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M. Darnet
BRGM, 3 Av. Claude Guillemin, Orléans 45060, France

SUMMARY

Time-lapse resistivity tomography bring valuable information on the physical changes oc-
curring inside a geological reservoir. In this study, resistivity monitoring from CSEM data
is investigated through synthetic and real data. We present three different schemes cur-
rently used to perform time-lapse inversions and compare these three methods: parallel,
sequential and double difference. We demonstrate on synthetic tests that double differ-
ence scheme is the best way to perform time-lapse inversion when the survey parameters
are fixed between the different time-lapse acquisitions. We show that double difference
inversion allows to remove the imprint of correlated noise distortions, static shifts, and
most of the non-linearity of the inversion process including numerical noise and acquisi-
tion footprint. It also appears that this approach is robust against the baseline resistivity
model quality, and even a rough starting resistivity model built from borehole logs or ba-
sic geological knowledge can be sufficient to map the time-lapse changes at their right
positions. We perform these comparisons with real land time-lapse CSEM data acquired

one year apart over the Reykjanes geothermal field.

Key words: Controlled-Source Electromagnetics, time-lapse inversion, double-difference
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1 INTRODUCTION

Geophysical imaging allows to recover the physical parameters of geological reservoirs. Geological
reservoirs can be exploited for various economic reasons: oil and gas production, power and heat
generation from geothermal energy, C02 storage or water supply management. All those reservoirs
change over time along with their physical parameters. Time-lapse geophysical imaging is a perfect
opportunity to monitor changes occurring inside the reservoirs. It consists in carrying out at different
time a geophysical acquisition over a same region, and produce a structural image showing the tem-
poral changes between the two acquisitions. The first acquisition is generally called baseline and the
following acquisitions are considered as monitors.

Electromagnetic methods are well suited for time-lapse imaging as shown by several successful
applications and promising works (e.g., Miller et al. 2008; Peacock et al. 2013; Rosas-Carbajal et al.
2015; Tietze et al. 2015; Abdelfettah et al. 2018; Patzer 2019). For diffusive methods (e.g., Controlled-
Source EM (CSEM), magnetotellurics (MT), time-domain EM, DC Electric Resistivity Tomography
(ERT)), the inversion of the baseline and monitor data sets are usually performed separately, then the
difference between the two inverted models is presented as the time-lapse variation in resistivity of
the reservoir. This scheme is called a parallel inversion. The high non-linearity and non-uniqueness of
the resistivity imaging problems make the inversion results still strongly dependent of the path taken
by the inversion. This effect may be exacerbated in presence of high level of noise, which can result
in very different inverted models, even without significant model changes. At the end, the time-lapse
image may reflect different inversion paths but not necessarily structural time-lapse differences.

To overcome some problems of parallel inversions, different time-lapse inversion schemes have
been proposed. Sequential inversion is one of the common alternative where the monitor data are
inverted starting from the inverted baseline model (Wirianto et al. 2010; Asnaashari et al. 2014). In
this approach, hypothesis on small time-lapse signals are considered and thus reduced the non-linearity
by starting inversion of the monitor data from the resistivity model obtained by the baseline data
inversion which is supposed to be already close to the final result. However, the monitor data inversion
can be influenced by parts of the data that remain unexplained by the baseline inversion. This may
hamper the proper reconstruction of the time-lapse image, with little or none information on resistivity
changes over time. An alternative technique is proposed by Karaoulis et al. (2011), they make use
of regularization in time to control the consistency of the different models and slice their data set
in different time-steps. This approach which is in essence a constrained parallel inversion framework

may be interesting when many time-steps are available and if the inversion runs fast enough to perform
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several inversions simultaneously. It is rarely the case for most 3-D ERT, CSEM or MT problems for
which computing resources are usually an issue (e.g., Commer & Newman 2008; Puzyrev et al. 2016;
Shantsev et al. 2017). It is noteworthy that parallel inversion drawbacks can also be mitigated by
constraining the inversion of the time-lapse data set using the result of the baseline inversion as a
prior model. Although the method is still poorly constrained, the idea behind prior constraints is the
same as the time-regularization of Karaoulis et al. (2011), in which a similarity between the time-lapse
models is imposed. Parallel and sequential inversion are the only possible approaches if the baseline
and monitor acquisitions have different geometries and recording parameters between the baseline and

the monitor acquisitions.

For common-acquisition setup between surveys (same geometry, same acquisition parameters),
an alternative inversion technique is available to obtain more stable results by reducing the effect of
noise and non-linearity of the inversion process. This scheme called double difference or differential
inversion is based on the combination of baseline and monitor data. This concept is largely used in
global seismology to remove common biases between data for a same acquisition (e.g., Kuo et al.
1987; Houser et al. 2008). Asnaashari et al. (2014) applied the double difference scheme to time-
lapse FWI problems. A first baseline inversion can be computed and this model is used as starting
model for the monitor inversion. But, unlike the sequential inversion, inverted data are a composite
data made from the differences between monitor and baseline data. Double difference inversion is
common in medical imaging (e.g., De Donno & Cardarelli 2017), in seismic travel-time tomography
(Ajo-Franklin et al. 2007), was used for 4-D seismic reflection by (Tao et al. 2013) with a stochastic
inversion approach, and was investigated on seismic full-waveform inversion by Asnaashari et al.
(2014) and Zhang & Huang (2013). To our knowledge, its use for resistivity monitoring is not reported
yet, and a rigorous comparison with the various possible time-lapse inversion strategies still needs to
be performed. In this study, we work within the framework of the 3-D frequency domain CSEM, but
all the results and conclusions are also valid for other resistivity methods such as MT, time-domain
EM, DC electric resistivity tomography. Most of the conclusions can be directly transposed to other

geophysical monitoring problems involving an iterative linear or nonlinear inverse problem.

We present and compare three different time-lapse schemes: parallel, sequential, and double dif-
ference inversion, in a similar way than in Asnaashari et al. (2014). We first present and study the
advantages of each method, and compare their behaviors using synthetic 3-D CSEM data inversion
over simple models. We then apply those schemes on a real land CSEM data example. Those data
are composed of a baseline and a monitor data set acquired at one year of interval on the Reykjanes
geothermal field in Iceland (Darnet et al. 2018). We show that double difference strategy brings a

substantial advantage for time-lapse monitoring over the others methods.
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2 TIME-LAPSE INVERSION STRATEGIES

In this part, we describe the main features of the three time-lapse inversion strategies: parallel, sequen-
tial and double difference inversion schemes. Though the theory behind time-lapse inversion is rather
simple, knowing the theoretical differences can be worthy (e.g., Miller et al. 2008; Routh et al. 2012;
Asnaashari et al. 2014). Data-fitting procedures are usually used to solve the resistivity inversions.
These inversions are intrinsically non-linear, and iterative optimization methods have to be employed.
For each iteration k, we try to minimized the data residual vector which is typically defined as the

difference between observed data and data calculated in the current model my,:
ddx = dobs — dcal(m) (1)
with the computed data d¢5) related to the resistivity model my by the forward operator G:
dcal(my) = G(my). (2)

We define two different data sets corresponding to a baseline acquisition (dops7) and a monitor acqui-
sition (deopso)- First, a baseline reconstruction needs to be done by minimizing the difference between
dobs1 and dca) generated in a mg starting model. However, at the end of this first inversion, discrepan-
cies remain between observed and predicted data coming from our inability to properly build the true
resistivity model. This can be due to a poor data coverage, to inaccurate forward modelling, insuffi-
cient spatial description of the model due to coarse grid parameterization for the inverse problem, high
regularization or simply to the resolution limits of the geophysical method as well as the existence of
local minima in the inversion process. We note this first difference ddy,,. Another contribution comes
from noise which affects data. We can further decompose this noise into two contributions: uncorre-
lated and correlated noise between acquisitions and will be denoted as dy,oise and dgtatic, respectively.
An additional input will appear for the monitor data due to the time-lapse signal related to resistivity

changes, dpert. These contributions can be summarized into the two following equations:

dobsl = dmo + 5dm0 + dstatic + dnoisel (3)
dobs2 = dmo + 5dm0 + dstatic + dnoisez + dpert- (4)

Lets consider the three main possibilities of time-lapse inversion. It is important to keep in mind that
the first schemes namely parallel and sequential inversions do not necessarily need to have the exact
geometry setup between the baseline and the monitor acquisition, even though it is usually preferable.
Although, it seems to be an advantage compared to the double difference strategy, we will show that
this constrain is balanced by other significant advantages. First, we are going to start with a quick
description of parallel and sequential inversion (Figure 1). In case of parallel scheme, baseline and

monitor inversions are completely decoupled. We compute the time-lapse image by taking the dif-
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Figure 1. Parallel, sequential and differential inversion frameworks for time-lapse imaging. my is the starting
model, dobs, and dops, are the baseline and monitor data, m; and my the baseline and monitor models. Usage

of m; as a starting model for the double difference inversion is possible but other options are possible.

ference between the final inverted models. As previously said, baseline and monitor data set do not
need to have the same geometry (number of data, number of receivers/sources). This seemingly ad-
vantage is a potential pitfall for inversion tuning. We are going to compare images with potentially
different inverting mesh, regularization parameters and thus very different local resolution. This will
induce signals in the time-lapse model mainly related to the resolution difference between baseline
and monitor inversion. Besides, the inverse problem is highly non-linear which implies complex noise
propagation between data and model estimates. Surely, noise propagation can be quite different be-
tween baseline and monitor inversion, and considering the same random noise between the two data
set (dpoise; = dnoise,) May be far to be true. Moreover, both baseline and monitor inversion are
biased by the static noise ds¢atic.

If sequential strategy is used, the baseline data dops, lead to the baseline model m; which ex-
plains the data and include an error dmy due to unexplained parts of the data, lack of resolution, bad
coverage, coarse parameterization, regularization, and noise dnoise; and dsgatic. Then the monitor
data dops, are inverted by using the baseline model my as starting model. According to equations (1)

and (4), the data residual at first iteration is:
6d2*? = dobsy — deal(m1)
= (dm; + 0dm; + dstatic + dnoise; + dpert) — dm,
= dpert + 0dm; + dstatic + dnoise, - (5)
Equation (5) shows that the data residual is still containing contributions from modelling errors ddm,
and noise beside the time-lapse signal. If the baseline model is imperfectly reconstructed, dd,,, may

be significant and the monitor inversion will not focus exclusively on the time-lapse signal ddpert.

If the unexplained part of the baseline data is higher than the time-lapse signal, the resulting model
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difference ma — mj; may highlight locations where baseline is far from the true resistivity model
instead of resistivity changes between the two acquisitions.

In double difference inversion, extra care should be taken on the perfectly match between baseline
and monitor data set geometry. Though it could seem to be a limit of the method, it is probably the best
for highly repeatable surveys in geophysics. First, the baseline is reconstructed exactly as in parallel
or sequential inversion (left/middle schematic on figure 1). However, in the second step instead of
inverting the monitor data we invert the data difference (Asnaashari et al. 2014). We thus define data

difference as Ad = (dobs, — dobs, )- Then, we rewrite the data residual vector at an iteration k as:

6da® = (dops, — dobs;) — (dear(my) — dear(my)) (6)

In order to use exactly the same inversion algorithm as for the baseline inversion, we can build a

composite observed dataset:
dcomp = dobs, — dobs; + dcal(m1) (7
to obtain the following data residual:
0d2™" = deomp — deal(mi). 8)
At the first iteration, starting from the baseline model m;, this data residual results in:

5(3126”)16 = (d0b52 - dobsl + dcal(ml)) - dcal(ml)
- dpert + (dnoise2 - dnoisel)- (9)

A very interesting feature of this approach is illustrated by equation (9) with comparison to equa-
tion (5). The data residual is not anymore dependent on the error of baseline reconstruction ddy, ,
making the inversion much more robust against the starting model, numerical modeling inaccuracies
and non-linearity of the inversion. This is extremely important because of the non-uniqueness of EM
inverse problem. Furthermore, the double difference allows interesting possibilities such as inverting
time-lapse data without necessity to reconstruct accurate baseline model, which can be in some cases
a very tough task. The baseline model can therefore be constructed using a different technique, for
instance using borehole resistivity logs, geological knowledge, or by coupling the baseline data with
any other prior data only available for the baseline. A typical interesting possibility is to use very dense
acquisition layout to build a good baseline model and keep a reduced common layout for monitoring
that would be sufficient to image the time-lapse variations. Another interesting behavior is the robust-
ness against noise. In sequential inversion, dpeise; and dgtatic both affect the reconstruction of mj,
then dd,, and dyoeise, and dstatic affect the reconstruction of my. For double difference inversion,

only dyoise; — dnoise; 1S present in the residual, which means that coherent noise between the two
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data sets is completely removed. EM surveys are often strongly affected by coherent noise such as
anthropogenic noise or galvanic distortion effects (static shift), resulting sometimes in very challeng-
ing inversions and poor data fits that easily cause sequential inversion to fail. Such static-shift effects
are totally removed in the data difference, it enables to invert without any kind of hazardous static-
shift corrections even if the baseline reconstruction fails. As a consequence only time-lapse changes
are highlighted and artefacts such as static shifts and coherent noises are removed. Besides, the dou-
ble difference inversion does not require inversion code modifications, and can even be applied using
a commercial or code-protected inversion software with no additional implementation effort. Addi-
tionally, the approach can still be combined with prior constrains (Asnaashari et al. 2014) to focus
the inversion on specific zones of the model or if necessary with the time-regularization approach of

Karaoulis et al. (2011).

3 MODELING AND INVERSION METHODOLOGY

In the following, we are making use of a 3D frequency-domain CSEM and MT modeling and inversion
code named POLYEM3D (Bretaudeau et al. 2016). Electric and magnetic fields are computed in the
frequency domain by using the secondary-field approach (e.g., Streich 2009). In the secondary-field
approach, the electromagnetic field is split into two contributions. A first part, called ‘primary field’,
is computed using a semi-analytical formulation for any kind of source in an 1-D layered background.
Then, the ‘secondary field’ is computed numerically by finite-difference of the Helmholtz equation

such as
VxVxES + juugeES = —juug(o — op)EP (10)

where EP and ES are respectively the primary and the secondary electric fields, o the 3-D resistivity
vector, fio the magnetic permeability, w the angular pulsation and op the resistivity vector in the refer-
ence 1-D model where EF is calculated. Equation (10) is discretized using a finite-volume approach
on an irregular cartesian staggered grid scheme (e.g., Streich 2009), resulting in the following linear

system
A(w,0)E® = b(EF, 0 —0op,w). (11)

Equation (11) is solved using a massively parallel direct solver such as MUMPS (Amestoy et al. 2001,
2019) or WSMP (Gupta et al. 2001). Then, computed data (d¢a1) at every receiver locations r, for a
source s, and a frequency w are extracted from the total electric field ET°t* = EP + ES using the

rigorous interpolator of Shantsev & Maag (2015).

deal™*¥ () = R ET%(w, o) (12)
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with R™° a linear mapping operator. It typically includes 3-D interpolators, curl operator to get mag-
netic fields, and any change of variables required by the user.

Once predicted data (dca)) are computed for a starting model, a data-fitting misfit function f is
defined in order to quantify the information extracted from observed data (dops). This misfit function

can be written as
1
f = §(dobs - dcal)TWdTWd(dobs - dcal)' (13)

by using the euclidian norm and Wy the diagonal weighting matrix typically containing the inverse
data covariances. For each iteration, minimization of the misfit function is carried out to obtain a model

update Amy. Then the new model at the iteration £ + 1 is computed as
myyq = myg + ap Amy, (14

where «y, is the step length at the iteration k.

The POLYEM3D code offers several optimization algorithms to compute Amy and the step
length «aj. Preconditioned gradient-based algorithm such as steepest descent and 1-BFGS based on
Métivier & Brossier (2016) are available and require only the computation of the predicted data,
misfit, and the gradient of the misfit function at each iteration (e.g., Nocedal & Wright 2006). Gauss-
Newton inversion using LSQR (Paige & Saunders (1982)) is also available, it requires in addition the
explicit computation and storage of the Fréchet derivative matrix, which is possible because of the
use of a direct solver for the forward and adjoint modelling (e.g., Operto et al. 2009; Grayver et al.
2013; Shantsev et al. 2017). Those algorithms have slightly different computational performances, but
also have different convergence properties which can have a significant impact on the final model due
to the high non linearity of the inverse problem. All those algorithms also rely on an efficient line-
search based on a bracketing approach such as described in Nocedal & Wright (2006) and Métivier
& Brossier (2016), where the Wolfe conditions must be satisfied at each iteration. Various changes of
variables, grid change operators, re-parameterization tools, data misfit formulations and regularisation

tools are also available but their description is out of the scope of this paper.

4 TIME-LAPSE ON SYNTHETIC EXAMPLES
4.1 Parallel, sequential and double-difference

To compare the behavior of parallel, sequential and double-difference inversion, we design a simple
example. The baseline is defined as a 1-D model composed of 4 layers. It includes a 50 m thick 10 Q2.m
conductive reservoir located at 400m depth bellow two more resistive layers (50 (2.m and 100 2.m)

and above a 200 €2.m background. As time-lapse targets, we build a monitor model where we add to
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this baseline a small rectangular volume of 200 x 600 x 45m at 40 {2.m symbolizing a resistive anomaly
embedded in the conductive reservoir, and a conductive rectangular volume of 200 x 500 x 85m at
20 Q2.m inside the 100 Q2.m layer. The monitor model and the setup are illustrated figure 2. First exam-
ples are computed without noise in data, then realistic noise will be added to our modelings to better

visualize the benefits of the double-difference strategy.

The modeling grid is made of 25 m cubes in the zone of interest (core domain). This zone lays over
an area of 1000 x 2400 x 600 m and is extended with a 1.5 factor outward of the core domain. The total
grid is composed of 300.000 cells and includes the air layer. A regular grid of 121 stations is positioned
over the zone of interest with 100 m between each station. For completeness sake, the all setup along
with the modeling grid is displayed on figure Al. The horizontal electric components are recorded
at each receiver position. Two pairs of two orthogonal galvanic point sources are placed at 1200 m
from the middle of the model on each side of the receiver grid. The seven following frequencies are
computed and inverted [10 Hz, 20 Hz, 40 Hz, 80 Hz, 125 Hz, 300 Hz, 600 Hz].

For the inversion, a coarser grid made of cubic splines is defined. Lateral and vertical nodes for the
inversion grid are represented by squares on figure A2. It is restricted to the core domain and limited
to 600 m depth. The inversion grid is built on a basis of cubic B-splines and composed of 11 x 11 x
8 cells with increasing size vertically and constant size horizontally. This coarse parameterization
using smooth interpolations allows implicit regularization and thus ensures similar smoothness of the
solutions for all the tests presented here and prevent the inversion from a potential dependency on an
arbitrary tuning of regularization hyperparameters. The choice of the coarse parameterization of the
inverse problem here may not be optimal for the reconstruction of a ‘blocky’ model, but as everything
is kept unchanged during all the synthetic experiments, it does not change the conclusion of the study.
Moreover, this choice will enhance the difference of behavior that may be due to the non-uniqueness
of the solutions. To quantify differences between two synthetic data sets, we define the total relative

RMS error as:

Z‘(dobs~ — dcal')*Wde'(dobs' - dcal')
RMS = | | == i) Vdi 77 di\Gobs; i) 15
\/ ZZ d:bsi Wdi Wdi dobsi (15)

The error of the forward modelling can be estimated by comparing numerical and analytical solu-
tions in the 1-D baseline model. The total RMS error in the synthetic model is estimated to less than
0.2%. The time-lapse response can be also quantified as RMS difference between the monitor and the
1-D baseline: it is estimated to 2.06%. It is thus larger than the forward modeling accuracy, and is also
close but higher than a typical 1% CSEM measurement repeatability error (Darnet et al. 2018; Tietze

et al. 2019). However, the typical coarse parameterization and the low resolution of the EM method
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Parallel Sequential | Differential

g ol Sasaline Monitor Monitor | (start 2,06%)
e s e s RMS baseline  17,21% 6.47% 7,47% 6,43% 117%
i RMS monitor  17,20% 25t 17t 12t 181t
S RMS baseline  45,86% 5,35% 5,500 5,03% 1,17%
S rnesion e =St RMS monitor  45,57% 17 it 17 it 12 it 181t
mb = homo - no baseline inversion 1?2%
it
0,24%
m0 = exact 1D baseline :
65 it
. ) Parallel | Sequential | Differential
Sl iy o] Eserseline Monitor Monitor | (start 2,89%)
e e i G e e | TSGR LA 15,10% 15,10% 15,10% 2.28%
sy = RMS monitor  21,45% 1 1 Fail 241t

Table 1. Synthesis of RMS data residuals before and after inversion.

does not allow to fit the data to a RMS error lower than 5%. The starting and final RMS error of each

inversion tests presented in this paper are summarized in the table of figure 4.1.

In a first step, the baseline and the monitor data are inverted separately starting from an 50 €2.m ho-
mogeneous background. The true model is displayed on figures 2a). The inverted baseline and monitor
resistivity models are represented on figures 2b) and 2c). The 1-D layered structure is globally recon-
structed with the low resolution inherent to EM methods. The reservoir and the resistive layer above
the reservoir are too thin to be resolved so the final models are clearly equivalent models that integrate
several layers. As a consequence, the resistivity contrasts of each layer are underestimated. However
baseline and monitor data inversion both reach respectively a RMS of 6.47% and 7.47%. An example
of baseline data fit is depicted figure 3 for the dominant electric field component of a station located in
the middle of the survey in an in-line configuration. The example shows a good fit on both amplitude
and phase on the whole spectrum with in accuracy of the order of the time-lapse signal. In the mon-
itor model, the conductive and resistive rectangle anomalies are both visible approximately at their
right position, but the contrasts are underestimated. The difference between those two models results
in the parallel time-lapse resistivity model presented figure 4b). The targets are visible but slightly
mislocated vertically, and significant variations also appear everywhere in the rest of the model. In

particular, the deep structure also show more than 20 €2.m variations.

In a second step, we perform a sequential inversion by inverting the monitor data starting from the

baseline model. The sequential monitor model (figure 2d) looks similar to the parallel monitor model
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and gives a final RMS error of 6.43% slightly lower that the parallel inversion. However, the sequen-
tial time-lapse model of figure 4c shows that even though the anomalies are imaged, the model also
includes several inconsistent high amplitude resistivity variations, in particular in the shallow part, and
the anomalies seems to be smoothed outside of their right position. Those artefacts are due to a part
of the baseline data which had not been explained in the baseline model and are partially explained

during the second step of inversion.

Finally we build a composite data and apply an double-difference inversion starting again from
the inverted baseline model. The double difference monitor model is presented figure 2e and the dif-
ferential time-lapse model figure 4d. Even though the conductive target is still spreaded vertically, the
differential model is clearly less affected by artefacts. The amplitudes of the perturbations are weaker
than in the parallel and sequential models but the anomalies are more compact, closer to their right
positions and there is almost no artefacts in the rest of the model. Data are very well fitted by the
double difference inversion, reducing the RMS from 2.06% to 1.17%. The data fit is illustrated figure
5 for the same station that in figure 3. The weighted time-lapse response in black is mostly explained
(fit the red curve). In this figure, we also see in blue dots that the unexplained residuals of the baseline
inversion is at the level of the time-lapse signal. That means that even though the baseline model used
is not perfectly reconstructed with a RMS residual much higher that the time-lapse response, the time-
lapse signal is well explained here, which is not the case for parallel and sequential inversion where it

is not possible to know which part of time-lapse and/or baseline signal is explained.

4.2 Robustness with starting model and baseline

In order to assess the starting model quality, we also performed different inversions with various
starting models. A smoothed version of the true 1-D layered model is used (Figure 6a). The fit of the
baseline and monitor is improved (45.57% to 5.35%). The parallel difference model is significantly
improved, which illustrates the high dependency of the method to the quality of the baseline model.
For the sequential scheme model and data fit is also slightly improved, but it still presents lots of
large scale and high amplitude artefacts. Concerning the double difference scheme, results with the
smoothed 1-D model is close to the one obtained with the baseline model and presents similar data
fit. Two additional tests are performed for double difference inversions using respectively the exact
1-D true model and an homogeneous model as starting models. The four double difference models
tested all recover the time-lapse anomalies at their right positions and result in images with very few

artefacts. However, it is clear that the magnitude and resolution of the time-lapse variations are related
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Figure 2. Slices of 3-D resistivity models: (a) exact model, (b) baseline model, (c) monitor model from parallel

inversion, (d) monitor model from sequential inversion, (¢) monitor model from double difference inversion.

First column are slices along the YZ directions (in-depth) and the two last columns are slices at specific depths

(350 m and 420 m). All inversions have a homogeneous starting model at 50 2.m. Dashed lines on depth slices

indicate interfaces of the true model (a). Black rectangles highlight regions of the model changing between

time-steps in the true model. Thick black lines on constant depth plots are positions of the associated depth

slice.
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data. Green line: data computed in the baseline inversion model of figure 2b.

to the quality of the baseline model which is used. With the exact model (Figure 7e), the amplitude
variations of the conductive anomaly are close to the true variations and the time-lapse is very well
fitted with a RMS of 0.24% close to the level of the forward modeling accuracy. An interesting point
is that even using a homogeneous model very far from the baseline model, the anomalies are very well
imaged, at their right position (Figure 7f). The amplitude of the anomalies are however much weaker

in this case and the double difference data fit is much lower (RMS = 1.72%).

4.3 Robustness with noise

Time-lapse signals may be small compared to inversion strategies biases, but it can also be small
compared with noise level. It is therefore necessary to investigate the behavior of the three time-lapse
inversion approaches in the presence of noise. We can consider two kind of noise on EM measure-
ments. The first is a random noise proportional to the amplitude of the recorded field. The second is a
bias or a data shift typical of CSEM or MT surveys. Generally, the static shift effect (galvanic distor-

tion) is due to unresolvable shallow anomalies or data processing bias. In order to simulate challenging
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Figure 4. Slices of 3-D time-lapse resistivity variations: (a) exact time-lapse targets, (b) parallel difference
model, (c) sequential difference model, (d) double difference model, using baseline reconstructed from an ho-
mogeneous model. First column are slices along the YZ directions (in-depth) and the two last columns are slices
at specific depths (350 m and 420 m). Dashed lines on depth slices indicate interfaces of the true model. Black
rectangles highlight regions of the model changing between time-steps in the true model. Thick black lines on

constant depth plots are positions of the associated depth slice.

noisy monitoring data, we added this two kinds of noise to the previous baseline and monitor data. We
firstly select randomly 10 of the 121 stations and apply a factor 2 on all the fields recorded at these
position (E,/E, for all sources and all frequencies) to simulate a significant static shift. Then we add
to all the stations a 1% of random Gaussian noise proportional to the modulus and phase, respectively.

Noise are then propagated accordingly to real and imaginary parts of the electric fields, which are the
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Figure 5. Weighted data residuals (real and imaginary parts of both electric field components) for a central

station. Black line: initial double difference data (d,ps2 — dobs1 ), Red line: double difference (DD) data residuals

after inversion, Blue dashes: data residuals of the baseline after inversion.

inverted variables. Noise levels are chosen to be at the same level than CSEM repeatability (Darnet

et al. 2018; Tietze et al. 2019).

A new inverse data covariance vector Wy is built based on the new data set. The baseline and

monitor data are then inverted separately following parallel inversion strategy. Those inversions result

in poorly reconstructed resistivity models (figure 8a-c) with poor data fit (RMS 15%). The 1-D struc-

ture of the baseline is roughly imaged but the models include artefacts and the resistivity contrasts

are more underestimated than without noise. The high final RMS is explained in particular by outliers

in the data caused by the static shifts that inversion cannot explain with the given coarse parame-

terization. The model difference figure 8b shows that parallel difference can recover both anomalies

similarly as with the clean data and with a similar resolution but with less pronounced contrasts. The

sequential difference inversion however completely fails to converge. Sequential difference is affected

by the part of the data which remains unexplained in the baseline. As the RMS is high in the presence

of high level of noise, sequential difference is particularly affected. The double difference inversion
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Figure 6. Slices of 3-D resistivity models: (a) smooth starting model, (b) baseline model, (c) monitor model
from parallel inversion. A smooth 1-D model is used as starting model. First column are slices along the YZ
directions (in-depth) and the two last columns are slices at specific depths (350 m and 420 m). Black rectangles
highlight regions of the model changing between time-steps in the true model. Thick black lines on constant

depth plots are positions of the associated depth slice.

is however not affected by the static shift which is similar for the two data set. This implies a weak
dependence to the baseline model quality for the double difference scheme. The double difference
model (figure 8c) shows both anomalies at their right positions with very few artefacts and significant

RMS reduction (RMS 2.89% to 2.28%).
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depth plots are positions of the associated depth slice.
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Figure 8. 3-D resistivity and time-lapses (TL) models reconstructed from noisy data: (a) baseline model recon-
structed starting from an homogeneous background, (b) parallel TL, (c) double difference TL. First column are
slices along the YZ directions (in-depth) and the two last columns are slices along a specific depths (350 m and
420 m). Dashed lines on depth slices indicate interfaces of the true model. Black rectangles highlight regions of
the model changing between time-steps in the true model. Thick black lines on constant depth plots are positions

of the associated depth slice.

S APPLICATION TO THE REYKJANES GEOTHERMAL FIELD
5.1 CSEM survey on Reykjanes Geothermal Field

The Reykjanes geothermal field is located at the south-west of Iceland at the landward extension of
the Reykjanes Ridge (figure 9, Darnet et al. (2018)). The geothermal reservoir is located below 4 km

depth and was stimulated to improve the efficiency of the well. However, CSEM penetration depth
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is generally below 2.5 km which is not suitable to monitor such deep changes. Nevertheless, before
the production start in 2006, the geothermal fluid was mainly liquid. According to Gudmundsdottir
(2015), the geothermal production would induce a pressure drop inside the reservoir and would cause
a steam cap development at depth above 1100 m. These depths can be investigated by CSEM but the
increase of resistivity induced by the steam cap development is unknown. We would like to know if
such changes are detectable and could be monitored with CSEM techniques. Two surveys are acquired
one year apart, a first one in September 2016, while drilling of RN-15/IDDP-2 well. The other is
performed in August 2017, after the thermal stimulation of the RN-15/IDDP-2 well. Two orthogonal
horizontal electric dipoles are used as sources (figure 9), 3 km north of the geothermal field. They
provide two polarizations called POL1 (744m-long dipole between E1 and E2) and POL2 (670m-long
dipole between E2 and E3). Receivers record the three orthogonal component of the magnetic field
and the two orthogonal components of the horizontal electric field. Specific care have been taken for
setting sources and receivers at the exact same location between baseline and monitor surveys. Precise
locations are determined with differential GPS (d-GPS) allowing a centimeter precision on locations.

A complete description of the survey can be found in Darnet et al. (2018).

5.2 CSEM data quality: time-lapse feasibility analysis

Darnet et al. (2018) assess the influence of internal and external noise on survey repeatability between
the two acquisitions. Over the whole frequency band, repeatability is within 2-3% and 2-3° for the
amplitudes and phases respectively. On specific frequency bands, the presence of strong external noise
degrades significantly the repeatability up to 10% and 10° on the amplitudes and phases, respectively
(e.g., 32 s at low frequencies, 50 Hz and harmonics at high frequencies).

In order to identify time-lapse signals related to thermal stimulation of the reservoir through the
RN-15/IDDP2 well, Darnet et al. (2018) analyze the amplitude and phase changes of the polarization
ellipse for the horizontal electric field between the monitor and baseline surveys. Detailed analysis for
each station signal shows no clear and consistent time-lapse anomaly related to the RN-15/IDDP-2
thermal stimulation. However, the stimulated zone is deep (> 4km) and the CSEM sensitivity for
time-lapse signal is weak a this depth. Since CSEM technique is a diffusive method, weak signals may
appear by exploiting the spatial coherence of variations amongst all station and not only individually.
For this reason, we aim at using 3-D time-lapse differential inversion to map those weak potential

variations at their right positions.
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Figure 9. Map of the Reykjanes geothermal field and time-lapse CSEM and MT survey layout. CSEM transmit-
ter is labelled TXM with the two different polarizations E1-E2 and E2-E3. Recording stations are symbolized
by red triangles with numbers. Section AA’ represents the direction of 2-D slices from the inverted 3-D model

intersecting the RN15/IDDP2 well.

5.3 Baseline inversion

We extract common receiver/component data between baseline and monitor surveys, which is a re-
quirement for the double-difference strategy. To avoid poorly repeatable data due to noise contami-
nation, we remove low (> 32s) and high frequency data (> 10 Hz). Real and imaginary parts of the
horizontal electric field are inverted for 9 frequencies [0.09125, 0.125,0.375,0.5,0.625,0.875,1,2,8] Hz.

From the first data set, we build the baseline model noted m by using a steepest-descent gradient
optimization algorithm available in POLYEM3D. The starting model is homogeneous with a resistivity
set at 20 (2.m. The inversion is stopped after 200 iterations with an horizontal smoothing window of
500 m to remove the sensibility to singularities at station positions. An additional preconditioning is
used to limit too high sensitivity close to the transmitters and compensate for loss of sensitivity with
depth (Plessix & Mulder 2008).

Baseline reconstruction depicts the resistivity variations from the data set acquired in September
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Figure 10. 3-D view of the baseline model. Red dots indicate the receiver locations and blue dots the extremities
of the source cables for POL1 and POL2. The RN15/IDDP2 well is located at the intersection of the two vertical
slices. With the vertical N-S section is indicated on figure 9. The horizontal slice is displayed for a depth of

1200 m depth. Bottom right inset is the horizontal slice at surface. Roads are represented by thin green lines.

2016 (Figure 10). The baseline inversion underlines a highly resistive shallow layer down to 250-300 m
depth with a thickening toward the South. Deeper, a bubble-shape zone located at 1.2 km depth at the
center of the model is characterized by low resistivities (1-2 {).m). At the surface, a low resistivity
region seems to follow the coastline in the northern part of our survey. This anomaly must be related
to the sea or seawater intrusion inland (Georgsson 1981). Although our inversion are affected by the
ocean we decided to not model its effects, it is limited by several aspects. First, since ocean is not
directly present between the source and receivers the effect will be limited. But with or without ocean
layer in the modeling we retrieve a very conductive anomaly in the model between the source and the
receivers. This is mainly due to strong saline water infiltration in-land reported by previous studies
(large ERT profiles, Georgsson (1981)). Thus, including (or not) water in the modeling is not giving
very different results for the baseline. Second, from a time-lapse point of view this effect will be
considered as static shift and will be removed using the double difference strategy. As a consequence,
main results will not be changed by including or not the water in the modeling.

To assess the quality of the inversion, data misfit between observed and predicted data is analyzed
as shown for stations 8, 14 and 18 in figures 11, 12 and 13. Module and phase are compared for
predicted data at the last and first iteration with the observed data. We see a good improvement both

in module and phase over the studied frequency band. The starting RMS is 125% and ends up at 28%
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at the last iteration. Black lines (prediction for an homogeneous medium) are quite far of the observed
data for the y-component compared to the Xx-component. A substantial improvement appeared for the
y-component in phase and module for data predicted at the end of the inversion process. A change
of sign of the electric field is observed around 0.7Hz, with significant variations of the phase at this
frequency.

To cross-validate the resistivity model, we superimpose at the RN15 well location a resistivity log
(Figure 14 a). This reinterpreted log is defined from the observed resistivity log of the RN15/IDDP2
well (Reinsch 2016) and surface geology (no data shallower than 200 m). On field, the shallowest layer
is composed of relatively unaltered recent lava flows fitting well with the high resistivity in surface
in the south part. A strong resistivity change can be seen between the North and the South part (see
horizontal slice of figure 10). We can notice a low-resistivity structure around the RN15/IDDP2 well
located at the intersection of the two vertical slices (Figure 10). Below the lava layer, the resistivity log
indicates a more conductive layer (1 {2.m) over 800 m overlaying a 20 {2.m on 1150 m. The conductive
layer is considered as the cap of the geothermal reservoir. Due to the limited penetration depth of

CSEM method and local geology we cannot reasonably sound deeper than 2 km.

5.4 Parallel, sequential and double-difference on the Reykjanes site

Once an acceptable baseline is found, we proceed to the inversion of the monitor data. First, we test the
double difference scheme which gives the best results for synthetics with noise. The main structures
are recovered between the baseline and the monitor inversion (Figure 14 (b,c)). For instance, the clear
thickening of the shallow resistive layer toward the South is clearly visible on both sections (between
4200 to 5200 m along the section on figure 14 (b,c)). For the double difference strategy, RMS is equal
to 1% and reaches a minimum at 0.6% after 200 iterations. Comparisons between baseline and monitor
model are not straightforward since we expect a small time-lapse signal. To do so, absolute and relative
differences are computed between the baseline and monitor models.

Absolute differences highlight the highest resistivity variations whereas relative changes empha-
size on larger variations according to the baseline values. Because of the presence of high resistivity
lava, we expect larger absolute variations in the first hundred meters. As a matter of fact, larger time-
lapse signals occur over the first 500 m below the surface. A relative change of -4.8 % can be observed
for the first hundred meters between 4200 to 6000 m away from the source. If such variations are
resolved and not dominated by noise propagation, it may be induced by water content variations in-
side basalt layer that might have changed between the two surveys. Nonetheless, relative difference
from the baseline model show deeper variations down to 1200 m but at lower values. Deeper 500 m,

relative variations goes below 3 % which implies a time-lapse signal at the threshold of repeatability.
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Figure 11. Module and phase of the horizontal electric field. The electric field is represented along the x-
component (left column) and y-component (right column). Predicted data for an homogeneous model at 20 2.m
(black lines), observed data (blue lines with stars) and synthetics at the 200th iteration of the 3-D inversion

(green lines with stars) are displayed. Station location can be found on figure 9.

The time-lapse model is dominated by an increase of resistivity with a noticeable negative time-lapse
signal between 500-1000 m depth below the RN15 well. But such changes indicate time-lapse changes
of the same order than repeatability level (2-3%) except for subsurface variations (-4.8% at 4400 m
and 6.28% 3700 m away from the source for a depth of 200 m). Such changes suggest no temporal
changes of the resistivity or below the detectability threshold for the studied frequencies (< 2 — 3%).

To assess performances of the different time-lapse inversion strategies, we apply the three previous
schemes to the real data set of Reykjanes. Parallel, sequential and double difference inversion schemes
are conducted. Figure 14 shows the absolute and relative differences for the three schemes: (d,e)
double difference, (f,g) sequential and (h,i) parallel schemes. The relative difference for the sequential
inversion indicates large negative decrease of resistivity at depth of 1100 m with a value of 4.9%.
Unlike the relative difference of the double difference scheme, higher values are no more located at
the shallower layer of the model but at depth of 1000 m. These differences might be induced by a

combinations of several factors. Temporal changes may have an impact on relative differences, but
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Figure 12. Module and phase of the horizontal electric field. The electric field is represented along the x-
component (left column) and y-component (right column). Predicted data for an homogeneous model at 20 2.m
(black lines), observed data (blue lines with stars) and synthetics at the 200th iteration of the 3-D inversion

(green lines with stars) are displayed. Station location can be found on figure 9.

signals from the unfitted data of the baseline inversion can be mapped in the time-lapse model. If the
baseline model is properly recovered, time-lapse signal for the sequential inversion should be close to
the double difference inversion. In this case, baseline reconstruction seems to be insufficient for proper
use of the sequential scheme.

Relative changes for the parallel inversion look closer of the double difference with noticeable
differences in the amplitudes (Figure 14 (h,i)). Strong amplitudes are visible at 1100 m with positive
anomaly above 8% which is well above the detectability threshold. High amplitudes can be mainly
attributed to the strong non-uniqueness in CSEM problems. In that case, we may easily conclude to
an increase of resistivity at depth of 1100 m where such changes are expected from the steam cap
development.

Though, we should remind the plurality of factors polluting the time-lapse signals. For parallel
inversions: unfitted baseline structures, static shift structures and noise (correlated and not) are inverted

in the same time as temporal resistivity changes. So far, we have no tool to discriminate between these
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Figure 13. Module and phase of the horizontal electric field. The electric field is represented along the x-
component (left column) and y-component (right column). Predicted data for an homogeneous model at 20 2.m
(black lines), observed data (blue lines with stars) and synthetics at the 200th iteration of the 3-D inversion

(green lines with stars) are displayed. Station location can be found on figure 9.

different factors through the parallel inversion. The resistivity increase could be a time-lapse signal

from the steam cap as well as the focusing of data noise.

6 DISCUSSIONS AND CONCLUSIONS

In this study we investigate several time-lapse inversion strategies to infer the temporal changes of re-
sistivity. We compare the commonly used parallel inversion framework with the sequential and double
difference schemes. The dependence of the three techniques to the starting model is studied, and we
assess their robustness to noise. Parallel difference is the most straightforward and commonly used
approach in resistivity monitoring. Since the inverse problem is non linear, this approach is dependant
on the inversion path, and therefore on the starting model. In case where the starting model is rough
and far from the solutions, the paths are very different between baseline and monitor inversion, and
the model difference may results in artefacts including large scale structures only due to the different

inversion paths. This approach is also sensitive to correlated and uncorrelated noise.
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Figure 14. a) Interpreted resistivity log at the RN15/IDDP2. North-South sections of (b) the baseline inversion
with a starting model at 20 €2.m, (c) monitor inversion using the double difference scheme with baseline model
as starting model. Time-lapse sections computed with (d,e) double difference (DD) (f,g) sequential (SQ) (h,i)
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relative difference compared to the baseline. Well RN15/IDDP12 is displayed as a vertical black lines on cross-
sections. Reversed red triangles are the projected locations on the cross-sections of all CSEM receivers used in

the inversion.
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Sequential inversion scheme starts with the baseline model construction. We show on synthetics that
this approach is very dependant on the quality of the baseline model and can easily produces in the
monitor model artefacts caused by unexplained parts from the baseline inversion. Therefore, this ap-
proach is highly dependant on the starting model and on the static noise which strongly affect the data
fit of baseline inversion.

On the other hand, the double difference inversion (or differential inversion) focuses on the time-lapse
signal only. By isolating the time-lapse signal it allows to focus exclusively on temporal resistivity
changes. We show this approach is much more robust to noise because static noise and modelling
errors are completely removed. Double difference is also less dependant on the starting model. In par-
ticular, we demonstrated on synthetic experiments that even starting from an very rough initial model
such as an homogeneous resistivity background, the double-difference inversion maps the resistivity
anomalies to their right place and generates very few artefacts. Quantitative estimation of the time-
lapse resistivity variations however is still dependant on the quality of the baseline model. It is also
interesting to note that using double-difference inversion allows to fit time-lapse signals that are lower
to baseline inversion data residual level, and also lower that total signal noise level. It is also possible
to image and localize resistivity variations even without a proper baseline reconstruction, or with a
baseline model built with independent information. For instance, a large scale baseline model could
be built with well logs, geological knowledge or a dense EM geophysical survey, and the monitoring

performed with a reduced subset of the EM survey kept permanent between time steps.

These comparisons are applied to a time-lapse land CSEM survey acquired at 1-year of interval
over the Reykjanes geothermal field before and after a stimulation phase. A potential time-lapse signal
generated by the steam cap development is expected to be small and we should not see important
variations during the time. The double-difference strategy highlights no peculiar signals coming from
the geothermal exploitation with relative difference below the repeatability threshold. Sequential and
parallel schemes would suggest significant but inconsistent temporal changes in the resistivity of the
medium considering the repeatability rate. But as shown with synthetic tests, these time-lapse signals
are contaminated by potential incomplete reconstruction of the baseline and by the strong non-linearity

of the inversion process.

A next step would be to quantify the ratio between time-lapse signal and the combination of the
uncorrelated noise for the double difference scheme. Of course, random noise is never reduced by
data combination and it would be interesting to analyze the impact of the noise propagation on the
time-lapse resistivity changes. Since the CSEM problem is intrinsically non linear noise propagation

study is not straightforward and Bayesian recipes would maybe be useful to look over that point. An
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other point that was not explored in this paper is the high potential of combining prior information, and
in particular geometrical constrains often available in time-lapse studies, to the time-lapse differential
imaging. Nevertheless, double-difference strategy is a remarkable tool for geophysical monitoring and
especially for strongly non-linear problems such as resistivity imaging, which has to be preferred over
the other inversion schemes when it is possible. Its use may certainly improve the current inversion

philosophy for time-lapse problem in resistivity monitoring.
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APPENDIX A: MODELLING AND INVERSION GRID
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Sources

Figure Al. Entire survey layout for synthetic tests with receivers (red dots) and sources (black circles). Model-

ing grid is display along the three directions.
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Figure A2. Vertical and horizontal slices of the true model with nodes used for the inversion. These nodes are

supports for the B-cubic splines used for parametrization in the inversion.



