.
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micity of a particular region during a particular period as a
whole system while our calculation does not have any
evolution as a system. In our model, each rupture starts
from a homogeneous stress condition and a residual stress
field after one event is reset before the next calculation so
that each simulation is completely independent. Therefore
the magnitude-frequency relation provides the probability of
event size in the case where the system has evolved to a
homogeneous stress state on the fractal fault plane.
[19] This power law can be explained by three simple

triggering rules as follows.
[20] 1. A patch triggers another patch of the same or

lower orders if they overlap.
[21] 2. An nth-order patch triggers an (n + 1)th-order

patch when the distance from the peripheral of ruptured area
(coalesced patches) to the center of the larger (n + 1)th patch
is shorter than the radius of the smaller nth patch. In the
simple case of two circle patches, this means that the center
of the smaller patch is included in the larger patch.
[22] 3. When the total rupture area of coalesced patches of

nth order reaches 50% of the area of an (n + 1)th-order patch,
this coalesced area behaves as an (n + 1)th-order patch.
[23] The frequency-magnitude relation calculated numer-

ically based on these rules using the same distribution of
circular patches yields quite similar result to that of dynamic
simulation (crosses in Figure 5).
[24] Let us consider only the triggering of larger patches

by the second rule, which is cascade triggering from the
smallest patch to the larger ones. The probability that an

(n � 1)th-order patch triggers the nth-order patch, fn, is
given as

fn ¼ Nnpr2n=S ¼ 2 2�Dð ÞnpN0r
2
0=S ¼ 2 2�Dð Þnf0 ð4Þ

where f0 is the ratio of the total area of all zero-order patches
to model area S. When D = 2 as shown in the above
simulations, f0 is a constant and is 0.024, 0.048, and 0.096
for the low-, medium-, and high-density cases, respectively.
The cumulative frequency of events equal to or larger than
the size of the nth-order patch, Nn

E, is

NE
n ¼ N0

Yn

i¼1

fi: ð5Þ

Taking the common logarithm,

logNE
n ¼ logN0 þ

Xn

i¼1

fi

¼ logN0 þ n log f0 þ
2� Dð Þn nþ 1ð Þ log 2

2
: ð6Þ

From the definition of moment magnitude, n = (Mn � M0)/
2log2, the expected slope from this triggering mechanism is
log f0/2log2 in the case of D = 2. For example, the slopes are
�2.7, �2.2, and �1.7, for the low-, medium-, and high-
density cases in Figure 5, respectively. These values explain
the observed trend in the low- and medium-density cases,
while the observed slope is more gradual in the high-density
case. This means that the interaction between patches of the
same size (the third rule) play an important role when the
patch density is high.

5. Rupture Propagation

[25] We discuss some aspects of our dynamic rupture
propagation in comparison with other well-known rupture
behaviors such as rupture propagation with homogeneous
Gc and self-similar rupture.
[26] When Gc is homogeneous, no dynamic instability

occurs if the crack size is smaller than a critical size
determined by Gc and the surrounding stress state. This is
also true within the smallest patch in this model. Each
rupture starts from an artificially introduced initial instabil-
ity which is larger than the critical crack size of the zero-
order patch. However, this initial rupture is arbitrary and we
can take its size as small as laboratory scale if we introduce
smaller subspaces. The effect of such a process would be
negligible as shown in the simulation of the self-similar
rupture model [Aochi and Ide, 2004] in which the effects of
the initial crack gradually disappear. In our simulation, the
size of the artificial initial crack is irrelevant to the conse-
quent rupture behavior such as the rupture propagation
velocity and the final rupture area after the initial rupture
interacts with neighboring patches. Essentially this model
does not require any rupture nucleus related to the character-
istics of the source area.
[27] The rupture velocity is determined by the balance

between crack extension force G and fracture energy Gc at
the crack tip [e.g., Freund, 1990]. G increases with crack
size and when it is larger than Gc, the rupture velocity
increases and eventually reaches a terminal value, which
can be the velocity of the Rayleigh wave, S wave or P wave,
depending on the stress condition. Figure 6 shows the

Figure 5. Frequency-magnitude relation. Circles, trian-
gles, and squares connected with lines represent simulation
using high-, medium-, and low-density patches, respec-
tively. Crosses are expected value by triggering rules (see
text). Gray thick line is a relation suggested by a
probabilistic cascading sequence from the smallest patches
to larger ones for each calculation. Vertical dotted lines
correspond to the magnitude of the assumed patch size.
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Figure 6. Thick solid lines show the location of rupture front in space (distance from the hypocenter)-
time plot. Gray lines represent the location of the maximum velocity. Dotted lines and dashed lines show
the P and S wave velocities, respectively. Dots represents slipping area with slip rates faster than 25% of
the maximum in each scale. (a) Homogeneous Dc distribution. (b) and (c) Patch models. Small rectangle
box means that the previous scale is renormalized into the box.
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temporal evolution of rupture front for homogeneous Gc

model (Figure 6a), an Mw 4.5 event (Figure 6b), and a
nonstopped event larger than Mw 6 shown by Figure 4e
(Figure 6c).
[28] When Gc is homogeneous, rupture first propagates at

the Rayleigh wave speed and then it is accelerated to a
supershear velocity, up to the P wave velocity under a highly
loaded uniform stress field [Andrews, 1976; Madariaga
and Olsen, 2000]. This is reproduced in Figure 6a using
the first scale with Dc = 1 mm, that is, of the zero-order
patch. Rupture speed exceeds the S wave velocity at
about 0.03 s. Although such supershear rupture velocity is
common in numerical simulation of dynamic rupture
propagation, it is rarely observed for natural earthquakes
[Bouchon et al., 2002; Sekiguchi and Iwata, 2002; Rosakis,
2002].
[29] When we introduce a heterogeneous distribution of

Gc, the average rupture velocity is much smaller. We still

observe some high-speed rupture locally. For example,
there is high-speed rupture similar to Figure 6a in the
third scale of Figure 6c at 0.64 s. However, rupture
velocity is accelerated or decelerated depending on the
surrounding Gc and such high-speed rupture is restricted to
a small space and in a short time period. The rupture
velocity is approximately constant similar to a self-similar
rupture model where Gc is proportional to the distance
from the hypocenter. In our model, effective Gc increases
almost linearly because patches of larger Gc are broken as
rupture propagates and average Gc over the ruptured patch
increases. Hence the rupture propagation looks statistically
self-similar.
[30] Stopping a spontaneously propagating rupture in a

homogeneous stress condition has been a problem in
earthquake mechanics. In many studies of dynamic crack
propagation, it is a common assumption that the yield stress
outside of the model area is very high. Without such a
strong boundary, some special mechanisms are necessary,
for example, dynamic branching [Kame and Yamashita,
1999a, 1999b, 2003] and preexisting fault geometry [Aochi
and Fukuyama, 2002]. Unlike the previous studies, ran-
domness and multiscale irregularity stop the ruptures in the
present model. Every rupture eventually stops because it
encounters an unbreakable large Gc area somewhere within
the model area. Although the microscopic physical process
is not clarified in this study, it is natural that some
randomness and multiscale irregularity exists in real fault
systems and works as a stopping mechanism.

6. Seismic Waves and Initial Phase

[31] Figure 7 shows the calculated moment rate functions
in the fault normal direction from several rupture events of
different size. These are proportional to the far-field dis-
placement in a homogeneous infinite elastic medium. Al-
though large events radiate larger seismic waves, the initial
part of these waveforms are similar to those of smaller
events, and we cannot estimate the final size of each event
just from the initial part (Figure 7b). This is because every
event in this model is represented by a statistically self-
similar random triggering sequence of circular patches and
therefore radiated seismic waveforms look self-similar, too.
This self-similarity is consistent with the observation of the
very beginning of seismic waves of natural earthquakes,
which have revealed that both small and large events start
with abrupt onsets in seismic records [Mori and Kanamori,
1996; Ellsworth and Beroza, 1998].
[32] In seismic waves from natural earthquakes we quite

often observe a distinct ‘‘main phase’’ corresponding to the
main moment release during an event, and the delay of
the phase from the onset timescales with the magnitude of
the event [Umeda, 1990; Ellsworth and Beroza, 1995]. We
may pick such a phase at the time corresponding to the
beginning of the rupture of the largest patch in each
dynamic simulation. The leading decrease of wave ampli-
tude makes this phase prominent. Such a decrease is the
result of temporary deceleration of the rupture propagation
velocity when the rupture front enters the high Gc region of
the largest patch. It is obvious that the duration scales with
the magnitude because our model is statistically self-similar.
Figure 8 shows the relation between magnitude (seismic

Figure 7. (a) Moment rate functions for events of
different sizes. Baselines of different sizes have offsets.
(b) Comparison of the first 0.2 s of all functions. Different
line types represent different sizes.
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moment) and the time of the maximum moment rate
measured from the beginning for events in the simulation
with high-density patches. Except for events smaller than
M2 for which the effect of initial artificial rupture remains,
this time scales with the cubic root of seismic moment.
[33] If there is a characteristic single value of Dc, we need

a rupture nucleus, or preslip, before spontaneous dynamic
rupture propagation and the size of preslip area scales with
the delay of the main phase. Both the preslip models
[Dieterich, 1992; Shibazaki and Matsu’ura, 1992] and the
present model exhibit a similar delay of the main phase.
Therefore, although the delay of the main shock is always
visible in seismic observations, it is not a suitable measure
to distinguish between two models.

7. Conclusion

[34] We successfully simulated wide-scale earthquake
growth using simple assumptions: homogeneous stress state
and multiscale Gc (Dc) distribution expressed by random
circular patches. Each rupture starts from an instability
within one of the smallest patches and sometimes propa-
gates triggering other larger patches. Because the average
Gc almost linearly increases with the rupture size, the
average rupture velocity is smaller than the S wave velocity.
Each rupture stops without a special mechanism. Since each
rupture is essentially a triggering sequence, seismic wave-
forms from small and large events cannot be distinguished
from the initial part, as is sometimes reported for natural
earthquakes.
[35] We assumed that such a Gc distribution follows the

fractal property of fault systems and fault topography. The
earth crust has fractal properties and every fault trace is
terminated by some strong geographic irregularities. How-
ever, the quantitative relation between such a realization of
Gc and microscopic physics remains unsolved and it will be
an important issue in the future.
[36] When an earthquake grows in the area where Gc is

almost constant, we may observe some characteristic initial

phase-dependent on Gc, which may be useful to predict the
final size of the earthquake. On the other hand, if stress state
and Gc distribution before an earthquake are similar to those
in this study, it is almost impossible to predict the size for
any particular forthcoming earthquake. In this model every
earthquake is a triggering sequence and we cannot distin-
guish its final size only from the way it starts. Even with the
knowledge about the distribution of large asperities, which
may be estimated from geological and geophysical infor-
mation in nature, the route to the rupture of the large
asperities is various and hard to predict. These two end-
member models of earthquake growth still need verification
by seismic observations and modeling incorporating the
stress accumulation process.
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