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Abstract 1 

The quantitative description of the propagation of the energy components in a signal is a 2 

fundamental task in signal processing. The correct identification of the components is important 3 

because they carry information about the medium in which they propagate. In this article, I 4 

introduce the Reassigned Cross-S-Transform to estimate dispersion curves from time-varying 5 

signals, a technique based on function maximization principles and time-frequency cross-6 

correlation. The RCST provides a sharpened and direct estimate of the dispersion curve for 7 

multi-modal propagating waves. Furthermore, the RCST can be used with signals that are not 8 

synchronized with the same initial time. I present examples studying the degradation effects on 9 

the slowness curves due to mode mixture and reflected waves. I illustrate the application of the 10 

RCST technique to artificially generated Ricker wavelets, and to real recordings of seismic 11 

waves generated by an active source. Finally, using 2D numerical simulations of wave 12 

propagating through an elastic layered medium, I solve a mode identification problem by 13 

combining the RCST with a previously proposed technique to extract Rayleigh waves from 14 

signals. 15 

Keywords: geometrical dispersion, time-frequency analysis, multi-modal dispersion.   16 
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1. Introduction 17 

Analysis of recorded signals is fundamental in the understanding of wave propagation 18 

phenomena. The Fourier analysis has been a classical technique in the field of signal processing, 19 

due to its robust mathematical foundation and ease of application [1]. The Fourier spectrum 20 

provides insight on the energy of the signal as a function of frequency, allowing the 21 

identification of its components. Spectral analysis has been the basis of quantitative analyses and 22 

modeling of wave propagation problems in many fields such as physics, applied mathematics, 23 

and chemistry. However, most signals related to physical processes are non-stationary, this is, 24 

their frequency content change with time, and simple Fourier analysis cannot address this 25 

change. That is why many efforts have been devoted in the last decades to develop Time-26 

Frequency Representations (TFR), being the most popular the Short-Time Fourier Transform [2], 27 

the Continuous Wavelet Transform [3], the Stockwell Transform [4], and the Empirical Mode 28 

Decomposition [5]. However, according to the Heisenberg-Gabor uncertainty principle [2], most 29 

of the TFRs mentioned above are of limited time-frequency resolution, leading in some cases to 30 

misidentification of components and poor readability. One technique that has been proposed to 31 

improve the readability of TFRs consists of reassigning the TFR so that the energy is 32 

concentrated at the time-frequency coordinates where the energy itself attains its maxima. 33 

According to Meignen et al. [6], this approach was initiated in the late 1970s by Kodera [7], after 34 

which many reassigned TFRs have been proposed for both non-invertible and fully invertible 35 

distributions. A recent comprehensive review on the subject of reassigned TFRs is provided in 36 

[6].  37 

Among the different TFRs, the Stockwell Transform (also known as the S-Transform) has 38 

distinguished itself in practical applications because (i) it preserves the absolute phase of the 39 
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original time-domain signal, (ii) it can be inverted without losing information. These advantages 40 

have been exploited in recent seismological investigations, where the S-Transform has been 41 

successfully implemented for the identification and extraction of surface waves (Rayleigh and 42 

Love) from strong ground motion recordings, by characterizing the polarization characteristics of 43 

the different wave-types in the time-frequency domain [8]. Furthermore, the phase velocity of 44 

the extracted Rayleigh and Love waves was estimated in the time-frequency domain also making 45 

use of the Stockwell Transform [9]. In a previous publication [10], Stockwell himself had 46 

suggested the use of the Cross-Stockwell-Transform (CST) to estimate phase velocity among 47 

two stations, because the product of the two S-Transforms gives directly the phase difference for 48 

each point of the time-frequency space. However, this method gives correct results inasmuch as 49 

the peaks of the two signals are “located” at the same times. 50 

In this work, I extend the ideas of Stockwell regarding the estimation of phase velocity from 51 

recorded signals to implement a time-frequency analysis that permits the estimation of the phase 52 

velocities of the waves making use of the reassignment technique. Different reassignment 53 

approaches have been already proposed for the S-Transform in order to improve its resolution, 54 

such as the generalized S-Transform [11] and the Synchrosqueezed S-Transform [12], among 55 

others. In particular Pan et al. [13] performed time-frequency cross-correlation analysis of 56 

signals using the Synchrosqueezed S-Transform, which allows the visualization of the change 57 

with time (the evolution) of the cross-correlation between two signals. Furthermore, the 58 

generalized S-Transform has been implemented by Askari et al. [14] in a slant stack procedure to 59 

compute dispersion curves of Rayleigh waves in terms of group velocities. Although the 60 

reassignment technique I propose herein indeed improves the resolution of the S-Transform, its 61 

main objective is to provide a Cross-S-Transform with energy concentrated at the time-shifts 62 
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between two signals, which directly gives the relation between slowness and frequency, namely, 63 

the dispersion curve. Since spreading of energy is one of the difficulties in identifying different 64 

modes in dispersion analysis, especially when the modes are close to each other (in frequency) 65 

(see for instance, Levshin and Panza [15]), a dispersion curve obtained from reassignment could 66 

be useful to the misidentification problem. Furthermore, as I will show in the sequel, the 67 

Reassigned Cross-S-Transform (RCST) is basically a mathematical maximization technique 68 

applied to the S-Transform of the signals, and I make no assumptions regarding the physical 69 

processes represented in the signals: no assumptions regarding either the type of waves or the 70 

spatial-temporal distribution of the phase velocity. Thus, the technique can be applied to signals 71 

related to any wave-propagation problem, provided that they are correctly sampled, as any other 72 

signal processing technique requires. 73 

In this article I consider a natural application of the reassignment technique, the dispersion 74 

analysis of Rayleigh waves, since they are waves with strong dispersive characteristics. 75 

Multimodal dispersion analysis of Rayleigh waves is a very common tool for in-situ, non-76 

destructive testing of different types of materials. In near-surface geophysics in particular, a 77 

popular technique used in seismic surveys is the use of the dispersion curve of Rayleigh waves 78 

propagating through the surface, to derive the shear wave velocity of the different soil layers at a 79 

specific site [16]. The Rayleigh waves are recorded at an arrangement of sensors after they are 80 

excited by a blast or by a sledgehammer. However, in the obtained seismic wave field different 81 

types of waves are present (body, Love, reflected, scattered, noise), which can have a detrimental 82 

impact on the estimation of the desired dispersion curve. Different wave types and different 83 

modes of similar frequency arriving at neighboring times can interfere and degrade the accuracy 84 

of the estimated velocities. Addressing these inaccuracies is still a problem of interest in near-85 
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surface geophysics, as the correct determination and interpretation of the dispersion curve is a 86 

fundamental step in a successful surface-wave testing campaign [17] .   87 

In the following sections, I first explain the basic concepts about the S-transform and about 88 

dispersion curves based on measurements of phase velocity. I then derive the mathematical 89 

formulation to reassign the S-transform of a signal, and extend the reassignment ideas to derive 90 

the Reassigned Cross-S-Transform (RCST). Later, I illustrate the applicability of the RCST with 91 

three experiments of artificial dispersive waves: one with a single wave train, a second one with 92 

two dispersive modes propagating in the same direction, and a third one with two modes 93 

propagating in opposite direction. I implement this last synthetic experiment in order to asses the 94 

effect of reflected waves on the RCST. I also analyse a set of real recordings, acquired to be 95 

analysed with the method of Multichannel Analysis of Surface Waves (MASW) [18], and 96 

compare the obtained dispersion curve with estimations from the more classical F-K Transform 97 

technique. Finally, I illustrate the advantages of using recordings of several components 98 

(horizontal and vertical) to identify and separate different modes of surface waves, and in turn, to 99 

improve the estimation of the dispersion curve. For this, I consider a seismic wave field 100 

generated through 2D numerical simulations with the Spectral Element Method, in a layered 101 

velocity structure where several Rayleigh wave modes propagate.  102 

2. Dispersion analysis and the S-transform 103 

Dispersion phenomena is observed when the phase velocity of a wave is frequency-dependent. In 104 

seismological processes dispersion is of two types: material dispersion due to viscoelastic 105 

attenuation, and geometric dispersion due to heterogeneity of the medium [19]. Regardless of the 106 

type of dispersion, a frequency-dependent phase velocity can be defined as follows: 107 
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������ = �
	� ,      	� = 	����� (1) 

for each frequency ��, where � is the propagation distance (the distance between the two nearby 108 

stations where the signals are observed/recorded). The parameter 	� (the time shift) is then the 109 

physical quantity that remains frequency-dependent. Phase velocity is a convenient mechanical 110 

parameter to describe a medium, because the time shift 	� is a quantity that can be simply and 111 

directly measured, without making any assumptions regarding the physical process. 112 

Alternatively, a dispersion curve can be expressed in terms of a frequency-dependent phase 113 

slowness: 114 

������ = 	�����
�  (2) 

In this work, I will then focus on estimating 	� for wave trains present in two signals recorded at 115 

nearby stations separated by an interstation distance �. In addition, I express the dispersion 116 

curves in terms of the phase slowness, because of its simple proportionality [Eq. (2)] with the 117 

time shift. The time shift is in turn related to the phase shift 
� by the simple equation: 118 

	����� = 
�2��� ,      
� = 
����� 
(3) 

where clearly the phase shift is also a frequency-dependent quantity. A classical wave to estimate 119 


� for a propagating monochromatic wave is to find the peaks of the amplitude of the two signals 120 

and then take the corresponding phase difference. When the signals are composed of several 121 

overlapping wave trains, finding such peaks with time-domain processing techniques can be a 122 

problematic task. Here is when a TFR of the signals becomes a more appropriate tool of analysis, 123 

since the TFRs provide the evolution of the different frequency components of the signals. The 124 

TFR I adopted for this study is the Stockwell-Transform, which is defined as follows [4]: 125 
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��	, ��� = � ���� |��|
√2�

�

��
exp �− �	 − ������

2 � exp�−2� ������ (4) 

where of ��	� is the signal to be transformed. At each frequency �� the S-transform provides a 126 

time function called a “voice”, which results from filtering the signal so as to isolate the time 127 

history of only the �� component. Since each value of the S-transform is a complex number, it 128 

can also be expressed in polar form: 129 

��	, ��� = ! exp� 
� ,       ! = !�	, ���,       
 = 
�	, ��� (5) 

where !�	, ��� is the amplitude of the complex number, 
 is the phase, and  = √−1. Let us note 130 

that the phase 
 provided by the S-transform is the same phase of the signal at the point �	, ��� 131 

[4]. One straightforward way to compute the phase-shift between two voices is to identify the 132 

location (in time) of the amplitude maxima, and then extract the phase difference at those times. 133 

However, this method cannot be performed in an automatic manner if there are different wave 134 

trains present in the signal. For signals composed of single wave trains, the method of computing 135 

the phase difference using the Fourier Transforms of the signals [20] is much more economic, 136 

and as accurate. Stockwell [4] had proposed a method of computing the phase difference from 137 

the Cross-S-Transform of the two signals, which is defined as: 138 

�#��	, ��� = �# ∙ ��%  (6) 

where �# and �� are the S-Transforms at stations 1 and 2, respectively, and �'̅ denotes the 139 

complex conjugate of �'. Station 2 is the station at which the waves arrive later. Using the polar 140 

forms, the phase difference follows directly: 141 

�#��	, ��� = !# ∙ !� exp� 
# −  
�� (7) 
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However, for this method to give the correct phase difference, the peaks of the amplitude of the 142 

voices of the two S-Transforms should be located at the same time. Besides, if several wave 143 

trains are present in the signal, they need to be treated one at a time, after identification.  144 

3. Reassignment of the S-transform 145 

The idea of reassigning the S-transform consists in concentrating the energy of the TFR around 146 

the coordinates �	, �� where the energy itself reaches its maximum values. These coordinates are 147 

usually referred to as the time delay and the instantaneous frequency. The time delay is identified 148 

as the time of arrival of the peak of the envelope of an analytical signal. The instantaneous 149 

frequency is the frequency around which the spectral energy is concentrated at a specific time. 150 

These concepts are immediately applied to the peaks of the amplitude of the S-Transform, since 151 

each voice of the S-transform is equivalent to a band-pass filtered analytical signal of the original 152 

time function [10]. Therefore, the time delay 	( is identified by finding the arrival time of 153 

max+ !�	, ���. Consequently, in the S-Transform domain the time delay is found at the instants 154 

when the derivative of the amplitude is zero: 155 

�!�	, ���
�	 ,

+-+.
= 0 

(8) 

Note that the amplitude of a complex number is a positive function, thus there will be no 156 

“negative peaks”. The problem of finding the time delay is then a maximization problem. The 157 

derivative in Eq. (8) can be approximated numerically, however here I prefer to derive analytic 158 

expressions for it. I start by recalling the polar form of the S-Transform [Eq. (5)] and applying 159 

natural logarithm: 160 

ln2��	, ���3 = ln2!�	, ���3 +  
�	, ��� (9) 
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Taking the time derivative of the logarithmic expression, the following expression is obtained: 161 

1
��	, ���

���	, ���
�	 = 1

!�	, ���
�!�	, ���

�	 +  �
�	, ���
�	  

(10) 

In view of the fact that !�	, ��� & 
�	, ��� are real quantities, it is true that: 162 

1
!�	, ���

�!�	, ���
�	 = ℛℯ 7 1

��	, ���
���	, ���

�	 8 
(11) 

where ℛℯ9∙: denotes the real part of its argument. Starting from the definition of S-Transform 163 

given in Eq. (4), it is straightforward to derive an expression for the derivative ���	, ��� �	⁄ : 164 

���	, ���
�	  =  − � �����

��
|��|
√2� exp �− �	 − ������

2 � exp2−2� ���3 �	 − ������� 
(12) 

 =  −	�����	, ��� + ����+�	, ���                                                                                                                             

where �+�	, ��� is the S-Transform of the product  	 ∙ ��	�: 165 

�+�	, ��� = � ������
��

|��|
√2� exp �− �	 − ������

2 � exp2−2� ���3 �� 
(13) 

From re-arranging expression (12) above, I obtain the expression: 166 

1
��	, ���

���	, ���
�	 = ��� ��+�	, ���

��	, ��� − 	� 
(14) 

Using the latter result in Eq. (11) gives: 167 

�!�	, ���
�	 = ��� <ℛℯ 7�+�	, ���

��	, ��� 8 − 	= !�	, ��� 
(15) 

Consequently, the analytical expression for the time delay is obtained: 168 

�!�	, ���
�	 ,

+-+.
= 0 ⇒ 	(���� ≝ ℛℯ 7�+�	(, ���

��	( , ��� 8 
(16) 
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The time delay computed with Eq. (16) requires the computation of two transforms, the S-169 

Transform of ��	� and the S-transform of 	 ∙ ��	�. An analytical expression can be also derived 170 

for the Instantaneous Frequency, which may be defined as follows [10]: 171 

@A�	� ≝ 1
2�

B
B	 92���	 + 
�	, ���: 

(17) 

From Eq. (10) is evident that: 172 

�
�	, ���
�	 = CD 7 1

��	, ���
���	, ���

�	 8 
(18) 

where CD9∙: denotes the imaginary part of its argument. Using Eq. (14) the result for the 173 

Generalized Instantaneous Frequency is obtained: 174 

E@A�	, ��� = �� + <���
2�= CD 7�+�	(, ���

��	(, ��� 8 
(19) 

Similarly, a Generalized time-frequency distribution of the time delay can be defined as: 175 

F(�	, ��� ≝ ℛℯ 7�+�	, ���
��	, ��� 8 

(20) 

which is then used to reassign the S-Transform through the sifting effect of convolving ��	, ��� 176 

with the Delta-Dirac function: 177 

�G�F(, ��� = � ���, ���
�

��
H�F( − ���� 

(21) 

What the reassignment means is that the S-transform is now evaluated at the coordinates �F( , ���, 178 

the energy is concentrated in the neighboring of the time-delay 	(, and thus the localization of 179 

energy is more precise. Now, in order to obtain a dispersion curve I am not interested in 180 

concentrating the energy around 	(, the time delay at each station, but around 	�, the time shift 181 
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between the two stations [given in Eq. (2)]. This will provide the variation of 	� with frequency, 182 

without the need of finding any maxima, and all waves present in the signal are automatically 183 

considered. Thus, instead of reassigning each individual S-transform, I want to reassign the 184 

Cross-S-Transform [as given in Eq. (6)].  185 

4. Reassignment of the Cross-S-Transform 186 

Following the ideas of the reassigned S-transform presented in the previous section, I want to 187 

reassign the Cross-S-Transform (CST) on a time-frequency distribution of the time-shift, that I 188 

denote here by F�, in the following manner 189 

�GIJF�, ��K = � �I��, ���
�

��
HJF� − �K�� (22) 

and using a redefined Cross-S-Transform: 190 

�I�	, ��� = �# ∙ ��̅� (23) 

where now �# is multiplied by the shifted S-Transform of station 2, ���. More precisely, ��� is 191 

the result of shifting each voice of ��, so that the amplitude peaks of �# and ��� are located at the 192 

same times. Because the voices are functions of time, the delay between two voices is simply 193 

obtained by applying time-domain cross-correlation to each pair of voices: 194 

	L���� = argmax+ � �#��, ������� + 	, �����
�

��
 

(24) 

And then each voice ����, ��� is shifted 	L seconds to obtain �����, ��� . The effect of a shift in 195 

time of the S-Transform becomes evident when expressing the S-Transform as the inverse 196 

Fourier Transform of a convolution [10]: 197 
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���, ��� = � O�P + ��� |��|
√2�

�

��
exp �− 2��P�

��� � exp�2� P���P 

(25) 

Letting � = 	 − 	L���� 198 

��	 − 	L, ��� = exp�−2� P	L� � O�P + ��� |��|
√2�

�

��
exp �− 2��P�

��� � exp�2� P	��P 

(26) 

 = exp�−2� P	L���	, ��� 

Therefore, ����	, ��� can be obtained by simply multiplying each voice of ���	, ��� by the 199 

corresponding complex exponential exp�2� P	L�, where 	L = 	L����. At this point I would like to 200 

remark that the shifted transform ����	, ��� will be the same even if the signal at station 2 does 201 

not have the same initial time at station 1. With different initial times the parameter 	L���� will be 202 

different from the case of having the same initial time, but not the final result ����	, ���. And 203 

thus the technique I propose herein can be used to compute phase velocities even for data that is 204 

not synchronized with the same initial time.  205 

In what follows, I present how the expression for F� can be derived, F� being the Generalized 206 

Time-Shift once the two S-Transforms have the peaks at the same coordinates. I start by 207 

recognizing the analogy between the time delay and the time shift: the time delay gives the 208 

localization in time of each amplitude peak of the S-transform, and the time shift is associated to 209 

peaks of the CST. In both cases a maximization is made, that is, time values are found such that 210 

derivatives are zero. Since the CST is also a complex number, it can be expressed in polar form:  211 

�I�	, ��� = !I exp� 
(�,       !I = !I�	, ���,       
( = 
(�	, ��� (27) 

where 
( is the phase difference between �# and ���. From Eq. (23) I recall that the CST is the 212 

product of two complex-valued functions, its derivative then is given by: 213 
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��I�	, ���
�	 = �#�	, ��� ���̅��	, ���

�	 + ��#�	, ���
�	 ��̅��	, ��� 

(28) 

Using Eq. (14) the following expressions are obtained: 214 

�#�	, ��� ���̅��	, ���
�	 = �#�	, ���Q−	�����̅��	, ��� + �����̅�+�	, ���R 

��#�	, ���
�	 ��̅��	, ��� = Q−	����#�	, ��� + ����#+�	, ���R��̅��	, ��� 

(29) 

These results can then be substituted in Eq. (28): 215 

��I�	, ���
�	 = −2	����I�	, ��� + ���2�#�	, �����̅�+�	, ��� + �#+�	, �����̅��	, ���3 (30) 

Thus the derivative of the CST can be found by evaluating four S-transforms. Now, different 216 

from the case of the time delay, I will not focus here on finding a time when the derivative of an 217 

amplitude is zero as in [Eq. (16)]. Here the goal is to find the phase shift when the total 218 

derivative of the CST is zero. To show that this is the case I go back to Eq. (27) and take the 219 

logarithm 220 

ln �I�	, ��� = ln !I�	, ��� +  
(�	, ��� (31) 

The derivative will then be: 221 

1
�I�	, ���

��I�	, ���
�	 = 1

!I�	, ���
�!I�	, ���

�	 +  �
(�	, ���
�	  

(32) 

It is then clear that enforcing a zero total derivative implies not only that the derivative of the 222 

amplitude of the CST at some time 	� is zero, but also that the derivative of its phase is zero at 	�. 223 

�
(�	, ���
�	 ,

+-+S
= 0 

(33) 
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The underlying assumption is then 224 

�
#�	�, ���
�	 = �
��	�, ���

�	  
(34) 

To understand that this is the case, let me recall that the peaks of �#�	, ��� and ����	, ��� are 225 

located at the same �	, �� coordinates, which is equivalent to say that �#�	, ��� and ����	, ��� 226 

have the same time delay 	( and the same instantaneous frequency. Thus, from the definition of 227 

IF given in Eq. (17) it is evident that relation (34) must hold. Furthermore, if 	� = 	(, the 228 

derivatives of the amplitudes !# and !� are zero at 	�, and consequently, the derivative of !T at 229 

	� must be zero too. I now proceed to enforce a zero-derivative of the CST: 230 

��I�	�, ���
�	 = −2	�����I�	�, ��� + ���2�#�	�, �����̅�+�	�, ��� + �#+�	�, �����̅��	�, ���3

= 0 

(35) 

Solving for �I�	�, ���, the result is the following 231 

2	�I�	�, ��� = 2�#�	�, �����̅�+�	�, ��� + �#+�	�, �����̅��	�, ���3 (36) 

Since �I�	�, ��� = !I�	�, ���exp 2 
(�	�, ���3 the latter expression becomes: 232 

2	!I�	�, ���exp 2 
(�	�, ���3 = 2�#�	�, �����̅�+�	�, ��� + �#+�	�, �����̅��	�, ���3 (37) 

Now taking the natural logarithm 233 

ln 2	!I�	�, ��� +  
(�	�, ��� = ln2�#�	�, �����̅�+�	�, ��� + �#+�	�, �����̅��	�, ���3 (38) 

Solving for 
( I then obtain the phase shift under the maximization conditions: 234 


(�	�, ��� = CD 9ln2�#�	�, �����̅�+�	�, ��� + �#+�	�, �����̅��	�, ���3: (39) 

And from this results I defined a TFR which I call the Generalized Phase Shift: 235 
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Φ(�	, ��� = CD 9ln2�#�	, �����̅�+�	, ��� + �#+�	, �����̅��	, ���3: (40) 

Finally, with substitution of this result in Eq. (3) I obtain a TFR for the time shift, that is, the 236 

Generalized Time Shift: 237 

T��	, ��� = 1
2��� CD 9ln2�#�	, �����̅�+�	, ��� + �#+�	, �����̅��	, ���3: 

(41) 

With this key result I can re-assign the Cross-S-Transform, using Eq. (22). In the next sections I 238 

illustrate how all these theoretical derivations can be used to obtain dispersion curves. 239 

5. Example with one artificial dispersive wave train  240 

In this example, I propagate a Ricker wavelet through different stations, imposing an artificial 241 

dispersion curve. The Ricker wavelet is given by the expression: 242 

W�	� = !G�2X − 1� exp�−X� ,       X = 2��T�	 − 	T�3� (42) 

where !G is the amplitude and 	T is the time of its largest peak. The Ricker wavelet has a limited 243 

bandwidth with energy concentrated at its central frequency �T. This limited bandwidth is one of 244 

the reasons why the Ricker wavelet is used in many seismological applications, since registered 245 

seismograms are usually composed of several wave trains of limited duration and limited 246 

frequency band. To propagate this wavelet with frequency-dependent phase velocity I adopt the 247 

following artificial dispersion curve: 248 

Y� = 1.7 exp \− �
15^ + 0.4   \`a

� ^ 
(43) 

In Figure 1 I plot this dispersion curve given in terms of phase velocity, and most importantly, in 249 

terms of the slowness. With this artificial slowness, I propagate the dispersive Ricker wavelet at 250 

20 stations, with a uniform interstation distance ∆c of 5 m (typical in geophysical 251 

measurements). For the Ricker wavelet I choose !G = 1, �T = 30 ef, and 	T = 1/�T. In order to 252 
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have precise measurements of small time shifts, I select the time step ∆	 to be 1.43E-4 s. For 253 

each discrete frequency, I apply the time shift to the Ricker wavelet in the frequency domain via 254 

the Fourier Transform and convolution. Thus, the waveform at some station h + 1 is obtained 255 

from the waveform at station h: 256 

Wij#�	� = A�#kAkWi�	�l ∙ expJ−2 ����∆cKl        (44) 

where �� = ����� is the slowness, and A9∙: and A�#9∙: denote the Fourier Transform operator 257 

and its inverse, respectively. The obtained waveforms at the 20 stations corresponding to the 258 

slowness of Figure 1b are illustrated Figure 2, where the duration of the wave train with distance 259 

can be appreciated. 260 

(a) (b) 

  
Figure 1. Artificial (a) phase velocity and (b) slowness for single dispersive Ricker wave train. 
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Figure 2. Waveforms at 20 stations for a single Ricker wavelet with artificial dispersion. 

In order to further illustrate the dispersion effect, in Figure 3a and 3b I show the S-Transform of 262 

the signals at the first and last stations. The separation of the arrival times of the peaks of the 263 

amplitude of the S-Transform at the final station is evident, even though the components of the 264 

waveform are not separated, and at the final station it can be still considered that a single wave 265 

train is present in the signal. Although not a necessary step in the procedure, in Figures 3c and 3d 266 

I show the reassigned S-Transforms at the first and last stations using the time delay 	(, to 267 

illustrate the sharpening effect of reassignment. After reassignment the peaks of the S-transforms 268 

can be more precisely identified. With this artificial example I will recover the dispersion curve 269 

using the seismograms at the first and the final stations of the arrangement, because there is no 270 

wave interference or loss of energy in the propagated wave. In more realistic settings, interaction 271 

with other waves and geometrical and material attenuation would require the use pairs of stations 272 

that are as close as possible. 273 

  274 
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(a)  (b) 

  

(c)  (d) 

  

Figure 3. Amplitude of S-transforms of dispersed Ricker wavelet. (a) S-transforms at first station, (b) S-

transforms at final station, (c) Reassigned S-transforms at first station (d) Reassigned S-transforms at 

final station. 

In order to illustrate the procedure presented in the previous section, I now proceed to compute 275 

the shifted S-Transform ��� corresponding to the final station. I apply the same shifts to the 276 

voices of the transform ��+ because it is also needed to compute the Generalized Time Shift. In 277 

Figure 4 I plot the results of shifting the transforms �� and ��+ to show that indeed their peaks 278 

have the same location as the peaks of the S-transform of the first station �#. No changes in the 279 

amplitudes are introduced, as the amplitude scales in Figure 4 show. Next, in Figure 5a, I plot the 280 

amplitude of the Cross-S-Transform �I�	, ��� between the first and last stations. Even though all 281 

the information to obtain the dispersion curve is given by �I�	, ���, it is not visually identifiable 282 

in Figure 5a, and a reassignment �I�	, ��� might be convenient. In Fig. 5b I plot the normalized 283 

amplitude !mGIJF�, �K of the Reassigned Cross-S-Transform, which I compute in the following 284 

manner: 285 
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!mGIJF�, �K =   !GIJF�, �K  
maxno,p !GIJF�, �K   (45) 

where !GIJF�, �K is the amplitude of �GIJF�, ��K. The vertical axis of the RCST in Fig. 5b 286 

corresponds then to the time-shift. It can be observed that the concentration of energy of the 287 

RCST around the time shift is very high, to the point that the non-zero points of the RCST are 288 

not very visible in Fig. 5b. That is why in Figure 5c, where I compare the estimated slowness 289 

with the original slowness of Figure 1b (shown with the continuous line), I added black dots to 290 

make the non-zero points of the RCST more discernable. To obtain the dispersion curve of Fig. 291 

5c, I simply divided the time shift axis of the RCST by the interstation distance, which in this 292 

case is 0.1 km. 293 

 (a)  (b) 

  

(c)  (d) 

  

Figure 4. Amplitude of S-transforms of dispersed Ricker wavelet at last station. (a) Regular S-

Transform, ��, (b) Shifted S-Transform, ���, (c) S-Transform ��+, (d) Shifted S-Transform ���+. 

 294 
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(a) (b) (c) 

   
 Figure 5. Single Ricker wavelet with artificial dispersion. (a) Amplitude of CST, (b) Amplitude of Reassigned 

CST (c) Dispersion curve compared with the original slowness curve (the continuous line). 

Figure 5c illustrates that with the RCST very precise estimations of the slowness curve can be 296 

obtained. However, for signals composed of a non-contaminated single wave train, the 297 

computational cost of estimating the RCST is not justified, as simple Fourier analysis as in [20] 298 

provides very accurate results for the time shift. One advantage that the RCST over other 299 

methods of analysis is that its non-zero values are associated to the energy of the wave train 300 

present in the signal, and therefore, discerning the physical wave trains from noise or interfering 301 

waves becomes easier. As it can be observed in Figure 5c, the RCST gives values for slowness 302 

only within the frequency band of the wave train. 303 

6. Example with two artificial dispersive wave trains propagating in the same direction  304 

In this example I add another wave train to the signals, with a different artificial dispersion 305 

curve. In this way I intend to simulate the propagation of bi-modal dispersive waves. I add 306 

another Ricker to the first mode I already analysed, with a lower amplitude !G� = 0.5, central 307 

frequency �T� = 60 ef, and 	T� = 1/�T�. For this new “higher mode” the slowness law is shown 308 

in Figure 6a with the thicker line, and the mathematical expression for the phase velocity is  309 

Y�� = 4 exp \− �
17^ + 0.55   \`a

� ^ 
(46) 
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I adopt again 20 stations spaced at 5 m to propagate the wavelets, the resulting waveforms are 310 

shown in Figure 6b. From the signals of Figure 6b it is not evident if the two propagated modes 311 

are separated in time. However, from inspection of the S-transforms of the first and last stations, 312 

shown in Figures 7a and 7b, it is clear that the two modes are mixed at the first station, but 313 

separated at the final station. Thus, the strategy I follow here to compute the dispersion curve is 314 

different from the previous example. Instead of only using the first and last stations to compute 315 

the dispersion curve, I compute the dispersion curve between each pair of adjacent stations, and 316 

average the result after normalizing each dispersion curve according to Eq. (45). The final 317 

average dispersion curve is shown in Figure 7c, and compared with the original slowness curves. 318 

Even though the dispersion curve of second mode is less energetic, is correctly identified in the 319 

RCST. At about 50 Hz, the dispersion curve for the first mode moves away from the original 320 

slowness curve, and some spread of energy can be observed. This is indeed related to the mixture 321 

of the two modes, and one approach to improve the results would then be the analysis at stations 322 

farther from the source, where the two modes might be better separated. An alternative way to 323 

reduce this effect is to separate the two modes in the seismogram, before the dispersion analysis. 324 

However this solution requires measurements of at least two components (horizontal and 325 

vertical) of the waveforms at each station, usually unavailable in geophysical measurements, 326 

which retain only the vertical component. I will explore further this approach in the example of 327 

section 8. 328 

  329 
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(a) (b) 

 
Figure 6. Artificial bi-modal dispersive Ricker wave train. (a) Slowness function, (b) Waveforms of 

propagated waves at 20 stations. 

 330 

(a) (b) (c) 

   
Figure 7. Bi-modal Ricker wavelet with artificial dispersion. (a) S-Transform at first station, (b) S-Transform 

at last station, (c) Average dispersion curve compared with the original slowness curve (the continuous line). 

7. Example with two artificial dispersive wave trains propagating in opposite 331 

directions  332 

In this experiment I consider the same two Ricker wave trains (modes) used in the previous 333 

example, but now the weaker wave train propagates in the opposite direction. With this 334 

experiment I try to simulate the presence of reflected/refracted waves in the signals, and 335 

investigate the effect on the estimated dispersion curve. The time histories of the waveforms are 336 

shown in Figure 8a, where it can be observed that the interference between the wave trains starts 337 
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at 0.06 km. In Figure 8b I present the average dispersion curve, which I obtained in the manner 338 

explained in the previous example. One effect that can be observed in Figure 8b is the 339 

“spreading” of the energy due to the interference between the wave trains. A weak presence with 340 

negative slope is also noticeable in Figure 8b, and how it diverts the dispersion curve after 50 341 

Hz. In situations like this example, separation of the dispersive waves from the 342 

reflections/refractions can improve the accuracy of the slowness curve. However, the analyst 343 

should also keep in mind that the presence of those reflections/refractions might indicate 344 

lateral/horizontal heterogeneities in the velocity structure. 345 

(a) (b) 

Figure 8. Artificial dispersive waves propagating in opposite directions. (a) Waveforms at 20 stations, (b)

Average dispersion curve compared with the original slowness curve (the continuous line). 

8. Example of mode separation from numerical simulations 346 

In this last example I investigate the benefits of mode separation in the estimation of the 347 

dispersion curves. An efficient technique based on the S-Transform to identify and separate wave 348 

trains in seismograms has been proposed in the recent years [8], which provides the time 349 

histories of the extracted waves. However, the extraction technique is based on the polarization 350 
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characteristics of the waves and therefore it requires the vertical component and at least one 351 

horizontal component of the recorded/generated time histories, while most near-surface surveys 352 

retain only the vertical component. As it is the case in MASW surveys, the seismic source is a 353 

vertical force at the free surface of an earth model. In order to simulate a wave field with 354 

geometrical dispersion, the selected earth model is composed of several layers with different 355 

density and elastic constants. I adopt the earth model described in Table 1, which was already 356 

used by Xia et al. [16] in numerical simulations for parametric studies on inversion of velocity 357 

profiles from the fundamental mode of Rayleigh waves. With the mechanical parameters listed in 358 

Table 1 I then compute the Rayleigh wave theoretical dispersion curve with the software 359 

Gplivemodel [21], a Geopsy tool to compute dispersion curves for layered 1D earth models 360 

using the propagator-matrix method [23]. Figure 9 shows the resulting theoretical slowness 361 

curves for Rayleigh waves, and that around 15 Hz the curves of the fundamental and first higher 362 

mode are in close proximity. 363 

Table 1. Mechanical parameters of layered earth model. 

Layer �� �a �⁄ � �� �a �⁄ � r �s tau⁄ � Thickness (m) 

1 194 650 1.82 2.0 

2 270 750 1.86 2.3 

3 367 1400 1.91 2.5 

4 485 1800 1.96 2.8 

5 603 2150 2.02 3.2 

Half-space 740 2800 2.09  

 364 
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Figure 9. Theoretical slowness curves (fundamental and first higher mode) for Rayleigh waves in the 

earth model of Table 1. The thicker line corresponds to the higher mode. 

 365 

To propagate Rayleigh waves I limit a rectangular region of the earth model to have 160 m of 366 

length and 36 m of total depth, so that all layers described in Table 1 are considered. I then 367 

discretize the 2D P-SV case of the wave equation for this region, using the Spectral Element 368 

Method (SEM) [24]. The square elements have a size of 2x2 m, and the degree of the interpolant 369 

of the field variables is 4. The top boundary of the 2D spatial region corresponds to the free 370 

surface, whereas the other three boundaries have to comply with the condition of energy radiated 371 

to the infinity, as illustrated in Figure 10a. To enforce such radiation condition I implement the 372 

Multi-axial Perfectly Match Layer (M-PML) [25], an accurate and stable absorbing boundary for 373 

isotropic elastic media. Each M-PML termination has 10 elements parallel to the truncated 374 

boundary. The discretization in time of the equation of motion is made with the midpoint rule 375 

with a time step ∆	=4.93E-05 s. I use again a Ricker wavelet with a central frequency of 20 Hz 376 

to describe the time-variation of the source. The source, imposing a vertical force at the surface, 377 

is located at 10 m from the first receiver. The interstation distance for the receivers is 2 m. The 378 

resulting time histories of the vertical and horizontal displacement at 41 receivers on the free 379 
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surface are shown in Figure 10b and 10c, respectively. The propagation of the two first modes of 380 

Rayleigh waves is clearly distinguished along the stations. 381 

I select the vertical component of the waveforms to estimate the dispersion curve, usually 382 

preferred to avoid the presence of other dispersive waves (such as Love waves) in the signal. In 383 

this 2D P-SV simulation Love waves cannot be generated, nevertheless I make the initial 384 

analysis with the vertical component. The resulting slowness curve is shown in Figure 11a, 385 

where I again added some black dots on the non-zero values of the RCST to improve the clarity 386 

of the plot. Even though the simulations seem to be of high accuracy as there is no contamination 387 

due to reflections from the absorbing boundaries, several problems are observed with dispersion 388 

curve of Figure 11a. First, the higher mode is barely detected, because of the small energy 389 

compared to the fundamental mode. And second, at around 15 Hz the higher mode is 390 

misidentified as the continuation of the fundamental mode. In Figure 11b I add the theoretical 391 

curves to compare with the obtained results, where the misidentification problem is more 392 

evident. In real cases, where there are no “theoretical curves” available to the analyst, the mode 393 

misidentification problem can be overlooked, leading to incorrect inverted velocity profiles.  394 

(a) (b) (c) 

 

Figure 10. 2D Numerical simulation of seismic wave propagation in a layered medium. (a) Sketch of the 

propagating medium, with location of the source, receivers and absorbing boundaries. (b) Time histories of 

horizontal displacements, (c) Time histories of vertical displacements. 

M-PML 
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 395 
(a) (b) 

 
Figure 11. Average slowness curves from vertical component of simulated Rayleigh waves. (a) 

Dispersion curve from RCST, (b) Dispersion curve from RCST compared with theoretical curves. 

 396 

The strategy I propose here to avoid the misidentification problem is to separate the two 397 

Rayleigh modes present in the signals with the Normalized Inner Product (NIP). For details on 398 

the application of the NIP technique to multi-component recordings, the reader is referred to the 399 

references [8], [9]. Because the NIP is a time-frequency technique that identifies and extract the 400 

waves according to their polarization characteristics, it efficiently identifies Rayleigh waves, 401 

which are elliptically polarized waves. In most cases the fundamental mode of Rayleigh waves 402 

has a retrograde motion at shallow depths, meaning that the particle motion is an elliptical 403 

rotation against the propagation direction. In other cases the fundamental mode and/or the higher 404 

modes can present prograde motion at the surface, an elliptical rotation in the same direction of 405 

wave propagation.  406 

In Figure 12a I plot the vertical component of the time histories of the retrograde waves extracted 407 

with the NIP, and it is clear that they correspond to the fundamental mode. Fortunately, when 408 

extracting the prograde waves, also with the NIP, I found that they correspond to the less 409 

energetic higher mode of the Rayleigh waves, as shown in Figure 12b; and then the two modes 410 
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have been successfully separated. The time histories of the separated waves are then used to 411 

compute the slowness curves shown in Figure 13, where the comparison with the theoretical 412 

curves is included. It is evident that after mode separation, the estimated dispersion curves are 413 

very precise, and the mode misidentification problem is resolved. 414 

  415 
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(a) (b) 

 
Figure 12. Vertical component of time histories of simulated Rayleigh waves. (a) Fundamental mode 

(retrograde motion), (b) First higher mode (prograde motion). 

 416 

(a) (b) 

 
Figure 13. Average slowness curves from vertical component of simulated Rayleigh waves. (a) 

Fundamental mode, (b) First higher mode. 

9. Example with real recordings 417 

In this example, I estimate the dispersion curve via the RCST from actual recorded data which is 418 

provided with the software Geopsy [21], an open source tool for geophysical research and 419 

applications (e.g., [22]). The 1D linear arrangement of seismic surface wave recordings is to be 420 

analyzed with the active seismic experiment (MASW) tool implemented in Geopsy, based on the 421 
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F-K transform. The profile of recorded waveforms is presented in Figure 14, where for clarity I 422 

normalized each time history by its maximum amplitude. The active source is located at 4 m 423 

from the first sensor, and the interstation distance of the 24 sensors is also 4 m. The time step of 424 

the time histories ∆	 =2.5E-4. Figure 14 clearly shows that there are at least two modes 425 

propagating through the different stations, as well as other wave types interfering with the 426 

modes.  427 

 
Figure 14. Recorded waveforms at 24 stations in a MASW survey. 

In Figure 15 I compare the slowness curves obtained with the RCST with the results given by the 428 

active MASW tool of Geopsy. For clarity, I added the black dots to the peaks of the RCST. The 429 

figures illustrate that the two methods give similar results, and they both identify well the higher 430 

mode, whereas the fundamental mode is well defined up to 20 Hz. The RCST gives shaper 431 

results in more limited frequency bands, because the RCST gives non-zero values only at 432 

frequencies with relatively high concentration of energy. Furthermore, considering the analysis 433 

of the previous artificial examples, the RCST of Figure 15a indicates that the fundamental mode 434 

is interfered not only by the higher mode and noise, but also by some reflected/refracted waves. 435 

This observation needs to be taken into consideration if the dispersion curve will be used to 436 
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invert a velocity profile, whether those interfering waves are related to the physical process or 437 

not.  438 

 (a) (b) 

 
Figure 15. Slowness curves of recorded waveforms. (a) Average dispersion curve from RCST, (b) 

Dispersion curve from Geopsy software. 

10. Conclusions 439 

In this work, I proposed a technique to estimate dispersion, slowness curves for multimodal, non-440 

stationary signals, based on the Reassigned Cross-S-Transform. I presented in detail the 441 

mathematical derivations and the computational steps for the construction of the RCST. The 442 

RCST I proposed is derived from simple maximization principles so that the energy is 443 

concentrated at the ridges of the time-frequency representations of the signals. Furthermore, in 444 

deriving the RCST I made no assumptions regarding the types of waves or the cinematics of the 445 

physical process. The objective of the proposed reassignment is twofold (i) improve the 446 

resolution of the time-frequency representation, and (ii) concentrate the energy of two signals in 447 

the neighborhood of the time-shift related to directly provide the phase velocity. An additional 448 

advantage of the procedure I propose is that because the time shift between signals is obtained 449 

from cross-correlation, no time readings are needed, and dispersion curves can be computed for 450 

data that is not synchronized with the same initial time. I illustrated the application of the RCST 451 
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with seismic signals containing dispersive waves, constructed from artificial dispersion curves, 452 

generated via 2D numerical simulation, and recorded in a real survey. The examples with multi-453 

modal artificial waves allowed to recognize the effects on the dispersion curve of modes 454 

overlapping in time and frequency, and the effects of possible reflections/refractions present in 455 

the signals. Regardless of the identified detrimental effects, the dispersion curves of the different 456 

artificial modes were well identified with the RCST. The analysis is then helpful to interpret the 457 

dispersion curves from real seismic recordings containing multi-modal Rayleigh waves, for 458 

which the RCST provides very sharp dispersion curves. Furthermore, I showed that combining 459 

the RCST with the NIP technique of extraction of dispersive waves is an effective strategy to the 460 

correct identification of modes, in particular when the dispersion curves are in close proximity.   461 
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S-Transform at last station, (c) Average dispersion curve compared with the original slowness 546 

curve (the continuous line). 547 

Figure 8. Artificial dispersive waves propagating in opposite directions. (a) Waveforms at 20 548 

stations, (b) Average dispersion curve compared with the original slowness curve (the 549 

continuous line). 550 

Figure 9. Theoretical slowness curves (fundamental and first higher mode) for Rayleigh waves in 551 

the earth model of Table 1. The thicker line corresponds to the higher mode. 552 
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Figure 10. 2D Numerical simulation of seismic wave propagation in a layered medium. (a) 553 

Sketch of the propagating medium, with location of the source, receivers and absorbing 554 

boundaries. (b) Time histories of horizontal displacements, (c) Time histories of vertical 555 

displacements. 556 

Figure 11. Average slowness curves from vertical component of simulated Rayleigh waves. (a) 557 

Dispersion curve from RCST, (b) Dispersion curve from RCST compared with theoretical 558 

curves. 559 

Figure 12. Vertical component of time histories of simulated Rayleigh waves. (a) Fundamental 560 

mode (retrograde motion), (b) First higher mode (prograde motion). 561 

Figure 13. Average slowness curves from vertical component of simulated Rayleigh waves. (a) 562 

Fundamental mode, (b) First higher mode. 563 

Figure 14. Recorded waveforms at 24 stations in a MASW survey. 564 

Figure 15. Slowness curves of recorded waveforms. (a) Average dispersion curve from RCST, 565 

(b) Dispersion curve from Geopsy software. 566 
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