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Abstract
The evaluation of a bridge’s structural damage state following a seismic event and
the decision onwhether or not to open it to traffic under the threat of aftershocks
(ASs) can significantly benefit from information about the mainshock (MS)
earthquake’s intensity at the site, the bridge’s structural response, and the result-
ing damage experienced by critical structural components. This paper illustrates
a Bayesian network (BN)-based probabilistic framework for updating theAS risk
of bridges, allowing integration of such information to reduce the uncertainty in
evaluating the risk of bridge failure. Specifically, a BN is developed for describing
the probabilistic relationship among various random variables (e.g., earthquake-
induced ground-motion intensity, bridge response parameters, seismic damage,
etc.) involved in the seismic damage assessment. This configuration allows users
to leverage data observations from seismic stations, structural health monitor-
ing (SHM) sensors and visual inspections (VIs). The framework is applied to a
hypothetical bridge in Central Italy exposed to earthquake sequences. The uncer-
tainty reduction in the estimate of the AS damage risk is evaluated by utilising
various sources of information. It is shown that the information from accelerom-
eters and VIs can significantly impact bridge damage estimates, thus affecting
decision-making under the threat of future ASs.

KEYWORDS
aftershock risk, Bayesian network, joint probabilistic demand model, structural health
monitoring, visual inspections

1 INTRODUCTION

Earthquakes typically occur in sequences characterised by a seismic event with a larger magnitude than all others. Such
major events constitute mainshocks (MSs), generally followed by several smaller-magnitude aftershocks (ASs) clustered
in space and time. This may not strictly apply to triggered earthquakes where the energy or stress due to the seismic waves
generated by a fault rupture triggers a distant earthquake with a different rupture zone (and potentially similar or even
larger magnitude) (e.g.,1). These sequences can cause vast losses due to direct repair costs, business interruptions and
casualties, especially if the affected structures and infrastructure are left unrepaired upon the initial damage due to the
first event (often due to the short time between events).
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The accurate evaluation of the state of infrastructural assets in the aftermath of major earthquakes is of paramount
importance for optimal emergency management decisions and ensuring their safe use under the threat of ASs. It is also
essential to correctly allocate and prioritise resources to minimise further casualties and business interruptions and speed
up recovery from disruption (e.g.,2).
Many approaches and frameworks have been proposed in recent decades to address the post-earthquake functionality

of bridges and their AS risk, aiming to support the decision on opening the bridge to traffic. Mackie and Stojadinović,3
among others, developed an approach based on the performance-based earthquake engineering (PBEE) framework by the
Pacific Earthquake Engineering Research (PEER) Center to evaluate the loss in load-carrying and traffic-carrying capacity
of bridges following anMS. However, their approach disregarded the increased risk of damage due to ASs. On the other
hand, Franchin and Pinto4 proposed amethod for decidingwhether or not to allow traffic on a bridge based on the survival
probability of anMS-damaged bridge under AS hazard. However, the problem of the uncertain knowledge of the bridge
state following anMSwas not addressed in their study. Instead, they assumed that the bridge damage is both analytically
and visually detectable and that a near real-time estimation of theMS source and site parameters is available (e.g., from
regional seismic stations/networks).
The accurate evaluation of the level of damage suffered by a structure following an earthquake is critical for a correct

estimation of its AS risk (e.g.,5,6). Obviously, in the absence of direct evaluations of damage (e.g., via field inspections),
knowledge of the earthquake-induced ground-motion intensity experienced by the structure is essential for inferring the
level of damage sustained by it. The simplest approach for evaluating ground-motion intensity at a given target site involves
using a ground motion model (GMM), estimating the amplitude of a ground-motion intensity measure (IM) given the
information on the location and magnitude of the earthquake (and eventually other site-specific features). However, the
dispersion associated with GMMs is generally large, thus leading to highly uncertain estimates of the ground-motion IM.
This uncertainty could be reduced by using information from seismic stations near the site (e.g.,7–11). However, the corre-
lation between intensities at two points reduces significantly with the distance between them; hence, the IM estimate is
generally still quite uncertain unless a station is located very close to the site. In any case, a fragility model (i.e., probability
of damage as a function of a hazard intensity measure) is needed to estimate the damage level given the uncertainty of
the IM (and modelling uncertainties). This results in uncertainty propagation in damage and loss estimates, leading to
further uncertainty in assessing structural/nonstructural risk under future earthquakes.
One way to improve the knowledge of the actual state of a structure of interest is by exploiting observations from struc-

tural health monitoring (SHM) systems (e.g.,12,13). Most existing SHM methodologies rely on vibration measurements
through accelerometers to detect changes in the dynamic properties of the system that can be attributed to structural dam-
age (e.g.,14). Alternative sensors have also been proposed for the dynamic identification and damage detection (e.g., Global
Positioning System (GPS) receivers, cameras, etc.) (e.g.,15–18). Visual inspections (VIs) after earthquakes help determine
the damage’s severity, though they only partly capture effects of the seismic action (e.g., surface cracks in concrete, resid-
ual displacements [RDs]). Moreover, conclusions on the level of damage associated with these effects can be subjective,
prone to human error and unreliable.
Further studies have proposed approaches for improving bridge damage estimates using information from sensors and

VIs. For example, Alessandri et al.19 proposed a method for evaluating post-earthquake bridge operability based on a
rational combination of information derived from numerical analyses and in situ inspections. A Bayesian approach was
developed to update theMS damage probability and thus theAS risk using the observationmade byVIs. The study showed
that in situ inspections could drastically affect andmodify the damage estimates for a structure, helping to decide whether
to open traffic on bridges.
Limongelli et al.13 developed a framework for quantifying the value of SHM sensor information for post-earthquake

emergency management of bridges, discussing alternative monitoring strategies. A similar framework was applied by
Giordano and Limongelli20 to evaluate the value of information of SHM sensors for bridge risk management, considering
AS hazard. The first natural frequency of the structure was considered as damage sensitive feature in the study. Tubaldi
et al.21 developed a Bayesian network (BN)-based approach for evaluating and comparing the contribution of alternative
data sources such as free-field seismic stations, GPS receivers, and structure-mounted accelerometers for bridge seismic
risk assessment purposes. The comparisonwas conducted using two alternativemeasures that quantify the added value of
information from the observations, based on pre-posterior variance and relative entropy reduction concepts. It was shown
that the information from an accelerometer mounted on a bridge deck is superior in terms of uncertainty reduction to
that provided by seismic stations located not very close to the site or by GPS receivers.
The assessment of the AS risk for bridges – and thus decision making on post-earthquake emergency management

operations – may significantly benefit from the synergy of the various approaches outlined above and from the fusion of
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heterogeneous pieces of available information. The BN framework developed by Tubaldi et al.21 only considers an MS
scenario; in this study, the framework is further extended to include ASs in the risk assessment of bridge structures.
Furthermore, for the first time, risk updating is carried out by combining valuable information from seismic stations,
SHM sensors and VIs. The framework extension requires defining an AS hazard model that describes the frequency and
intensity of ASs following anMS and developing a model that quantifies the damage accumulation under multiple ASs,
given the damage experienced in the MS and the IMs of the ASs. The framework is applied to evaluate the AS risk of a
case-study two-span bridge model, which is assumed to be located in Central Italy. This area was exposed to a series of
ASs during the Central Italy earthquake of 2016–2017 (e.g.,22,23).
Section 2 illustrates the various models involved in the proposed BN. Section 3 presents the BN developed to describe

the relationship between the various parameters involved in seismic damage assessment and updating of these parameters
based on additional available information from different sources. Finally, Section 4 illustrates the implementation of the
method on the two-span bridge as an illustrative case study. This is followed by a discussion of the results and some
concluding remarks in Section 5.

2 MODELS FOR AFTERSHOCK RISK ASSESSMENT

This section describes the various models required to develop the BN for AS risk assessment, along with the parameters
involved and the observations required for updating them.

2.1 Mainshock analysis

A GMM is required to estimate the probability distribution of a ground-motion intensity measure for theMS experienced
by the considered bridge at the ith site of interest, 𝐼𝑀𝑀𝑆𝑖 , given the following variables that are assumed to be known at
the end of the earthquake: momentmagnitude of theMS earthquake (MMS); a measure of the source-to-site distance RMSi,
for instance, assuming a point-source event, for simplicity; other parameters, collected in the vector si, characterising the
fault (such as those describing the faultingmechanism, fault geometry, depth to the top of the rupture) and site properties.
In general, a GMM is characterised by the following form (e.g.,24):

log (𝐼𝑀MSi) = 𝑓 (𝑀MS, 𝑅MSi, 𝐬𝑖) + 𝜂 + 𝜁𝑖 (1)

where 𝑓(𝑀𝑀𝑆, 𝑅𝑀𝑆𝑖, 𝐬𝑖) is a function describing the lognormal mean of 𝐼𝑀𝑀𝑆𝑖 givenMMS, RMSi and si; η the inter-event
(or between-event) error term and 𝜁𝑖 is the intra-event (or within-event) error term.
The inter- and intra-event variabilities of a GMM describe the multi-level variabilities inherited in the ground motion

recordings that arise from multiple station recordings for multiple earthquake events. Specifically, the inter-event error
term describes the systematic variability in the ground motions throughout the region produced by different earthquakes
of the same magnitude and rupture features. The intra-event error describes the variability in ground-motion intensity at
various sites of the same soil classification and distance from the source during a single earthquake (e.g.,25). Thus, follow-
ing Park et al.26 and Crowley et al.,27 the same inter-event variability is applied to all sites of interest for a given earthquake
scenario. In contrast, the intra-event variability is represented by a spatially correlated Gaussian random field. This can
be built based on the intra-event error terms 𝜁𝑖 and the correlation coefficient ρij between the ground-motion parameters
at two sites i and j for i,j = 1,2,..Nsites, where Nsites is the number of sites of interest. The corresponding covariance matrix
of the ground motion IM field has the following form:

𝚺𝐈𝐌 =

⎡⎢⎢⎢⎣
𝜎2
𝜂 + 𝜎2

𝜉𝑖
⋯ 𝜎2

𝜂 + 𝜌𝑖𝑗𝜎𝜉𝑖𝜎𝜉𝑗

⋮ ⋱ ⋮

⋯ ⋯ 𝜎2
𝜂 + 𝜎2

𝜉𝑗

⎤⎥⎥⎥⎦
(2)

where ση and σξ represent the standard deviations of the inter- and intra-event error terms provided by the GMM,
respectively. Further details about this representation of the ground-motion field can be found in Gehl et al.8 The field
observations of the ground-motion parameters at seismic stations can be used as evidence to update the prior estimates
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of the IM at the site of interest. The spatial correlation structure between the IMs at the monitored points and the target
site plays a significant role in propagating the information from observed IMs to unobserved ones (e.g.,28).

2.2 Aftershock hazard analysis

The magnitude and location of anMS event can be used to obtain realistic AS scenarios. Several alternate methods avail-
able in the literature can be used to compute the seismicity/source parameters of ASs from the parameters of MSs. For
example, Reasenberg and Jones proposed a stochastic Bayesian parametric model that allows estimating the probabilities
of occurrence for ASs and largerMSs during intervals following anMS. The estimate of the model parameters is obtained
with Bayesian statistics using the ongoing AS sequence and a suite of historic California AS sequences. Currently, one
of the most popular models to describe the time-dependent seismicity of a region is the space-time Epidemic-Type After-
shock Sequence (ETAS) model (e.g.,30,31). The model’s premise is that all earthquake events tend to trigger ASs with a
stationary magnitude-dependent relation between them. The model considers earthquake seismicity from ASs (caused
by internal stress adjustments in the seismogenic system) and background earthquakes (caused by forces within the plate
tectonics, fluid/magma intrusion, slow slip, etc.). The ETASmodel is a point process representing the occurrence of earth-
quakes for a given magnitude threshold over a given temporal and spatial range. Due to the computational complexity
of the ETAS model, particularly in terms of the location of ASs, simpler approaches such as the branching aftershock
sequence (BASS) model (e.g.,32) are available that probabilistically compute consistent source-to-site distances between
the MSs and ASs. Apart from the models that relate the earthquake sequences using the causal event parameters, some
methods propose the casual relations based on the intensity measures of the ground motions. For example, Fayaz et al.33
proposed a novel approach that uses time-series modelling concepts to temporally correlate the Arias intensity (used as a
proxy for the energy content of ground motions) of various earthquakes sequences.
Generally, for the purposes of structural analysis and risk analysis, the above-mentioned procedures are also used to

select consistentMS–AS ground-motion scenarios and records. Recently, Goda and Taylor34 proposed an AS record selec-
tion procedure that can be used to simulate time-series data forMS–AS sequences. The study used the generalisedOmori’s
law (e.g.,35) as the basis of generating artificial sequences and simulated a series of events with their time and magnitude
stamps. For simplicity, they used the same source-to-site distance R forMS andAS events. Alessandri et al.19 combinedAS
hazard analysis using Omori’s law and Latin Hypercube Sampling technique for selection of MS–AS ground motions to
conduct an AS risk assessment of bridge structures. Furthermore, a simplistic approach for simulatingMS–AS sequences
is to use Båth’s law (e.g.,36) that postulates that the largest AS for a givenMS is on average 1.2 moment-magnitude units
lower than theMS.
In this study, for simplicity, the general procedure adopted by Papadopoulos et al.37 is utilised to compute the number

of ASs, their moment magnitudes (𝑀𝐴𝑆), time between the MS and ASs (Δ𝑡), and the distance between the epicentre of
theMS and that of the AS (𝑟epi). The sequences are generated by means of the triggering component of the ETAS model.
The model is based on three uncoupled probability distributions that model (a) the direct offspring productivity; (b) the
spatial; and (c) the temporal distribution of the triggered earthquakes, as well as a magnitude distribution of earthquakes
derived from the Gutenberg–Richter (GR) law. Specifically, the simulation of MS-consistent AS scenarios in this study
uses Equations (3)–(6). First, the number of direct offspring events from anMS event with a magnitude𝑀𝑀𝑆 is sampled
from a Poisson distribution with mean 𝑘(𝑀𝐴𝑆) given in Equation (3). Then, for each of the offspring events, the distance
𝑟epi between the epicentres of the two events and the inter-arrival time Δ𝑡 between the parent and offspring event are
simulated using Equations (4) and (5), respectively, where ut and ur are uniformly distributed random variables over the
range [0,1], and A, a, p, c, D, q, γ are constant parameters representing the general spatial and temporal distributions
of AS events and are estimated mainly through maximum likelihood estimation (e.g.,31,38). Similarly, for each offspring
AS, the corresponding magnitude𝑀𝐴𝑆 is sampled from the GR distribution using Equation (6), where um is a uniformly
distributed random variable over the range [0,1], b a constant parameter that represents the regional level of seismicity
and 𝑀min is the minimum considered magnitude. Equation (6) refers to the case of untruncated GR distributions with
only a lower bound. After the direct offspring ASs (i.e., events triggered by theMS) are defined, the second generation of
offspring events (triggered by direct ASs) can be sampled by repeating the procedure using the first-generation offspring
as parent events. The second-generation offspring events can be again used as seeds for a third set and so forth until
the sequence eventually dies out (zero offspring are sampled) or there are no more seed earthquakes within the time of
interest. A reasonable time span can be used to dictate the time of interest within which the majority of ASs is expected
to occur, and bridges are not likely to be repaired (e.g., 1–3 years). In this study, whose focus is on the rapid response to
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F IGURE 1 Illustration of the bilinear regression model used in this study

earthquakes, a shorter time span of a few weeks might be considered. Earthquakes simulated outside of this time interval
are usually discarded (e.g.,37).

𝑘 (𝑀𝐴𝑆) = 𝐴 × exp (a (𝑀𝑀𝑆 − 𝑀min)) (3)

𝑟epi = 𝑑 × exp (𝛾 (𝑀𝐴𝑆 − 𝑀min))

√
𝑢
1∕(1−𝑞)

𝑟 −1 (4)

Δ𝑡 = −𝑐 + 𝑐(1 − 𝑢𝑡)
1∕(1−𝑝) (5)

𝑀𝐴𝑆 = −
ln (1 − 𝑢𝑚)

𝑏 ln10
+ 𝑀min (6)

The same GMM employed for the MS can be used to relate the IM of the ASs, collected in the vector IMAS, to the AS
source to site distance (RAS) as well as the magnitude of the ASs (MAS). However, the framework can be easily updated
to include AS specific GMMs, based on studies like Lee et al.;39 similarly, the correlations between and within the IM
estimates ofMS and AS ground motions can be easily included in the proposed approach. Yet, the use of average spectral
acceleration over a period range as the considered IM reduces significant differences. Furthermore, there is a lack of
usable AS recordings in the available databases to develop AS-specific GMMs and correlation models (e.g.,37). Hence,
most similar studies (e.g.,40) have reverted to the use of the same GMMs for bothMS and AS.

2.3 Mainshock response and damage assessment

Given the MS ground-shaking intensity, a statistical model is required to describe the joint probability distribution of
the engineering demand parameters (EDPs) of interest for increasing intensity levels (e.g.,41). Furthermore, modelling
the correlation structure between the various parameters of interest is very important as it is the basis for updating the
probabilistic distribution of one EDP (e.g., floor acceleration in a building) given the observation of another (e.g., storey
drift).
Alternative approaches can be employed to develop a joint probabilistic seismic demandmodel (PSDM), such as multi-

stripe analysis (e.g.,42), incremental dynamic analysis (e.g.,43) or cloud analysis (e.g.,44). Cloud analysis is adopted in
this study, given its computational efficiency and resulting accuracy. For this purpose, the computational model of the
considered structure is analysed under a set of ground-motion records of different IM levels. The response parameters
(EDPi, for i= 1, 2, ..,NEDP) are used as target variables for a regression model. In particular, a bilinear model is considered
in this study (e.g.,45,46) since it allows a better description of the trend of the structural response with the ground-motion
intensity. The model for the generic ith EDP is given in Equation (7) (see Figure 1):
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TABLE 1 Park et al. (1985) damage index classification

Level Calculated damage index Degree of damage
1 D < 0.1 Slight damage
2 0.1 < D < 0.25 Minor damage
3 0.25 < D < 0.4 Moderate damage
4 0.4 < D < 1.0 Severe damage
5 D > 1.0 Partial or total collapse

ln (𝐸𝐷𝑃𝑖|𝐼𝑀) = [𝑎1𝑖 + 𝑏1𝑖 ln (𝐼𝑀) + 𝜀1𝑖 (∼ 𝑁 (0, 𝛽1𝑖))] 𝐻 (𝐼𝑀 − 𝐼𝑀∗)

+ [𝑎1𝑖 + 𝑏1𝑖 ln (𝐼𝑀∗) + 𝑏2𝑖 (ln (𝐼𝑀) − ln (𝐼𝑀∗)) + 𝜀2𝑖 (∼ 𝑁 (0, 𝛽2𝑖))] [𝐻 (𝐼𝑀∗ − 𝐼𝑀)] (7)

where a1 is the intercept of the first segment, bi for i = 1, 2 are the slopes of the two segments, IM* is the breakpoint IM,
which is defined as the point of intersection of the two segments.
The step function H(⋅) controls which of the two segments must be considered (i.e., H = 0 for IM ≤ IM*, and H = 1

for IM > IM*). The probability distribution of each EDP is also described by the values of two random variables (i.e.,
the error terms 𝜀1𝑖(∼ 𝑁(0, 𝛽1𝑖)) and 𝜀2𝑖(∼ 𝑁(0, 𝛽2𝑖))), which are characterised by a normal distribution with zero mean
and standard deviations 𝛽1𝑖 and 𝛽2𝑖 . Moreover, to define a joint probability density function (PDF) for the various EDPs, a
covariancematrixmust be assigned,whichhas the same formas that of Equation (2). For this purpose, different correlation
coefficients must be estimated for the two conditions corresponding to IM ≤ IM* and IM > IM*, thus, leading to two
correlation matrices. The EDPs considered in this study are the peak transient displacement (TD), the RD and the peak
absolute acceleration (PA) at the bridge deck level. The first two parameters may be measured using GPS receivers, laser
vibrometer, transducers and cameras, whereas PA is measured using accelerometers.
In addition to the above response parameters, two more EDPs are needed to define the VI outcomes, 𝜀𝑐𝑐 and 𝜀𝑐𝑡,

respectively, denoting the maximum strain of concrete cover in compression and tension experienced during theMS. For
simplicity, it is assumed that a VI provides information only on whether concrete cracking and crushing have occurred
or not at the base of bridge piers. These two events are defined by 𝜀𝑐𝑐 and 𝜀𝑐𝑡 exceeding their respective limits 𝑒cc and 𝑒ct,
which are in general also random variables. The state of the bridge is described in this study by a global damage index
(D), which is an extension of the Park and Ang47 damage index to the case of biaxial loading. The Park and Ang47 damage
index is expressed by:

𝐷PA =
𝑑𝑚

𝑑𝑢
+ 𝛽𝐷

𝐸ℎ

𝐹𝑦𝑑𝑢
(8)

where 𝑑𝑚 is the maximum displacement of the structural member, 𝑑𝑢 the ultimate curvature displacement, 𝐸ℎ the
dissipated hysteretic energy and𝐹𝑦 is the yielding strength of the structuralmember;𝛽𝐷 is a dimensionless empirical factor
describing how hysteretic energy contributes to damage compared to the displacement demand. Experimental values of
𝛽𝐷 are in the range between −0.3 and 1.2 (e.g.,48). Table 1 summarises the classification of damage levels based on Park
et al.,49 for establishing a correspondence between the calculated values of D and the observed empirical damage.
Since the structure examined is subjected to biaxial loading, a biaxial damage index 𝐷 is employed to define the bridge

state. Rodrigues et al.50 carried out an experimental campaign on 24 reinforced concrete (RC) columns tested under bi-
dimensional earthquake conditions and presented seven expressions for the evaluation of D. The present study considers
the following one:

𝐷 =
√

𝐷2
𝑥 + 𝐷2

𝑦 (9)

where

𝐷𝑥 =
𝑑max,𝑥

𝑑ult,𝑥
+ 𝛽𝐷

𝐸𝑥

𝐹yield,𝑥, ⋅ 𝑑ult,𝑥
(10)

𝐷𝑦 =
𝑑max,𝑦

𝑑ult,𝑦
+ 𝛽𝐷

𝐸𝑦

𝐹yield,𝑦 ⋅ 𝑑ult,𝑦
(11)
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In Equations (10) and (11), 𝐷𝑥 and 𝐷𝑦 refer to the damage indices calculated for each independent direction, 𝐸𝑥 and 𝐸𝑦

are the cumulative dissipated energy for each independent direction, 𝑑max,𝑥 and 𝑑max,𝑦 denote the maximum displace-
ments, 𝑑ult,𝑥 and 𝑑ult,𝑦 represent the ultimate displacements and 𝐹yield,𝑥 and 𝐹yield,𝑦 denote the yielding strength in each
direction. To exploit the information from sensors and the outcomes of VIs for updating the knowledge of the bridge
damage, the joint probabilistic model must include both the EDPs of interest and the damage index.

2.4 Aftershock damage assessment

The process describing the evolution of damage in a bridge under repeated events such as anMS–AS sequence is a state-
dependent process, that is, the increment of damage that characterises a given shock depends on the history of damage
accumulated during the previous shocks. Previous studies (e.g.,51) considered the Markovian assumption, that is, the
damage evolution under a given ground motion, conditional to the features of the ground motion, depends only on the
state of the structure at the time of the shock and not on all of its damage history. Ghosh et al.52 demonstrated in their study
that earthquake damage accumulation can be treated as a homogeneous Markov process. Introducing this assumption,
the damage index at the end of the nth event or ground motion can be expressed as a function of the intensity of the event
and of the damage at the end of the (n–1)th event or ground motion. Specifically, the multi-variate model developed by
Ghosh et al.52 is employed in this study, which has the following form:

ln(𝐷𝑛|𝐼𝑀𝑛, 𝐷𝑛−1) = 𝑐𝑛 + 𝑑𝑛 ln (𝐷𝑛−1) + 𝑒𝑛 ln (𝐼𝑀𝑛) + 𝑓𝑛 ln (𝐷𝑛−1) ∗ ln (𝐼𝑀𝑛) + 𝜀𝑛 (∼ 𝑁 (0, 𝛽𝐴𝑆)) (12)

where 𝐼𝑀𝑛 is the ground motion intensity of the nth event, 𝐷𝑛−1 is the damage index after the (n–1)th event; 𝑐𝑛, 𝑑𝑛,

𝑒𝑛, and 𝑓𝑛 are regression coefficients, and 𝜀𝑛(∼ 𝑁(0, 𝛽𝐴𝑆)) is a random variable normally distributed with zero mean and
lognormal standard deviation 𝛽𝐴𝑆 . This model can be fitted to empirical data from analyses of the structure under a series
ofMS–AS sequences, where 𝐷𝑛 = 𝐷𝑀𝑆 for n = 1. It is noteworthy that Equation (12) may return values of 𝐷𝑛 lower than
𝐷𝑛−1 due to the nature of the regression model and 𝜀𝑛. One way to overcome this physical inconsistency (i.e., damage can
only increase) is to postulate that 𝐷𝑛 > 𝐷𝑛−1:

ln(𝐷𝑛|𝐼𝑀𝑛, 𝐷𝑛−1) = max [𝑐𝑛 + 𝑑𝑛 ln (𝐷𝑛−1) + 𝑒𝑛 ln (𝐼𝑀𝑛) + 𝑓𝑛 ln (𝐷𝑛−1) ∗ ln (𝐼𝑀𝑛) + 𝜀𝑛, 𝐷𝑛−1] (13)

This choice is expected to provide more physics-based results than the model originally developed by Ghosh et al.52
It is worth mentioning that under the assumption of a homogeneous Markov process, the coefficients of the model in
Equations (12) and (13) are independent of n, that is, the probability of moving from a state of damage to another under
a given ground motion does not depend on the number of ground motion in the sequence (e.g., the same model can be
used for the second earthquake and the third earthquake in a sequence).

3 BAYESIAN FRAMEWORK

This section presents the Bayesian framework developed for the assessment of the AS risk of a bridge and for its updating
using observations from seismic stations, structural monitoring sensors and VIs.

3.1 Bayesian network

This subsection illustrates the BN developed to describe the probabilistic relationship between the parameters specified
in the previous section, perform predictive analysis and update these parameters based on additional information from
different observations (see Figure 2). The magnitude of the point-sourceMS earthquake (MMS) and location between the
source and the site aswell as the source and the seismic stations (collected inRMS) are assumed to be known. Various types
of information are considered to be available for updating the probabilistic relationships of the variables in the network:
on-site seismometers located close to the site of the structure, providing information on IM levels; GPS data, updating the
knowledge of the RD; accelerometer data, updating the knowledge of the PA in the bridge deck; and the outcome of a
VI, updating the knowledge of 𝜀𝑐𝑐 and 𝜀𝑐𝑡. In the last case, the values of 𝜀𝑐𝑐 and 𝜀𝑐𝑡 are updated only if concrete cracking
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F IGURE 2 Bayesian network illustrating the relationships between the parameters involved in the damage assessment (observed
quantities are indicated by thick lines, parent nodes filled with grey)

and/or crushing are observed, as this means that the deformations in the most critical fibre of the base section have likely
exceeded the limit threshold corresponding to tensile cracking and/or crushing. Since the BN is static, it does not account
for the temporal evolution of the system between the end of the MS and the occurrence of the ASs. Thus, information
from sensors and VIs gained at different times after the occurrence of an earthquake can potentially be merged together.
The nodes of the BN represent random variables, each characterised by a PDF. Nodes are related to their parent and

child variables through edges that state conditional dependencies between variables (i.e., use of conditional probability
distributions). Nodeswith no parents are termed root nodes, associatedwithmarginal probability distributions. Two forms
of probabilistic inference can be carried out in BNs: predictive analysis that is based on evidence (i.e., information that
the node is in a particular state) on root nodes, and diagnostic analysis, also called Bayesian learning, where observations
enter into the BN through the child nodes.When evidence enters the BN, it is spread inside the network, thereby updating
the probability distributions of the variables through one of the two forms of inference mentioned above.
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The earthquake-induced ground shaking for theMS event is modelled by the deterministic root nodesMMS and RMS.
For demonstration purposes, two seismic stations (represented by IMMS2 and IMMS3) are assumed to be in the vicinity of
the bridge site (represented by IMMS1).
Following Gehl et al.,8 the inter-event variability is modelled by the root node W, which is parent to the three IMs of

interest and follows a standard normal distribution. The intra-event variability is modelled via three root nodes, Uj, for
j= 1,2,3, also following a standard normal distribution. The following relation expresses the joint conditional distribution
of the IMs givenW and Ui:

ln
(
𝐼𝑀MSi|𝑊,𝑈𝑗

)
= ln 𝐼𝑀𝑖 (𝑀MS, 𝑅MSi) + 𝜎𝜉

3∑
𝑗=1

𝑡ij𝑈𝑗 + 𝜎𝜂𝑊𝑖 = 1, 2, 3 (14)

where 𝐼𝑀𝑀𝑆𝑖 is the median value of the IM at the ith site, and ln 𝐼𝑀𝑀𝑆𝑖(𝑀𝑀𝑆, 𝑅𝑀𝑆𝑖) is the lognormal mean, which
is a function of 𝑀𝑀𝑆 and 𝑅𝑀𝑆𝑖 (see also Equation 1), 𝜎𝜉 and 𝜎𝜂 are the lognormal standard deviations describing the
intra- and inter-event variability, respectively, 𝑡𝑖𝑗 is a term of the lower triangular matrix obtained through a Cholesky
factorisation of 𝐂𝐈𝐌, which is the spatial correlation matrix expressing the correlation between the IMs at the various
sites.
A similar approach is used for the PSDM describing the conditional distribution of the EDPs and damage index DMS

given the IM at the site, IMMS. However, in this case, a bilinear regression model is employed, and thus two differ-
ent error variables and correlation matrixes have to be considered, one for 𝐼𝑀𝑀𝑆 < 𝐼𝑀 ∗ and the other for 𝐼𝑀𝑀𝑆 >

𝐼𝑀 ∗. In addition, three additional root nodes, denoted as eVD, eGPS and ePA, are introduced. They are used to describe
the errors in the visual damage estimation and the measurement errors of the observations obtained with GPS and
accelerometers. These error variables are assumed to be zero-mean normally distributed variables. They implicitly rep-
resent the accuracy and reliability of the observations from sensors and the VI: for example, if the standard deviation
of eVD is large, the information from VIs is not very reliable. Thus, its contribution in the BN updating will be almost
negligible.
The IMs of the forecasted AS events, collected in IMAS, are computed by using the same GMM used for theMS, based

on the knowledge of the distances between the AS source and the site, collected in the vector RAS, and the magnitude of
the AS sequenceMAS. Finally, the model described in Equation (12) is employed to describe the relationship between the
damage incurred from theMSDMS and the damage incurred from the ASsDAS, given the IMs of the forecasted AS events
collected in IMAS.

3.2 Bayesian updating algorithm

The BN detailed in Figure 2 is used to perform a predictive analysis, starting from the prior distribution of the root nodes
and a diagnostic analysis, entering an observation at the nodes IMMS2, IMMS3, RDobs and PAobs and visual observations
(VI). For this purpose, the OpenBUGS software (e.g.,53) is employed, which is interfaced with the R statistical tool. Open-
BUGS can treat both deterministic (e.g., MMS and 𝐑𝑀𝑆) and probabilistic (e.g., IMMSi, TD) variables. These latter are
sampled through a Markov Chain Monte Carlo (MCMC) sampling scheme. Each chain is built with a Gibbs sampling
scheme, where variables are sampled successively from the posterior distribution of previous variables: the posterior dis-
tribution of a variable is obtained from the product of the prior distribution and the likelihood function (probability of a
given observation occurring given the prior distribution). The samples are then aggregated to estimate empirical statis-
tics of the variables of interest, representing the posterior distributions. Although Bayesian inference based on sampling
provides only approximate solutions (i.e., the posterior distribution is built from the samples), it has the benefit of being
much more flexible than exact inference algorithms such as junction-tree inference (e.g.,54), since it allows modelling
continuous variables using various probability distributions. Due to the approximate nature of the posterior distributions
sampled by the MCMC scheme, there is no guarantee that exact distribution parameters may be obtained. However, in
the present study, the following steps are taken to ensure reasonable accuracy of the results:

∙ generation of multiple MCMC chains starting with different combinations of initial conditions to ensure that all chains
converge towards the same values;

∙ generation of a high number of samples for each chain (e.g., several tens of thousands);
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F IGURE 3 (A) Two-span bridge profile, (B) transverse deck section (source Tubaldi et al.59)

∙ definition of a ‘burn-in phase’, where the first part of each chain is removed from the estimation of the posterior
distribution, to remove samples that have not yet converged;

∙ thinning of the samples (i.e., only one sample in every five is considered in each chain) to reduce autocorrelation effects
inherent in MCMC sampling.

Specific statistical tools in OpenBUGS are dedicated to estimating autocorrelation and require a minimum number of
samples. In any case, preliminary tests are necessary to calibrate the sampling parameters carefully. The chosen sampling
results from a trade-off between the required accuracy level and the computational cost. In the present application, the
relatively modest size of the BN does not imply unreasonable computational times, and the convergence towards an accu-
rate posterior distribution is checked by estimating the ‘R-hat’ value (e.g.,55) and the effective sample size (e.g.,56) for all
variables.

4 CASE STUDY

4.1 Case-study description

For demonstration purposes, the structural system considered in this study consists of a two-span bridge with a con-
tinuous multi-span steel-concrete composite deck, hypothetically located in L’Aquila, Italy (latitude 42.5650N, longitude
12.6438E). The selected bridge represents a class of regular medium-span bridges commonly used in transportation net-
works (e.g.,57–59) (see Figure 3). The bridge superstructure, designed according to the specifications given in Eurocode 4
(ECS),60 consists of an RC slab of width B = 12 m, which hosts two traffic lanes, and of two steel girders positioned sym-
metrically with respect to the deck centreline at a distance of 6 m. Class C35/45 concrete (i.e., characteristic compressive
concrete strength of 35 MPa) is used for the superstructure slab. The reinforcement bars are made of grade B450C steel
(characteristic yield strength of 450 MPa), and the deck girders are made of grade S355 steel (characteristic yield strength
of 355 MPa). The distributed gravity load due to the deck’s self-weight and nonstructural elements is 138 kN/m for a mass
per unit length md = 14.07 kN/m. The RC piers have a circular cross-section of diameter d = 1.8 m. They are made of
class C30/37 concrete with a longitudinal reinforcement steel ratio of 1% and a transverse reinforcement volumetric ratio
rw = 0.5%. Further details about the bridge can be found in Tubaldi et al.59
A three-dimensional finite element (FE) model of the bridge is developed in OpenSees (e.g.,61) following the same

approach as described in Tubaldi et al.,62 that is, using linear elastic beam elements for describing the deck, and the beam
element with inelastic hinges developed by Scott et al.63 to describe the pier. Further details of the FE model and the
pier properties are given in Tubaldi et al.62 The elastic damping properties of the system are characterised by a Rayleigh
damping model, assigning a 2% damping ratio at the first two vibration modes. The FE model described in this study is
assumed to be deterministic and characterised by no epistemic uncertainties. Future extensions of the methodology will
consider the introduction of modelling uncertainty (such as considering the approach outlined in Tubaldi et al.64 and
their effects on the results).
Figure 4 shows the hysteretic response of the pier to a bi-directional ground-motion record, in terms of moment-

curvature of the base and base shear-top displacement, along the two principal directions of the bridge. It can be observed
that some degradation of stiffness and pinching characterise the model. This results from the constitutive model adopted
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F IGURE 4 (A) Base moment-curvature response; and (B) base shear-top displacement response, along the two principal directions of
the bridge

F IGURE 5 M-Rrup distributions of: (A)MSs; and (B) ASs of the selected database (703 GMs)

to describe the concrete fibres in the plastic hinge region (Concrete 02 in OpenSees; (e.g.,61)). However, a more sophisti-
cated description of the hysteretic behaviour of the pier and other bridge components (see for instance65,66) is out of the
scope of this study.
To develop the probabilistic seismic models that describe response and damage under theMS–AS sequences, 200MS–

AS recordings from the database developed by Goda and Taylor34 and Goda et al.67 are considered. The database contains
703MS events and their corresponding strongestASs (described in terms of peak ground acceleration andmagnitude). The
M-Rrup distribution of the data used is provided in Figure 5, along with corresponding histograms. In addition, Appendix
A provides further details on the selection process of the 200MS–AS sequences employed in this study to build the prob-
abilistic seismic response and damage models. The RotD50 pseudo-spectral acceleration at the fundamental period of the
bridge (RotD50Sa) is the selected IM for both the MS and the ASs for simplicity. More advanced IM could be used (as
done in the record selection, see Appendix A) but this is outside the scope of this paper. The GMM of Lanzano et al.68 is
used to estimate the groundmotion IM values at the site from the considered earthquake point sources, assuming soft soil
conditions (Vs = 300 m/s) and a normal fault mechanism.
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As described in Appendix A, the ground motion components are scaled such that their RotD50Sa matches the target
spectral acceleration level. After the ground motion components are selected and scaled, the two ground motion com-
ponents are randomly rotated and then applied to the two orthogonal directions of the bridge structure. This is done to
avoid any assumptions regarding the incident angle of the ground motions with respect to the bridge structure (e.g.,69).
The PSDM described in Subsection 2.3 is built using the 200 samples of the various response parameters of interest for
the performance assessment obtained under theMS event. These are the RD (EDP1 = RD), the peak TD (EDP2 = TD), the
PAs (EDP3 = PA), themaximum strain of concrete cover under compression (EDP4 = 𝜀𝑐𝑐), themaximum strain of concrete
cover under tension (EDP5 = 𝜀𝑐𝑡) and the damage indexDMS. The value of the coefficient 𝛽𝐷 considered in the calculation
of the damage index is 0.8. A sensitivity analysis on the number of samples has been performed and while the analysis is
not reported in the paper for brevity, the results have shown that the PSDM parameters and also the risk estimates shown
in the later section do not change significantly by increasing the number of samples.
Figure 6 shows the sample values of these parameters versus IMMS in the log–log plane. In the same figures, themedian

of the fitted PSDM is also plotted. For simplicity, the same value of IM* is used for the various parameters of interest. The
value of IM* = 7.39 m/s2 corresponds to a median value of the magnitude of the top displacement vector of 0.0106 m.
According to Figure 4B, the pier is expected to experience significant inelastic deformations beyond this displacement
level. This corresponds to a change of slope in the demand model. It can be observed that 𝜀𝑐𝑐 and 𝜀𝑐𝑡 increase almost
linearly with the ground-motion intensity, and their trend of variation does not change significantly when IMMS exceeds
𝐼𝑀∗. The coefficient of determination R2, for the various fittings, ranges from a minimum value of 0.59 for the DMS, to a
maximum of 0.72 for PA.
The results show that the highest correlations are observed between TD andDMS (correlation coefficient of the order of

0.97 for both branches of the PSDM) and between 𝜀𝑐𝑐 and 𝜀𝑐𝑡 (correlation coefficients of the order of 0.99). On the other
hand, the correlation between TD and PA is of the order of 0.7 for the first branch of the PSDM, and of 0.497 for the second
branch of the PSDM. This suggests that the information on accelerations may be used to reduce uncertainty in estimating
the bridge’s peak TDs. It is noteworthy that this approach avoids the need to doubly integrate the measured acceleration
signal when estimating displacements, which is characterised by several limitations (e.g.,70).
The model for damage accumulation corresponding to Equation (12) is fitted to the results of the time history analyses

of the bridge model under the 200 MS–AS sequences. The fitted model describes the damage at the end of the first AS
given theMS earthquake. Under the homogeneous Markov process assumption for the damage accumulation process, it
can also describe the damage under any AS event of the sequence given the previously accumulated damage.
Figure 7 shows the samples of the damage index after the AS 𝐷𝐴𝑆 as a function of the IM of the AS 𝐼𝑀𝐴𝑆 and the

damage index at the end of the MS 𝐷𝑀𝑆 , and the surface corresponding to the fitted median model. The coefficient of
determination of the model, R2, is 0.697. These values reveal a relatively adequate model fit to the generated damage
index data. To increase the accuracy of the results, a higher-order nonlinear model would be required. The regression
coefficients for the models of Equations (7) and (12), the covariance matrices of the PSDM for theMS damage assessment
and the corresponding correlation matrices can be found in Appendix B.
It is assumed that the bridge is equipped with one accelerometer mounted at the superstructure level above the pier.

The measurement error of the accelerometer is characterised by a normal distribution with zero mean and a standard
deviation of 0.002m/s2. This value is based on the noise rootmean square (RMS) levels of exemplary low-cost sensor spec-
ifications extracted from representative datasheets ([e.g.,71] for a typical low-cost MEMS accelerometer). Other sources of
information are not considered in this specific study.

4.2 Rapid damage assessment for a single scenario

This subsection describes the results of the Bayesian updating of the AS risk for a single MS scenario, considering the
information provided by an accelerometer mounted on the bridge deck above the pier and by a VI carried out at the end of
theMS. It is assumed that seismic stations are not sufficiently close to the site to provide valuable information for hazard
and risk updating. The use of information from stations close to the site is explored in the previous paper underpinning
this one (e.g.,21). The seismic scenario corresponds to a seismic event originating from a point source withmagnitudeMMS
6.5, located 15 km from the site. These values are consistent with the modal values of the seismic hazard disaggregation
for the region of interest.
The predictive analysis is first run based on the information at the root nodes. Subsequently, multiple independent

diagnostic analyses are performed by entering a piece of evidence one at a time at the nodes PAobs and by entering all the
information at these nodes at the same time. These analyses are performed with OpenBugs (e.g.,53) using three MCMC
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F IGURE 6 Sample values and model results in terms of (A) RD; (B) TD; (C) PA; (D) 𝜀𝑐𝑐; (E) 𝜀𝑐𝑡 ; and (F) DMS versus IMMS in the log–log
plane

chains generated with different combinations of initial conditions. This is to ensure that the three different starting points
converge towards similar posterior distributions. Each chain contains 10,000 samples obtained by starting from 60,000
iterations, discarding the first 10,000 (burn-in), and thinning to reduce autocorrelation. Ultimately, a total of 30,000 sam-
ples are used to estimate the posterior distributions. It is noteworthy that the computation time required to perform a
single Bayesian inference analysis is low (in the order of a few seconds on a standard personal computer).
Figure 8 shows the empirical cumulative distribution function (ECDF) of the prior distribution of the damage at the end

of theMS event DMS, and the posterior distributions given the observations of the VI (Figure 8A) and of an accelerometer
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F IGURE 7 Multilinear regression model for describing the damage index after the AS as a function of the IM of the AS and the damage
index after theMS. (A) 3D view, (B, C) side views

F IGURE 8 Empirical cumulative distribution function (ECDF) of the parameters of interest before and after updating with observations
from visual inspection (A); and accelerometer measurements (B)

on the bridge deck (Figure 8B). In the analyses, 𝜀𝑐𝑐 and 𝜀𝑐𝑡 have been assumed as lognormal random variables with mean
values respectively equal to 0.004 and 0.001, and a coefficient of variation of 0.3. The visual inspector has been assumed
to be well trained, so that concrete crushing and cracking are always correctly detected if they occurred. First of all, it
is observed that the expected value of the damage index at the end of the MS is low according to the prior estimate of
damage. However, the outcomes of the VI can change this distribution significantly. Two different outcomes of the VI
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F IGURE 9 Empirical cumulative distribution of the total number of AS occurrences in a time frame of 10 and 360 days following
theMS

F IGURE 10 Probability of IM (RotD50Sa) exceedance underMS andMS-AS sequence for different time windows

are considered. The first one corresponds to the observation of concrete cracking and crushing, while the second one
observes no cracking or crushing. In the case of the second outcome, the ECDF shifts to the left (i.e., the damage is overall
less than the prior estimate), whereas in the case of cracking and crushing, it shifts significantly towards the right (damage
significantly higher than expected). Two different observations of the accelerometer placed at the deck level are considered
for updating the damage. In the case of a low value of recorded acceleration (PA= 2.95m/s2), the expected value of damage
reduces, whereas it increases for a very high value of the recorded acceleration (PA = 7.83 m/s2), as expected.
A series of 10,000MS–AS sequences is generated following the methodology outlined in Subsection 2.2. Each sequence

is described by the seismic intensities of the ASs that occur within a time window of interest following theMS, collected
in the vector IMAS.
Figure 9 shows the ECDF of the number ofAS occurrences in an interval of 10 and 360 days following theMS. Obviously,

the number of occurrences can assume only discrete values. It can be observed that the average number of occurrences of
ASs of any intensity increases for increasing time. The average number of occurrences is about 1 in 10 days, and it increases
to 2 in 360 days.
Figure 10 shows the probability of exceedance of the IM for the case of theMS event only and for theMS-AS sequence

within different time windows. It can be observed that the probability of exceedance increases significantly if ASs are
considered, despite the magnitude of the AS being constrained to be less of that of the MS. This is because the AS
could originate from a point source closer to the site than the source of the MS, but also due to the uncertainty inher-
ent in the GMM regarding the ground motion attenuation from source to site. Obviously, increasing the time window
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F IGURE 11 (A) IM values for various events of aMS-AS sample sequence; (B) corresponding damage index values

F IGURE 1 2 Probability of exceeding different levels of damage at the end of theMS and the end of theMS-AS sequence, 10 days after
theMS, considering prior DMS estimates and posterior estimates following a visual inspection (A); and an accelerometer measurement (B)

of interest, the probability of exceedance also increases, but the highest relative increase is observed when only a few
days after the MS are considered. This is because the rate of occurrence of the AS decreases with time since the MS
occurrence.
For each of the 10,000 sample MS–AS sequences, the evolution of the damage index is evaluated by using the model

corresponding to Equation (13). The various samples of theMS damage index DMS obtained by running the Bayesian net-
work are considered as starting points for the various sequences. Obviously, different sample setsmust be used, depending
on whether the prior estimates or the posterior estimates of DMS following an observation are considered. The IMAS sam-
ples are then used together with Equation (13) to generate samples of the damage index vectorDAS collecting the damage
index values at the end of each AS. The damage at the end of theMS–AS sequence, denoted as DAS,max, is then used for
evaluating the AS risk.
Figure 11 shows the result of the application of the procedure to a sample sequence, considering a time window of

360 days. In particular, Figure 11A shows the values of the IM of the MS (event 1) and of the subsequent ASs (events
2–8). Figure 11B shows the corresponding values of the damage index at the end of the MS and the subsequent ASs.
The damage increase is observed only in correspondence to events with significant intensity, as expected. The samples
of DAS,max obtained for the 10,000 considered sequences are used subsequently to estimate the probability of damage
exceedance in the time window of interest.
Figure 12 shows the probability of exceeding different levels of damage at the end of theMS and the end of theMS–AS

sequence, 10 days after the MS. In Figure 12A, the risk related to prior 𝐷𝑀𝑆 estimates is compared with that related to
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F IGURE 13 Probability of exceedance of various levels of the damage index underMS andMS-AS sequence versus time elapsed since
theMS, starting from the prior estimate of DMS and posterior estimates of DMS accounting for visual inspection with an observation of no
cracking or crushing

posterior estimates that result from a VI in which no cracking or crushing was observed. In Figure 12B, the risk related to
prior DMS estimates is compared with that related to starting posterior estimates that result from a measurement of a low
PA (2.95 m/s2) at deck level during theMS. It can be observed that the increased risk of bridge damage obtained consid-
ering the ASs hazard is low, though not negligible. Moreover, accounting for the observations from VIs or accelerometers
can change the damage risk estimates significantly. The decrease in damage risk due to the observation of no crack-
ing or crushing is more significant than the increase in damage risk due to the consideration of ASs. It is noteworthy
that the obtained results are not significantly affected by the number of samples used to fit the demand and damage
models.
Figure 13 shows the time-dependent probability of exceeding various levels of the damage index under the MS–AS

sequence, obtained starting from the prior estimate of DMS or from the posterior estimate with no observed crack-
ing/crushing. In general, the probability of exceedance increases for an increasing number of days elapsed after theMS.
The rate of increase is higher a few days after the MS and then decreases due to two different effects: the time-decaying
rate of ASs and the fact that the intensity of the AS is limited. A similar trend was observed in Jalayer et al.72 It is also
interesting to observe that the relative increase of risk for theMS–AS sequence compared to theMS is more significant if
the posterior estimate of DMS is considered as an initial condition. Starting from the prior estimate of DMS, the probability
ofDAS,max exceeding the value of 1, corresponding to significant damage, is equal to about 2.67 × 10–2 in the case of theMS
event only, and it increases to 1.22× 10–1 if the wholeMS–AS sequence within a timewindow of 360 days is considered. On
the other hand, starting from the posterior estimate of DMS, the probability of exceeding the damage level of 1 increases
from 5.41× 10–6 at 0 days to 6.82× 10–2 after 360 days. These results could be communicated to transport agencies or bridge
managers and can help make better-informed decisions concerning bridge closure in the aftermath of anMS.

5 CONCLUSIONS

This paper illustrated a Bayesian framework for the AS risk assessment of bridges. The main novelty aspect of the frame-
work is that it allows to specifically exploit heterogeneous information from seismic stations, SHMsensors (accelerometers
and GPS receivers) and VIs for updating knowledge of the damage state of the structure after the MS and thus make a
more accurate assessment of the risk due to future ASs.
The proposed framework is applied to a hypothetical bridge in Central Italy subjected to a moderately strong MS sce-

nario. A probabilistic model is fitted to describe the joint distribution of the various parameters related to the bridge state
(damage index), themonitored responses (e.g., accelerations,RDs) and the VI outcomes (concrete cracking and crushing).
The correlation between the involved variables is exploited to update the damage state given the sensor readings and the
VI reports.
The study results show that observations of sensors and VIs can significantly affect the decision-making process con-

cerning bridge closure in the aftermath of anMS. For example, a bridge for which prior knowledge of theMSmagnitude
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and source-to-site distance results in a high probability of large damage after anMSmay be classified as safe following a VI
that reports no cracking/crushing of bridge piers. This obviously has an impact on the risk due to futureASs. Similar results
may be obtained by exploiting the information from accelerometers, if the recorded maximum absolute accelerations are
low compared to the ones based on the only knowledge of the earthquakemagnitude and location. It is noteworthy that the
results obtained by applying the proposed framework to the case-study bridge can be strongly affected by the modelling
choices. These include the description of the earthquake AS hazard, the structural model and the damage accumula-
tion under multiple events, and the outcomes of the VIs given a possible damage state. Further improvements can be
made by developing more sophisticated FEmodels and more consistentMS–AS groundmotion selection approaches that
better represent site-specific seismic hazard with a more comprehensive ground-motion database. The inclusion of more
causal parameters in the analysis and more sources of information about the seismic response (e.g., information from
drone-based surveys and damage detection) can also contribute to enhancing the proposed framework.
More research is needed to develop accurate models, for example, describing the relationship between amplitude and

distribution of cracks and/or length of crushed concrete zone to the drifts and damage experienced by bridge piers. This
will be the object of future investigations. In addition, a robust definition of the levels of damage that should trigger
decisions concerning the bridge serviceability should also be the object of further study. Future works will also explore
the effectiveness and benefit of alternative monitoring and inspection strategies in terms of better-informed decisions
concerning bridge operability, using concepts such as expected utility theory, multi-criteria decision making and value of
information.
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F IGURE A1 RotD50Sa spectra (2% damped) of: (A)MSs and (B) ASs of the selection database (703 GMs)

F IGURE A2 Average RotD50Sa (RotD50Sa,avg) of: (A)MSs and (B) ASs of the selection database (703 GMs)

APPENDIX A
The 703mainshocks (MS) – aftershock (AS) ground-motion (GM) sequences selected from the database provided by Goda
et al.34 and Goda et al.67 are used to compute their RotD50Sa spectra (e.g.,73) for 2% damped oscillator at 40 periods. The
703MSs and AS spectra are presented in Figure A1. To select the ground motions appropriately while considering higher
mode effects and period elongation effects, average RotD50Sa (denoted as RotD50Sa,avg) is utilised as the selected ground-
motion intensity measure. RotD50Sa,avg is computed as the mean of RotD50Sa between 0.5 T1 and 2 T1 (e.g.,74) where
T1 = 0.432 s. The histograms of the RotD50Sa,avg computed for the database, are presented in Figure A2.
Firstly, MS GMs are chosen such that 10 GMs are selected for 20 levels of RotD50Sa,avg ranging from 0.1 to 2.0 g at

an interval of 0.1 g with the requirement of no scaling. This leads to a total of 200MS unscaled GMs. Figure A3A shows
the histogram of RotD50Sa,avg of the selected MS unscaled GMs. It can be observed from the histogram, ∼10 GMs are
selected for each level of the 20 RotD50Sa,avg with slightly lesser number of GMs available for higher RotD50Sa,avg (i.e.,
RotD50Sa,avg > 1.6 g). This due to the lack of recorded GM options for higher intensity levels. Finally, the 200 unscaled
GMs are scaled such that 10 GMs exactly match each level of the RotD50Sa,avg to have precisely 10 GMs for each of the 20
RotD50Sa,avg levels. The histogram of the scaling factors is shown in Figure A3B, and it can be observed that they range
very close to 1, thereby signifying lower scaling levels.
The natural unscaled AS GMs corresponding to the 200 unscaled MS GMs selected above are selected for the AS

sequence to maintain MS–AS IM correlations. This leads to 200 unscaled AS GMs whose RotD50Sa,avg is presented
in Figure A4A. Figure A5A further shows the RotD50Sa,avg of the 200 unscaled MS GMs, versus the RotD50Sa,avg of
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F IGURE A3 SelectedMS GMs: (A) unscaled RotD50Sa,avg and (B) scaling factors

F IGURE A4 Selected AS GMs’: (A) unscaled RotD50Sa,avg and (B) scaling factors

F IGURE A5 RotD50Sa,avg of the selectedMS versus AS GMs: (A) unscaledMS–AS GMs and (B) scaled
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F IGURE A6 Magnitudes of the selected GMs: (A)MSs and (b) ASs

TABLE B1 Coefficients of the bilinear regression model of Equation (7) for the various EDPs of interest

Coefficient RD TD PA Ɛcc Ɛct DMS

𝑎1 −13.220 −4.850 −0.208 −9.142 −9.192 −3.442
𝑏1 2.445 1.11 0.720 1.532 1.974 1.306
𝑏2 1.480 0.260 0.369 0.499 0.653 0.427

the corresponding natural 200 unscaled AS GMs. It can be observed that for lower levels ofMS RotD50Sa,avg levels, the
RotD50Sa,avg levels of AS GMs tend to be very small, and the scatter plot tends to be very sparse for high AS RotD50Sa,avg
levels. To remedy this, the selected unscaledASGMs are scaled (withminimal scaling) such that for eachMSRotD50Sa,avg
level (i.e., 20 levels ranging from 0.1 to 2.0 g at an interval of 0.1 g), the corresponding ten unscaled AS GMs lead to ten
levels of RotD50Sa,avg ranging from 0.1 to 1.9 g at an interval of 0.2 g. The histogram of the utilised scaling factors is
shown in Figure A4B, and the RotD50Sa,avg of the selected scaled MS and AS GMs is shown in Figure A5B. To ensure
that minimal scaling is used for the AS GMs, for each level ofMS RotD50Sa,avg, the corresponding ten unscaled AS GMs
are scaled such that each one requires minimal scaling to achieve RotD50Sa,avg between 0.1 and 1.9 g. This process leads
toMS–AS sequences with RotD50Sa,avg shown in Figure A5B.
MS–AS GMs
Furthermore, the magnitudes of theMS and AS remained consistent with the statistical knowledge obtained from the

history of recordings where the selectedMS–AS led to meanMSmagnitude = 8.15 and mean AS magnitude = 6.80. This
is consistent with the literature available that mentions that the magnitude of AS is on average 1–1.2 points lower than
the magnitude of MS event (e.g.,75). The magnitudes of the MS and AS events of selected ground motions are shown in
Figure A6A and B, respectively. To further introduce randomness in the ground motions, the ‘as recorded’ components of
the 200MS and AS ground motions were rotated at random angles. However, it was made sure that bothMS and AS GMs
of the sequence were rotated to the same random angle in order to maintain the internal correlations.

APPENDIX B
The regression coefficients for the average model of Equation (7) are listed in Table B1.
The covariancematrices

∑𝐼 and
∑𝐼𝐼 , collecting the information on the variance of the error variables (in the lognormal

space) and their correlation, for the two branches of the PSDM for theMS damage assessment (corresponding respectively
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TABLE B2 Coefficients of the multilinear regression model of Equation (12)

Coefficient Value
𝑐𝑛 0.233
𝑑𝑛 0.935
𝑒𝑛 0.166
𝑓𝑛 −0.173

to𝑀𝑀𝑆 ≤ 𝐼𝑀 ∗ and 𝐼𝑀𝑀𝑆 > 𝐼𝑀 ∗ ), are:

𝐼∑
=

⎡⎢⎢⎢⎢⎢⎢⎣

2.264 0.518 0.021 0.879 1.180 0.625

0.518 0.221 0.016 0.315 0.409 0.277

0.021 0.0164 0.183 0.033 0.0603 0.041

0.879 0.315 0.033 0.537 0.707 0.436

1.180 0.409 0.060 0.707 0.961 0.564

0.563 0.277 0.040 0.436 0.564 0.440

⎤⎥⎥⎥⎥⎥⎥⎦

II∑
=

⎡⎢⎢⎢⎢⎢⎢⎣

2.56 0.599 0.193 1.040 1.366 0.980

0.599 0.267 0.090 0.414 0.525 0.447

0.193 0.090 0.146 0.129 0.165 0.123

1.040 0.414 0.129 0.713 0.895 0.730

1.366 0.525 0.165 0.895 1.172 0.925

0.980 0.447 0.123 0.730 0.925 0.823

⎤⎥⎥⎥⎥⎥⎥⎦
(A.1)

and the corresponding correlation matrices are:

𝐂𝐼 =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0.733 0.0324 0.798 0.800 0.627

0.733 1 0.0815 0.914 0.887 0.890

0.0324 0.081 1 0.105 0.144 0.143

0.798 0.914 0.105 1 0.984 0.899

0.799 0.887 0.144 0.984 1 0.869

0.627 0.890 0.143 0.899 0.869 1

⎤⎥⎥⎥⎥⎥⎥⎦

𝐂𝐼𝐼 =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0.772 0.338 0.828 0.841 0.719

0.772 1 0.455 0.949 0.940 0.952

0.338 0.455 1 0.401 0.398 0.354

0.822 0.950 0.401 1 0.978 0.953

0.841 0.938 0.398 0.978 1 0.942

0.72 0.952 0.354 0.952 0.942 1

⎤⎥⎥⎥⎥⎥⎥⎦

(A.2)

Table B2 presents the regression coefficients for the average model of Equation (12). The estimate of the standard
deviation of 𝜀𝑛 is 0.603.
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