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Figure 1: Land-use map according to Corine digital land cover (2015) and Soil map of the Saclay 

plateau adapted from regional geographic soil database at 1 : 250 000 of the Ile-de-France region 

 

Figure 2: Rescaled soil contribution to the provision of plant biomass using empirical, process-based 

modelling and direct measurement (data from Chalhoub et al., 2020) during the crop cycle 

2017/2018. The errors bars correspond to the standard error observed between the 20 years of 

simulation for the process-based modelling. The process-based modelling for 2018 is also presented 

to allow direct comparison of direct measurement and process-based modelling for the same soil, 

the crop and crop management. 

 

Figure 3: Rescaled soil contribution to the provision of water using empirical and process-based 

modelling and direct measurement (data from Chalhoub et al., 2020) during the crop cycle 

2017/2018. The errors bars correspond to the standard error observed between the 20 years of 

simulation for the process-based modelling. The process-based modelling for 2018 is also presented 

to allow direct comparison of direct measurement and process-based modelling for the same soil, 

the crop, and crop management. 

 

Figure 4: Rescaled soil contribution to the regulation of water quality using empirical and process-

based modelling and direct measurement (data from Chalhoub et al., 2020) during the crop cycle 

2017/2018. The errors bars correspond to the standard error observed between the 20 years of 

simulation for the process-based modelling. The process-based modelling for 2018 is also presented 

to allow direct comparison of direct measurement and process-based modelling for the same soil, 

the crop, and crop management. 

 

Figure 5: Rescaled soil contribution to the regulation of global climate using empirical and process-

based modelling. 

 

Figure 6: Map on the Saclay plateau territory of the joint delivery of provisioning (biomass and water) 

and regulating (water quality and global climate) ecosystem services according to empirical (a) and 

process-based (b) modelling  



1 
 

I. Introduction  1 

Since its inception in the 1950s until just a few years ago, the literature on nature’s services, referred 2 

to as “ecosystem services” (ES) after 1997, focused largely on defining concepts, identifying and 3 

classifying services, and debating the extent to which a monetization of these services was feasible 4 

(e.g., Westman, 1977; Gómez-Baggethun et al., 2010; Baveye et al., 2013, 2016, 2020; Baveye, 2014). 5 

In the last few years, the emphasis has shifted to the operationalization of the concept (van Dijk et 6 

al., 2018), i.e., to use information about the ecological, sociocultural, or economic values of ES to 7 

help implement various strategies for sustainable land, water, or urban management (Dick et al., 8 

2018, Harrison et al., 2018). Many decision-support tools have emerged to fill the gap between 9 

theoretical concepts, the biophysical assessment of ES, and their practical application for decision-10 

making. Bagstad and al. (2013) found and compared seventeen such decision-support tools, and the 11 

list has steadily grown since (Grêt-Regamey and al. 2017).  12 

The accuracy of most available tools and models, defined as the degree to which they reproduce 13 

the real distribution and abundance of an ES (Schröter et al., 2015), remains an object of debate at 14 

this juncture. This is particularly the case when, beyond recognizing and increasing awareness of ES, 15 

one attempts to capture their value as requested for priority setting (e.g., identifying areas critical for 16 

ES provision) or instrument design (e.g., development of payment schemes for ES). One problematic 17 

aspect of current tools is that due to the strong ecosystem bias that characterizes the bulk of the 18 

research on ES, the soil component is often completely ignored (Baveye et al., 2016, 2018). For 19 

example, in the sizeable body of literature involving capacity matrices linking land use/land cover 20 

types to ES bundles, soil heterogeneity inside land use/land cover patches is essentially overlooked 21 

(Burkhard et al., 2009; Jacobs et al., 2015; Roche and Campagne, 2019). In the best cases, soils are 22 

only poorly represented (Dominati et al., 2016) using surface- or mean key physical, chemical or 23 

biological properties as simplified proxies for soil ES (Rutgers et al., 2012; van Wijnen et al., 2012; 24 

Hewitt et al., 2015). Such strategies are reasonable for ES unrelated to soils (e.g., the service of 25 

pollination). However, this is not the case for the numerous ES that are strongly linked to soil 26 

processes and properties, as emphasized in several frameworks linking soil processes and properties, 27 

associated soil-supported ES, and in some cases potential indicators for these services (Robinson et 28 

al., 2009; Dominati et al., 2010; Adhikhari and Hartemink 2016; Buneman et al., 2018; Vogel et al., 29 

2019; Fossey et al., 2020). Indeed, different soils under the same land use sometimes evince 30 

considerable differences in their ES levels and their economic values (Hewitt et al., 2015; Dominati et 31 

al., 2016). Integration of a more realistic representation of soil diversity, complexity (e.g., depth-32 

distributions of soil properties), and soil spatial variation in soil-supported ES assessment thus 33 

appears necessary to reduce the uncertainty attached to traditional assessment methods, and 34 

ultimately to determine how land-use and land-management planning may be used to improve the 35 
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ES delivery according to stakeholders and policy-makers preferences (Schulp et al., 2012; Lavorel at 36 

al., 2017; Muller et al., 2020). 37 

In this context, and if one considers that, to be most efficient, decision-support tools should embody 38 

modelling in one way or another, the existence of a wide array of models of soil processes should be 39 

viewed as encouraging. Among the large diversity of models that could be used to assess soil-40 

supported ES, some are based on empirical relationships that are either statistically established or 41 

derived from expert knowledge (Debeljak et al., 2019). The Storie Index (Storie, 1978) or the 42 

Universal Soil Loss Equation (Wischmeier and Smith, 1978) are widely used examples that quantify 43 

the provision of biomass or the regulation of soil erosion, respectively. These types of empirical 44 

relationships generally assess the capacity of a soil to deliver a specific service more or less 45 

independently of any explicit consideration of land use and land management (Greiner at al., 2017). 46 

The possibility to use empirical modelling for services strongly linked to biotic processes such as the 47 

climate or water quality regulation services is however unclear. Estimation of biogeochemical and 48 

biotic processes from classical soil data still remains an unresolved challenge (Van Looy et al., 2017).  49 

In contrast with empirical models, process-based models involve mechanistic representations of soil 50 

processes. They have recently received considerable attention (Dominati el al., 2016; Francesconi et 51 

al., 2016; Demestihas et al., 2018; Ellili-Bargaoui et al., 2021). They include explicitly site-specific 52 

environmental factors such as climate, as well as temporal or spatial variations in land-use and land-53 

management (Greiner et al., 2017). They are often viewed as potentially more accurate than 54 

empirical models and applicable to a range of soil-supported services for which empirical models or 55 

the possibility of direct measurements may be lacking at this point (Vereecken et al., 2016). For 56 

example, Dominati et al. (2014 and 2016) used a crop model to quantify food provision, flood 57 

mitigation, nutrient filtering, organic carbon (OC) storage and greenhouse gas regulation under dairy 58 

grazed pastures. The benefits of process-based modelling are however still uncertain as the potential 59 

gains in accuracy linked to a more realistic representation of soil functioning are limited by the 60 

availability, the spatial and temporal variability, or the reliability of the underlying data, and a 61 

correspondingly limited capacity for independent application by most stakeholders (Bagstad et al., 62 

2013). 63 

At this stage, the different modelling approaches, either empirical or process-based, that are 64 

available to estimate the soil-supported ES in natural, forested, or cultivated areas have yet to be 65 

compared with each other, and especially, to actual measurements of services (Dominati et al., 2016, 66 

Harrison et al., 2018; Zulian et al., 2018). In agreement with the general ES research, the lack of 67 

direct measurements of soil-supported services is a critical issue (Remme et al., 2014; Baveye et al., 68 

2016, Baveye 2017). Fortunately, progress is being achieved in this respect. A first set of field 69 

measurements of soil-supported ES was obtained recently by Chalhoub et al. (2020), and the 70 
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resulting data can now be used to test the accuracy of empirical or process-based models. These 71 

actual measurements are still limited in scope, since they concern only a small subset of all services, 72 

but one might argue that they are an encouraging first step. 73 

In this general context, the overall objective of the research described here is to evaluate our current 74 

ability to assess and map two provisioning and two regulating soil-supported ES across a landscape 75 

made of imbricated natural, forested, and cultivated areas. The former two ES relate to biomass and 76 

water provision, and the latter two encompass regulation in terms of water quality and the global 77 

climate. ES assessment is carried out under the constraints that it i) integrate a realistic 78 

representation of soils, considered here as a mandatory step for an accurate assessment and 79 

mapping of, at least, the soil-supported ES, and ii) is based only on easily-available data and models 80 

in order to be routinely used in ES-based decision making. More specifically, two approaches of 81 

increasing complexity (empirical versus process-based modelling) are adapted to the context of the 82 

Saclay plateau (France) using the best available data and models. These two approaches are 83 

compared for their ability i) to be close to the actual field measurements obtained by Chalhoub et al., 84 

(2020) in a cultivated soil (absolute accuracy), and; ii) to translate strong gradients of inherent and 85 

manageable soil properties into differences in levels of the soil-supported ES (relative accuracy). This 86 

research is then in line with ongoing efforts to better assess the influence of model choices on ES 87 

estimates (Bagstad et al., 2018) 88 

 89 

II. Material and methods  90 

II.1. Study area and soil data 91 

II.1.1. The Saclay plateau 92 

The Saclay plateau, of an area of 10,406 ha, is located in the Ile-de-France region, southwest of Paris 93 

(Figure 1). Its geological stratification is typical of the Parisian Basin (Jamagne, 2011) with loess 94 

deposits several meters deep overlaying a claybed rich in millstone called “argiles à Meulières”, a 95 

sand deposit called “sables de Fontainebleau” of several tens of meters thick, and, finally, marl 96 

deposits (Megnien, 1989). Since its artificial drainage through a complex network of swales at the 97 

end of the 17th century, this previously marshy area evolved into a fertile plateau characterized by 98 

dynamic agricultural activities (Tedesco et al., 2017). Forests, contrastingly, dominate the 99 

surrounding slopes and the valleys when not urbanized (Figure 1). 100 

 101 

II.1.2. Soil data 102 
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The soil map presented in Figure 1 originates from the regional geographic soil database at 103 

1 :  250 000 scale (Roque, 2004), called “Référentiels Régionaux Pédologiques” (RRP), which is the 104 

most precise source of soil information in almost the whole continental France. In the RRP, soils are 105 

mapped as a set of Soil Map Units (SMU), each one including one or several Soil Type Units (STU) that 106 

are not spatially delineated but are described, quantified area-wise, and characterized in a soil 107 

database. We took advantage of a soil-sampling program carried out on the Saclay plateau, to 108 

describe and characterise the most abundant soil type in each SMU according to the specifications of 109 

the RRP (INRA Infosol, 2005). Tables 1 and 2 provide a summary of, respectively, the main descriptive 110 

and analytical soil properties considered in the assessment of soil-supported ES. Methods of soil 111 

analysis are described in the supplementary material S1. 112 

On nearly level top positions of the Saclay plateau, silty loam to silty clay loam Stagnic Luvisols 113 

developed in thick loess deposits, with calcareous loess encountered between 100 and 120 cm depth 114 

(SMU 29, Figure 1 and Table 1). When the thickness of the loess deposit decreases progressively 115 

toward the borders of the Saclay plateau, thinner Stagnic Luvisols directly lie on the more or less 116 

redistributed “argiles à Meulières” clay layer (SMU 30, Figure 1 and Table 1). Along the edge of the 117 

Saclay plateau (SMU 31, Figure 1 and Table 1), Planosols developed in the superposition of a stony 118 

and silty loamy slope deposit of 50 cm depth over the “argiles à Meulières” clay layer. These 119 

Planosols on clay were formerly cultivated but most of them are currently under fallow. On the 120 

forested medium slopes, Planosols are formed by sandy loam deposits several tens of centimetres 121 

deep, rich in “sables de Fontainebleau” and in coarse fragments, overlying silty loamy deposits (SMU 122 

33, Figure 1 and Table 1). Finally, Gleysols are encountered in the valleys (SMU 102, Figure 1 and 123 

Table 1). 124 

Overall, the five studied soils show very contrasted particle-size distribution, organic carbon (OC) 125 

content, or cation exchange capacity (Table 2). These properties are sometimes considered as key 126 

determinants of the levels of several soil-supported ES (Adhikari and Hartemink, 2016) and hence are 127 

frequently used as proxies to assess, for example, the regulation of climate (Eigenbrod et al., 2011; 128 

Clec’h et al., 2016) or the regulation of nutrients and contaminants (Calzolari et al., 2016). A high 129 

variability in the levels of such soil-supported services may thus be expected over the Saclay plateau, 130 

which makes it very suitable to assess the ability of empirical and process-based modelling to 131 

translate variability in soil properties into differences in the levels of soil-supported ES.  132 

 133 

II.2. Quantification of soil-supported ES  134 

II.2.1. Land use and management homogenization  135 
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No single empirical or process-based model encompassing a realistic representation of soils 136 

processes and properties could be identified to model soil-supported ES across the Saclay plateau. 137 

Models developed in recent years to quantify, map, and is some cases monetarily valuate ES are 138 

generally based on lookup tables linking land cover and/or land uses to mean service values (Bagstad 139 

et al., 2013; Sharps et al., 2017). They tend to be of little use to translate gradients in soil properties 140 

into differences in levels of soil-supported ES. Dynamic global vegetation models are designed to 141 

model primary production or water, carbon, and nitrogen cycles across land uses and may thus 142 

appear as interesting candidates. These models, however, rely on very simplified and outdated 143 

representations of soils properties and processes (Vereecken et al., 2016; Dai et al., 2019; Pontgraz 144 

et al., 2019). Most of the models involving a more realistic representation of soil processes and 145 

properties are either focused on the modelling of crop growth in cultivated soils (e.g., STICS; Brisson 146 

et al., 2003) or on the modelling of specific soil processes like soil water (e.g. HYDRUS-1D; Simunek et 147 

al., 2008) or soil carbon dynamic (e.g. ROTH-C; Coleman et al., 1997). Whereas crop models may be 148 

useful to assess multiple ES in cultivated soils (Dominati et al., 2014, 2016; Demestihas et al., 2018; 149 

Ellili-Bargaoui et al., 2021), they cannot deal with natural or forest vegetation. Contrastingly, specific 150 

models are used over various land uses but for just a few ES (Francesconi et al., 2016). Assessing and 151 

mapping soil-supported ES over the Saclay plateau would thus require the use of numerous models, 152 

when such models even exist, which is not systematically the case for forested soils. 153 

To limit the risk of inconsistencies due to the use of different models over contrasted land uses, soil-154 

supported ES were assessed in each soil under a similar succession of winter rapeseed and soft 155 

winter wheat including those found in the natural and forested areas (SMU 33, 102, and to a lower 156 

extent 31). The assessment and the mapping of ES across a complex landscape consequently turn 157 

into a more common land evaluation exercise, a topic that has been dealt with in detail in the 158 

literature (Dominati et al. 2016). Large numbers of tools and models exist in that context, specifically 159 

developed for cultivated soils.  160 

The succession of soft winter wheat following winter rapeseed was chosen because winter wheat is 161 

the main crop on the Saclay Plateau (Tedesco et al., 2017) and more largely in France 162 

(FranceAgriMer, 2012), and because rapeseed is a very common previous crop for winter wheat 163 

(FranceAgriMer, 2012). The winter wheat and rapeseed crop management is described in Table 3. 164 

The total N inputs, supposed to be exclusively in mineral form, were assumed to be, respectively, 200 165 

kgN ha-1 and 168 kgN ha-1 for winter rapeseed and soft winter wheat. The direct measurements of 166 

Chalhoub et al., (2020) were performed on the 2017-2018 winter wheat crop cycle with a similar 167 

crop management but slightly higher N inputs (251.3 kgN ha-1).  168 

 169 
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II.2.2. Selection of services and metrics 170 

The selection of services was limited to soil-supported ES that are relevant on the Saclay plateau and 171 

for which both empirical and process-based models, able to quantify the chosen indicators as a 172 

function of basic soil properties, are available. As a result of these limitations, four services were 173 

selected (Table 3): 1) “plant biomass provisioning”, 2) “water provisioning”, 3) “water quality 174 

regulation”, and finally 4) “climate regulation”. Despite being limited, the selection of ES that was 175 

made still manifests appreciable diversity (Greiner et al., 2017; Grêt-Regamey et al., 2017) since it 176 

includes provisioning and regulating services as well as biotic (biomass provisioning), abiotic (water 177 

provisioning) or mixed (water quality and climate regulation) services.  178 

Given the simplified and homogenized land use we consider, the provision of plant biomass is 179 

defined as the ecological contribution to the growth of cultivated crops that can be harvested and 180 

used for food, non-nutritional, or energy production (Haines-Young and Potschin, 2018). It is 181 

classically quantified through annual yields (Remme et al., 2014; Ungaro et al., 2014; Crouzat et al., 182 

2015; Rinot et al., 2019). Crop yield however clearly involves various capital and labor inputs so that 183 

its use as an indicator is controversial (Boyd and Banzhaf, 2007; Remme et al., 2014). Annual yields 184 

were nevertheless selected as the metric for the provision of plant biomass for a number of reasons. 185 

First, it is practically difficult (Haines-Young and Potschin, 2018), if not impossible (Barot et al., 2017; 186 

Costanza et al., 2017), to disaggregate the contributions that the ecological and economic production 187 

systems make to cultivated biomass provisioning ES. Furthermore, when implicitly in empirical-, or 188 

explicitly in process-based modelling, agricultural practices are kept constant, it seems reasonable to 189 

consider that the variability of yields among soils may be used as a measure of the variability of the 190 

soil contribution to plant biomass provision. Finally, the development of empirical and process-based 191 

models dedicated to the quantification of the soil contribution to yields has a long history in soil 192 

science. 193 

Water provisioning was defined following Therond et al. (2017) and Haines-Young and Potschin 194 

(2018) as the water that is routed to surface water or groundwater bodies through lateral surface 195 

and subsurface flows or through deep infiltration. This corresponds to the water that is not directly 196 

transpired by the vegetation but remains available for drinking or non-drinking purposes, even if it 197 

may be at some distant location and at a much later time. The water yield defined as the difference 198 

between precipitation and evapotranspiration is a classical indicator for this service (Sharps et al., et 199 

al., 2017; Therond et al., 2017). However, this indicator does not identify the fractions of the water 200 

that end up in the groundwater or in surface waters. Here, we opted to rely on the quantity of water 201 

that infiltrates through the soil until a depth of one meter and the amount of runoff to distinguish 202 

the soil contribution to services specifically provided by groundwater and to services specifically 203 
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provided by surface water (O’Farrell et al., 2010). As almost no runoff was observed over the Saclay 204 

plateau, only the infiltration until a depth of one meter was computed and used as indicator for 205 

water provisioning (Table 4). It is however likely that only a small part of the amount of water 206 

infiltrated at one meter depth participated to the groundwater recharge for various reasons 207 

including redirections of the water flows above the “argiles à Meulières” layer or interception of the 208 

water flow by artificial subsurface drainage networks (Chalhoub et al., 2019). 209 

The regulation of water quality was defined as the ability of soils to filtrate or degrade contaminants 210 

and nutrients (Haines-Young and Potschin, 2018). The application of synthetic fertilizers on 211 

agricultural fields results in large inputs of nitrogen (N), some of which undoubtedly ending up in the 212 

groundwater (Tedesco et al., 2017). It makes sense to concentrate on the water quality aspects 213 

linked to N. In that context, the regulation of water quality was quantified by the amount of non-214 

leached N (Table 4), i.e., the N used by crops, stored in the soil or volatilized (Dominati et al., 2014; 215 

Therond et al., 2017).  216 

The contribution of soils to the climate regulation was defined by the reduction of greenhouse gas 217 

concentrations in the atmosphere (Haines-Young and Potschin, 2018) as a result of OC storage in soil, 218 

as well as the reduction of emissions of N2O and CH4 from soils. It is quantified by OC storage in soils 219 

(0-30 cm depth) according to Dominati et al. (2014) or Therond et al. (2017) rather than by OC stocks 220 

as usually done, e.g., by Ungaro et al. (2010), in order to be closer to the service definition. 221 

Attenuation of N2O and CH4 emissions have not been integrated in a global balance of greenhouse 222 

gas emissions due to a lack of appropriate empirical or process-based models to quantify it. 223 

 224 

II.2.3. Quantification by empirical modelling 225 

Empirical or statistical models tend to be strongly biased toward the pedoclimatic context for which 226 

they were developed or calibrated, and their efficiency rapidly drops outside of this particular 227 

context (Van Looy et al., 2017). This is particularly critical for models developed for the traditional 228 

assessment of soil capability that postulate rather than explicitly integrate climatic or land use and 229 

management conditions. To increase the assessment accuracy, the choice of models is then limited 230 

to the ones that have been developed, calibrated and, when possible, successfully tested for rainfed 231 

winter wheat cropping with high levels of management in temperate zones and for pedological 232 

conditions as close as possible to those observed on the Saclay Plateau. 233 

 234 

II.2.3.1. Provision of plant biomass 235 

The Muencheberg Soil Quality Rating (M-SQR) expert-based tool was selected (Table 4) to assess the 236 

soil’s suitability to grow wheat using soil descriptive and analytical properties (Mueller et al., 2007). 237 

This tool was tested favorably in various pedoclimatic contexts and for many grain crops (Mueller et 238 
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al., 2010, 2013) including rainfed winter wheat in temperate zones (Abdollahi et al., 2015). It 239 

generates scores between 1 and 100 from the values of eight basic indicators, namely soil substrate, 240 

depth of the A-horizon, topsoil structure, subsoil compaction, rooting depth, profile available water, 241 

wetness and ponding, and finally slope and relief. Single basic indicators are evaluated using 242 

matching tables, empirically weighted, and summed to obtain the M-SQR basic score. Although it is 243 

possible to add hazard indicators, only the basic indicators were used in this study.  244 

 245 

II.2.3.2. Provision of water 246 

Only one model, called SENSIB in Table 4 according to Aveline et al. (2009), developed for soils of the 247 

great Paris Basin could be found (Cam et al., 1996). Similarly to the M-SQR, SENSIB assesses the soil 248 

sensitivity to infiltration by scoring and summing six criteria (i.e., topsoil texture, presence of an 249 

impermeable layer, soil depth, profile available water, soil profile permeability, and velocity of water 250 

flow), through lookup tables based on nine descriptive or analytical soil properties. This model has 251 

not been formally assessed and is not widely known. Cam et al. (1996) however tested it on various 252 

soil types and demonstrated that the indicator provides coherent distinctions between soils with low, 253 

moderate, and high capacity for deep infiltration. One weakness of this expert-based scoring is that it 254 

relies on soil properties alone but does not take into account climatic or vegetation characteristics 255 

(Aveline et al., 2009). This does not particularly matter in this study as empirical modelling is carried 256 

out under climatic conditions over the Saclay plateau that are both spatially homogeneous and 257 

roughly similar to those considered in the development of Cam et al.’s (1996) model. This model 258 

however assesses the soil inherent capability to contribute to service provision rather than the soil 259 

performance under a specific use. 260 

 261 

II.2.3.3. Regulation of water quality 262 

The regulation of water quality is assessed using the composite expert-based model MERLIN v2 263 

(Aimon-Marie et al., 2001) developed to evaluate the risk of nitrate leaching, given that no empirical 264 

model able to assess the proportion of the applied and produced N retained in the soil or the soil-265 

plant system could be found. MERLIN has been chosen because it was developed for an area of the 266 

great Paris Basin similar to the Saclay site from a pedological point of view. MERLIN is easy to use, 267 

and its suitability has been successfully tested over a wide range of soil types and crops, including 268 

155 cases of wheat cultivation around Paris (Aveline et al., 2009). MERLIN relies on the aggregation 269 

of three sub-indicators that evaluate respectively the soil capacity for deep infiltration according to 270 

Cam et al. (1996), the N balance between plant requirements and N inputs, and finally the N uptake 271 

capacity of the potential soil cover before the beginning of the drainage period (Aimon-Marie et al., 272 
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2001). As MERLIN was designed to assess the risk of leaching rather than the level of non-leached N, 273 

the three classes, namely low, intermediate, and high risk of leaching were inverted to obtain three 274 

classes of non-leached N: sufficient (value 3), insufficient (value 2), and highly insufficient (value 1). 275 

Whereas MERLIN takes land use, land management, and level of inputs explicitly into account, this is 276 

not the case for climatic characteristics. 277 

 278 

II.2.3.4. Regulation of climate 279 

The capacity of soils to store OC was assessed through the “carbon saturation” approach (Table 4), 280 

which estimates the OC pool that is associated with the fine soil fraction and can consequently be 281 

protected for a sufficiently long residence time to act positively on climate mitigation (Hassink, 282 

1997). Although criticized (e.g., Barré et al., 2017), this approach was preferred to data-driven 283 

approaches because it proved successful when applied to French agricultural topsoils (Angers et al., 284 

2011) and because the latter require a large and generally unavailable amount of measured OC 285 

stocks (Calzolari et al., 2016; Barré et al., 2017) . The OC saturation, i.e., the inherent maximum stock 286 

of stable OC, was calculated according to the following equation (Hassink, 1997): 287 

 Csat = 4.09 + 0.37(Clay + fSilt)    (1) 288 

where Csat is the C saturation expressed in gC kg-1 ; Clay and fSilt are respectively the clay (0–2 μm 289 

particles) and the fine silt (2–20 μm particles) content in g 100g-1.  290 

 291 

II.2.4. Quantification by process-based modelling 292 

Yields, water flows at one meter-depth, non-leached N, and finally OC storage (0-30cm) were 293 

modelled using the CERES-EGC crop model (Gabrielle et al., 2006) This model was chosen because it 294 

has been tested favorably for various pedoclimatic and agricultural conditions, as well as extensively 295 

used for crop modelling in temperate climate and for soils similar to those of the Saclay plateau. 296 

CERES-EGC runs on a daily time step and is composed of three main modules. A physical module 297 

simulates the transfer of heat, water, and solutes in soils as well as plant water uptake and 298 

evapotranspiration in relation with climatic conditions. Water infiltrates down the soil profile 299 

following a tipping-bucket approach and may be redistributed upwards after evapotranspiration has 300 

dried some soil layers. The soil OC turnover is modelled in the plough layer using the sub-model 301 

NCSOIL that comprises six soil OC pools with specific turnover rates: pool 0, the “zymogenous 302 

biomass”; pool I, the “microbial biomass”; pool II, the “mineralisable soil OC”; pool III, “highly-303 

humified OC”; pool “Exogenous OC,” and pool plant residues (Noirot-Cosson, 2016). Finally, crop 304 

growth and development are modelled through net photosynthesis. A more precise description of 305 
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CERES-EGC and of NCSOIL may be found in Jones et al., (1986), Gabrielle et al. (1995, 2006), and 306 

Noirot-Cosson et al. (2016). 307 

Model inputs include soil properties and external drivers such as climate and management practices. 308 

Soils are described over a one meter-depth as a superposition of layers of roughly ten centimeters 309 

following the soil horizonation (Table 1). Each of the soil layers is characterized by its particle-size 310 

distribution, bulk density, pH, C and total N contents, as well as C/N ratios (Table 2), from which 311 

water retention and hydraulic conductivity characteristics are computed by means of pedo-transfer 312 

functions (Supplementary Material S2). Roots are distributed throughout the profile depth 313 

proportionally to root density (Table 1). Finally, CERES-EGC was a priori parametrized according to 314 

Gabrielle et al. (1995). 315 

In order to test CERES-EGC, the four studied ecosystem services were first computed in a thick Luvisol 316 

over loess deposit (SMU 29) for the winter wheat crop cycle 2017-2018 and compared with the direct 317 

measurements of Chalhoub et al. (2020) performed in a similar, artificially drained soil, for the same 318 

crop and the same crop cycle 2017-2018 and for a very similar crop management. The water 319 

artificially redirected to nearby streams in this particular situation was assumed to be a good 320 

estimate for the amount of water infiltrated at one meter-depth in undrained soils as the subsurface 321 

drains were implanted at one meter-depth in the plot studied by Chalhoub et al. (2020). CERES-EGC 322 

was subsequently run for twenty consecutive years (1998-2018) using climate data from a nearby 323 

weather station (1 km away from the experimental plot). Quantitative yearly outputs computed from 324 

daily soil water and nutrient budget were averaged on the ten modelled winter wheat crop cycles 325 

and used to quantify the services of plant biomass provisioning, water provisioning, and water 326 

quality regulation. OC fluxes were cumulated over the twenty years of modelling to quantify the 327 

service of climate regulation (Table 4). 328 

 329 

II.3. Spatial co-occurrence of soil-supported ES 330 

The spatial dimension of soil-supported ES delivery resulting from empirical modelling on the one 331 

hand and from process-based modelling on the other hand is analyzed through a static spatial co-332 

occurrence approach (Obiang Ndong et al., 2020). Such an approach quantifies the spatial overlap of 333 

multiple ES rather than the interactions between services in the sense that the drivers and 334 

mechanisms underlying the interactions are not explicitly examined (Obiang Ndong et al., 2020). It is 335 

however suitable for identifying areas with specific ES-related issues (e.g., the so-called hotspots and 336 

coldspots), which is a common and important step in dealing with ES bundles (Mouchet et al., 2014; 337 

Obiang Ndong, 2020). The levels of each soil-supported service obtained respectively from empirical 338 

and process-based modelling were first rescaled between 0 and 1. To do that, the minimum value is 339 

subtracted from each level, and the result is then divided by the difference between the maximum 340 
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and the minimum values. The minima and maxima used to rescale the soil-supported services levels 341 

(Table 5) were either the lowest and the highest scores of each specific tool (MSQR, SENSIB, MERLIN) 342 

or the lowest and the highest levels observed in France. The scores for each service were eventually 343 

summed to obtain a final score between 0 and 4. Such strategy implicitly gives the same weight to 344 

the different services. 345 

 346 

III. Results  347 

III.1. Provisioning services 348 

III.1.1. Plant biomass 349 

According to the empirical model, the Luvisol on loess (SMU 29) has the highest potential yield 350 

(Figure 2). This yield, classified as “good”, but not “very good”, according to the M-SQR (Mueller et 351 

al., 2007) is coherent with the harvested yield of 8.5 t ha-1 in 2018 (Table 6) considering that wheat 352 

yields frequently exceed 10 t ha-1 in France (Table 5). The potential yield of this soil is indeed limited 353 

by subsoil compaction, the low concentration of OC in the topsoil, and the periodic hydromorphy 354 

below 60 cm (Tables 1 and 2). The potential yield is minimal in the Planosol on clay (SMU 31) and in 355 

the Gleysol (SMU 102). In these two soils, potential yields are constrained by a strong hydromorphy 356 

from the surface downward, by a strong textural gradient above 80 cm (deducted by the M-SQR) and 357 

by the clayey texture of subsoil horizons limiting the rooting depth and the available water capacity 358 

(Table 1). Finally, the high stoniness of the surface horizons (Table 1) further limits the potential yield 359 

in the Planosol on clay. The Luvisol on clay (SMU 30) and the Planosol (SMU 33) show intermediate 360 

potential yields (Figure 2) because of periodic hydromorphy occurring below 30 cm depth (Table 1). 361 

As secondary reasons, the Luvisol on clay is sharped-edged and low in OC, and the Planosol has a 362 

sandy surface horizon. On flat plateau positions, the M-SQR scores (Figure 2, Table 6) decrease from 363 

the center (SMU 29) to the edge of the plateau as the thickness of the soil layers developed from 364 

loess material decreases (SMU 30) and finally vanishes (SMU 31).  365 

The level of plant biomass provision modelled with CERES-EGC shows a pattern that is very similar to 366 

that estimated by empirical modelling (Figure 2). CERES-EGC yields are relatively high in the Luvisol 367 

on loess and almost identical to the measured ones for the year 2018 (Figure 2). Yields decrease in 368 

the Luvisol on clay and further in the Planosol on clay as the clayey layer approaches the surface and 369 

limits the rooting depth (Table 1). The Planosol exhibits yields similar to those observed in for the 370 

Luvisol on loess, despite the sandy texture of its surface horizons and the periodic hydromorphy 371 

observed above 50 cm depth. Finally, very low yields are modelled with CERES-EGC in the Gleysol. 372 

When rescaled from 0 to 1, the yields tend to be lower for the process-based modelling than for the 373 

empirical modelling except in the two Planosols (SMU 31 and 33) where similar yields are observed 374 
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(Figure 2). Yields in the two Planosols are potentially underestimated by the empirical modelling, 375 

overestimated by the process-based modelling, or both.  376 

 377 

III.1.2. Blue water 378 

The water layer infiltrated at one meter depth, estimated with the empirical model, is arbitrarily high 379 

(value 85 in Table 6) in the Gleysol, due to the proximity of the associated alluvial groundwater in the 380 

valley (Figure 3). The infiltration is also high for the Planosol (SMU 33), characterized by its low 381 

retention due to a mostly sandy texture (Table 2). The slight decrease of infiltration from the 382 

Planosol to the Luvisol on loess is consistent with higher water retention as a result of a silty to silty-383 

clay texture. Finally, the low amounts of infiltrated water in the Luvisol on clay and the Planosol on 384 

clay are coherent with the presence of clayey deep soil horizons (Table 2), which act like a hydraulic 385 

barrier and foster lateral runoffs to the detriment of deep infiltration. The depth at which this barrier 386 

appears (80 cm in the Luvisol on clay and 60 cm in the Planosol on clay, Table 2) seems to have no 387 

effect on the amount of infiltrated water (Figure 3). 388 

The water layer modeled with the process-based model CERES-EGC in 2018 is similar to the 389 

measured one (Figure 3). Process-based modeling estimates that a similar quantity of water drains 390 

from all of the studied soils (Figure 3), despite the hydraulic barrier in the Luvisol on clay and in the 391 

Planosol on clay (but not in other soils), or despite very contrasted soil textures, either sandy in the 392 

Planosol, silty in the Luvisol on loess or clayey in the Gleysol. 393 

When rescaled from 0 to 1, the empirical model output gives higher levels of water provisioning than 394 

does the process-based modelling (Figure 3). The differences are particularly pronounced in the 395 

Gleysol, in the Planosol and in the Luvisol on loess.  396 

 397 

III.2. Regulating services 398 

III.2.1. Water quality 399 

According to the empirical model MERLIN, all soils offer a highly insufficient level of non-leached N 400 

(value 1 in Table 6), i.e., a null value when rescaled from 0 to 1 (Figure 4). Indeed, significant amounts 401 

of N remain available for leaching as a result of i) N inputs exceeding real crop requirements, and ii) 402 

the absence of intermediate crops that are likely to trap mineralized N during the Summer or the 403 

beginning of the Fall.  404 

In good agreement with empirical modelling, process-based modelling also shows that N retention is 405 

insufficient to entirely avoid N leaching from all the studied soils (Table 6, Figure 4). However, with 406 

non-leached N, ranging from a minimum of 80% in the Planosol to more than 90% of total N inputs in 407 

the four other soils (Table 6), the process-based modelling gives a relatively high level of water 408 

quality regulation for all soils when rescaled from 0 to 1 (Figure 4). In the Luvisol on loess, the level of 409 
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the modelled non-leached N is very close to the measured one (Figure 4). With reference to the 410 

Luvisol on loess, the service of water quality regulation is only slightly higher in the Luvisol on clay, in 411 

the Planosol on clay, and in the Gleysol but it drops in the Planosol, where this service is minimal. 412 

This last soil shows a similar amount of infiltrating water but also the highest soil OC content (Table 413 

2). Mineralization then produces higher amounts of N available for leaching than in the Luvisol on 414 

loess, relatively poor in OC.  415 

 416 

III.2.2. Global Climate 417 

When quantified with the empirical model of Hassink et al. (1997), the service of global climate 418 

regulation is relatively high in the clayey topsoil of the Gleysol, intermediate in the silt-loamy topsoils 419 

of the Luvisol on loess, the Luvisol on clay and the Planosol on clay and finally low in the sandy 420 

topsoil of the Planosol (Figure 5).  421 

All of the five studied soils experience significant OC storage as a result of 20 years of a simplified 422 

rapeseed/wheat crop rotation without any other organic amendments than rapeseed residue returns 423 

(Figure 5, Table 6). The modelled OC storage is maximum in the currently (SMU 29 and 30) and 424 

formerly (SMU 31) cultivated soils showing topsoil OC contents lower than one percent (Table 2). The 425 

mean annual OC storage slightly decreases in the Gleysol and further decreases in the Planosol: the 426 

two forested soils (Table 1) with topsoil OC contents reaching respectively 2 and 5 percent (Table 2). 427 

When rescaled from 0 to 1, the levels of services quantified with the process-based model are higher 428 

than those quantified with the empirical model except in the Gleysol, in which the level of service is 429 

independent of the model used.  430 

 431 

III.3. Spatial co-occurrence of soil-supported services 432 

The soils of the Saclay plateau show a joint supply of provisioning and regulating services above the 433 

mean, except in the Planosol (Figure 6b), when the assessment is performed with the process-based 434 

model. The same soils however exhibit a joint soil services supply that is below average when 435 

estimated through empirical modelling (Figure 6a). Under the simplified crop rotation, the studied 436 

soils may thus be considered as relatively good to relatively poor services providers depending on the 437 

methodology used. The higher scores obtained with the process-based modelling appear to be 438 

related to the very high scores obtained for regulating services (Figures 4 and 5). 439 

Soil ranking by ES level varies whether empirical or process-based modelling is performed. Indeed, 440 

the joint supply of ES decreases in the order Gleysol (SMU 102), Luvisol on loess (SMU 29), Luvisol on 441 

clay (SMU 30), Planosol (SMU 33) and finally Planosol on clay (SMU 31) according to the empirical 442 

modelling At the same time, it decreases in the order Luvisol on loess (SMU 29), Luvisol on clay (SMU 443 

30) , Planosol on clay (SMU 31), Gleysol (SMU 102) and finally Planosol (SMU 33) according to the 444 
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process-based modelling. The best supplier of services under crop is the Luvisol on loess according to 445 

empirical modelling but the Gleysol according to process-based modelling. Furthermore, the Luvisol 446 

on clay and the Planosol on clay are respectively ranked among the first and the last ES suppliers, 447 

respectively by the process-based and the empirical modellings. 448 

 449 

IV. Discussion 450 

IV.1. Performance of empirical models  451 

The M-SQR empirical model successfully distinguished currently forested soils like the Gleysol and 452 

the Planosol with yield potentials too low to have been (recently) cultivated, or soils that have been 453 

abandoned in the past years like the Planosol on clay, from the two currently cultivated Luvisols 454 

(SMU 29 and 30). The empirical model appears moreover sufficiently sensitive to quantify small 455 

changes in yield potential between various cultivated soils. An example is the decrease in yield 456 

potential from the Luvisol on loess to the Luvisol on clay resulting from a decreasing rooting depth 457 

and an increasing intensity of hydromorphy. Finally, when calibrated with reference to yields 458 

commonly observed in cultivated soils in France (Table 5), the yield estimated by the M-SQR 459 

empirical model is satisfactorily close to the measured one (Figure 2). Since the M-SQR is able to 460 

assess potential yields not only relatively among various soils but also absolutely, it appears to be an 461 

efficient tool to quantify the biomass provisioning ES, as already suggested by Mueller et al. (2010, 462 

2013). Its efficiency may be explained in two different ways. First, the development of an empirical 463 

model dedicated to the assessment of the soil suitability to yield main cereal crops under conditions 464 

of high-level management from inherent soil properties relies on a rich and long history dating back 465 

at least to the 30s with the development of the Storie Index (Storie, 1978). Moreover, in conditions 466 

of high-level management without irrigation, potential yields are chiefly influenced by the soil 467 

available water capacity, which may be reasonably well assessed from classically available inherent 468 

physicochemical soil properties (Van Looy et al., 2017). 469 

Regarding water provisioning, the empirical assessment is consistent with what could be 470 

expected from the soil pedological class and characteristics. It limits deep infiltration in case of i) high 471 

water retention in deep fine-textured soils like the silt-loam to silty-clay loam Luvisol on loess or ii) 472 

lateral water flows promoted by the more or less impermeable clay bed observed in the Luvisol on 473 

clay and in the Planosol on clay, as typically described in Planosols (IUSS Working Group WRB, 2015). 474 

The empirical model considers implicitly that at least one part of such lateral water flows is 475 

redistributed towards the valley bottoms where it infiltrates preferentially at the landscape level. 476 

This justifies the high level of water provisioning of the valley soils (here the Gleysol). In such 1D 477 

model, the amount of water redistributed at the landscape scale is however only arbitrary but not 478 

quantitatively based (Cam et al., 1996). These empirical assessments are moreover independent of 479 
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climate characteristics (Aveline et al., 2009). When used over the Paris basin, the empirical scores 480 

consequently range from no infiltration (value of 0) to infiltration of all the available water (value of 481 

100). The maximum amount of water available in the Luvisol on loess defined by the difference 482 

between precipitations (around 625 mm) and evapotranspiration (around 450 mm) was in the range 483 

of 200 mm for the crop cycle 2017-2018 (Chalhoub et al., 2020). Inversely, the measured and 484 

process-based modelled infiltration are rescaled in Figure 3 for a considerably larger range of climate 485 

and infiltration as observed in France with a maximum of 1,000 mm per year observed in sandy soils 486 

under mountainous climate (Table 5). Such discrepancy induces the systematic overestimation of the 487 

absolute level of water provisioning estimated empirically compared to the process-based modelling 488 

outcomes (Figure 3). Although the empirical scoring of water provisioning must not be interpreted 489 

absolutely due to some arbitrary scores and to its implicit climatic dependency, it might however be 490 

used for the relative comparison of soils under similar climatic conditions. 491 

Field measurements (Chalhoub et al., 2020) as well as the predictions of the empirical and process-492 

based models agreed on the fact that the level of water quality regulation was insufficient to 493 

completely avoid N leaching from all of the studied soils. This observation suggests that MERLIN is at 494 

least effective in identifying such situations, as demonstrated by Aveline et al. (2009). However, 495 

MERLIN does not quantify differences in the regulation of water quality among the five studied soils 496 

(Figure 4). The Luvisol on loess presents a higher yield potential so higher N consumption by crops 497 

than in the Gleysol (Figure 2). On the contrary, lower infiltration is observed in the Luvisol on loess 498 

than in the Gleysol (Figure 3). Consequently, for similar N inputs, the Luvisol on loess should logically 499 

offer a higher service, using N to grow crops and with a minimal N transport towards the 500 

groundwater, than the Gleysol. Since this tool has been created to assess the risk of nitrate leaching 501 

in order to protect water resources (Aveline et al., 2009), it seems logical that MERLIN is more 502 

sensitive to the excess of the capacity of the soil-plant system to regulate water quality, than to the 503 

magnitude of this excess. 504 

By construction, C saturation (Hassink, 1997) is proportional to the content in clay plus fine silt-505 

sized particles. As a result, soils with finer texture are supposed to show a higher contribution to 506 

global climate regulation (Figure 5). In a certain way, this agrees with measured OC stocks (data not 507 

shown) except in the Planosol, which has a higher OC stock than the two Luvisols (SMU 29 and 30) 508 

and the Planosol on clay. The topsoil OC contents (Table 2) in the silty-clay Luvisol on loess, Luvisol on 509 

clay and Planosol as well as in the clayey Gleysol, are lower than the saturation limit (Table 6), 510 

suggesting that these soils are far from saturation. Intensely cultivated soils such as the two Luvisols 511 

are indeed commonly unsaturated (Angers et al., 2011). By contrast, it is unlikely that OC content 512 

further increases in the Gleysol that is already forested and periodically waterlogged at the surface 513 

(Table 1). Carbon saturation is indeed rarely reached in fine-textured soils (Angers et al., 2011), 514 
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suggesting that OC saturation, and thus, the level of global climate regulation, are likely 515 

overestimated in such clayey soils. Finally, the OC content in the topsoil of the forested and sandy 516 

Planosol is considerably higher than the saturation limit (Tables 2 and 6). According to the estimation 517 

of the stable OC proposed by Angers et al. (2011), the Planosol is already oversaturated in carbon, as 518 

it is frequently observed for acid sandy soils (Angers et al., 2011). The Planosol is consequently more 519 

prone to carbon emissions than to additional carbon sequestration. Although OC saturation is very 520 

easy to use and seems helpful to rank various soils according to their inherent capability of climate 521 

regulation, it may hide considerable differences in current OC stocks and in additional soil OC 522 

sequestration potential as a result of contrasted land uses or agricultural practices among soils 523 

(Wiesmeier et al., 2014; Chen et al., 2018). The carbon saturation deficit, calculated as the difference 524 

between the intrinsic soil potential to stabilize OC and the actual stocks of OC in the fine soil fraction, 525 

should better reflect the legacy of land-uses and agricultural practices (Chen et al., 2018). 526 

Information about current OC stocks in the fine soil fractions is unfortunately poorly available at this 527 

stage (Chen et al., 2018). 528 

To conclude this section, only the contribution of soils to biomass provision and its variability among 529 

soils can be quantified absolutely using empirical modelling with a relatively reasonable level of 530 

confidence. The quantification of the provision of water and of the regulation of global climate is 531 

indeed only relative, which may nevertheless be sufficient to rank various soils according to potential 532 

service levels, as postulated by Greiner et al. (2017) for empirical modelling. Finally, the assessment 533 

of the contribution of soils to the regulation of the water quality is limited to the identification of 534 

soils with an “insufficient” level of service under cropping with relatively high levels of N inputs. 535 

 536 

IV.2. Performance of the process-based model  537 

The process-based model was able to quantify with a very good accuracy the provision of biomass 538 

and water, as well as the regulation of water quality (Figures 2, 3 and 4) in the cultivated, deep, freely 539 

drained, and silty Luvisol on loess, i.e., a soil similar to those for which CERES-EGC was developed and 540 

calibrated (Gabrielle et al., 1995). The OC storage (Figure 5) cannot be compared to experimental 541 

data as OC content was not measured in the field twenty years ago. The OC storage in intensely 542 

cultivated soils may be surprising considering the very low OC contents currently observed in the 543 

surface soil horizons of the two cultivated Luvisols (Table 2). It is however consistent with OC budgets 544 

driven by i) relatively high yields leading to high inputs of crop residues and notably of rapeseed 545 

residues that are not exported (Table 3) and by ii) low carbon emission as mineralization is 546 

proportional to the very low OC content observed in the Luvisol on loess. Although potentially far 547 

from the field truth, associated with a more complex and diverse crop rotation, it is likely that 548 

modelled OC storage is consistent with our oversimplified crop rotation (Noirot-Cosson et al., 2016). 549 
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The efficiency of CERES-EGC to quantify soil services in the Luvisol on loess is likely shared by the 550 

Luvisol on clay. The two Luvisols (SMU 29 and 30) are indeed morphologically and physico-chemically 551 

very similar (Tables 1 and 2), and show very closed contributions for the different soil services 552 

(Figures 2, 3, 4, 5).  553 

Yields in the Planosol on clay, in the Planosol, and in the Gleysol are mainly limited by 554 

waterlogging (Table 1). If process-based modelled yields are lower in the Planosol on clay and in the 555 

Gleysol than in the Luvisol on loess, the Planosol contrastingly shows similarly high yields (Figure 2). 556 

The Planosol on clay and the Gleysol indeed suffer from a poor water available capacity due to both 557 

shallow rooting depth and to clayey subsoil horizons (Table 1). This is however not the case in the 558 

Planosol (SMU 33). CERES-EGC yields seem thus limited by insufficient water availability rather than 559 

by direct retroactions between soil waterlogging and the growth or functioning of crop roots. The 560 

decreasing yields with increasing waterlogging observed in the Planosol on clay and in the Gleysol are 561 

hence mostly incidental but it does not have to be that way as shown by the Planosol. 562 

The clay bed observed in the Planosol on clay does not result in a decrease in the amount of water 563 

infiltrated at one meter-depth (Figure 3) as expected from soil morphology. CERES-EGC does indeed 564 

not model lateral subsurface water flow (Gabrielle et al., 1995). The hydraulic conductivity is 565 

moreover averaged from 30 to 100 cm-depth mixing artificially clayey horizon with low hydraulic 566 

conductivity with silty horizon of high hydraulic conductivity and overestimating the subsoil hydraulic 567 

conductivity (Table 2, supplementary material S2). As a result, clayey subsoils appear able to merely 568 

slow down but not to stop infiltration and redistribute water laterally. Therefore, the amount of 569 

water infiltrated in the Planosol on clay, and more generally in strongly texture-differentiated soils 570 

are overestimated with CERES-EGC. Contrastingly, as water does not accumulate in lowland soils as 571 

the Gleysol (SMU 102), or the Planosol (SMU 33) to a lesser extent, the amount of infiltrated water in 572 

such soils is conversely underestimated. 573 

In comparison to Luvisols (SMU 29 and 30), the Planosol stores less carbon (Figure 4) for similar 574 

yields (Figure 2) likely as a result of higher CO2 emissions due to higher OC contents. The Gleysol 575 

contrastingly stores more carbon despite lower yields as a result of CO2 emissions highly limited by its 576 

clayey texture. The variability in OC storage (Figure 5) seems, at first sight, consistent with the spatial 577 

heterogeneity of soil properties. It is however very unlikely that the Planosol and the Gleysol, 578 

currently forested, continue to store carbon when cultivated, as cultivation is known to induce 579 

decreases in carbon stocks (Balesdent et al., 1998). OC budgets are moreover strongly dependent on 580 

OC inputs and consequently on yields estimates that were unfortunately found to be highly 581 

questionable at least in the Planosol and Gleysol. 582 



18 
 

Estimates of N cycling and leaching are unlikely to be very reliable given the difficulties encountered 583 

in the assessment of yields, infiltration, as well as soil organic matter mineralization in the Planosol 584 

on clay, in the Planosol and in the Gleysol. 585 

To conclude this section, the process-based model is particularly effective to quantify services in 586 

deep, homogeneous, and well-drained soils for which crop models have been developed and 587 

calibrated. Crop models are unsurprisingly inadequate to quantify soil-supported services in marginal 588 

soils as frequently observed under forest. For various reasons including intense waterlogging, 589 

extreme acidity, or strong texture differentiation, such soils are indeed clearly out of the range of 590 

validity of most crop models. 591 

 592 

IV.3. Guidance in the assessment of soil-supported ES and potential uses 593 

No single empirical or process-based model integrating a realistic representation of soils, for example 594 

in terms of the depth-discretization of main inherent and manageable soil properties, could be 595 

identified to quantify soil-supported ES for land uses ranging from forest to crop cultivation. 596 

Integration of a realistic representation of soils in soil-supported ES assessment and mapping is thus 597 

only possible with reference to a cultivated use and for a limited set of crops and cropping practices. 598 

Such an assessment, which is basically a quantitative land suitability exercise, goes however largely 599 

beyond classical land evaluation (Dominati et al., 2016). Indeed, it provides quantitative rather than 600 

qualitative estimates of soil performance under cultivation and it addresses not only food 601 

provisioning, as is classically the case, but multiple soil-supported ES. It is thus an interesting way to 602 

balance biomass provisioning with other soil-supported ES under a particular use, chosen for its 603 

representativeness or its interest for stakeholders. 604 

With reference to the common agricultural practices considered in this research, the levels of 605 

the soil-supported ES vary significantly according to soil types and properties (Figures 2 to 5). Part of 606 

this variability in ES levels is coherent with the present variability in land uses and it may then be 607 

captured by a land use/land cover assessment approach. This is for example the case of the 608 

cultivated Luvisols that unsurprisingly show a higher level of biomass production than the forested 609 

Planosol and Gleysol (Figure 2). A significant variability is however observed between soils with a 610 

similar land use (Figure 6). For instance, OC saturation ranges from less than 10 g kg-1 in the forested 611 

Planosol to about 30 g kg-1 in the forested Gleysol. The biomass provision in presently- or recently-612 

cultivated soils similarly ranges from good levels (M-SQR scores between 60 and 80) to poor levels 613 

(M-SQR scores between 20 and 40). This clearly demonstrates that the explicit integration of soil 614 

processes and properties within the ES assessment and the translation of the spatial variability of soil 615 

properties into levels of soil-supported ES, will increase our knowledge on the spatial delivery of soil-616 



19 
 

supported ES inside patches with similar land cover and land use, and decrease the uncertainty 617 

associated with purely land use/land cover assessment methods (Roche and Campagne, 2019). 618 

For the four-soil supported ES considered in this study, process-based models seem to be the best 619 

solution for arable soils. Such an approach, limited to cultivated soils for which process-based models 620 

have been historically developed, has been implemented for example by Therond et al. (2017) at the 621 

French national scale, or by Ellili-Bargaoui et al. (2021) for 64 cultivated soils across the Brittany 622 

region of France. It is particularly helpful to reveal the contribution of various combinations of land 623 

management and soil types to multiple ES (Therond et al., 2017; Ellili-Bargaoui et al., 2021), to 624 

quantify the interactions among soil-supported services (Ellili-Bargaoui et al., 2021) or finally to 625 

optimize land management for specific or multiple outcomes identified by stakeholders (Dominati et 626 

al., 2016; Demestihas et al., 2018). However, approaches limited to cultivated soils that consider 627 

forested and other marginal lands as “blank” areas, will miss the provision of ES by forested soils in 628 

spite of the fact that such soils may be critical areas for the delivery of soil-supported ES, such as the 629 

Gleysol in this study (Fig. 6), or may show high levels for a particular ES, like water provisioning in 630 

SMU 33 (Fig.3). Moreover, further research is necessary to better characterize the range of cultivated 631 

soils over which soil-supported services may be quantified by these models, and the associated 632 

uncertainty, since all cultivated soils cannot be considered as deep, homogeneous, and well-drained.  633 

By contrast, the empirical modelling approach appears at this stage to be the only one that may be 634 

used for a wider variety of land uses and, hence, for the comparison of several land planning 635 

scenarios. However, the availability of empirical models for different pedoclimatic conditions is very 636 

uneven among the different ES: relatively high for the provision of biomass, low for water 637 

provisioning, and finally almost nonexistent insofar as soil biological functioning is primarily 638 

concerned as it is the case for C and N cycling. In such cases, the adaptation of empirical models not 639 

specifically designed to quantify the targeted services, although informative, may be incompletely 640 

satisfactory. The empirical model MERLIN, for example, is efficient at identifying situations with a 641 

potential impact on the environment (i.e., leached N) in accordance with its initial design, but turns 642 

out to be unable to accurately assess the amount of non-leached N, which is crucial for quantifying 643 

regulating services.  644 

The simultaneous use of a wide portfolio of models or model types chosen to cover all soil type/land 645 

use combinations as well as the diversity of soil-supported ES should overcome the limitations 646 

attached to each of the empirical and process-based models and reduce the uncertainty arising from 647 

the use of one single type assessment. Such option, if feasible, would however inevitably increase i) 648 

the need for input data and consequently the complexity of the assessment, and ii) the risk of 649 

inconsistencies between the various models, as often observed in comparative studies (Bagstad et 650 

al., 2013; Vorstius and Spray, 2015; Sharps et al., 2017). This latter point is confirmed here by the 651 
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significantly method-dependent assessment of the soil-supported services, despite all the efforts 652 

made to propose two approaches differing only by their increasing complexity (Figure 6).  653 

Finally, steps such as i) the construction of input data sets, ii) the selection of documented and 654 

adapted empirical models for a particular pedoclimatic context or the appropriation and running of 655 

more complex process-based models, and iii) the interpretation of service assessments considering 656 

the limits and uncertainties embedded in each of the empirical or process-based approaches requires 657 

significant technical, human and financial resources. Consequently, most local stakeholders are far 658 

from managing an operational assessment of the contribution of soils to ES. Furthermore, every 659 

assessment will ultimately remain strongly influenced by numerous methodological choices. If 660 

sufficiently informed, such choices are helpful to increase the fit-for-purpose (Schroter et al., 2015) 661 

but, if not, they may have unexpected implications on ES levels, ES bundles (not explicitly addressed 662 

in this study) and finally ES-based decision-making (Bagstad et al., 2018). Besides testing the 663 

potential outputs of ES assessment regardless of the methodology used, a similar attention at least 664 

should be devoted to the continuous improvement of methodologies, for example by integrating a 665 

more realistic representation of soil processes and properties and by comparing ES assessment with 666 

field data at least in experimental stations.  667 

 668 

V. Conclusion 669 

The primary objective of the present article was to examine how a realistic representation of soil 670 

properties and processes could be taken into account when assessing the levels of ES these soils 671 

provide, and to appraise the degree of accuracy that can be achieved using only easily-available data 672 

and existing models. One of the key results of the research described in this article is that we could 673 

not find a single empirical or process-based model that could both integrate a realistic 674 

representation of soils and account for land uses ranging from forest to cultivation in the 675 

quantification of soil-supported ES. At this stage, integrating a complex representation of soils in the 676 

assessment of soil-supported ES may only be performed with reference to a cultivated use and for a 677 

limited set of crops and cropping practices, which is basically a quantitative land suitability exercise. 678 

Such an assessment goes however largely beyond classical land evaluation. It is indeed an interesting 679 

way to balance biomass provisioning with other soil-supported services under a particular use, 680 

chosen for its representativeness or its interest for stakeholders. 681 

To integrate a complex representation of soils and ultimately increase the accuracy in ES assessment 682 

and mapping , we urge the research community to pursue its efforts towards i) acquiring 683 

environmental data, from basic soil properties to field measurements of the soil-supported ES, ii) 684 

developing empirical models specifically designed to assess soil functioning in various pedological 685 

contexts, and more specifically the geopedological controls on C and N cycling, and iii) integrating in 686 
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crop or land surface models a more precise soil discretization in depth, a greater diversity of soil 687 

processes including lateral (subsurface) water flows, waterlogging and more complex interactions 688 

between soil properties and soil processes like mineralization or root growth. The ability of both the 689 

empirical and process-based models to assess the biomass provision from basic soil properties clearly 690 

suggests that such a path is feasible, efficient, and probably the only way to operationalize the ES 691 

concept.  692 

 693 
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Table 1: Main soil descriptive propertiesa 

 

Table 2: Main soil analytical properties 

 

Table 3: Crops and crops management 

 

Table 4: Soil supported ecosystem services associated to indicators and tools 

 

Table 5: Absolute minimum and maximum values per service used for results rescaling (national 

French scale) 

 

Table 6: Assessment of the soil contribution to ecosystem services from empirical and process-based 

modelling 

 



a Soil description according to the terminology of the fourth edition of the guidelines for soil description (Jahn et al., 2006).  

b According to the regional geographic soil database at 1 : 250 000 of Ile-de-France (Roque, 2004). SMU and STU are respectively referring to Soil Map Units and Soil Typological Units.  

c Abbreviations: S, Sand; LS, Loamy Sand; SL, Sandy Loam; SiL, Silt Loam; SiCL, Silty Clay Loam; CL, Clay Loam; L, Loam; SiC, Silty Clay; C, Clay. 

 

Soil identification b General Information Soil description 

SMU STU Name Slope 

(%) 

Land Use Parent Material Horizon Depth (cm) Texturec Coarse 

fragments 

(%) 

Colour 

(moist) 

Mottling 

(%) 

Structure Clay 

Coatings 

(%) 

Roots 

(<2mm) 

29 85 Stagnic Luvisol 

on loess 

0.5-1.0 Crop Loess Ap 0 - 42 SiL 0 - 2 10 YR 44 0 Crumbly 0 20 - 50 

    Loess Bt 42 - 60 SiCL 0 - 2 10 YR 56 0 Angular blocky > 80 1 - 20 

     Loess Btg1 60 - 90 SiCL 0 - 2 10 YR 56 5 - 15 Prismatic 40 - 80 1 - 20 

     Loess Btg2 90 - 100 SiCL 0 - 2 10 YR 54 15 - 40 Prismatic 15 - 40 1 - 20 

     Loess BtgC 100 - 115 SiL 0 - 2 10 YR 54 15 - 40 Massive 2 - 5 1 - 20 

     Loess Ckg 115 - 135 SiL 0 - 2 10 YR 56 15 - 40 Massive 2 - 5 0 

30 86 Stagnic Luvisol 

on clay 

1.0-2.0 Crop Loess Ap 0 - 35 SiL 0 - 2 10 YR 34 0 Subangular blocky 0 1 - 20 

    Loess Bt 35 - 50 SiCL 0 - 2 10 YR 44 2 - 5 Angular blocky 15 - 40 1 - 20 

     Loess Btg 50 - 80 SiCL 0 - 2 10 YR 44 5 - 15 Angular blocky 40 - 80 1 - 20 

     Slope deposits 2Bt 80 - 120 SiC 15 - 40 10 YR 46 2 - 5 Massive 40 - 80 1 - 20 

31 90 Planosol on clay 1.0-2.0 Fallow Slope deposits ApEg 0 - 40 SiL 15 - 40 10 YR 53 5 - 15 Massive 0 20 - 50 

     Slope deposits Eg 40 - 60 L 5 - 15 10 YR 64 40 - 80 Massive 0 20 - 50 

     Clay 2Cg1 60 - 90 C 5 - 15 7,5 YR 56 15 - 40 Prismatic 0 1 - 20 

     Clay 2Cg2 90 - 120 CL 15 - 40 10 YR 58 15 - 40 Prismatic 0 0 

33 47 Planosol 5-10 Forest Slope deposits A1 0 - 5 SL 2 - 5 10 YR 22 0 Single grain 0 20 - 50 

     Slope deposits A2 5 - 15 SL 2 - 5 10 YR 43 0 Single grain 0 1 - 20 

     Slope deposits Bw 15 - 35 SL 2 - 5 10 YR44 0 Single grain 0 1 – 20 

     Slope deposits C 35 - 45 SL 2 - 5 10 YR 44 0 Single grain 0 1 - 20 

     Slope deposits 2Cg1 45 - 70 SiL 2 - 5 10 YR 46  5 - 15 Massive 0 1 - 20 

     Slope deposits 2Cg2 70 - 120 SiL 0 - 2 10 YR 56 > 40 Massive 0 1 - 20 

102 56 Gleysol 0.5-1.0 Forest  Alluvial deposits A 0 - 7 CL 0 - 2 10 YR 21 0 Subangular blocky 0 1 - 20 

     Alluvial deposits Bg1 7 - 20 CL 0 - 2 10 YR 41 5 - 15 Prismatic 0 1 - 20 

     Alluvial deposits Bg2 20 - 35 SiC 0 - 2 10 YR 51 5 - 15 Prismatic 0 1 - 20 

     Alluvial deposits Bg3 35 - 55 SiCL 0 - 2 10 YR 51 15 - 40 Prismatic 0 1 - 20 

     Alluvial deposits Bg4 55 - 80 SiL 0 - 2 10 YR 51 > 40 Massive 0 1 - 20 

     Alluvial deposits Cr 80 - 110 SL 0 - 2 10 YR 61 2 - 5 Massive 0 1 - 20 



a According to the regional geographic soil database at 1 : 250 000 of Ile-de-France (Roque, 2004). SMU and STU are respectively referring to Soil Map Units and Soil Typological Units.  

b Abbreviations: cl, clay ( < 2 µm); fsi, fine silt (2 – 20 µm); csi, coarse silt (20-50 µm); fs, fine sand (50 – 200 µm); cs, coarse sand (200 – 2000 µm). 

c Organic Carbon (OC). 

 

Soil identification and horizonationa Particle Size distribution (g.kg-1)b Bulk 

density 

(g.cm-3) 

pH 

(H2O) 

CaCO3 

(g.kg-1) 

OCc  

(g.kg-1) 

Total N 

(g.kg-1) 

CEC 

(cmol+.kg-1) 
SMU STU Name Horizon Depth (cm) cl fsi csi fs cs 

29 85 Stagnic Luvisol 

on loess 

Ap 0 - 42 187 299 451 46 17 1.41 7.6 < 1 8.91 0.94 11.20 

  Bt 42 - 60 280 289 383 35 13 1.51 7.7 < 1 4.41 0.57 14.60 

   Btg1 60 - 90 298 283 377 33 9 1.54 7.9 < 1 2.89 0.39 16.00 

   Btg2 90 - 100 282 246 442 24 6 1.56 8.0 < 1 2.02 0.28 16.20 

   BtgC 100 - 115 243 278 451 25 3 1.59 8.1 < 1 1.64 0.23 15.10 

   Ckg 115 - 135 204 293 462 19 22 1.58 8.6 106 1.59 0.20 12.80 

30 86 Stagnic Luvisol 

on clay 

Ap 0 - 35 191 265 446 65 33 1.51 6.8 < 1 8.64 0.90 10.70 

  Bt 35 - 50 284 256 406 41 13 1.54 7.0 < 1 3.25 0.44 14.20 

   Btg 50 - 80 290 264 384 47 15 1.59 7.4 < 1 2.39 0.34 16.30 

   2Bt 80 - 120 386 222 264 71 57 1.70 7.3 < 1 1.73 0.28 22.00 

31 90 Planosol on clay ApEg 0 - 40 198 255 283 133 131 1.54 6.1 < 1 9.94 0.63 7.71 

   Eg 40 - 60 257 261 257 137 88 1.58 7.1 < 1 4.56 0.30 9.24 

   2Cg1 60 - 90 527 139 116 101 117 1.57 7.1 < 1 3.03 0.18 23.90 

   2Cg2 90 - 120 378 114 125 181 202 1.57 5.1 < 1 1.77  14.50 

33 47 Planosol A1 0 - 5 73 71 107 389 360 0.98 5.5 < 1 51.40 2.89 9.42 

   A2 5 - 15 59 78 126 384 353 1.43 4.9 < 1 11.10 0.82 2.22 

   Bw 15 - 35 66 87 128 372 347 1.39 4.9 < 1 5.82 0.47 1.57 

   C 35 - 45 78 108 164 345 305 1.39 5.1 < 1 3.11 0.28 2.16 

   2Cg1 45 - 70 151 220 361 180 88 1.58 5.2 < 1 2.29 0.29 4.75 

   2Cg2 70 - 120 143 193 356 195 130 1.58 5.3 < 1 1.68 0.19 4.60 

102 56 Gleysol A 0 - 7 393 242 150 171 44 1.32 6.0 < 1 19.38 1.04 29.60 

   Bg1 7 - 20 393 242 150 171 44 1.32 6.0 < 1 19.38 1.04 29.60 

   Bg2 20 - 35 527 286 123 41 23 1.57 6.0 < 1 11.01 1.07 28.90 

   Bg3 35 - 55 421 340 153 73 13 1.57 6.6 < 1 6.44 0.53 22.30 

   Bg4 55 - 80 247 177 194 327 55 1.59 6.8 < 1 5.50 0.39 14.60 

   Cr 80 - 110 151 94 110 462 183 1.58 6.4 < 1 3.36 0.18 8.27 



   Winter Rapeseed Source Winter wheat Source 

Sowing Cultivar  Magelan CERES-EGC database Roche CERES-EGC database 

 Day of year   246 Terres Inovia, 2019 290 Chambre d’agriculture IdF, 2016 

 Density (grain.m-2)  115 Carpentier, 2012 262.3 Chambre d’agriculture IdF, 2016 

 Depth (cm)  2.5 Terres Inovia, 2019 2.5 Arvalis – Institut du végétal, 2014a 

N inputs 1st Input Day of year 62 Terres Inovia, 2019 82 Arvalis – Institut du végétal, 2014b; Interviews  

  Amount (kgN.ha-1) 79 Agreste, 2006 80 Agreste, 2006; Interviews 

 2nd Input Day of year 84 Terres Inovia, 2019 109 Arvalis – Institut du végétal, 2014b; Interviews 

  Amount (kgN.ha-1) 89 Agreste, 2006 80 Agreste, 2006; Interviews 

 3rd Input Day of year   137 Arvalis – Institut du végétal, 2014b; Interviews 

  Amount (kgN.ha-1)   40 Agreste, 2006; Interviews 

Residues   Incorporation Terres Inovia, 2019 Exportation Vaisman et al., 2018; Interviews 

Tillage   Yes (30 cm) Terres Inovia, 2019 Yes (30 cm) FranceAgriMer, 2012 

 



ES Families Soil-Based ES Indicators Modellings     

Empirical  Units Reference Process-based  Units Reference 

Provisioning Plant biomass  Yield  Expert-based scoring M-SQR X Mueller et al., 

2007 

CERES-EGC model t ha-1 yr-1 Jones et al., 1986  

Water  Infiltrated water  

(1m depth) 

Expert-based scoring SENSIB X Cam et al., 

1996 

CERES-EGC model mm yr-1 Jones et al., 1986 

Regulating Water quality Non-leached nitrogen  Expert-based scoring MERLIN v2. X Aimon-Marie et 

al., 2001 

CERES-EGC model kgN ha-1 yr-1 Jones et al., 1986 

Climate Carbon (C) storage Pedotransfer function C saturation gC kg-1 Hassink, 1997 CERES-EGC model tC ha-1 yr-1 Jones et al., 1986 

 



ES Families Soil-Based ES Modellings      

Empirical  Units Source Process-based Units Source 

Provisioning Plant biomass  [0 ; 100] X Mueller et al., 2007 [4 ; 12] t ha-1 yr-1 Arvalis – Institut du végétal, 2019 

Water  [0 ; 100] X Cam et al., 1996 [55 ; 1119] mm yr-1 Therond et al., 2017 

Regulating Water quality [1 ; 3] X Aimon-Marie et al., 2001 [55 ; 100] % Therond et al., 2017 

Climate [4 ; 40] gC kg-1 Angers et al., 2011 [-0.4 ; 0.4] tC ha-1 yr-1 Therond et al., 2017 

 



Soil-supported 

ES 

Model Stagnic 

Luvisol on 

loess 

Stagnic 

Luvisol on 

clay 

Planosol 

on clay 

Planosol Gleysol 

Plant biomass M-SQR 69 57 35 49 40 

CERES-EGC 2000-2018 (t ha-1 yr-1) 7.9 (±2.3) 6.9 (±2.3) 6.6 (±2.1) 8.3 (±2.2) 5.3 (±1.5) 

CERES-EGC 2018 (t ha-1 yr-1) 8.6     

Measure (t ha-1 yr-1) 8.5     

Water SENSIB 47 29 30 53 85 

CERES-EGC 2000-2018 (mm yr-1) 236 (±120) 233 (±121) 280 (±120) 230 (±113) 274 (±120) 

CERES-EGC 2018 (mm yr-1) 322     

Measure (mm yr-1) 334     

Water quality MERLIN v2. 1 1 1 1 1 

CERES-EGC 2000-2018 (%) 92 (±4) 97 (±2) 95 (±2) 83 (±8) 94 (±3) 

CERES-EGC 2018 (%) 87     

Measure (%) 87     

Climate Csat (gC kg-1) 22.1 21.0 20.9 9.5 29.8 

CERES-EGC 2000-2018 (tC ha-1 yr-1) 0.297 0.314 0.302 0.082 0.247 

 




