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Abstract
The 2016 Kumamoto earthquake (main-shock: Mw 7.0, April 16th) has induced a wide-
spread disruption of lifeline systems across the affected area. In Uki City (Kumamoto pre-
fecture, Japan), water supply had been intermittently cut off for several days: as a result, 
around 50 repair operations on various locations of the underground pipeline system have 
been carried out by municipal services. In order to better constrain the vulnerability of such 
infrastructure with respect to future earthquakes, the collected empirical data is exploited 
to derive repair-rate functions for ductile pipelines (ductile iron and polyvinyl chloride) of 
small diameter (less than 100 mm). Due to the relatively low number of data points over 
a limited range of seismic intensity, the derivation of purely empirical damage function 
appears to be subject to significant statistical biases. Therefore, a Bayesian updating frame-
work is adopted, where prior information on the parameters of the repair-rate function is 
estimated from existing damage functions from the literature. Moreover, the uncertainty 
related to the characterization of the Peak Ground Velocity at the location of the pipelines 
is taken into account by: (i) the generation of shake-maps with different assumptions on 
ground-motion prediction equations or fault models, and (ii) the inclusion of a spatially 
correlated field of the intra-event shake-map error term (i.e., modelling of the inherent var-
iability of the seismic intensity). The results show that the derived repair-rate equation is 
consistent with some existing functions for ductile and earthquake-resistant pipeline seg-
ments. The effect of specific land conditions (e.g., topographic/geological factors) is also 
investigated, with the possibility to further parametrize the repair-rate function. Finally, the 
developed damage functions are applied to stochastic simulations of the seismic perfor-
mance of the water network, while keeping track of various sources of uncertainties and 
quantifying their impact on the system’s loss distribution.
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1  Introduction

Critical infrastructure systems such as utility networks have proven to be essential com-
ponents of crisis management and recovery operations following an earthquake disaster. 
Due to the increasing interdependencies between systems, critical facilities such as hos-
pitals or emergency centres may suffer from a prolonged loss of water or electrical power 
supply, even though the buildings’ structures are likely to withstand the seismic loading 
(in countries where strong seismic building codes are enforced). For instance, the Mw 7.0 
main-shock of the 2016 Kumamoto earthquake that occurred in Kumamoto (Japan) on 
April 16th, led to the disruption of most utility services: electrical power and water supply 
were cut off for around half a million dwellings, and gas supply outage concerned around 
100,000 dwellings, while most restoration operations lasted between several weeks and 
2 months (source Asian Disaster Reduction Center).

Such events are far from exceptional in highly seismic areas such as Japan, and they 
raise the need for an accurate and precise assessment of the performance of critical util-
ity systems like water supply networks. Seismic damage models for buried pipelines have 
been developed for a few decades, mostly under the form of repair-rate (RR) functions (i.e., 
expected number of leaks or breaks per km of pipeline), with empirical data collected from 
past earthquakes (e.g., Katayama et al. 1975; Isoyama and Katayama 1982; O’Rourke and 
Ayala 1993; Eidinger et al. 1995; ALA 2001; O’Rourke et al. 2012). These models have 
been the object of detailed reviews (Tromans 2004; Kakderi and Argyroudis 2014; Gehl 
et al. 2014), which contribute to raise several issues:

	 (i)	 a significant variability is observed between the RR provided by different models 
(i.e., sources of epistemic uncertainty);

	 (ii)	 most models rely on a limited number of data points, which are often extracted 
from a single earthquake event (e.g., Isoyama et al. 1998; O’Rourke and Jeon 1999; 
Pineda-Porras and Ordaz 2007);

	 (iii)	 the dispersion associated with the regression from empirical data is most of the time 
not mentioned, leading to an underestimation of the uncertainty associated with the 
pipeline damage models.

The issue of epistemic uncertainties in the seismic loss assessment of infrastructure sys-
tems has recently been raised by Cavalieri and Franchin (2019), who have used a logic tree 
of various models (from seismic source parameters to fragility functions) and have applied 
Analysis of Variation to a virtual city comprising built areas and a water network. This 
procedure enables the identification of the most influential parameters on the outcomes of 
the risk analysis, and the authors have shown a significant impact of the variability between 
fragility models. In parallel, some studies have investigated the effect of uncertainties in 
the hazard estimation when deriving empirical fragility functions (i.e., estimation of the 
spatial distribution of the intensity measure (IM) of interest, following the earthquake 
event). This issue has first been tackled by Straub and Der Kiureghian (2008), who have 
proposed a statistical model that relies on statistical dependence between damage obser-
vations in order to derive fragility functions for electrical stations: to this end, an estima-
tion error on the Peak Ground Acceleration (PGA) is introduced in order to account for 
the fact that the hazard estimates are obtained from ground-motion prediction equations 
(GMPEs) coupled with recorded observation at nearby sites (i.e., updated ground-motion 
field, or shake-map). When deriving fragility functions for buildings, explicit modelling of 
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the uncertainty in the hazard estimation has also been proposed by Ioannou et al. (2015) 
and Yazgan (2015), who show that significantly flatter fragility functions are obtained as 
a result. More recently, Ioannou et al. (2020) have explored the building damage database 
for the 1980 Irpinia earthquake (Italy) in order to derive empirical fragility functions: they 
have tested statistical models of increasing complexity (e.g., uncertainty in the estimation 
of the IM, spatial correlation of the intra event residual, presence of recorded observa-
tions). To this end, a Bayesian updating framework, based on a Markov-chain Monte-Carlo 
(MCMC) sampling algorithm, has been developed in order to obtain posterior distributions 
of the fragility parameters.

Therefore, the main objective of this study is to apply a Bayesian updating method, 
based on developments similar to the approach by Ioannou et  al. (2020), for the deriva-
tion of empirical RR functions for buried pipelines, using damage data from the Kuma-
moto earthquake main-shock. The Bayesian approach is well suited to the case where few 
data points are available, since the developed model can rely on the prior distribution that 
is estimated from the numerous RR functions available in the literature. Moreover, the 
uncertainty in the estimation of the IM is to be accounted for through ad-hoc shake-maps 
that are computed using records from KiK-net and K-NET stations (Aoi et al. 2004: NIED 
2019) and various assumptions (i.e., fault geometry, GMPEs, soil amplification models). 
It is then expected that the posterior damage model, along with a proper uncertainty struc-
ture, may be applied to Japanese urban settlements with more confidence than currently 
available models. Moreover, thanks to the recorded and observed data from the earthquake, 
it is possible to replay the earthquake scenario with posterior hazard and damage models 
(i.e., shake-maps and updated RR functions) and to compare the projected losses with a 
priori scenarios that use generic models and parameters. A comparison between these two 
extreme configurations (i.e., no a priori knowledge vs. updated knowledge from observa-
tions) is expected to deliver valuable lessons on which components of the risk analysis 
chain have the most impact of the variability of the incurred losses to the water supply 
system.

Section 2 of the paper presents the water network of Uki City and the collected damage 
data, as well as the underlying assumptions and parameters that are considered for the com-
putation of shake-maps. Then, Sect. 3 details the methodological developments carried out 
in order to apply a Bayesian updating approach to the damage data and to deliver updated 
RR functions for the buried pipelines. Finally, in Sect.  4, stochastic loss scenarios from 
the Mw 7.0 Kumamoto earthquake are generated, using two distinct sets of assumptions 
(i.e., a priori vs. a posteriori models and parameters): in both cases, Sobol’ indices (Sobol’ 
1990) are computed in order to identify the contribution of each uncertain component to 
the total variability. To this end, two loss metrics are introduced for the water supply net-
work, namely one based on aggregated physical damage (total number of repairs needed) 
and the other based on systemic behaviour (connectivity loss between sinks and sources).

2 � Available data and modelling assumptions for the Mw 7.0 Kumamoto 
earthquake event

This section presents the characteristics of the water supply network of Uki City, in the 
Kumamoto Prefecture, where detailed damage data have been collected. It explains also 
the approach that has been chosen for the estimation of the hazard distribution (i.e., shake-
maps derived from various assumptions).
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2.1 � Characteristics of the water network system of Uki City

Uki City is a municipality of around 60,000 inhabitants located nearby Kumamoto City, 
for which the layout of the water supply network has kindly been made available for 
the purpose of this study (see Fig. 1). The network is roughly composed of two distinct 
parts, i.e. the Misumi area in the peninsula (Western part—around 130 km of pipelines) 
and the Matsubase area in the centre of the city (Eastern part—around 378 km).

Localized information (i.e., pipeline by pipeline) about the physical characteristics of 
the network, such as pipeline material, are not available. However, the post-earthquake 
account by Wham et al. (2017) delivers valuable information about the global character-
istics of the network. The global distribution of pipeline materials is detailed in Table 1, 
where it can be noted that more that 90% of the pipelines in the main area (Matsub-
ase) consist of ductile materials (ductile iron, polyvinyl chloride or steel). In terms of 
pipe diameter, also according to Wham et al. (2017), most pipelines are of small (73.5% 
between 30 and 100 mm) to moderate diameters (26% between 125 and 450 mm), with 
only a fraction of large diameter (over 500  mm) pipelines (0.5%): this distribution is 
corroborated by the information obtained from the municipality of Uki City, which has 
enabled the identification of the spatial localisation of the main categories of diameters 
(see Fig. 11).

Fig. 1   Situation of Uki City and of the water supply network with respect to the projected faulting of the 
Mw 7.0 Kumamoto earthquake main-shock (three different fault geometries considered)
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2.2 � Estimation of the ground‑motion intensity around the water network

An estimation of the spatial distribution of ground-motion parameters is necessary in 
order to associate the location of the observed damage data with a range of IM. Since 
most RR functions available in the literature (Gehl et al. 2014) are expressed as a func-
tion of Peak Ground Velocity (PGV), it has been decided to select PGV as the IM of 
interest for the rest of the study.

After the earthquake occurrence, it is possible to make use of recorded ground 
motions at nearby stations in order to update the predicted ground-motion field and to 
better constrain the distribution of intensity measures (i.e., shake-maps). In the present 
case, available PGV shake-maps at a satisfying resolution may be retrieved from the 
U.S. Geological Survey ShakeMap® service (Wald et  al. 2006), or from the Japanese 
QuiQuake service (https​://gbank​.gsj.jp/QuiQu​ake). However, the USGS ShakeMap® 
uses a site amplification model that evaluates VS,30 from topographic slopes (Wald 
and Allen 2007): this approximation is efficient when no other soil data is availa-
ble, but Japan benefits from a country-wide site amplification map at a resolution of 
250  m (J-SHIS model, www.j-shis.bosai​.go.jp/en/downl​oads). Moreover, the USGS 
ShakeMap® only uses recorded data from the K-NET seismic network. The QuiQuake 
shake-map, on the other hand, exploits data from both K-NET and KiK-net networks 
and it relies on the J-SHIS site amplification model. However, the QuiQuake shake-map 
provides only median PGV values, with no indication of the standard-deviation values 
that are required in order to characterise the distribution of the IM.

Therefore, it is proposed to tailor specific shake-maps that fit exactly the needs of 
this study, with the site amplification model from J-SHIS, all recorded ground-motion 
parameters from K-NET and KiK-net, and a full probabilistic description of the dis-
tribution of PGV. To this end, the approach developed by Gehl et  al. (2017) for the 
derivation of shake-maps using Bayesian networks is applied here: as demonstrated by 
the authors, this method generates an accurate probabilistic distribution of the updated 
ground-motion field, thanks to the Bayesian updating of the inter-event and intra-event 
error terms of the GMPE outcomes (i.e., a priori distribution of the ground-motion 
field). The ground-motion field is updated in the vicinity of the seismic stations thanks 
to the spatial correlation of the intra-event errors, and the global level of the ground-
motion field is adjusted through the updating of the distribution of the inter-event error. 

Table 1   Distribution of material properties of the water pipelines in Uki City, from Wham et al. (2017)

Pipe material Misumi area—West (%) Matsubase 
area—East 
(%)

Ductile Iron (DI) 16 27
Earthquake resistant ductile iron (ERDIP) 13 –
Polyvinyl Chloride (PVC) 61 61
High density polyethylene (HDPE) 5 –
Cast Iron (CI) – 1
Steel (S) – 3
Other 5 8

https://gbank.gsj.jp/QuiQuake
http://www.j-shis.bosai.go.jp/en/downloads
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This Bayesian approach uses very similar principles as the updating method proposed 
by Worden et al. (2018) for the version 4.0 of ShakeMap®.

For the earthquake main-shock, PGV shake-maps are generated by considering a Mw 
7.0 shallow strike-slip rupture. Recorded data from 83 K-NET and 22 KiK-net stations are 
exploited, by selecting the stations that are within 100 km of the epicentre. The exponential 
spatial correlation model by Jayaram and Baker (2009) is used, with a correlation distance 
d = 25 km for PGV. Two GMPEs are tested in the shake-map procedure, namely the global 
model by Chiou and Youngs (2008) and the specific PGV model that has been developed 
for Japan by Si and Midorikawa (2000). Source-to site distance metrics, such a distance to 
rupture Rrup and Joyner-Boore distance Rjb, are estimated from three different 3-D models 
of the fault geometry (see fault projection surfaces in Fig. 1), namely the source models 
proposed by USGS, by Kubo et al. (2016) and by Asano and Iwata (2016).

As a result, six different shake-maps are generated with different combinations of 
GMPEs and source models (see Table 2 and Fig. 2). Shake-maps generated with the Si and 
Midorikawa (2000) GMPE (S21 to S23) tend to predict PGV values and display stronger 
contrast between soil types: this difference may be due to the direct amplification factors 
that are used in Si and Midorikawa (2000), instead of VS,30 values in Chiou and Youngs 
(2008). Also, the effect of the fault geometry on the shake-maps in near-field area is quite 
significant, with highest PGV values obtained when the Kubo et al. (2016) fault model is 
used. As a general comment, it is worth noting that large differences are observed between 
the six shake-maps, although the same processing method has been applied: this point rein-
forces the need to properly account for epistemic uncertainties, as well as aleatory (i.e. 
the standard deviation associated with the median PGV values), in the hazard assessment 
stage.

2.3 � Reported damage to the water network system

The Mw 7.0 Kumamoto earthquake main-shock has led to water supply outage in thousands 
of dwellings, mostly in the central part of the city (Matsubase area). For several weeks and 
months following the event, municipal services have proceeded to the detection of leaks 
across the water network. As a result, dozens of repair operations have been carried out, 
mostly on the central part of the network, while the Western part (Misumi area) has been 
unaffected by the earthquake. Therefore, only the main network layout in the Matsubase 
area is considered in this study. The municipality of Uki City has provided an account of 
the repairs, which translate into 50 damage data points that are summarized in Fig. 3.

Table 2   Modelling assumptions for the six different shake-maps

Name GMPE Fault model Site amplification model

S11 Chiou and Youngs (2008) USGS Vs,30 from J-SHIS
S12 Chiou and Youngs (2008) Kubo et al. (2016) Vs,30 from J-SHIS
S13 Chiou and Youngs (2008) Asano and Iwata (2016) Vs,30 from J-SHIS
S21 Si and Midorikawa (2000) USGS Amplification factors from J-SHIS
S22 Si and Midorikawa (2000) Kubo et al. (2016) Amplification factors from J-SHIS
S23 Si and Midorikawa (2000) Asano and Iwata (2016) Amplification factors from J-SHIS
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Additional data obtained from the municipality of Uki City have led to the identi-
fication of the characteristics (material type and diameter) of the pipelines where the 
repair operations have been performed. (see Table  7 in “Appendix”). It is observed 
that all damage points are related to small diameter pipelines (less than or equal to 
100 mm). Moreover, almost all repairs concern PVC (polyvinyl chloride) and DI (duc-
tile iron) pipelines, with the exception of a handful of pipelines for which the mate-
rial is unknown. In addition, according to the collected data, larger pipelines appear to 
be made either of steel or other material, while the overwhelming majority (more than 
90%) of small pipelines is made of either PVC or DI. Therefore, the collected damage 
data will be used to estimate RR functions for a limited type of pipeline, namely ductile 
pipes (PVC and DI) of small diameter (≤ 100 mm).

In Fig. 3, the damage locations are plotted with respect to the estimated PGV distri-
bution from shake-map S11, as an example. Distinct pockets of damage may be seen 
across the network: two groups in the north, and one in the southeast. At first, there is 
no obvious trend between damage locations and PGV values, and some areas affected by 
the largest PGV (i.e., northeast of the network) have not sustained any damage. Other 
shake-maps, expressed in terms of PGA or Spectral Acceleration (SA) at various peri-
ods, have also been derived in order to check the correlation of other types of IM with 
the damage distribution; yet the results are not conclusive. It should be noted that no 
evidence of permanent ground deformation near the water network has been observed 
(source Disaster Information Laboratory—NIED), which is why the present study only 
concentrates on damage models due to wave propagation (commonly expressed as a 
function of PGV for buried pipelines).

Fig. 2   PGV shake-maps derived using the different assumptions on fault geometry and GMPEs
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3 � Derivation of empirical damage functions for the water network

This section describes the method developed for the derivation of empirical damage 
functions, using the Uki City damage data. First, existing RR functions are used in 
order to build a prior distribution of the damage parameters. Then, a Bayesian updat-
ing approach is designed in order to develop posterior damage models under various 
assumptions.

3.1 � Review of existing damage functions

Due to the characteristics of the water network (see Table 2) and the occurrence of the 
damage events, only RR functions for ductile pipelines with small-to-medium diameters 
are investigated. From the review of RR functions by Kakderi and Argyroudis (2014), 
the selected damage models are detailed in Table 3. Most of the equations take the form 
of RR = a.IM b, which is chosen as the underlying mathematical function to be charac-
terized in the subsequent Bayesian framework. Most models provide a rough parametri-
zation based on the type of material (or just brittle vs. ductile) and very few of them 
consider the pipeline diameter as a parameter. This level of detail is compatible with the 
level of knowledge that can be gained from the available characteristics of the network 

Fig. 3   Layout of the main part of the water supply network (solid black lines), with the observed damage 
locations (red diamonds). The underlying PGV distribution is based on shake-map S11



693Bulletin of Earthquake Engineering (2021) 19:685–711	

1 3

(see Sect. 2.1), and with the selected typology on which to estimate RR functions, i.e. 
ductile pipes (PVC and DI) of small diameter (≤ 100 mm).

Since the analysis is focusing on small diameter pipelines, all pipelines larger than 
100 mm in diameter are not considered in the computation: as a result, the total exploit-
able length of the network is reduced to 276 km (as opposed to the total 378 km com-
posing the main part of the network).

The above-detailed RR functions are empirically derived using data from past earth-
quakes. A common procedure consists in the approach proposed by O’Rourke et  al. 
(1998), which follows these main steps:

(i)	 identification of the locations of pipelines repairs and of the network layout;
(ii)	 discretization of the area of interest into bins that are based on the level of the IM of 

interest;
(iii)	 in each bin, associated with a discrete IM level, computation of the number of repairs 

and of the length of pipelines;
(iv)	 in each bin, computation of the RR as the ratio of number of repairs over length of 

pipelines;
(v)	 statistical regression over the RR data points in order to build the damage model.

Moreover, O’Rourke and Deyoe (2004) have introduced a criterion, based on the 
minimum length of pipelines that is required in order to derive statistically significant 
RR functions: (i.e., 95% confidence level that the RR is within ± 50% of the true value):

where l is the minimum number of kilometres of pipe in the bin, and RR is the repair-rate 
estimated within the bin.

(1)l ≥ 15.36 ⋅
1 − RR

RR

Table 3   Summary of existing RR functions susceptible to be applied to the Uki City water supply network. 
CI, DI and PVC stand for cast iron, ductile iron, and polyvinyl chloride, respectively

References RR function (PGV in cm/s) Modification factors

O’Rourke and Ayala (1993) RR = K
1
0.0001PGV2.25 K1 = 1 (brittle)

K1 = 0.3 (ductile)
Eidinger et al. (1995) RR = K

1
0.0001658PGV1.98 K1 = 1 (unknown)

K1 = 0.8 (CI)
K1 = 0.5 (steel, PVC)
K1 = 0.3 (DI)

Isoyama et al. (2000) RR = K
1
K

2
0.00311(PGV − 15)

1.3 K1 = 1 (CI, PVC)
K1 = 0.3 (DI, steel)
K2 = 1.6 (Φ 75 mm)
K2 = 1 (Φ 100–150 mm)
K2 = 0.8 (Φ 200–400 mm)

ALA (2001) RR = K
1
0.002416PGV K1 = 1 (CI)

K1 = 0.6 (Steel)
K1 = 0.5 (PVC, DI)

Maruyama et al. (2011)
RR = 2.42�

[

lnPGV−4.58

0.723

]

CI, PVC

RR = 0.76�

[

lnPGV−4.27

0.468

]

DI
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The empirical approach based on discrete bins is tested on the Uki City damage data: 
the PGV range from shake-map S11 is divided into five discrete intervals, in which RRs 
are estimated (see Table 4). The first four bins show a regular progression of the dam-
age rate, with RR values that are comparable with the ones from existing equations; 
however, the last bin implies a sharp decrease in the predicted RR, which is not physi-
cally meaningful. Also, the application of the criterion by O’Rourke and Deyoe (2004) 
reveals that only bin #4 contains enough data to be statistically reliable, and all other 
bins fail to meet the test. Therefore, this preliminary investigation shows that the dam-
age data gathered from the Mw 7.0 Kumamoto earthquake main-shock is not sufficient 
to derive a fully empirical damage model.

3.2 � Bayesian updating framework for the estimation of new parameters

As shown in the previous section, a higher-level statistical model is needed in order 
to cope with the limited amount of data. Therefore, a Bayesian updating framework is 
developed with the OpenBUGS software (Lunn et al. 2009). The global idea consists in 
generating a prior distribution of RR parameters from available equations in the litera-
ture, and in updating the distribution with the reported damage data and the correspond-
ing ground-motion estimates. The Bayesian updating algorithm in based on the one ini-
tially developed by Ioannou et al. (2020) for the estimation of empirical fragility curves 
for buildings. The main differences reside in the use of an explicit spatial correlation 
model for the ground-motion field, and in the selection of a different probabilistic model 
for the sampling of damage states. In the case of linear components such as buried pipe-
lines, it is commonly assumed to use a Poisson distribution in order to model the prob-
ability of component i to experience k damage events, given a mean rate λi (i = 1..N, 
with N the number of pipeline segments in the network):

The rate λi depends on the length Li of the pipeline component and on the estimated 
repair rate RRi:

In the present application, the functional form RR = a.IM b is assumed, since it corre-
sponds to a majority of the existing equations (see Table 3). The RR function is elevated 
to the logarithmic space, in order to improve the stability of the computation:

(2)P
(

Di = k|�i
)

=
�
k
i

k!
e−�i

(3)�i = Li ⋅ RRi

Table 4   Discretised bins and 
associated damage data

Bin PGV range (cm/s) Pipeline 
length (km)

No. of repairs RR

#1 [27.2–35.0] 7.3 0 0.000
#2 [35.0–45.0] 24.8 3 0.121
#3 [45.0–55.0] 47.2 9 0.191
#4 [55.0–65.0] 115.7 32 0.277
#5 [65.0–72.4] 81.2 6 0.074
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Therefore, the variables θ = {ln a; ln b} constitute the parameters that need to be updated 
by the Bayesian algorithm.

The PGV field is provided by the shake-map estimates at the centroid of each pipeline 
segment i, with a median PGV value and an error rate εi:

At each site, the error term is decomposed into an inter-event term (η, common to all 
sites) and an intra-event term (ξi, specific to each site):

The distribution of the terms η and ξi is directly provided by the shake-map outputs; 
while the spatial correlation between the ξi terms is approximated by a Dunnett–Sobel 
decomposition (Dunnett and Sobel 1955), as detailed by Bensi et al. (2011) and Gehl et al. 
(2018) in the case of spatially distributed systems. Given a spatial correlation matrix R 
between the N sites, and standard Gaussian variables w and vi, the Dunnett–Sobel decom-
position provides the following:

where �
�
 is the standard-deviation of the intra-event error term (obtained from the GMPE) 

and the tij terms are the Dunnett–Sobel coefficients, which are estimated as follows:

where ril is elements of the correlation matrix R, so that the tij coefficients may be approxi-
mated through an optimization routine. The number of common source random variables 
m constitutes a trade-off between the complexity o the model (i.e., computational cost) and 
the accuracy of the decomposition: for the present problem, m = 3 has been found to pro-
vide a satisfying approximation.

As a result, the statistical model that is built in OpenBUGS is represented in Fig. 4. It 
is a mix of deterministic variables (i.e., see Eqs. 3–7) and probabilistic variables, which 
are sampled through a MCMC scheme. The variables that model the uncertainty field in 
the shake-map, i.e. nodes u, v and w, are root nodes with a marginal distribution that cor-
responds to the standard normal distribution. Another root node, θ, has a marginal distribu-
tion that represents the prior distribution of the parameters ln a and ln b. This distribution 
is obtained by plotting all RR functions from Table 3 and by fitting parameters that cor-
respond to the 16–84% confidence estimates of the plotted curves: as a result, a bi-variate 
normal distribution is adopted, with μlna = −8.09, σlna = 0.85, μlnb = 0.49, μlnb = 0.22 and 
ρlna, lnb = -0.74.

Evidence is inserted at the level of the Di variable, where the number of reported 
repair operations for each pipeline segment is specified. Three MCMC chains are initi-
ated, with different combinations of initial conditions (i.e., starting values of the proba-
bilistic variables such as θ): each Markov chain is initiated with largely different val-
ues, in order to ensure that the three chains manage to converge to similar posterior 

(4)lnRRi = ln a + exp(ln b) ⋅ lnPGVi

(5)lnPGVi = lnPGVi + �i

(6)�i = � + �i

(7)�i = �
�
⋅

⎡

⎢

⎢

⎣

�

�

�

�1 −

m
�

j=1

tij ⋅ w +

m
�

j=1

tij ⋅ vj

⎤

⎥

⎥

⎦

(8)ril ≈

m
∑

j=1

tij ⋅ tlj



696	 Bulletin of Earthquake Engineering (2021) 19:685–711

1 3

distributions even though they originate from different regions of the space of variables. 
The Markov chain are built using the Gibbs sampling scheme in OpenBUGS, where 
variables are successively sampled from the posterior distribution of previous variables: 
the posterior distribution of a variable is obtained from the product of the prior distri-
bution (e.g., initial estimate of θ) and the likelihood function (e.g., Eq.  2 for a given 
observation on a pipeline segment). Each chain generates 90,000 samples, from which 
the 30,000 first samples are removed (i.e., burn-in sequence of the chain). Out of the 
remaining 60,000 samples, only 1 out 500 samples is kept in order to reduce undesired 
auto-correlation effects. For both parameters ln a and ln b, the R_hat statistic is equal 
to one, indicating a satisfying convergence of the MCMC chains. As an example, gen-
erated samples from the three MCMC chains are represented in Fig. 5, along with the 
prior and posterior distributions of parameters ln a and ln b.

In Fig. 5, a slight shift of the mean of ln a and ln b is observed, while the generated 
samples show a smaller dispersion than in the initial distribution, thanks to the field 
observations. The Bayesian updating procedure is applied to each of the six shake-maps 
detailed in Sect. 2.2 (see Fig. 6). Some differences between the resulting RR functions are 
noticeable: in some cases, models show a significantly reduced dispersion (e.g., models on 
shake-maps S12, S21 and S22). Also, the model based on S11 predicts higher repair rates 
than others (e.g., S12 or S22). However, in general, all six models predict repair-rates that 
are below the median values of the equations from the literature, thus showing the rela-
tively good performance of the pipelines during this specific earthquake event. Finally, the 
observed differences between the six models highlight the need to account for the uncer-
tainties related with the ground-motion estimation, when exploiting empirical data.

Fig. 4   Bayesian model implemented in OpenBUGS. Bold nodes represent stochastic variables, with their 
prior distributions. The blue node represents the damage variable evidenced from field observations
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3.3 � Bayesian updating framework accounting for different shake‑map models

In order to account for the difference between the shake-maps, another statistical model is 
built with the addition of a variable S that represents the choice of the underlying shake-
map (see Fig. 7). Therefore, S is a discrete variable with six possible states (i.e., from S11 
to S23) with a uniform distribution, since there is no a priori knowledge of which shake-
map version should be preferred.

This model is solved by using the same assumptions as the previous one, and the 
updated distributions are shown in Fig. 8. The integration of the variable S in the model 
leads to a single distribution of parameters ln a and ln b, which accounts for the contribu-
tions from the different shake-map versions. The samples generated by the MCMC chains 
are used to derive empirical distributions of RR, for each PGV value. Statistics are then 
extracted (e.g., 16th, 50th or 84th percentile) and the corresponding RR functions are 
plotted with respect to PGV. Finally, a least-square fitting of the curves is able to propose 
an analytical expression of RR = a.IM b, as detailed in Table 5. As observed in the previ-
ous section, the updated RR function tends to predict lower repair rates than most models 
retrieved from the literature. However, it is in good agreement with the damage models for 
ductile and earthquake-resistant pipelines, proposed by ALA (2001). In the right plot of 
Fig. 8, the updated distribution of variable S gives the posterior repartition of the six shake-
maps, as a by-product of the Bayesian updating process. This result does not imply that 
some shake-maps are closer to the “truth” than others are, but it shows which shake-maps 
are more able to statistically explain the observed damage distribution across the water 
network. Shake-maps S21 and S22, based on the Si and Midorikawa (2000) GMPE that is 
derived from Japanese ground-motion records, have the largest weight after the Bayesian 
updating. They are followed by shake-map S11, which is based on the USGS fault geom-
etry and on the Chiou and Youngs (2008) GMPE,

Fig. 7   Bayesian model implemented in OpenBUGS, with an additional categorical variable S representing 
the underlying shake-map
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3.4 � Bayesian updating framework accounting for specific soil conditions

Additional factors are investigated in order to better understand why specific clusters of 
damage location have been observed, especially in the North and Southeast part of the 
Matsubase network. To this end, a detailed map of the specific soil conditions around Uki 
City is superimposed on the observed damage locations (see Fig. 9). This soil condition 
map with the scale of 1:25,000 has been provided by Geospatial Information Authority 
of Japan (GSI) (2013). It is worth noting that most of damage has occurred on a handful 
of very specific soil types: 16 damages on Pleistocene low and medium terraces, 12 on 
reclaimed land, 8 on coastal plain and 7 on piled-up land.

Therefore, another statistical model is built, by augmenting the Bayesian model of 
Fig. 7 with another variable representing the soil condition of each pipeline. An additional 
parameter K1, representing the soil type, is then added to the functional form of the RR 
function:

The parameter K1 is only explicated for the soil types associated with the most damages 
(i.e., low and medium terrace, coastal plain, piled-up land, reclaimed land), while other soil 
conditions are aggregated into a common undefined category. This formulation is simi-
lar to the study, by Isoyama et al. (2000), who have introduced modification factors that 
account for the soil topography (e.g., terra, narrow valley, alluvial plain). The results of the 
Bayesian updating procedure accounting for the soil types are detailed in Fig. 10. A clear 

(9)RR = K1 ⋅ a ⋅ PGV
b
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Table 5   Proposed RR functions 
for various percentiles, with PGV 
in cm/s

16th percentile 50th percentile 84th percentile

RR 2.454.10−4 PGV1.554 2.759.10−4 PGV1.607 2.372.10−4 PGV1.728
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distinction between some soil types is observed, and the model predicts significantly higher 
repair-rates for reclaimed or piled-up land. However, the low amount of damage data for 
some soil types requires further investigation before consolidating this model. From Fig. 9, 
it can also be observed that most damage locations are close to the interface of contrasting 
soil types (e.g., between terrace and plain, or between natural levee and reclaimed land). 
Therefore, another statistical model using the interface between soil types as an additional 
modification factor would be useful, as it would be able to locate areas of larger damage 
likelihood with a higher accuracy. However, such a model would require a careful spatial 
study of the position of the damage locations with respect to soil type boundaries, while 
solving issues related to differences in spatial resolution.

4 � Main uncertainty sources in the generation of stochastic loss 
scenarios

This section recreates the Kumamoto earthquake scenario with the derived shake-maps and 
RR models, in order to compare the distribution of losses with the results that would be 
obtained when using a priori generic models. Various uncertainties sources at successive 
steps of the analysis are also investigated, so that their impact on the loss estimation may 
be quantified with respect to the level of knowledge that is available.

4.1 � Summary of possible modelling options and uncertainty sources

In order to generate stochastic scenarios on the losses induced to the water network by the 
Mw 7.0 Kumamoto earthquake main-shock, six sources of uncertainty Xi are considered. 
These stochastic variables intend to cover aleatory and epistemic uncertainties, from the 
characterization of the earthquake event to the sampling of damages across the network:

–	 X1 (epistemic, discrete): Fault geometry model to be used;
–	 X2 (epistemic, discrete): GMPE model to be used;
–	 X3 (aleatory, continuous): sampling of the inter-event error term in order to generate the 

ground-motion field;
–	 X4 (aleatory, continuous): sampling of the intra-event error term in order to generate the 

ground-motion field;
–	 X5 (epistemic, discrete): Damage model (i.e., RR function) to be used;
–	 X6 (aleatory, continuous): sampling of the damage states of the pipelines from the RR 

function (i.e., application of the Poisson distribution).

In order to consider the impact of these variables on the loss assessment of the water 
network, two extreme cases representing various levels of knowledge are introduced:

–	 Case #1: No a posteriori knowledge of the event is available (e.g., no ground-motion 
records, no shake-map, no observed damage), which corresponds to an ex-ante risk 
assessment using only generic predictive models.

–	 Case #2: All a posteriori knowledge of the event may be used (e.g. shake-maps, updated 
RR function), which corresponds to an ex-post risk assessment that benefits from spe-
cific and updated models.
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Depending on which case is considered, the stochastic variables Xi are sampled from 
various discrete or continuous distributions, as detailed in Table 6. It is worth noting that 
variables representing aleatory uncertainty (i.e., X3, X4 and X6) are sampled in a similar 
way, whatever the case considered. However, regarding GMPE error terms (i.e., X3 and 
X4), uncertainties in Case #2 are slightly reduced thanks to the application of the shake-
maps. Then, the intra-error term is sampled for each site i, while accounting for the spatial 
correlation between the sites. Finally, damage states (i.e., number of repairs following a 
Poisson distribution) are assumed to be sampled independently for each pipeline segment.

4.2 � Definition of system performance metrics

Two performance metrics are considered for the loss assessment of the water supply net-
work, namely:

–	 M1, the total number of repairs required along the network: it represents a global meas-
ure of the aggregated damage across the network. Such a metric is useful to estimate 
direct losses, which are related to the cost of physical repairs and to the amount of 
repair operations to be planned during the recovery phase.

–	 M2, the number of water tanks (i.e., sources) disconnected from a given distribution 
node (i.e., sink): it represents a local measure, specific to each sink, which estimates the 
robustness of the network. This metric relies on a connectivity analysis between sources 
and sinks and it specifically accounts for the system’s topology and redundancy.

More elaborate system performance metrics for water supply networks are discussed in 
the review by Modaressi et al. (2014): measures based on flow analyses, such as the system 
serviceability index (Wang et al. 2010) which provides the proportion satisfied customer 
demands after an earthquake, are able to estimate accurately system-level losses. In the 
present case, however, only topological features of the network are exploitable (i.e., there is 
no information on the water demand from the various districts, or the direction of circula-
tion of some of the pipelines), so that the connectivity analysis between sources and sinks 
can only provide a rough estimate of the performance of the system. For each pipeline seg-
ment, the occurrence of at least one damage point is sampled from the RR function, and it 
is assumed that a damaged pipeline is equivalent to a fully ruptured pipeline (i.e., no water 
flow between the edge’s extremities). Such an assumption is usually linked to the occur-
rence of actual breaks along the pipeline (as opposed to less severe leaks). Although the 
present study focuses on pipe leaks only (due to the absence of permanent ground deforma-
tion in the damaged areas), the assumption that pipe leaks are equivalent to flow interrup-
tion is supported by the fact that damaged sections of the network were quickly shut down 
in order to prevent water spillage and accelerate damage identification.

Since the estimated RR functions only pertain to small-diameter ductile pipelines, the 
computation of loss metrics M1 and M2 is only carried out on this pipeline typology, and 
pipelines of large diameter are considered as not vulnerable in the present example. Fol-
lowing the aforementioned assumptions, damaged pipelines are then removed from the 
adjacency matrix and the connectivity between various locations of the graph is com-
puted, for each sampled damage scenario. This loss assessment procedure is based on the 
OOFIMS (Objet-Orient Framework for Infrastructure Modelling and Simulation) software, 
developed by Franchin and Cavalieri (n.d.) for the seismic risk analysis of spatially distrib-
uted systems. Using satellite imagery and indications on the network layout, 13 reservoir 
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tanks are identified as the sources of the water supply system (see Fig. 9). In order to com-
pute the performance metric M2, four sinks (i.e., water distribution nodes) are then arbitrar-
ily chosen, as detailed in Fig. 11: this selection leads to 13 × 4 couples of source-sink, for 
which connectivity analyses are carried out.

4.3 � Generation of loss scenarios

For each case detailed in Table 6, the stochastic variables are sampled from 50,000 Monte 
Carlo simulations, in order to get stable estimates of the two loss metric M1 and M2. The 
empirical cumulative distribution of metric M1 is displayed in Fig. 12, for both cases. In 
Case #1, there is a large dispersion on the predicted number of repairs: possible values 
range from 22 (16th percentile) to 239 (84th percentile), with a median number of 78 
repairs. For Case #2, the dispersion is strongly reduced (29 at 16th percentile and 79 at 
84th percentile), while the median of 48 repairs is very similar to the 50 damage locations 
that have been actually observed. This finding is not surprising, since the collected damage 
evidence has been used to generate the same damage model that is injected in the forward 
analysis of Case #2. However, it provides a validation of the ability of the derived damage 
model and shake-maps to reproduce accurately the observed losses at a global level.

The same exercise is performed for loss metric M2, with respect to the four selected 
sinks: the bar diagrams in Fig. 13 represent the proportion of damage scenarios that have 
led to a given number of disconnected sources from each sink, for both Cases #1 and #2. A 
qualitative analysis of the plots reveals that there are roughly two types of sink behaviours. 
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Fig. 11   Layout of the water supply network with the sources (reservoir tanks, green circles) and four sinks 
(distribution points, red stars)
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Sinks #1 and #3 are located in secluded areas of the network, with often a single possible 
path from the sources to the sink: therefore, there is a tendency to disconnect all sources at 
once with only a few pipeline ruptures; while there is less chance that only a few sources 
are disconnected. On the other hand, sinks #2 and #4 are located in well-connected parts 
of the network, close to several reservoir tanks: it may happen that the connection to some 
of the sources is lost, however total disconnection from the network is much less frequent. 
When considering this loss metric, differences between Cases #1 and #2 are less obvious, 
although it is seen that fewer sources are disconnected in Case #2, which is in line with the 
lower damage distribution observed in Fig. 12.
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4.4 � Computation of Sobol’ indices

In order to investigate the influence of each uncertainty source on the loss metrics in both 
cases, Sobol’ indices (1990) are estimated for the variables detailed in Table 6. Sobol’ indi-
ces provide a decomposition of the variance of a model output Y (e.g., M1 or M2) into frac-
tions corresponding to uncertain inputs Xi:

where d represents the dimension of the problem, i.e., the number of uncertain factors 
(here, d = 6).

The first-order term, represented by fi(Xi) in Eq. 8, represents the main effect of factor 
Xi, while all subsequent interaction terms containing Xi represent the total effect of Xi. The 
Sobol’ indices are estimated thanks to Monte Carlo simulations with a design of experi-
ment based on the d dimensions. In the case of spatially distributed and continuous vari-
ables X4 (intra-event error at each site) and X6 (damage sampling for each pipeline), the 
“categorical parameter” approach by Lilburne and Tarantola (2009) is applied: multiple 
possible maps of X4 and X6 are sampled, and each realization is associated with a categori-
cal indicator that constitutes a pointer to the map in the design of experiments. The esti-
mated Sobol’ indices, for both metrics and both cases, are detailed in Fig. 14.

For Case #1, the main contributors to the variability of loss metric M1 are variables related 
to the hazard assessment part (X1, X2 and X3), as well as the choice of the damage model (X5): 
these variables influence the global level of hazard or damage rate, which is directly linked to 
M1. On the other hand, the influence of variables X4 and X6 is negligible: it is because these 
variables are sampled across a spatialized field, so that there is an averaging effect that leads 
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Fig. 14   Sobol’ indices (main and total effects) computed for both cases and both loss metrics
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to very little impact on a global loss metric such as M1. Loss metric M2 presents a similar pat-
tern, although variables X4 and especially X6 have more influence: due to the systemic nature 
of this loss measure, which is related to the topologic features of the network, the locations of 
the pipeline damages (i.e., represented by variable X6) become important.

Regarding Case #2, only variables X1 and X5 have a significant influence loss metric M1. 
From Fig. 2, it can be seen that the choice of the fault model (i.e., X1) greatly influences 
the resulting shake-map, and in turn M1. On the other hand, the influence of the choice 
of GMPE (i.e., X2) is somewhat diminished by the ability of the shake-map to adjust the 
ground-motion fields from observations: as seen in Fig. 2, the shake-maps from the two 
different GMPEs predict similar ground-motion levels in the Uki City area. Similar com-
ments can be made regarding the negligible influence of the GMPE error terms (i.e., X3 
and X4), which are constrained by the shake-map algorithm. Variable X5 has the largest 
relative weight, which means that further efforts should be made towards the reduction 
of uncertainties in the damage model, if the variability of M1 needs to be reduced. When 
considering loss metric M2 in Case #2, the largest relative weight represents the damage 
sampling (i.e., X6): this aleatory uncertainty cannot be reduced and it directly governs the 
spatial distribution of damage across the network and the source-sink connectivity. All 
other variables have a reduced influence on the variability of M2, which means that further 
reducing these uncertainties would not lead to a dramatic reduction in the dispersion of M2, 
as long as damage is sampled for each pipeline. Therefore, there is a strong need to design 
more discriminating damage models, which use more factors than PGV or pipeline mate-
rial and diameter: the investigation of the effect of specific soil conditions (i.e., Section 3.4) 
may provide some solutions, in order to refine the spatial distribution of damage.

5 � Conclusions

Various types of data collected after the occurrence of the Mw 7.0 Kumamoto main-shock 
event (April 16th 2016) have led to the derivation of ad-hoc shake-maps, to the estimation of 
empirical RR functions and to the reconstruction of the earthquake loss scenario with various 
modelling assumptions. The application of a Bayesian updating framework to the derivation 
of empirical damage models is able to account for epistemic and aleatory uncertainties related 
to the ground-motion distribution (i.e., different choices of source geometry and GMPE, and 
distribution of inter- and intra-event error terms). Existing RR functions collected from the 
available literature constitute the prior distribution, which is used to build a robust posterior 
distribution of damage parameters from a reduced number of damage observations (i.e., only 
50 damage locations over a 378 km pipeline network). In addition, the derivation of various 
shake-maps based on different modelling assumptions highlights the large variability in the 
ground-motion distribution, even when integrating post-earthquake information: this disper-
sion then induces a significant variability in the posterior distribution of the damage function. 
However, further refinement is possible by considering specific soil topography (i.e., addi-
tional modification factor based on soil type) or by investigating the effect of the transition 
areas between contrasting soil types. Globally, the derived damage models are comparable to 
existing RR functions, and they are in line with the models that are recommended for ductile 
and earthquake-resistant pipelines.

The second part of the study, devoted to the investigation of uncertainty sources when 
simulating loss scenario of the Kumamoto main-shock event with different levels of knowl-
edge, has led to several noteworthy lessons:
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–	 When considering a global loss measure that aggregates physical damage over the 
whole network (i.e., number of damages over all pipelines), the application of specific 
models that make use of all posterior observations provides accurate loss estimates with 
a reduced dispersion. The largest uncertainty sources remain the source geometry and 
the dispersion around the posterior RR function. The residual variability of the ground-
motion field remains significant and it has a large influence on the loss distribution, 
even when accounting for dense ground-motion observations in seismically active areas 
like Japan.

–	 When considering local loss measures that are related to the system’s behaviour (i.e., 
connectivity analysis between a distribution node and water reservoirs), a reduction in 
the variability of predicted losses is also observed when post-event knowledge is avail-
able. However, this reduction is less obvious than in the case of a global loss measure. 
The sampling of spatialized variables, such as the intra-event error term or the dam-
age state of each pipeline, generates disparate loss scenarios, which are difficult to con-
strain. As previously mentioned, a further parametrization of the RR function with the 
knowledge of specific soil conditions would be necessary in order to refine the location 
of most damage-prone areas. Indeed, the ultimate objective is to assess the network 
parts where damages are the most likely to occur, in order to take mitigation measures 
like renovating pipelines or increasing redundancy: however, as seen from the present 
results, current models are struggling to achieve this with enough accuracy, even when 
using all available post-earthquake information.

The present study has detailed a methodological framework for the Bayesian–based der-
ivation of pipeline damage models: the RR function that has been built from the Uki City 
damage data might be applicable to other Japanese municipalities; however, one should be 
careful to apply the same range of ground motion level (i.e., PGV approximately around 
25–75 cm/s) and to consider a similar distribution of pipeline material (i.e., mostly ductile 
iron and PVC). Another limitation lies in the use of damage data from a single earthquake, 
and the proposed damage model could be further refined by exploited data from other Japa-
nese earthquake. Finally, the level of available data on the water supply system has pre-
vented the application of flow-based loss measures such as the serviceability index: this 
measure is useful for managers of critical facilities like hospitals, in order for them to know 
the amount of water that is available and to plan ahead during the emergency phase. How-
ever, the simple connectivity analysis that has been carried out here is enough to highlight 
the challenges inherent to spatially distributed systems, from the point of view of uncer-
tainty treatment and sampling of damage scenarios.
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Appendix: Water network damage data

See Table 7.

Table 7   List of repair points on 
the water network, with material 
and diameter of corresponding 
pipelines

Repair Longitude Latitude Pipe material Pipe diam-
eter [mm]

#1 130.69056 32.59852 PVC 75
#2 130.70401 32.61254 PVC 40
#3 130.70831 32.58499 PVC 100
#4 130.69591 32.60678 PVC 100
#5 130.70201 32.59321 PVC 75
#6 130.70897 32.58735 PVC 50
#7 130.70312 32.58880 PVC 75
#8 130.65167 32.61205 Unknown 75
#9 130.65153 32.60973 Unknown 40
#10 130.69228 32.60788 Unknown 40
#11 130.69897 32.59604 PVC 100
#12 130.70500 32.59075 Unknown 75
#13 130.67766 32.65077 DI 50
#14 130.69676 32.65714 PVC 50
#15 130.69296 32.65428 PVC 75
#16 130.69637 32.65658 PVC 50
#17 130.67817 32.64956 DI 100
#18 130.67781 32.64896 DI 100
#19 130.69349 32.65617 PVC 50
#20 130.67945 32.65118 DI 50
#21 130.69336 32.65915 DI 100
#22 130.68982 32.65734 PVC 50
#23 130.68967 32.65675 PVC 50
#24 130.70544 32.58466 PVC 75
#25 130.69900 32.65519 PVC 100
#26 130.69837 32.65477 PVC 100
#27 130.66241 32.60777 PVC 50
#28 130.70327 32.61243 PVC 50
#29 130.69683 32.59305 Unknown 30
#30 130.68514 32.60655 PVC 40
#31 130.68955 32.59884 PVC 75
#32 130.68828 32.59920 PVC 50
#33 130.69644 32.60111 PVC 100
#34 130.69901 32.60354 PVC 50
#35 130.69036 32.60032 PVC 50

http://creativecommons.org/licenses/by/4.0/
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