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Abstract: Within moments following an earthquake event, observations collected from the 

affected area can be used to define a picture of expected losses and to provide emergency 

services with accurate information. A Bayesian Network framework could be used to update 

the prior loss estimates based on ground-motion prediction equations and fragility curves, 

considering various field observations (i.e., evidence). The present study explores the 

applicability of approximate Bayesian inference, based on Monte-Carlo Markov-Chain 

sampling algorithms, to a real-world network of roads where expected loss metrics pertain 

to the accessibility between damaged areas and hospitals in the region. Observations are 

gathered either from free-field stations (for updating the ground-motion field) or from 

structure-mounted stations (for the updating of the damage states of infrastructure 

components). It is found that the proposed Bayesian approach is able to process a system 

comprising hundreds of components with reasonable accuracy, time and computation cost. 

Emergency managers may readily use the updated loss distributions to make informed 

decisions. 
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network 

1. Introduction 

Several rapid response systems have been developed worldwide, as detailed in the review 

by Guérin-Marthe et al. (2021). While such systems are mostly applied to common 

buildings and the estimation of casualties, the treatment of the performance loss of critical 

infrastructure and its consequences remains mostly overlooked. A rigorous rapid response 

system should ensure the propagation of the uncertainties due to the estimation of ground 

shaking up to loss predictions. Therefore, this paper investigates a proof-of-concept rapid 

response procedure that would integrate the following features, in answer to the 

aforementioned gaps: (1) loss estimation for built areas and infrastructure systems, (2) 

integration of various types of observations to constrain the predictions, (3) propagation of 

all sources of uncertainty, from hazard to losses, and (4) ability to treat real-world systems 

over large areas. 

Bayesian Networks (BNs) have emerged as a very promising mathematical tool, well 

adapted to seismic risk analyses that mobilize a probabilistic framework and dependencies 

between many variables (Bensi et al., 2013). The inference operations on a BN enable the 

combination of the initial estimates (i.e., prior distribution provided by predictive models) 

and of field observations (i.e., providing evidence at some nodes) in order to generate 



updated posterior distributions of the variables of interest. Therefore, thanks to their 

probabilistic inference capabilities, BNs constitute an adequate solution for the updating of 

damage and loss estimates in the crisis phase (Bensi et al., 2015). While many previous 

studies have investigated the scalability issues of BNs (Tien et al., 2016; Gehl et al., 2018; 

Byun et al., 2019), their actual application to large real-world systems remains a challenge 

when considering the spatial distribution of the ground-motion field. 

Pending further developments of BN algorithms that are able to address some of the 

scalability issues, it is proposed here to adopt a more pragmatic approach based on a 

sampling inference algorithm (i.e., Monte-Carlo Markov-Chain sampling). The objective is 

to exploit state-of-the-art techniques in order to demonstrate the use of BNs in an 

operational capacity during the rapid response phase (see Figure 1). 

 

Fig. 1 - Proof-of-concept of the procedure for the rapid earthquake loss assessment of infrastructure systems. 

2. Bayesian model 

Relying on previous developments regarding the post-earthquake loss assessment of 

infrastructure systems (Bensi et al., 2013; Bensi et al., 2015; Cavalieri et al., 2017; Gehl et 

al., 2018), a tool using Bayesian updating is proposed for rapidly estimating losses to road 

networks. A BN is designed with the OpenBUGS tool (Lunn et al., 2009), which enables 

the modelling of continuous and discrete variables in the same BN. The OpenBUGS 

library is freely available, integrated in the R environment (www.r-project.org), and it uses 

approximate inference via Monte-Carlo Markov-Chain (MCMC) sampling. The developed 

BN relies on five main types of variables: 

• Spatially distributed intensity measure (IM) at the locations of infrastructure 

components (e.g., road bridges), which represents the distribution of the logarithm of the 

ground-motion parameter of interest (e.g., peak ground acceleration, PGA). A correlation 

structure is modelled to represent the contribution of intra- and inter-event error terms of 

the related ground-motion model (GMM) to the spatial distribution of the IMs at the 

various sites. 

http://www.r-project.org/


• Seismic capacity (C) of the infrastructure components, which represents the 

distribution of the logarithm of the seismic response components (e.g., fragility parameters 

expressed in PGA). A correlation structure may be introduced in order to represent 

structural similarities between components of the same typology, for instance. 

• Damage state (DS) of the components, depending on the IM level at the 

components’ sites and on their seismic capacity C. If only two damage states are 

considered (i.e., bridge is functional or non-functional), the following convention is 

adopted: DS = 1 if the bridge is intact, DS = 0 if non-functional. The assumption of binary 

damage states is followed for the rest of the study. Therefore, for component i, the damage 

state DSi is determined as follows: 

               (1) 

• Accessibility of a minimum link set (MLS) between two locations A and B of the 

road network. A MLS is defined as a minimum set of components whose joint survival 

ensures survival of the system (here, the connectivity between A and B). In the case of 

complex networks containing intersections or alternative routes, multiple MLSs exist 

between A and B, representing the number of different possible routes to reach the 

destination. By definition, a MLS represents a sub-system of components in series. The 

following convention is adopted: MLS = 1 if the MLS is accessible and MLS = 0 if not. 

Therefore, for a given MLS k containing p components, the associated variable MLSk is 

defined as follows: MLSk = DS1 x … x DSp (in the case of binary damage states). 

• Connectivity between the locations A and B, representing the system performance 

(S) for this specific objective. In a connectivity analysis, S is then determined by a system 

of MLSs in parallel (i.e., one accessible MLS is enough to ensure the connectivity between 

A and B): S = MLS1 + … + MLSq. 

The decomposition of a road network into MLSs is illustrated in Figure 2, where 4 MLSs 

are identified, each containing a different subset of components. Then, the corresponding 

BN may be built as shown in Figure 3. 

 

Fig. 2 - Decomposition of the A-B routes into four MLSs, for an illustrative network. Black dots represent 

intersections in the network, and grey rectangles represent components. The connectivity between A and B 

constitutes the system performance S. 



 

Fig. 3 - BN corresponding to the illustrative example of Figure 2. The node IM is in bold because it 

represents the vector of spatially correlated IMs at the sites. 

Two types of observations may be entered as evidence in the BN: 

• Strong-motion recordings by seismic stations, which corresponds to evidence 

entered at the level of the IM variables; 

• Identification of the damage states of some components, e.g. with near-real time 

structural monitoring (Tubaldi et al., 2021), which corresponds to evidence entered at the 

level of the DS variables. 

With the BN implemented in the OpenBUGS tool, the evidence is then propagated through 

the related variables. In the inference algorithm, several MCMC chains are initiated: each 

chain is built with a Gibbs sampling scheme, where variables are successively sampled 

from the posterior distribution of previous variables. As a result, the BN generates 

thousands of samples for all variables, which are then assembled to estimate their posterior 

distributions given the evidence. Examples of these realisations are provided in Table 1 

and Table 2, where for a given earthquake event and related field observations, posterior 

statistics of variables of interest may be extracted from the BN inference. 

Table 1. Illustrative example of n MCMC samples for the damage states of the 10 components in Figure 2, 

assuming DS7 = 0 (failure of component #7) as an evidence. 

Sample # DS1 DS2 DS3 DS4 DS5 DS16 DS7 DS8 DS9 DS10 

1 1 1 0 1 1 1 0 0 1 1 

2 0 1 0 0 1 1 0 0 0 1 

… 0 0 0 1 1 0 0 1 1 0 

n 1 1 1 1 1 1 0 1 0 0 

 

Table 2. Illustrative example of n MCMC samples for the accessibility of the 4 MLSs in Figure 2, assuming 

DS7 = 0 (failure of component #7) as an evidence. 

Sample # MLS1 MLS2 MLS3 MLS4 

1 0 1 0 0 

2 0 1 0 0 

… 0 0 0 0 

n 0 1 1 0 

 

From Table 1 and Table 2, it is possible to extract damage and loss estimates in the form of 

probabilities, such as P(DSi=0) the probability of failure of component i, or P(MLSj=0) the 

probability of MLS j being inaccessible. 



3. Definition of prior distributions 

The prior distributions of the variables that are probabilistically defined (IM, C) are 

assumed to follow normal/lognormal distributions, whose parameters are obtained from 

predictive uncertain models. 

In the case of IM, the mean of the logarithm of the ground-motion parameter distribution 

(µlogIM) is given by a ground-motion model (GMM), based on the earthquake 

characteristics that are assumed to be known with confidence shortly after the event. The 

covariance matrix ∑IM is assembled as follows: 

             (2) 

where ση and σξ respectively represent the standard deviations of the inter- and intra-event 

error terms, which are given by the GMM. The term ρij represents the spatial correlation of 

the intra-event error between sites i and j, and it may be defined by available models in the 

literature (e.g., Jayaram & Baker, 2009). 

The seismic response C of components is provided by fragility curves, where the elements 

of µlogC correspond to the median fragility, and the standard deviations of C correspond to 

the fragility dispersion β. The dispersion term β may be further decomposed into βR and 

βM, which respectively represent the uncertainty due to record-to-record variability and the 

uncertainty due to imperfect knowledge or modelling of the component (Crowley et al., 

2019). A third type of uncertainty, related to the definition of the damage state threshold, is 

neglected here for simplification purposes. Therefore, the covariance matrix ∑C is 

expressed as follows: 

            (3) 

The term ρ
R

ij, representing the correlation of the response due to record-to-record 

variability between components i and j, is very difficult to quantify without the knowledge 

of the seismic records used in the derivation of the fragility curves. A qualitative rationale 

may postulate that components i and j – if they are spatially very close to each other – may 

experience ground motion inputs with similar characteristics in terms of duration, 

frequency content, etc. and therefore their record-to-record variability should be fully 

correlated. On the other hand, spatially-distant components are likely to be subjected to 

different ground-motion (e.g., different spectral shapes), and therefore their record-to-

record variability should be uncorrelated. Such considerations are discussed in Silva 

(2019), who advocates the use of a correlation structure similar to the one that models the 

spatial correlation of the intra-event error. Although deserving further investigation, this 

assumption is also used here for the characterization of ρ
R

ij. 

The correlation of the component-to-component variability within the same class/typology, 

represented by ρ
M

ij, also requires more knowledge of how the corresponding fragility 

curves are derived. Therefore, it is proposed to consider the extreme cases in the 

application (see Section 4), namely fully correlated or uncorrelated variability, in order to 

investigate the impact of these assumptions on the posterior distributions. The 

decomposition of the dispersion into βR and βM is not always detailed in available fragility 

models (i.e., only the global dispersion β is specified). Various assumptions regarding this 

decomposition are also tested in the application example. 



4. Application 

4.1. Description of the case-study area 

The proposed BN approach for rapid response is applied to a road network composed of 

118 bridges (i.e., vulnerable components), which connects 53 municipalities (i.e., built 

areas) located in a valley around Bagnères-de-Luchon (Pyrenees, France). The case-study 

area is detailed in Figure 4. 

 

 

Fig. 4 - Situation map of the Luchon case-study area. 

The typologies of the 118 bridges are identified based on photographs and aerial pictures, 

and their conditional probability of failure is defined by fragility functions, some of which 

are taken from the SYNER-G database (Crowley et al., 2011). In total, 18 different 

fragility curves have been assigned (3 models for 83 single-span bridges, 3 for 7 

continuous multi-span bridges, and 12 for 28 arch bridges). The fragility curve 

corresponding to the first limit state is considered as the threshold of the loss of 

functionality of the bridge (i.e., failure of the component), assuming that even small 

structural damage might be enough to prevent safe passage. 

The studied area is surrounded by several seismic stations (see Figure 4), which are used as 

sources of observations to constrain estimates of the strong-motion field. All selected 

fragility curves use PGA as IM; therefore, the regional GMM by Tapia (2006) is applied 

here for the estimation of the prior distribution of IM. For PGA, the spatial correlation 

model by Jayaram & Baker (2009) is used with a correlation distance of 8.5 km. Finally, 

site effects are modelled via soil amplification factors, which were estimated from local 

investigations and soil measurements (Roullé et al., 2012). 

The road network is simplified by considering only paths that need to go through bridges 

and by building abstract layers of Super-Nodes and Super-Edges (Gehl et al., 2022), as 

shown in Figure 5. From this conceptualization step, the MLS decomposition is performed 

via a recursive algorithm (Cavalieri et al., 2017). The connectivity between the town of 

Bagnères-de-Luchon (point A) and the Northern part of the network (point B) is 

investigated here, which leads to 60 MLSs (i.e., 60 different possible routes between A and 

B). 



 

Fig. 5 – Left: abstraction of the network topology for connectivity analysis; Right: MLS decomposition 

between points A and B of the network. 

4.2. Loss updating results 

The updating capabilities of the BN are tested with a hypothetical Mw 6.3 earthquake 

scenario, located south of the road network (0.60° lon, 42.65° lat). Hypothetical 

observations from 7 seismic stations and damage measures on 5 bridges are set as evidence 

in the BN (2 survivals and 3 failures). It is assumed that one of the monitored bridges 

belongs to the identified MLSs, and it has been observed as intact (see Figure 5). 

Following the discussion of Section 3 on the assumptions to be made for the covariance 

models, three different correlation hypotheses are tested for the response C of bridges: 

• Corr1: no correlation is introduced, so that ∑C is simply a diagonal matrix. 

• Corr2: only the correlation of the record-to-record variability is introduced, with a 

correlation model decreasing with inter-bridge distance (i.e., Eq. 3 with ρ
M

ij = 0). 

• Corr3: in addition to the correlation of the record-to-record variability, a full 

correlation between bridges of the same type (i.e., using the same fragility model) is 

assumed, i.e. ρ
M

ij = 1 if bridges i and j are in the same typology. 

Global results for the system connectivity are detailed in Table 3, where it is shown that 

the proposed approach is also able to identify which MLS is the most likely to remain 

accessible (i.e., “best” MLS). 

Table 3. Results of the Bayesian updating, in terms of probability of disconnection between points A and B 

(i.e., S = 0) and of identification of the “best” MLS, for the various correlation assumptions. 

 Prior Posterior 

Corr1 Corr2 Corr3 

Pr(Disconnection) 0.095 0.342 0.353 0.435 

“Best” MLS #45 #49 #21 #3 

 

A significant difference is observed between the prior and posterior probabilities of 

disconnection, due to the assumption that the damage states of 5 bridges were entered as 

evidence (see Figure 5). The evidence of a bridge’s state has an impact on the system at 

various levels: 



• The observation of a bridge failure directly modifies the accessibility of the MLS(s) 

to which it belongs, and in turn system connectivity. 

• If the seismic response C is modelled with a constrained correlation model (i.e., 

Corr2 or Corr3), then the observation of a bridge’s state may modify the seismic response 

of other bridges, in turn modifying their probability of failure and ultimately the 

accessibility of the MLSs to which they belong. 

• Finally, the observation of a bridge’s state may also modify the distribution of the 

IM at the base of the bridge, in turn modifying the ground-shaking field in the vicinity. 

The differences between the three correlation models are noticeable: the extreme 

configurations Corr1 and Corr3 should be used as upper and lower bounds of the model 

outcome, pending an in-depth investigation of appropriate correlation models for the 

seismic response. Furthermore, each assumption leads to the identification of a different 

MLS as the least affected route, which could have a large impact on emergency operations. 

An example of the changes in the rapid estimate of the post-earthquake condition of the 

network is provided in Figure 6, both in terms of failure probability of bridges and 

identifying the most accessible MLS. 

 

Fig. 6 - Left: prior distribution using only the characteristics of the earthquake event; Right: posterior 

distribution using field observations (with Corr3 model). 

5. Conclusions 

This study has investigated the implementation of a Bayesian Network-based framework 

for improving situational awareness during the rapid response phase following an 

earthquake event. It has been demonstrated that a BN built in OpenBUGS environment is 

able to provide updated losses for a real-world road network and built areas based on 

available observations. The BN is solved with a MCMC sampling scheme, which delivers 

approximate posterior distributions: this approximate solution, as opposed to exact 

inference algorithms, is a necessary trade-off in order to treat systems of hundreds of 

components exposed to spatially distributed hazards. Moreover, the sampling inference 

scheme used in OpenBUGS can combine continuous (e.g., intensity measures, seismic 

capacities) and discrete variables (e.g., damage states), which has the benefit of introducing 

exact distributions instead of discretizing continuous variables. Regarding road networks, 



when connectivity loss is used as a simple system indicator, the decomposition of the 

system into MLSs is also essential in reducing the complexity of the BN. As a result, in the 

studied example, posterior distributions are generated within 20 or 30 minutes. Moreover, 

the decomposition into MLSs has the benefit of identifying specific routes associated with 

probabilities of accessibility: this information has the potential to be used by emergency 

managers to set up dedicated evacuation routes or safe itineraries to hospitals. Each MLS 

can also be associated with a travel distance or travel duration, in order to develop more 

elaborate performance indicators than connectivity loss. Finally, the results of such a BN 

application can constitute the starting point of rapid repair strategies for bridges, in order to 

improve the seismic resilience of transportation systems (Sun et al., 2021). 
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