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A B S T R A C T   

Rapid estimation of the intensity of seismic ground motions is crucial for an effective rapid response when an 
earthquake occurs. To this end, maps of updated grond-motion fields (or shakemaps) are produced by using 
observations or measurements in near real-time to better constrain initial estimates. In this work, two types of 
observations are integrated to generate shakemaps right after an earthquake: the common type of data recorded 
by physical sensors (seismic stations) and the data extracted from social sensors (Twitter), or the combination of 
both. We investigate an approach to extract an approximation of the macroseismic intensity from social sensors 
10 min after the earthquake; the approach relies on Twitter feeds to define the “felt area” where the earthquake 
was felt by the population, and the “unfelt locations” where the earthquake was not reported. Two recent 
earthquakes in France of moderate magnitude are studied and the results are compared to the official macro
seismic intensity maps for validation. For the two studied cases, we note that Peak Ground Acceleration re
cordings far from the epicenter tend to underestimate the entire macroseismic field, and that the tweets from “felt 
areas” are complementary for a better estimation of the intensity shakemap. We highlight the importance and the 
limits of each type of observations when generating the seismic shakemaps.   

1. Introduction 

Earthquakes may affect very large areas within seconds, and can be 
felt over tens of thousands of square kilometers. Being unpredictable, 
they put crisis managers in difficulty, since it is very difficult to quickly 
establish the intensity of a seismic event: depending on its earthquake 
rupture, the soil conditions, the building topologies and the presence of 
any unstable condition, an earthquake can indeed be felt very widely 
without causing significant damage, or on the contrary, be felt only at a 
moderate distance, but with significant damage in the epicenter area. 
Thus, depending on the intensity of the earthquake, it generally takes 
authorities between 24 h and several days to have a clear view of human 
balance tolls [1]. In this context, rapid estimation of the intensity of 
ground motions is an important issue, which is the first essential step to 
rapid loss assessment. These maps, referred to as a shakemaps [2], can be 
produced different seismic intensity measures (IMs). Besides the intru
mental IMs such as peak ground acceleration and velocity (PGA & PGV) 
and spectral accelerations (SA), macroseismic intensity (MI) is also 

widely used. Indeed, quantifying the severity of the earthquakes on the 
basis of observations of human perception (felt), and of the effects on the 
buildings (damages) and the environment, macroseismic intensity scales 
(e.g. EMS-98 european scale: [3]; Modified Mercalli intensity scale - 
MMI [4]): have the strong advantage to be understandable by a large 
audience, thus allowing to share shakemaps with crisis managers and 
the general public. 

Ground Motion Prediction Equations (GMPEs) are used to roughly 
estimate the amplitude of seismic ground motion and are thus useful to 
generate the shakemap. They relate a ground motion parameter to a set 
of explanatory variables describing the earthquake: the seismic source 
(magnitude and faulting mechanism), the geometric spreading (distance 
attenuation), and the local site characteristics [5]. When deriving 
shakemaps, IMs predicted by these GMPEs are then conditioned by the 
values of collected field observations, taking into account the spatial 
correlation between the IMs at different locations (e.g. Ref. [6], with the 
aim of estimating ground-motion fields with enhanced accuracy). 

These field observations can either come from physical instrumental 
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sensors or from social sensors. In the first case, these are measurements 
recorded from seismic stations (e.g., broadband seismometers, acceler
ometers) and expressed in terms of PGA/PGV/SA/etc. Available within 
seconds after an earthquake. These punctual observations provide exact 
measurements of an instrumental IM at specific points of interest, and 
they can be used as proxies to derive MI values using Ground Motion to 
Intensity Conversion Equations (GMICEs). In the second case, these are 
observations of the effects of the earthquake, allowing a direct estimate 
of the MI at the scale of a district or a municipality. Ideally, MI is esti
mated using field observations to assess the level of damage to the 
buildings by type of vulnerability, supplemented by macroseismic 
questionnaires filled out by authorities having a vision of the average 
effects on their territories (e.g. mayors of affected municipalities). As 
this process is very time consuming, online testimonial procedures by 
the general public have been in place for about twenty years, such as the 
Did You Feel It (known as "DYFI") questionnaire from the US Geological 
Survey or the one from the European Mediterranean Seismological 
Center (EMSC). In France, the French Central Seismological Office 
(BCSF) offers its own questionnaire. These online questionnaires allow 
the rapid collection of numerous testimonies, and the estimation of the 
level of intensity in less than 1 h. In the spirit of the “DYFI” reports, 
EMSC has developed a testimony system based on “thumbnails” within 
its LastQuake application [7]; it visually represents the effects linked to 
different levels of MI [8], hence it facilitates rapid collection of testi
monies via mobile devices. Today, the community of LastQuake users in 
some countries is considerably large that the spatio-temporal analysis of 
application launches allows automatic detection of earthquakes as well 
as a first characterization of the macroseismic field [9]. If these initia
tives based on the voluntary collection of individual testimonies allow a 
relatively rapid estimation of the lowest intensity levels of the order of 
3–4, the assesment of higher intensities linked to damages (i.e. greater 
than 6) remains difficult [10]. This is due to (1) the level of information 
required for the estimation of these intensities (statistical estimate of 
damages to buildings together with a qualification of its vulnerability), 
and to (2) the effect on populations exposed to such levels of ground 
motions, who are generally frightened, and take much longer time 
before testifying (cf. "Doughnut Effect" suggested by Ref. [9]). 

In addition, thanks to social sensors based on the principle of "crowd- 
sourcing" (i.e., proactive involvement of citizens), it is also possible to 
set up "passive" contributions based on social media monitoring. Hence, 
after observing that the collection rate of tweets during the first hour 
after the occurrence of an earthquake was much faster than that of DYFI, 
Crooks et al. [11] demonstrated that the Twitter platform could be used 
as a valuable “Distributed Sensor System”. Therefore, social media can 
be valuable for rapidly assessing damage during large-scale disasters, 
and thus can be part of social sensors reporting an earthquake [12]. In 
particular, messages posted publicly on Twitter, known as ‘tweets’, 
published by the users and related to earthquake events can be rapidly 
collected and analyzed. However, social media data raises important 
challenges regarding information extraction, requiring researchers to 
design sophisticated methods for extracting useful knowledge from the 
noisy data: social media feeds do not explicitly and purposefully 
contribute to disaster detection and analysis (e.g. Ref. [13]). Hence, we 
refer to the exploitation of such social media as crowd-harvesting. Pre
vious studies have shown positive links between Twitter data collected 
within 10 min after the earthquake and earthquake detection and in
tensity estimation [14–17]. 

In this paper, we highlight the need and the importance of the 
different types of observations to assess the shakemap at different stages 
following an earthquake. Considering the need to quickly collect reliable 
observations when an earthquake occurs, instrumentally recorded IMs 
like PGA, when available, are the quickest observations that we can 
collect within less than 1 min. Later, social sensors provide comple
mentary information about the shaking’s spatial distribution and in
tensity. Twitter, for example, can provide us with the MI (or minimum 
intensity at “felt areas”) through the analysis of published data, within 

10 min. Then, DYFI-like reports provide more detailed information 
about MI thanks to crowd-sourcing at a later stage. However, these data 
arrive gradually several hours after the earthquake, and provide better 
but still uncertain values of MI. In the following, the MI map generated 
from the processing of all of the available macroseismic information – 
several months after the earthquake – is considered as the reference 
intensity to compare and validate our computation of shakemaps. 

In this work, we aim to generate shakemaps right after an earthquake 
while including social media data, in the hope that such social sensors 
may complement the information obtained from instrumental sensors. 
The social sensors, which provide only a sparse and uneven spatial 
coverage, are not accurate measurements, but rather an approximation 
of the MI. Practically, our approach relies on Twitter feeds to define the 
“felt area” where the earthquake was felt by the population, and the 
“unfelt locations” where the earthquake was not reported by the tweets, 
and then considered as unfelt. Both these positive and negative proofs of 
the feeling of earthquakes are defined by analyzing the tweets posted 
within 10 min after an earthquake, as described in Section 2. Then, in 
Section 3, data from the various sources (seismic stations and Twitter) 
are combined using Bayesian Networks to update prior estimates of 
ground shaking, as well as providing an assessment of the related un
certainties. Two earthquake events of magnitude 5.2 that occurred 
recently in France are studied in Section 4: we investigate how the 
detection of felt and unfelt areas and the combination with ground- 
motion recordings can enhance the prediction of the distirubtion of 
macroseismic intensity. 

2. Twitter as a real-time social seismic sensor 

2.1. A global social network to monitor earthquakes around the world 

Social media possess and broadcast data of millions of connected 
social sensors that share events online on a daily basis [18]. When a 
natural disaster occurs, social media platforms allow sharing testimonies 
spontaneously and quickly, mainly coming from those citizens being 
affected by the event [16]: these ‘local citizens’ tend to exchange in
formation related to their own perception of ground-motions or of 
visible impacts [19], while people not present in the affected area tend 
to relay this information or to express their empathy [20]. However, 
when the risk becomes very high, the amount of information coming 
from the ‘local citizens’ affected by the event decreases sharply because 
of an opportune self-protection behavior [8,16]. 

Twitter has over 321 million active users in 2020 (TIZ, 2020), with 
practical features such as short messages publication in real time, free 
streaming Application Programming Interface (API) making it possible 
to automate monitoring tasks, ability to attach pictures and to share GPS 
geolocation, etc. Researchers have observed a strong and immediate 
spread of tweets when a significant earthquake happens [16,21]. For 
example, the Amatrice earthquake of Mw 6.2 (Italy, August 2016) has 
caused more than 150,000 tweets in the first 48 h [22]. Twitter is now 
considered as a social sensor for natural hazards, by allowing shared 
access to live data streams. 

Nonetheless, continuous monitoring of Twitter addresses important 
challenges. First, we need to set up and maintain a robust IT infra
structure connected to the Twitter’s servers through the free public API. 
Second, we need to retrieve the tweets satisfying specific search criteria, 
usually via keywords, taking into account the constraints associated 
with free language. Targeted queries should be defined to be generic 
enough to capture a maximum of tweets dealing with the subject, while 
remaining specific enough in order not to “pollute” the data with off- 
topic messages [23]. Yet, Twitter does not give free access to the total
ity of messages exchanged at a given time via its streaming API. In 
addition, Twitter delivers only a portion of the total messages with 
“black-boxing” sampling rules and thresholds. This is not critical since 
we are not seeking to get the entire flow, however it can have a signif
icant impact when aiming at quantitatively describing the dataset. Then, 
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after being retrieved, the tweets must undergo a first post-processing 
step to eliminate duplicates or messages sent by "robots" which 
contain no information. Although potentially cumbersome, the imple
mentation and maintenance of this type of architecture has become 
relatively common, and it does not present any major difficulties. 
Finally, the main challenge resides in the fine-grained extraction of 
relevant information from each tweet and its metadata, so that we can 
have the necessary information on which to conduct analysis. 

The most crucial information needed to map the intensity distribu
tion from the earthquake is the geolocation of the tweets. However, 
since the development of Twitter in 2006, the number of tweets that are 
natively geotagged (i.e. sharing the user’s location via their GPS 
geographic coordinates by the users or twitter) consists less than 1% of 
the tweets [24,25]. Twitter also recently announced plans to further 
remove this functionality (Twitter, 2019). Alternatively, a common way 
to find the location of the tweets is to use the Named Entity Recognition 
(NER) techniques to identify mentions of places in the text of the tweets, 
and to retrieve the corresponding geographic coordinates via specialized 
web-services (e.g. OpenStreetMap). Additionally, another data pro
cessing step is needed to remove disambiguation of geolocation of the 
events: for example, if an earthquake occurs in California, it is more 
likely that a tweet from a witness mentioning the city of “Dublin” evokes 
the Californian locality rather than the capital of Ireland; these tech
niques allow a significant and relatively robust enrichment at the 
municipal scale [17,23]. More complex approaches have recently been 
proposed, consisting of grouping tweets mentioning the same toponyms 
to improve their location [26], or jointly predicting location and other 
thematic attributes via semi-supervised approaches [27]. In addition to 
the geolocation of the event, tweets contain information that helps 
better identifying the spread of the earthquake shaking, such as the 
identification of witnesses [28,29], the detection of damage [30], the 
description of the level of intensity of the shaking [31], the reporting of 
victims [16], etc., that are worth extracting using Natural Language 
Processing (NLP) and other topic modeling approaches. 

By constantly monitoring tweets, earthquakes can be detected 
automatically and quickly [32–34]. Earthquakes are not predictable and 
can happen in anytime in few seconds: this kinetic behavior is translated 
to the tweets’ activity. When an earthquake strikes, Twitter activity is 
marked by a very rapid rise of the number of related tweets, which peaks 
within few minutes, and then decreases gradually within a period that 
depends on the size of the earthquake [16,22]. Boccia Artieri et al. [14] 
explained that this observation of rapid increase of twitter activity fol
lowed by a gradual decrease are caused by the “witnessing” activity of 
the users to the event, followed by other activities related to information 
research, to expression of empathy and to commentary in the upcoming 
minutes to hours. Thus, the main peak of activity is generated almost 
exclusively by people who have personally felt the earthquake. Several 
studies have been carried out in recent years to analyze the tweets 
exchanged during the first minutes after an earthquake so as to be able to 
deduce information related to the intensity of the earthquakes, and thus 
contribute to the rapid calculation of shakemaps. These studies are 
based on two main approaches to extract the intensity information from 
the tweets. 

The first approach consists of generating empirical equations relating 
the number of tweets relative to the population density in a community 
to the MI [17,35]. This approach is easy to implement and independent 
from the language used for the tweets, and it generally shows satisfying 
performances. Nevertheless, the main limitation of this work is that it 
strongly depends on the number of Twitter users at the moment of 
developing the empirical equations. However, the users’ number is 

different from one country (or region) to another, and it also changes 
with time: while the number of Twitter users grows in some countries, it 
stagnates in others. Consequently, these relationships might not be 
adapted for different regions, or no longer be valid few months after 
their publication. 

The second approach consists in developing predictive models via 
machine learning approaches to evaluate the maximum intensity of the 
earthquake [36] or to map the local intensity [12,15,37], or via the 
development of lexicons to different degrees of MI [31]. This approach 
relies on a tweet-by-tweet analysis taking into account the content of 
each message individually, and it is therefore more durable and robust. 
However, these methods are more complex to set up and they necessitate 
a periodic validation and adaptation for the changes made by Twitter 
itself, like the maximum characters in a tweet that was increased in 2017 
from 140 to 280 characters, as well as the continuous evolution of the 
behavior of the Twitter users, like the tendency to use less hashtags [23]. 
Furthermore, many of these approaches require large datasets to cali
brate the models, which are not always available due to the nature of the 
seismic phenomenon with significant return periods. Indeed, many re
gions of the world with moderate seismicity have not experienced sig
nificant earthquake since the appearance of Twitter in 2006, and 
therefore have very partial datasets for calibration. 

Alternatively, Resch et al. [30] proposed to combine 
machine-learning topic models with spatiotemporal clustering to deduce 
the extent of the area presenting damage. Accordingly, MI greater than 
or equal to 6 or 7 in the EMS-98 intensity scales and MMI can be assigned 
to the area of damage detected, depending on the mean level of 
vulnerability of the building in the study area. 

2.2. Extraction and analysis of twitter feeds in France 

In 2019, 58% of the French population has an active use of social 
media (WeAreSocial, 2019), among which Twitter ranks sixth behind 
Facebook, YouTube, Instagram, WhatsApp and Snapchat. Based on the 
geotagged tweets (i.e. with GPS coordinates in their metadata) as an 
approximation to the location of Twitter users, Auclair et al. [23] 
showed that the most active users on Twitter correspond to the most 
densely populated areas, with the highest concentration in Paris. 
Consequently, Twitter is more likely to provide us data to calibrate MI 
inside urban areas rather than in rural ones. It should be noted that the 
characteristics of the buildings in these urban areas may present speci
ficities to be taken into account in the attribution of MI values based on 
the tweets (e.g. ground-motions generally better felt in high-rise 
buildings). 

Since April 2017, the SURICATE-Nat platform [23] allows moni
toring and continuous analysis of original tweets (e.g. excluding 
retweets) written in French following the occurrence of natural disasters 
(earthquakes and floods), via the interrogation of Twitter’s free 
streaming API. After an automatic detection of earthquakes on the basis 
of an algorithm similar to that proposed by Earle et al. [34]; tweets 
associated to an event undergo some processing to extract the thematic 
information (supervised classification) and the geolocation (NER of 
administrative toponyms). For this work, we use tweets posted for 
Barcelonnette earthquake which occurred on April 7, 2014 (and there
fore before SURICATE-Nat was developed) and for Le Teil earthquake 
which occurred on November 11, 2019 (see in-depth description of case 
studies in Section 4), illustrated in Fig. 1.a. 

For the Barcelonnette earthquake, 8996 tweets were collected by 
VisiBrain company with the same search criteria as those used by 
SURICATE-Nat (see Table 1) and 3003 were geolocated by SURICATE- 
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Nat algorithms. For the Teil earthquake, 6427 tweets were collected by 
SURICATE-Nat platform, among which 3112 have been geolocated. For 
both earthquakes, we observe a sharp peak of tweets mentioning key
words from the French lexical field related to earthquakes (see Table 1), 
which reaches its maximum between two and 4 min after the occurrence 
of the earthquakes (Table 1 and Fig. 2). The number of tweets received 
in the two cases are very different (3853 tweets collected in 10 min for 
the Barcelonnette earthquake, and 498 for the Teil event). These dif
ferences can be explained by two main factors: first, the dataset of the 
Barcelonnette earthquake is complete; this was not anymore the case 
during the Le Teil earthquake due to the sampling procedure done by the 
public API of Twitter. Second, the Barcelonnette earthquake was felt 
along the French Riviera, a very densely populated area which gave rise 
to the publication of numerous tweets (see Fig. 1a). In both cases, we can 
see that most of the geotagged tweets within 10 min of the earthquake’s 
occurrence are concentrated in the region near the epicenter, with 

however a few points located far from the epicentral zone. These few 
points can be explained either by the publication of messages using 
keywords related to the theme of “earthquake” but not linked to 
earthquakes that have just occurred, or by the publication of messages 
originating from witnesses but poorly geolocated (bad recognition of 
geographic toponyms) or referring to distant localities for various 
reasons. 

2.3. Agnostic extraction of the raw felt area from tweets 

Resch et al. [30] proposed the topic-modeling procedure to identify 
“hot-spots” of geolocated tweets classified as “earthquake-related”: the 
clusters thus identified have relatively strong ground-motions and they 
correspond to what the authors call the "earthquake footprint". Alter
natively, Mendoza et al. [12] proposed identifying an "area of interest" 
grouping together the "municipalities affected by the earthquake" via a 

Fig. 1. Upper left (a): Epicenters (from RéNaSS) and geolocated tweets via the analysis of messages posted within 10 min after the earthquakes: Barcelonnette – 
purple; Le Teil – blue. Right: Comparison of the clustering of geolocated tweets sent 10 min after an earthquake, with the area of intensity greater than or equal to 3 
for (b) Barcelonnette earthquake of April 7, 2014, and (c) the Le Teil earthquake of November 11, 2019. Isoseismal areas of intensity equal or greater than 3 come 
from BCSF for the Barcelonnette earthquake, and has been manually derived by the authors from BCSF DYFI-like reports for Le Teil earthquake. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Table 1 
Keywords used (in French) for the collection of tweets related to the theme of earthquakes.  

Event Extraction mode Searched keywords Excluded 
keywords 

Nb. tweets (of which are geolocated) 

Full 
dataset 

First 10 min 
after the EQ 

Activity peak 
(tweet/min) 

Barcelonnette 
April 07, 2014 

Twitter full firehose through 
VisiBrain (paying service/full 
data) 

"seisme"/"seismes"/"séisme"/"séismes"/"tremblement 
de terre"/"tremblements de terre"/"magnitude"/"terre 
tremble" 

"politique"/ 
"politiques" 

8996 
(3003) 

3853 (687) 269 at T0+2’ 
(86 at T0+3′) 

Le Teil 
November 11, 
2019 

Twitter streaming API (free/ 
sample data) 

6427 
(3112) 

498 (187) 67 at T0+4’ 
(36 at T0+4′)  
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supervised binary classification of tweets aggregated at the municipal 
level. 

Here, we propose another clustering approach for the geolocated 
tweets that does not require calibration of any predictive algorithm 
based on the analysis of the textual content, nor the knowledge of the 
characteristics of the earthquake, and is easy to implement at any study 
area. The spatio-temporal clustering approach is based on ST-DBSCAN 
algorithm [38] that is Density-Based Spatial Clustering of Applications 
with Noise (DB-SCAN [39]); extended to the time domain. This 
approach was successfully applied to identify, in the areas impacted, 
which evolve with time, by other fast kinetic phenomena such as forest 
fires [40]. Contrary to other clustering approaches, DB-SCAN algorithms 
have the ability in discovering clusters with arbitrary shape; they can 
easily process large amounts of data [41]; they also integrate relevant 
authoritative demographic and environmental information, such as 
population density [40]; and finally, DB-SCAN algorithms do not require 
the predetermination of the number of clusters. 

Practically, Twitter users posting earthquake-related tweets (i.e. 
using lexical field of earthquakes), within a short time period, by 
mentioning places geographically close, implies the occurrence of a new 
event and the detection of clusters. Our DB-SCAN algorithm requires the 
determination of two parameters within a specific period: (1) the “size” 
parameter describing the minimum number of neighboring tweets to 
declare a cluster, and (2) the “proximity” parameters in space and time 
describing the minimum distance and duration between the tweets to be 
assigned to the same cluster. 

Our study limits the analysis to the direct tweets posted during the 
first 10 min after the earthquake, excluding the “retweets”: the peak of 
the activity of users on Twitter generally occurs during the first 10 min 
after the earthquake, and those users are mainly the direct witnesses of 
the earthquake [14–17]. Limiting the collection of tweets to 10 min 
makes it possible to produce a first shakemap very quickly to respond to 
the first questions from the civil protection services and to execute 
possible rapid response systems such as PAGER [42]. 

We consider that there is a “temporal proximity” between tweets 
when they have been sent less than 10 min apart. Since we only consider 
tweets sent within 10 min after the earthquake’s occurrence, this tem
poral proximity between tweets is in our case always verified. his tem
poral dimension can be modified for other usage. This temporal 
dimension parameter is however interesting to keep, in particular in a 
perspective of continuous monitoring of Twitter, and can for example 
make it possible to detect clusters corresponding to aftershocks occur
ring shortly after the main shock. Regarding the "spatial proximity", we 
introduce a site-specific parameter instead of a fixed value, defined by 
the radius in which the residential population is greater than or equal to 

2,500,000 inhabitants. We compute this parameter on the fly from the 
grid of the French population delivered by the French Institute of Sta
tistics (INSEE) with a 200 m mesh-grid. Therefore, spatial proximity 
parameter is larger in the countryside than in large cities. 

The parameter describing the minimum number of points (e.g. 
georeferenced tweets) necessary to declare a cluster may however differ 
depending on the regional density of Twitter users and must therefore be 
tuned specifically according to the study area. For France, the sensitivity 
analysis presented Appendix 1 shows, however, that this parameter has 
only a limited impact on our approach, the area (and geometry) of the 
main cluster remaining unchanged up to important values of this 
parameter. The main effect of changing this parameter is to significantly 
modify the number of clusters detected by the algorithm, which has no 
impact on our method since we only consider the main cluster. For this 
study, we fix a minimum number of points of 5 as a criterion to define a 
cluster. 

Fig. 1 (b and c) shows the first approximation of the extent of the felt 
area of the earthquakes based on the cluster approach considering 
tweets during the first 10 min (Fig. 1a). It is however interesting to note 
that, when this analysis is extended to longer durations, new clusters 
may appear. Most of them are located within the already identified felt 
area, due to the tweets posted by "late witnesses", or people commenting 
on the earthquake, citing the most affected places. A few clusters that are 
spatially de-correlated from the impacted area are due to tweets 
mentioning the event as a pretext to talk about the seismic risk in other 
territories, or users who regret not having felt the ground-motions far 
from the epicenter. Spatio-temporal clustering within 10 min therefore 
acts as a natural “agnostic” filter allowing first-order identification of the 
felt area without any knowledge of the earthquake or any analysis of the 
content of tweets other than the detection of mentions of places. 
Furthermore, the absence of tweets from certain large municipalities 
with more than 50,000 inhabitants seems to indicate that the intensity of 
the ground-motions was very low, insufficient to arouse the "testimony" 
reflex from Twitter users (Fig. 1). These localities are subsequently 
referred to as “unfelt locations”. 

Another important observation that emerges from Fig. 1.b is the 
“truncated” form of felt-areas extracted from clusters, in areas where no 
tweets are available: along borders (no tweets collected in Italy due to 
the fact that we collect messages in French language only), in the sea and 
in the uninhabited areas (e.g. mountainous areas to the east of the 
epicenter of the Barcelonnette earthquake). This well known bias in 
macroseismicity related to missing data must be taken into account 
when assigning the MI level. 

Fig. 2. Evolution of the number of tweets collected every minute before and after the occurrence of the two earthquakes: (a). Barcelonnette event; (b). Le Teil event. 
Black curves represent the number of all the tweets and grey curves represent the number of tweets with known (native or inferred) geolocation. 
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3. Generation of twitter-enhanced shakemaps 

The principle of shakemaps relies on the combination of a priori 
GMPE estimates with field observations, in order to constrain un
certainties on the ground-motion field generated by an earthquake 
event. This section details the algorithm used for the generation of 
shakemaps; then, a method to integrate tweets as observations is 
proposed. 

3.1. Shakemap algorithm 

Recently, several shakemap approaches have been developed in 
order to condition the ground-motion field upon the observations: 
among them, the method based on multivariate normal distribution [43] 
constitutes the technical basis for the USGS ShakeMap v4 service [44]; 
in parallel, an approach based on a Bayesian Network (BN) framework 
has been proposed by Gehl et al. [45]. Both methods consider that the 
ground-motion parameters (more specifically their logarithms) are 
normally distributed and spatially correlated, and that the conditioning 
data (i.e., the observations) can have non-zero uncertainty; the latter 
point is especially important for the inclusion of macroseismic data, 
which are only imperfect proxies for ground-motion parameters such as 
PGA (and reciprocally). In the following sections, we use the BN 
approach to generate the shakemap. 

The proposed BN method [45] is based on the Bayesian updating of 
correlated Gaussian fields: the prior distribution of the ground-motion 
field, consisting of a simple predictive scenario of the earthquake 
event with a GMPE, is updated with the observations in order to 
generate a posterior distribution of the ground motion at each grid point. 
To this end, a Gaussian BN models the distribution of a given 
ground-motion parameter Y at each grid point i (see Fig. 3). Thanks to 
the lognormal assumption used in most GMPEs, a lognormal-normal 
conversion is able to express the conditional probability of Yi as a 
normal distribution, with the mean expressed as: 

μ(Yi |U,W) =Xi + σζ ⋅
∑n

j=i
tij ⋅ Uj + ση⋅W (1)  

where Xi is the mean estimate of the ground-motion parameter from the 
GMPE, σζ is the standard-deviation of the intra-event term, and ση is the 
standard-deviation of the inter-event term. The matrix of elements tij 
results from the Cholesky decomposition of the correlation matrix be
tween the intra-event terms: spatial correlation models such as the one 
from Jayaram & Baker [6] may be used to compute this correlation, 
based on the distances between all grid points and observations. The 
variables Uj and W follow a standard normal distribution and they are 

essential to model the statistical dependence between the Yi, and 
consequently the updating process. In case of a recording from a seismic 
station, a virtual grid point is added to the BN as an evidence, and the BN 
is solved accordingly. 

In the case the observation results from macroseismic data, the un
certain link between the MI and the reference ground-motion parameter 
Yi (e.g., log PGA) is taken into account by adding an extra node Zi in the 
BN, as shown in Fig. 3. The variable Zi is assumed to follow a normal 
distribution conditioned on Yi, quantified as follows: 
{

μ(Zi |Yi)
= f (Yi)

σ(Zi |Yi) = σGMICE,Yi

(2)  

where f(.) is a function referring to a ground-motion-intensity conver
sion equation (GMICE), such as the model proposed by Caprio et al., 
[46]; and σGMICE,Yi is the standard deviation related to the GMICE 
function. 

This framework is implemented in a Matlab code, where the 
Gaussian BN is modelled thanks to the Bayes Net toolbox [47]. It may be 
used to generate shakemaps of usual ground-motion parameters, such as 
PGA or SA at various periods. However, we also require shakemaps 
expressed in MI: such maps are useful to communicate on the effects of 
the earthquake, since there is a direct link between the felt MI and the 
effects on the built areas and the population. Moreover, some vulnera
bility models, such as the semi-empirical method by Lagomarsino & 
Giovinazzi [48], use the MI as an input in order to predict damage dis
tributions over built areas. Therefore, the shakemaps that are presented 
in the subsequent sections of the paper are expressed in terms of MI: such 
maps are obtained by converting PGA shakemaps with a GMICE. As one 
may argue that the shakemap algorithm could be adapted to directly 
update MI variables, we currently lack robust intensity prediction 
equations (IPE) and spatial correlation that are applicable to macro
seismic fields. 

3.2. Integration of twitter data into shakemaps 

The limit between intensity domains 2 and 3 always remains tricky to 
distinguish on the sole basis of individual data, which makes it difficult 
to assess the actual proportion of the population of a given locality 
having felt the tremors. However, although a few tweets may come from 
areas of intensity 2 quickly after an earthquake - especially in large cities 
where populations are concentrated - we make the hypothesis that, if 
people mention the earthquake right after its occurrence in localities 
close to each other (i.e. clusters), there are high chances that they have 
felt it with an intensity greater than or equal to 3, corresponding to 
weakly felt shakings according to the EMS-98 macroseismic scale [3]. 

Fig. 3. (a) Example of a 4-point grid with one instrumental observation (Y_obs1) and one macroseismic observation (Z_obs2); (b) Corresponding BN, where the 
evidenced nodes are displayed in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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Therefore, we consider that the “felt area” deduced from Twitter data in 
Section 2.3 may be translated into macroseismic observations points, 
assigning an intensity value equal to 3 or above (i.e. MI ∈ [3; 12]) to 
each grid point with the cluster. This assumption represents the mini
mum information than can be extracted from tweets about intensity 
level, while respecting the problem of missing data identified 
previously. 

In the same way, the “unfelt locations” are translated into macro
seismic observations points, assigning intensity values ranging from 1 
(unfelt shakings) to 2 (rarely noticeable shakings) - (i.e.M I ∈ [1; 2]). It 
follows the hypothesis that, if people do not mention the earthquake in a 
given densely population location, there are high chances that they have 
not felt it. 

Such information about the minimum intensity corresponds to a soft 
evidence (or observation), while our current BN only accepts hard evi
dence or fixed values (i.e., no option of inequality or larger than). A 
possible way to integrate such data is to decompose the posterior 
shakemap distribution over all possible values of macroseismic in
tensities, given the “tweet observation”. Let us define P(Yi |T) as the 
conditional distribution at a grid point, given Twitter evidence at a given 
point. It may then be expressed as: 

P(Yi|T)=
∫+∞

− ∞

P(Yi|Zobs) ⋅ P(Zobs|T)⋅dZobs (3)  

where Zobs is the MI at the location of the Twitter evidence. P(Zobs |T) 
represents the conditional probability of observing the value Zobs given 
the tweet: it is proposed to estimate this probability by using the a priori 
distribution of the MI (i.e., the expected value of the intensity, given the 
earthquake parameters), and by truncating the distribution according 
the aforementioned assumptions: P(Zobs < 3 |T) = 0 and P(Zobs > 2 |T) =

0 respectively for the unfelt and felt locations. Moreover, the bounded 
nature of the EMS-98 macroseismic scale is taken into account by 
assigning a zero probability to intensities less than 1 and greater than 12: 
P(Zobs < 1 |T) = 0 & P(Zobs > 12 |T) = 0. Therefore, Eq. (3) is transformed 
as follows: 

P

⎛

⎝Yi|T)=
∫12

3

P(Yi|Zobs

⎞

⎠ ⋅ Ptrunc,prior(Zobs)⋅dZobs (4)  

where Ptrunc, prior(Zobs) is the truncated prior distribution of Zobs, as 
illustrated in Fig. 4, in the case where the observation is within a “felt 
area”. A similar expression is assembled for the “unfelt locations”, with 
the integration bounds ranging from 1 to 2. In the end, it can be seen that 
the addition of Twitter data provides a very loose type of information (i. 
e., lower and upper bounds on the MI). 

The main issue with the framework presented in Eq. (4) is the 
computation cost, since many instances of shakemaps would have to be 
computed (for each possible value of Zobs) in order to integrate the ev
idence. Moreover, the problem becomes increasingly more complex 
when more “tweet observations” are added (i.e., generation of multiple 
integrals). Therefore, a first-order approximation is adopted here: 
instead of integrating over the possible range of Zobs, the expected value 
estimated over the truncated distribution is directly used as an input to 
the shakemap (see Fig. 4). 

Hereafter we detail the steps to define the value of the soft evidence 
at each point within the "felt area” and at the “unfelt locations”. The 
whole process is illustrated by the flowchart in Fig. 5. 

At each grid point inside the contour defined by the Twitter felt area, 
we estimate the mean value and the corresponding standard deviation of 
the MI using a GMPE and a GMICE without any observation, as an a 
priori estimate (see example illustrated in Fig. 4, left). 

Fig. 4. (a) A priori estimation of the MI and the contour lines defining the “felt area” from Twitter data. An example of a location inside the felt area; (b) Truncated 
normal distribution of the macroseismic intensities at two locations shown in (a) in black and blue dots, after considering the information from the felt area, and the 
expected values to be entered as evidence observations (red dotted vertical lines) and implemented to generate map (c). (c) A posteriori estimation of the MI when 
considering the “felt area” from Twitter data. Coordinate of epicenter in (a) and (b) are from RéNaSS. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 
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Then, at each of these grid points, we generate a truncated normal 
distribution of MI values (using the mean and standard-deviation 
computed in the previous step), within the range of [3− 12] or [1–2] 
(see example illustrated in Fig. 4). 

Still at each point, we compute the expected value of the intensity 
under the probability distribution defined above, by summing the values 
of the intensity on the range [3− 12] (or [1–2]) weighted by the corre
sponding probability. The soft evidence is then assumed to be equal to 
the expected value of the intensity. 

Finally, these approximate observations are entered to the BN as 
additional evidence, in complement of the instrumental observations. 

4. Application to two recent earthquakes in France 

We use Twitter data to study the gain of information from the tweets 
extracted 10 min after an earthquake using the approach detailed in 
Section 2 and Section 3, to better estimate the intensity shakemaps for 
two recent moderate earthquakes that occurred in the south-east of 
France: the first event is the Barcelonette earthquake, which occurred on 
April 7, 2014; the second is the Le Teil earthquake, which occurred on 
November 11, 2019, both having the same magnitude (Ml 5.2 accroding 
to the French National Network for Earthquake Monitoring – RéNaSS; 
Mw 4.9 according to EMSC). It is interesting to generate shakemaps 
using Twitter data for these two events, because they are the strongest 
earthquakes that happened in France since Twitter was created in 2006. 
Nonetheless, it is challenging to reproduce the shakemaps for both 
events because of their specificities: directivity effect observed for Bar
celonnette earthquake [49], and the rupture occurring at a very shallow 
depth for the Le Teil earthquake. 

4.1. Data and assumptions 

We use the earthquake parameters (magnitude, hypocenter location 
and depth) summarised in Table 2 that are estimated and published on 
RéNaSS to reproduce shakemaps using the same data-source that are 
usually available minutes after earthquakes occurring in France. To 
simulate spatially-correlated ground-motion fields, we use the GMPE 
developed by Akkar and Bommer [50] to estimate a PGA map within a 
rectangular area of 3◦ in latitude and 3◦ in longitude and with a reso
lution of 0.01◦ grid spacing. We refer to Jayaram and Baker [6] to model 
the spatial correlation function between PGA values on the map. We use 
the global GMICE from Caprio et al. [46]; without any regional 
correction factor, for the conversion between the different IMs (PGA to 
MI, and conversely): 
{

MI = 2.270 + 1.647log 10 PGA if log 10 PGA ≤ 1.6
MI = − 1.361 + 3.822log 10 PGA if log 10 PGA > 1.6 (5)  

with PGA in cm/s2. 
The first type of data used here is the instrumental data collected 

from the seismic stations in terms of PGA, from the French Accel
erometric Network [51] and from the ORFEUS Rapid Raw Strong Motion 
(RRSM) platform (Appendix 2 and Appendix 3). In this study, we select 
data from seismic stations within an epicentral distance of 200 km. The 
distribution of the selected stations are shown in Appendix 4. The second 
type of data is the MIs deduced from the Twitter feeds (see Section 2 and 
Fig. 1). 

We also use the EC8 soil classification map of France that was ob
tained from Monfort and Roullé [52], Negulescu et al. [53] and 
Tellez-Arenas et al. [54] to take into account site effects and also to 
correct soil amplification factors from the recordings of the stations (see 
Appendix 4). For the stations located in Italy, we apply a constant soil 
amplification factor equals to 1.35, corresponding to EC8 class B. But in 

Fig. 5. Successive steps and datasets involved in the generation of shakemaps that include Twitter data. GMPE stands for Ground-Motion Prediction Equation, 
GMICE for Ground-Motion Intensity Conversion Equation, BN for Bayesian Network, E(MMI) for the expected value of macroseismic intensity. 

Table 2 
Main characteristics of the largest two earthquakes occurred in mainland France since 2006.  

Event Date Time UTC Latitute (ref. 
RéNaSS) 

Longitude (ref. 
RéNaSS) 

Depth 
(km) 

Ml (ref. 
RéNaSS) 

Max. Intensity (ref. 
BCSF) 

Last accessed 

Barcelonnette April 07, 2014 19:26:59 44.51 6.71 8 5.2 6 April 24, 
2020 

LeTeil November 11, 
2019 

10:52:45 44.53 4.64 2 7–8 April 24, 
2020  
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the following, we compute the ground motion on the French territory 
only. 

Finally, we use intensity data produced by the French Central Seis
mological Office (BCSF) as validation data allowing us to assess the 
quality of our intensity shakemaps. Unlike the intensities deduced from 
internet questionnaires, such as DYFI reports, which are immediately 
available but are marked by high uncertainty, the BCSF final intensity 
maps (defined at the municipality scale) can indeed be considered valid 
as they are obtained by compiling a very large number of macroseismic 
observations (field observations in the epicentral zone, questionnaires 
sent by the local authorities, and finally internet questionnaires). The so- 
called reference macroseismic intensities of the Barcelonnette and Le Teil 
earthquakes are documented in Sira et al. [55] and Sira et al. [56] 
respectively. Sira et al. [55] proposed the layout of isoseismal areas, 
which represents the areas within which the MI is relatively homoge
neous (cf. Fig. 7). This type of representation is very useful and it makes 
it easier to extract the macroseismic field by overcoming on one hand 
very localized effects and, on the other hand, border effects of the 
municipal administrative limits. However, these isoseismal areas were 
not described by Sira et al. [56]; therefore we manually derived the 
approximate extension of the zone of intensity greater than or equal to 3 
that is reported on Fig. 1. 

4.2. Case study 1: Barcelonette earthquake 

The earthquake of April 7, 2014 occurred at 21:27 local time (19:27 
GMT) in the French region of Alpes-de-Haute-Provence, not far from the 
city of Barcelonnette. With a local magnitude of 5.2 and a focal depth of 
8 km, this moderate earthquake fortunately caused only small damages 
in a mountainous and relatively sparsely populated epicentral area. 
However, its ground motions have been widely felt throughout south- 
east of France. BCSF indicates an epicentral macroseismic intensity of 
6, and intensities greater than or equal to 3 up to ≈150 km away in the 
direction N-160◦, and up to 80 km in the direction N-70◦, showing a very 
clear directivity effect [49]. As indicated in Section 2.2, this earthquake 
resulted in the publication of many tweets, especially along the French 
Riviera. 

We generate the shakemap for the Barcelonnette earthquake, 
considering different sets of observations to constrain the ground motion 
field, and we compare the results to the BCSF reference intensities 
deduced from isoeismal areas. First, considering the PGA values recor
ded at the seismic stations only, the resulting shakemap is illustrated in 
Fig. 6.a. Then, considering the macroseismic “soft evidence” deduced 
from Twitter, the resulting shakemap is shown in Fig. 6.b. Finally, 
considering the whole set of observation coming from both physical 
(seismic stations) and social (tweets) sensors, the shakemap is shown in 

Fig. 6.c. Note that there is no information from Twitter outside of 
France, since we only collect tweets written in French. The results show 
very different macroseismic fields depending on the observations used, 
which highlights the uncertainty associated with the rapid estimate of 
MI from proxies. The use of PGA instrumental data only (Fig. 6a) leads to 
intensities between 4.5 and 5 at the epicenter and around 2 at 150 km 
away from the epicenter, while the use of Twitter data only (Fig. 6b) 
leads to higher intensities ranging from 6 at the epicenter, down to 3 at 
150 km away from the epicenter. The combination of the two types of 
observations (Fig. 6c) results in an intermediate estimate. 

The residuals computed between predicted and observed intensity 
values (Fig. 7a) show that the intensities are overestimated when 
considering Twitter data only, and on the contrary, the intensities are 
underestimated when considering PGA records only. The coupling of 
data from Twitter and PGA shows an overall reduction in residuals. 
Fig. 7 (b,c,d) shows, however, that the residuals do not distribute ho
mogeneously according to the intensity levels, with a tendency to 
overestimate the low intensities (that occupies the largest area on the 
map in terms of pixels), and to underestimate the high intensities. This 
trend is linked to the characteristics of the GMPE used, namely its 
geometric attenuation. However, Fig. 7 (b,c,d) also shows that outliners 
may lead to different local intensities, mainly for intensity 3. 

Our results show that taking into account the Twitter data in addition 
to the PGA seems useful for the best rapid calibration of shakemaps, 
however this complementarity of different types of data needs to be 
considered more in details. On one hand, Twitter makes it possible to 
identify with relative confidence the peaks of activities linked to in
tensities greater than or equal to 3 (see Section 2.3) that can occur up to 
a great distance from the epicenter. But it is difficult to extract precise 
indications about the level of high intensities from the tweets posted 
immediately after an earthquake, for the simple reason that the obser
vations necessary for the definition of these levels are not accessible for 
rapid observation from a single individual. On the other hand, PGA, 
considered as a proxy of the MI, presents great variability for these low 
intensity levels, as shown by the scattering of the datasets used for the 
calibration of GMICEs [46]. Therefore, it seems reasonable not to 
consider the PGA values recorded at large distances when calculating 
the shakemaps, because this will result in the prediction of very uncer
tain intensity values. 

Next, we study the shakemaps computed using both instrumental 
and social data, considering different cut-off distances for PGA mea
surements to be included as observations. Fig. 8 represents the results 
obtained by considering the PGA recorded within a radius of 30, 50, 100 
and 200 km (with respectively 1, 4, 20 and 45 PGA measurements 
available). The residuals computed as the difference between the pre
dicted intensity and the reference intensity are presented in Fig. 9. It 

Fig. 6. Shakemaps for the Barcelonnette earthquake, taking into account the information from: (a) the seismic stations recording PGA (shown in red squares), (b) the 
Twitter data (the felt zone is shown in black lines), and (c) both seismic stations and Twitter data. The contour lines represent the reference isoseismal areas defined 
by BCSF. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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indicates that accounting for PGA recorded up to 100 km contributes to 
the improvement of the quality of the shakemap. On the contrary, ac
counting for PGA recorded up to 200 km tends to degrade it. Appendix 5 
illustrates this effect very clearly, with long distance PGA measurements 
leading in this case to the evaluation of very low intensity values, which 
leads in turn - due to the shakemap algorithm used - to a downward 

translation of the entire macroseismic field (i.e. updating of the inter- 
event error term, which is common to all grid points). 

4.3. Case study 2: Le Teil earthquake 

The earthquake of November 11, 2019 occurred at 11:52 local time 

Fig. 7. Distribution of residuals (predicted intensity minus reference intensity from isoseismal areas) depending on the set of data considered to generate the 
shakemap: social data (Twitter) only, instrumental data (PGA) only, and social plus instrumental data. Left (a): distribution of residuals as a percentage of pixels. 
Right: the 4 boxplots of residuals according to the reference intensity using the different data sets (b, c & d) where the ends of the box are the mean value plus and 
minus 1 standard deviation, and the whiskers (the two lines outside the box) extends to the highest and lowest values. 

Fig. 8. Shakemaps for Barcelonette earthquake taking into account Twitter data (the black lines define the felt area using the tweets) and the ground acceleration 
recordings from the seismic stations (red squares) situated within (a) 30 km, (b) 50 km, (c) 100 km and (d) 200 km from the epicenter. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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(10:52 GMT) along the coastal border between the French regions of 
Ardèche and Drôme, close to the city of Le Teil. Due to the shallow depth 
of its epicenter (focal depth of 2 km) and to the propagation of the 
rupture to the surface, as well as to the high local vulnerability of the 
buildings, this moderate earthquake of local magnitude 5.2 caused 
extensive damages within the epicentral area, with significant damages 
to hundreds of buildings, and the partial collapse of a few homes. 
Conversely, the shallow depth of the epicenter resulted in a remarkable 
attenuation of the intensity of the ground-motions with distance. 

Although intensity values of 3 are reported by the BCSF up to 140 km 
from the epicenter (see Appendix 7), it is however difficult to establish 
the contours of the maximum extension of the area of intensity greater 
than or equal to 3. Indeed, the long-distance intensity values are fairly 
dispersed; many municipalities witnessed a felt intensity, however not 
precise enough for BCSF to be able to assign an intensity value [56]. It is 
therefore not possible to draw the outline of isoseismal areas on the basis 
of which to assess the precision of our shakemaps as we did in Section 

4.2. 
We therefore proceeded in a different way, by comparing the in

tensity values predicted by the shakemaps with the intensity values 
defined by the BCSF at the municipal level, by limiting the analysis to 
pixels intersecting a municipality with an observation with an intensity 
greater than or equal to 3. As for the Barcelonnette Earthquake, we 
generate different shakemaps considering three configurations of 
observation input data: instrumental data only (Fig. 10.a), social data 
only (Fig. 10.b) and both instrumental and social data together (Fig. 10. 
c). Taking into account PGA measurements only leads to a significant 
overestimation of the MI, particularly for low intensity values (Fig. 11c). 
Despite this reverse trend from that observed for the Barcelonnette 
earthquake, the results obtained confirm the fact that taking Twitter 
data into account as "soft evidence" improves the prediction of MI 
(Fig. 11d). The study of the sensitivity of the shakemap to the distance 
within which to consider PGA measurements also confirms the lessons 
gained from the Barcelonnette earthquake, according to which the long- 

Fig. 9. Distribution of residuals (predicted intensity minus reference intensity from isoseimal areas). The estimated intensity for the Barcelonette earthquake is 
computed using Twitter data and PGA data. Left (a): The plot shows the residuals considering PGA data recorded within 30km, 50km, 100km and 200 km. Right: the 
4 boxplots show the residuals by intensity, considering the 4 different sets of data (b, c, d & e), where the ends of the box are the mean value plus and minus 1 
standard deviation, and the whiskers (the two lines outside the box) extends to the highest and lowest values. 

Fig. 10. Same as Fig. 6, for the Le Teil earthquake.  
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distance measurements tend to reduce intensity values very far from 
those actually observed (Fig. 12). In the case of the Le Teil earthquake, 
these long distance measurements lead, by chance, to the improvement 
of the prediction of near-field intensity, but this is only due to the 
analytical form of the GMPE of Akkar and Bommer [50] used in this 
study. 

5. Conclusions and perspectives 

In this work, we use two types of observations available immediately 

after the occurrence of an earthquake, which are the instrumental 
measurements of PGA on one hand, and the messages posted on Twitter 
on the other hand, for the rapid calculation of robust macroseismic in
tensity maps (i.e. shakemaps) using a BN framework. The innovation of 
our work is that we propose a simple method to rapidly extract intensity 
information from Twitter, where we translate the tweets into ‘felt’ or 
unfelt’ observations with MI ≥ 3 and MI < 3 respectively. In doing so, we 
answer the need to inform authorities about the potential impact of the 
earthquake within 10 min of the occurrence of the event, via direct 
communication of shakemaps in terms of macroseismic intensity (MI) or 

Fig. 11. Same as Fig. 7, for the Le Teil earthquake.  

Fig. 12. Same as Fig. 8, for the Le Teil earthquake.  
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via rapid loss assessment based on these shakemaps. Over time, these 
shakemaps can be updated as "DYFI"-like macroseismic reports are 
collected, following the methodology developed by the USGS [44]. 

The application of our approach to two study areas in France showed 
that instrumental measurements of PGA only are not able to reproduce 
the final shakemaps generated by official authorities, and that PGA 
measurements recorded far from the epicenter (beyond a hundred ki
lometers for earthquakes of moderate magnitude) tend to underestimate 
the entire macroseismic field because of very low PGA values. It is 
important to note that the shakemaps are initially and mostly controlled 
by the GMPE chosen. The observations modify the shakemap locally 
(through the updating of the intra-event error trem) and globally 
(through the updating of the inter-event error term), but they do not 
modify the geometrical decay of the ground motion imposed by the 
GMPE. Thus, future work should investigate the updating of the spatial 
decay of the shakemap, through the GMPE coefficient related to the 
source-to-site distance term, for instance. 

The availability of tweets as well as their spatial distribution directly 
influences the intensity map, as it is the case for instrumental data. An 
important limitation associated to the use of Twitter comes from the 
absence of precise information about the location of tweets. In this work, 
we use Named Entity Recognition techniques for identifiying 
geographical features and DB-SCAN spatiotemporal clustering to extract 
the location of thweets with less "background noise". Future work should 
be undertaken to improve this geolocation inference. 

It is worth reproducing this study for areas with more destructive 
earthquakes, with an adapted algorithm to treat Twitter data in different 
languages. In severely damaged zones, researchers have noticed a lack of 
reported intensity on platforms specific for earthquakes; people would 

be preoccupied with their security rather than informing and reporting 
[9]. However, people located a bit further from the epicenter, if not 
injured, tend to share on social media to inform their relatives. Using 
Twitter can help them share instantaneously to a mass of their contacts, 
and by that, help us define the ‘damage zone’ and fill the tweet gap of the 
observations in ‘severely damage zones’ once combined with the 
GMPEs. The algorithm of this work could be optimized in time, along 
with other types of information that could be collected earlier (eg. from 
early warning mobile applications) in order to generate the shakemap as 
early as possible. 
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Appendix 1. Sensitivity analysis of the clustering procedure to the parameter defining the minimum number of points necessary to 
declare a cluster, carried out for the data from the Barcelonnette event, and expressed in terms of impact on the area of the main cluster 
used in this study, and on the number of clusters determined by the algorithm 

. 
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Appendix 2. PGA recordings from the Barcelonette earthquake  

Lon Lat PGA (cm/s2) 

6.810 44.480 11.331 
7.116 44.507 9.669 
6.538 44.786 2.365 
6.791 44.921 1.981 
7.263 44.835 1.482 
7.326 44.246 3.633 
6.225 44.108 1.061 
7.420 44.227 8.582 
7.319 44.016 2.220 
6.683 45.208 1.281 
7.392 43.975 1.489 
6.045 43.951 0.745 
7.265 45.148 1.102 
6.922 43.753 0.690 
7.553 43.986 0.718 
6.117 45.206 0.506 
7.374 43.831 2.243 
5.767 43.988 0.815 
7.263 43.709 4.643 
7.146 43.667 2.850 
7.258 43.699 8.942 
7.367 43.740 1.942 
7.185 43.671 2.231 
7.212 43.675 3.920 
7.285 43.699 1.934 
7.489 43.784 2.170 
7.295 43.690 0.490 
7.425 43.730 0.670 
7.134 45.460 0.461 
5.744 45.241 1.626 
7.131 43.548 2.675 
5.643 43.801 0.301 
5.484 43.941 0.168 
5.807 43.588 0.373 
8.325 44.178 0.406 
8.353 44.849 1.144 
7.747 45.513 0.358 
7.568 45.602 0.214 
5.697 45.609 0.176 
7.157 45.838 0.158 
5.332 43.492 0.244 
7.869 45.875 0.043 
4.542 45.279 0.142 
5.570 46.040 0.230 
6.164 42.795 4.533   
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Appendix 3. PGA recordings from the Le Teil earthquake  

Lon Lat PGA (cm/s2) 

4.689 44.307 599.882 
5.069 44.557 417.023 
4.156 44.369 465.877 
5.097 44.850 101.730 
5.550 44.429 37.278 
5.089 45.154 184.330 
5.653 44.956 77.990 
5.675 44.942 194.140 
3.450 44.519 97.217 
5.699 45.137 106.242 
5.768 43.988 16.677 
5.801 45.065 58.958 
5.807 45.063 155.292 
5.806 45.070 30.313 
5.699 45.204 170.694 
5.737 45.182 221.314 
5.736 45.186 90.644 
5.736 45.187 94.863 
5.727 45.195 100.553 
5.740 45.193 246.231 
5.643 43.801 15.794 
5.744 45.241 209.444 
5.821 45.209 181.485 
5.759 43.803 34.924 
5.822 45.242 44.439 
5.543 43.627 19.914 
5.333 43.492 25.114 
3.221 43.970 99.081 
6.045 43.951 11.968 
3.694 45.500 113.894 
3.097 45.034 63.373 
6.225 44.109 34.629 
5.807 43.588 18.443 
5.702 43.523 26.978 
5.697 45.609 42.085 
3.636 45.676 71.123 
6.402 45.037 21.288 
6.540 44.788 0.098 
5.933 45.589 43.164 
6.622 44.550 15.107 
5.438 43.237 12.361 
6.407 43.747 13.145 
2.554 44.761 70.240 
6.749 44.429 10.104 
6.772 44.676 7.554 
6.791 44.921 8.731 
6.778 44.110 12.066 
6.683 45.209 8.829 
3.623 45.965 40.025 
6.689 43.881 2.060 
5.889 45.881 27.566 
6.255 43.383 13.538 
6.473 45.533 17.952 
3.111 45.763 86.917 
5.572 46.045 27.370 
2.810 45.575 88.781 
2.563 45.385 22.857 
3.028 45.798 21.092 
6.064 45.923 62.588 
6.136 45.892 37.278 
6.133 45.904 136.359 
6.091 45.938 74.752 
7.050 44.184 6.671 
7.116 44.507 21.190 
3.090 43.135 15.696  
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Appendix 4. Map showing the amplification factor due to soil conditions in France. The two earthquakes epicenters are shown as stars 
in blue and in red for Barcelonnette and Le Teil respectively, with the corresponding seismic stations within 200 km 

. 

Appendix 5. (a): Normalized station density as a function of epicentral distance. (b): Distribution of predicted intensity (grey/black 
dots). The estimated intensity is computed using Twitter data and PGA data, considering instrumental data recorded within 30km, 
50km, 100km and 200 km. The reference intensity (red lines) as a function of epicentral distance is extracted from municipality-level 
BCSF data 

. 
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Appendix 6. Distribution of residuals (predicted intensity minus reference intensity at municipal level). The estimated intensity is 
computed using Twitter data and PGA data. Left (a): The plot shows the residuals considering PGA data recorded within 30km, 50km, 
100km and 200 km. Right: the 4 boxplots show the residuals by intensity, considering the 4 different sets of data (b, c, d & e), where the 
ends of the box are the mean value plus and minus 1 standard deviation, and the whiskers (the two lines outside the box) extends to the 
highest and lowest values    

. 
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Appendix 7. (a): Normalized station density as a function of epicentral distance. (b): Distribution of predicted intensity (grey/black 
dots). The estimated intensity is computed using Twitter data and PGA data, considering instrumental data recorded within 30km, 
50km, 100km and 200 km. The reference intensity (red lines) as a function of epicentral distance is extracted from municipality-level 
BCSF data 

. 

Web-references 

Macroseismic online questionnaires. 
BCSF online macroseismic form: http://www.franceseisme.fr/formulaire/index.php?IdSei=0. 
EMSC “Testimonies” web page: https://www.emsc-csem.org/Earthquake/Testimonies/ 
USGS “Did You Feel It” web page: https://earthquake.usgs.gov/data/dyfi/ 
Data. 
French National Network for Earthquake Monitoring – RéNaSS: https://renass.unistra.fr, last access in July 2020. 
INSEE – French population grid: https://www.insee.fr/fr/statistiques/4176290?sommaire=4176305#consulter-sommaire, last access in July 

2020. 
ORFEUS Rapid Raw Strong Motion platform: https://www.orfeus-eu.org/data/strong/, last access in July 2020. 
TIZ - Active Twitter users: https://www.tiz.fr/utilisateurs-reseaux-sociaux-france-monde/, last access in July 2020. 
VisiBrain - Platform for social media monitoring: www.visibrain.com. 
WeAreSocial - Use of social media in France: https://wearesocial.com/fr/digital-2019-france, last access in July 2020. 

Other internet references 

Tweet from Twitter about modification of geotagging options: https://twitter.com/TwitterSupport/status/1141039841993355264. 
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BCSF-RENASS-2020-R2, 2020. 

R. Fayjaloun et al.                                                                                                                                                                                                                              

http://refhub.elsevier.com/S2212-4209(20)31429-1/sref6
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref6
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref7
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref7
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref7
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref8
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref8
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref8
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref8
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref9
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref9
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref10
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref10
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref11
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref11
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref11
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref11
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref11
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref12
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref12
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref13
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref13
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref13
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref13
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref14
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref14
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref14
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref15
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref15
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref15
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref16
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref16
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref17
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref17
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref17
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref18
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref18
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref18
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref18
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref19
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref19
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref19
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref20
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref20
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref20
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref20
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref21
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref21
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref21
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref21
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref22
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref22
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref22
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref23
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref23
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref24
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref24
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref24
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref25
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref25
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref25
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref25
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref26
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref26
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref26
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref26
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref27
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref27
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref28
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref28
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref28
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref29
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref29
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref29
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref30
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref30
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref30
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref31
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref31
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref31
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref32
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref32
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref33
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref33
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref33
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref34
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref34
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref34
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref35
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref35
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref35
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref35
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref36
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref36
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref37
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref37
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref37
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref38
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref38
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref39
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref39
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref40
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref40
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref40
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref41
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref41
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref41
http://usgs.github.io/shakemap/
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref43
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref43
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref44
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref44
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref44
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref45
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref45
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref46
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref46
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref46
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref47
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref47
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref47
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref47
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref47
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref48
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref48
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref48
https://doi.org/10.15778/RESIF.RA
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref50
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref50
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref50
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref51
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref51
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref51
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref52
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref52
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref52
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref52
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref53
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref53
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref53
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref54
http://refhub.elsevier.com/S2212-4209(20)31429-1/sref54

	Integrating strong-motion recordings and twitter data for a rapid shakemap of macroseismic intensity
	1 Introduction
	2 Twitter as a real-time social seismic sensor
	2.1 A global social network to monitor earthquakes around the world
	2.2 Extraction and analysis of twitter feeds in France
	2.3 Agnostic extraction of the raw felt area from tweets

	3 Generation of twitter-enhanced shakemaps
	3.1 Shakemap algorithm
	3.2 Integration of twitter data into shakemaps

	4 Application to two recent earthquakes in France
	4.1 Data and assumptions
	4.2 Case study 1: Barcelonette earthquake
	4.3 Case study 2: Le Teil earthquake

	5 Conclusions and perspectives
	Declaration of competing interest
	Acknowledgments
	Appendix 1 Sensitivity analysis of the clustering procedure to the parameter defining the minimum number of points necessar ...
	Appendix 2 PGA recordings from the Barcelonette earthquake
	Appendix 3 PGA recordings from the Le Teil earthquake
	Appendix 4 Map showing the amplification factor due to soil conditions in France. The two earthquakes epicenters are shown  ...
	Appendix 5 (a): Normalized station density as a function of epicentral distance. (b): Distribution of predicted intensity ( ...
	Appendix 6 Distribution of residuals (predicted intensity minus reference intensity at municipal level). The estimated inte ...
	Appendix 7 (a): Normalized station density as a function of epicentral distance. (b): Distribution of predicted intensity ( ...
	Web-references
	Other internet references
	References


