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Abstract: Diffuse nitrogen (N) pollution from agriculture in groundwater and surface water is a major
challenge in terms of meeting drinking water targets in many parts of Europe. A bottom-up approach
involving local stakeholders may be more effective than national- or European-level approaches for
addressing local drinking water issues. Common understanding of the causal relationship between
agricultural pressure and water quality state, e.g., nitrate pollution among the stakeholders, is
necessary to define realistic goals of drinking water protection plans and to motivate the stakeholders;
however, it is often challenging to obtain. Therefore, to link agricultural pressure and water quality
state, we analyzed lag times between soil surface N surplus and groundwater chemistry using a
cross correlation analysis method of three case study sites with groundwater-based drinking water
abstraction: Tunø and Aalborg-Drastrup in Denmark and La Voulzie in France. At these sites, various
mitigation measures have been implemented since the 1980s at local to national scales, resulting in a
decrease of soil surface N surplus, with long-term monitoring data also being available to reveal the
water quality responses. The lag times continuously increased with an increasing distance from the
N source in Tunø (from 0 to 20 years between 1.2 and 24 m below the land surface; mbls) and La
Voulzie (from 8 to 24 years along downstream), while in Aalborg-Drastrup, the lag times showed
a greater variability with depth—for instance, 23-year lag time at 9–17 mbls and 4-year lag time at
21–23 mbls. These spatial patterns were interpreted, finding that in Tunø and La Voulzie, matrix flow
is the dominant pathway of nitrate, whereas in Aalborg-Drastrup, both matrix and fracture flows
are important pathways. The lag times estimated in this study were comparable to groundwater
ages measured by chlorofluorocarbons (CFCs); however, they may provide different information to
the stakeholders. The lag time may indicate a wait time for detecting the effects of an implemented
protection plan while groundwater age, which is the mean residence time of a water body that is a
mixture of significantly different ages, may be useful for planning the time scale of water protection
programs. We conclude that the lag time may be a useful indicator to reveal the hydrogeological
links between the agricultural pressure and water quality state, which is fundamental for a successful
implementation of drinking water protection plans.
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1. Introduction

The leaching of nitrate from intensive agricultural areas is one of the greatest threats to clean
drinking water resources in Europe and the rest of the world. The groundwater and drinking water
standard of nitrate is set to a maximum of 50 mg NO3

−/L in the European Union (EU), following the
recommendations of the World Health Organization (WHO) [1]. This level is set to protect infants
from the acute condition called blue baby syndrome (methemoglobinemia) [2,3]. However, recent
studies have reported that long-term exposure to drinking water containing nitrate below the current
standard is suspected to have chronic adverse effects [3–6]. For instance, studies have consistently
reported that risks of colorectal cancer, thyroid disease, and central nervous system birth defects are
strongly associated with ingestion of drinking water nitrate [3]. The EU has issued a series of directives,
guidelines, and policies over the last decades to set the requirements of the drinking water standards
(i.e., Drinking Water Directive) and to protect the drinking water resources (e.g., Water Framework
Directive, Groundwater Directive, Nitrate Directive, and Directive on the Sustainable Use of Pesticides).
Each country in the EU has implemented these legislations in their national laws differently, due to
adjustment to local politico-socio-economic-agri-hydrogeological conditions [7,8]. The Drinking Water
Directive primarily focuses on large water supplies. Small water supplies in rural areas have been
given less attention, resulting in worse cases of drinking water quality [9,10].

The Organization for Economic Co-operation and Development (OECD) has proposed a bottom-up
approach that integrates multiple local and regional stakeholders, such as farmers, citizens, drinking
water suppliers, policy-makers, and scientists, as an effective approach for addressing local issues in
relation to drinking water security, rather than the most common top-down approach at the national
and EU level [11]. Research has also shown that the success of water protection plans depends on the
social, technical, financial, and political capacity of the stakeholders and institutional arrangements,
such as policies and regulations [12–15]. In addition, non-regulatory tools, such as training, information
campaigns, education, or voluntary programs, have been shown to be effective in increasing the
engagement of stakeholders and consequently lead to the successful implementation of water protection
programs [12].

Common understandings of the cause and effect relations between the agricultural pressure and
drinking water state may be a fundamental step in finding common and achievable goals among
stakeholders and in planning drinking water protection programs [8,16,17]. However, the cause–effect
relations are often difficult to identify. A long lag time between the use of fertilizer and its effects
on water quality is often considered to be one of the reasons for unclear correlations between the
agricultural pressure and water quality state [8,18,19]. When authorities and farmers implement
mitigation measures (e.g., catch crops, set-aside, and buffer zones) as part of water protection planning,
they may have to wait multiple decades to observe the effects on the water quality in some geological
settings. Consequently, it may be inevitable that farmers become less engaged in water protection
programs, unless they are well-informed in advance. In addition, information that is key to evaluating
the cause–effect relations is monitored and managed by different institutions and government bodies [8].
Therefore, it is often difficult to gather coherent information to understand the complexity of the system.

The hydrogeological system that links the agricultural and drinking water systems may be the
first-order control on regulating the relationships between these two systems; however, its importance
has often been neglected in communication among stakeholders and the development of water
protection plans. For example, the Driving force–Pressure–State–Impact–Response (DPSIR) framework
is one of the most widely used conceptual frameworks in integrated water resource management to
explain the causal relationships between society and the environment [20–25]. The DPSIR describes
the feedback among social and economic developments, including the driving forces (D); pressures (P)
on the environment; state (S) of environmental changes; impacts (I) on ecosystems, human health, and
society; and a societal response (R) [26,27]. Under this framework, however, there is no component to
explain the relationships between pressure and state, which may vary from site to site. The DPSIR
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framework has previously been criticized for not addressing the dynamics of the system, and others
have argued that there should be a focus on the links between the nodes of the DPSIR [22–25].

In this study, therefore, we proposed a new component, named “Link”, for the DPSIR framework
in order to better explain the interactions between pressure and state, called DPLSIR (Figure 1).
Furthermore, we suggested the lag time between agricultural pressure (i.e., nitrate inputs from the
agricultural system) and water state (i.e., nitrate concentrations in the hydrogeological system) as a
key link indicator. The contaminant of interest is nitrate. The objectives of this study are to evaluate a
cross-correlation function analysis as a simple methodology for estimating lag times using data from
three case study site in Europe (two in Denmark and one in France) and then to investigate controls of
the temporal scale and spatial heterogeneity of lag times to better characterize the hydrogeological link
between agricultural pressure and water quality state.

2. Conceptual Framework

2.1. The DPLSIR Framework

The DPLSIR framework focuses on the understanding of underlying controls for the relationships
between pressure and state (Figure 1). Pressure, in this study, is the amount of agricultural stress
released from the agricultural system. We define the agricultural system as the zone where all
agricultural activities occur, and this zone is physically defined by the zone above the bottom of the
soil layer (e.g., plough layer; Figure 2). The state is the quality of the water in the hydrogeological
system. The hydrogeological system is defined by the entire zone below the soil layer through which
water and contaminants move (Figure 2). In the hydrogeochemical system, various biogeochemical
reactions may change the concentrations of nitrate. Nitrate reduction can occur both in the soil layer
and below the interface between the oxic and reduced zones, where the reduction capacity—the
amount of nitrate-reducing material, such as pyrite and organic carbon—is high (Figure 2). In some
places, this interface can be several meters thick, developing in an anoxic nitrate-reducing zone. Link
provides information about these hydrological and biogeochemical processes that are responsible for
the release, retention, and transport of water, as well as contaminants. In this study, we focused on
transport of water and contaminants—how and how fast nitrate moves through the hydrogeological
system. Further research may require reviewing and developing indicators to parameterize release
and retention of contaminants in the hydrogeological system.
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Figure 2. Conceptual understanding of the vertical distribution of nitrate from the agricultural system
to the hydrogeological system and pathways in the hydrogeological system. The agricultural system is
represented by the pressure indicators and the hydrogeological system is described by the link and
state indicators. The reduction capacity is defined as the sum of solid nitrate-reducing compounds, e.g.,
pyrite and organic matter.

2.2. Link: Flow Pathways and Lag Time

Lag times not only quantify the delay time between the pressure stress and state response, but also
reveal primary pathways of water and contaminants [28]. To recharge groundwater, water primarily
flows vertically via matrix flow pathways and/or preferential flow pathways (Figure 2). This water
eventually emerges in the surface water. Matrix flow is a pathway through pore spaces in the soil
matrix. The lag times of matrix flow can be long (years to decades). Preferential flow is a pathway
via macro-pores in soils and fractures in bedrock, bypassing a dense or less permeable matrix [29,30].
The macro porous spaces in soils can be created along root channels, soil fauna channels, cracks (i.e.,
freeze–thaw and wetting–drying), fissure, or soil pipes [29]. Preferential flow may be transiently
active; however, it can deliver a significant quantity of contaminants with a very short time delay
(hours to weeks) [31,32]. Therefore, the groundwater table and groundwater chemistry of matrix
flow-dominated systems will exhibit relatively small variations and slow changes over time compared
to those of preferential flow-dominated systems.

3. Materials and Methods

3.1. Case Study Sites

The three case study sites are intensive farming areas with groundwater-based drinking water
abstraction. The first case study site is Tunø Island in Denmark (Figure 3). Tunø is a small island (area:
3.5 km2) located in the Kattegat Sea, between the North Sea and the Baltic Sea (Table 1). The main part
of the subsurface of the island consists of clay-rich glacial deposits of Quaternary origin. However, in
the northeastern part, where drinking water abstraction wells are located, Quaternary sandy deposits
dominate the near-surface layers and contain an aquifer vulnerable to pollution (Figure 3). The
groundwater is the sole source of drinking water and there is only one public water supply system,
which produces approximately 10,000 m3/year of water for around 100 inhabitants and tourists.

During the 1970s, the farmers in the area around the drinking water abstraction wells changed
from mixed conventional farming to intensive vegetable production, mainly the production of leeks,
cabbages, and onions. This change in farming practice led to high inputs of mineral fertilizers. Since the
mid-1980s, Denmark has adopted the EU directives on legislation at the national level to protect water
resources, including groundwater [33]. On top of these national-level regulations, in Tunø, additional
water protection plans have been implemented since 1989, mainly because high levels of nitrate were
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detected in the abstraction wells (≈150 mg NO3
−/L). From 1989, the central part of the recharging area

of the abstraction wells was set as a protection zone, and in 1991, this area was extended to more than
double the size to cover the major parts of the recharge area (shaded with green in Figure 3). In this
inner action area as well as one field at the western border of this area, all agricultural activity has
been banned, and the land has been converted to set-aside with permanent grass. In the outer part of
the recharge area (total protection area), fertilizer application has been regulated to the level of the
economical optimum application of nitrogen for crop production (circled area in Figure 3).

Table 1. Overview of the basic characteristics of the case study sites.

Tunø Island, Denmark Aalborg-Drastrup,
Denmark

La Voulzie Catchment,
France

Study area (km2) 0.25 9.92 115

Climate Coastal temperate Coastal temperate Temperate

Geology Quaternary glacial
sediment

Quaternary glacial
sediment and fractured

limestone
Massive limestone

Source of drinking water Groundwater Groundwater Groundwater (springs)

Drinking water
production
(m3 year−1)

10,000 1.5 million 20 million

Number of consumers 100 26,000 400,000

Water protection plans
and activities

Permanent grass over the
recharging area

Afforestation in some
places and protection
zone limiting nitrate

leaching to 25 mg/L and
no pesticide use

Various agricultural
measures

Contaminant of concern Nitrate Nitrate and pesticides Nitrate and pesticides

The second case study site is Aalborg-Drastrup in Denmark (Figure 3). The case study area is in
northern Jutland. In the area, thin layers of glacial sand and clay till deposits of Quaternary origin
overlie a fractured Maastrictian limestone reservoir. Like Tunø, groundwater is the only source of
drinking water. There are well fields belonging to a public water supply system and several privately
owned wells. The wells in the well field were constructed between 1958 and 2005, and the well field
produces 1.5 mm3 year−1 of water distributed to around 26,000 consumers in the Aalborg area (Table 1).

The groundwater in the Aalborg-Drastrup case study area is one of the most vulnerable aquifers
to nitrate pollution in Denmark because of absent or thin protecting clay layers above the chalk aquifer
with a low nitrate reduction capacity in the majority of the recharging area, except in the northernmost
part where thick layers of marine clay overlay the chalk (Figure 3). At the same time, there are intensive
dairy and pig farms in the area, as well as arable farms. During the 1980s, the water authorities
realized that the drinking water abstraction was threatened by pollution of nitrate from the agricultural
production. Like Tunø, therefore, additional water protection plans were introduced. Since 2001, a
series of mitigation measures were implemented, including setting a protection zone (afforestation)
close to the abstraction wells, limiting nitrate leaching from zero to less than 50 mg/L of nitrate, and
banning the use of pesticide.
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The third case study site is the La Voulzie catchment area (drainage area: 115 km2) in France
(Table 1). The catchment is located about 70 km southeast of Paris. The catchment is primarily
underlain by massive limestone (Figure 3). The aquifer is one of the main resources in the water supply
system (Ile-de-France) and a very important drinking water source for Paris. Eau de Paris is a public
organization in charge of managing water resources for Paris. The catchment provides 20 mm3/year of
water, which is equivalent to 10% of Eau de Paris’s resources, to about 400,000 people. The catchment
covers 15 rural municipalities with about 100 farmers (including one organic farmer). The area is
intensively used by agriculture—90% of the surface area is cultivated, 40% of which is planted with
wheat (in rotation with other cereals, rape seed, and sugar beet).

The highest potential nitrogen (N) leaching was achieved in the late 1980s. The agricultural action
program was launched in 1991 for the watershed (Fertimieux) to limit high concentrations of nutrients.
A change in fertilizer use occurred in the late 1990s in France. This change is attributed to the beginning
of environmental awareness and anticipation of the Common Agricultural Policy in 1992. The nitrate
concentrations in springs, which is raw water for drinking water production, have been relatively
invariant at approximately 55–70 mg NO3

−/L for the last two decades.
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3.2. Materials

For all three study sites, three types of historical data were collected to carry out the study: (1) N
surplus, (2) groundwater chemistry, and (3) groundwater age. N surplus (or N balance) is used as
an environmental indicator [34,35] and it has also been applied in many EU member states including
Denmark and France. Furthermore, studies have reported that N surplus is a good indicator to explain
N leaching from the soil and nitrate pollution in groundwater [36–39]. Methods and input data to
calculate N surplus differ among the EU member states [40]. This study compared the temporal
variability of agricultural N pressure and groundwater state of each case study site, not across the
sites; therefore, the methodological differences would not affect the lag time analysis. N surplus is
calculated with respect to farm gate (i.e., farm gate N surplus) or to soil surface (i.e., soil surface N
surplus). In this study, soil surface N surplus was the primary agricultural N pressure indicator (unit:
kg N/ha/year). N surplus of each case study site was calculated according to the member state’s
standard method, but in principal, soil surface N surplus calculates the differences between the annual
quantity of N entering the soil and the annual quantity of N leaving the soil surface by harvested crops.
For Tunø and La Voulzie, the soil surface N surplus at the relevant catchment scale was used and
for the Aalborg-Drastrup site; both soil surface and farm gate N surpluses at the regional level were
used. The water chemistry data were time series of nitrate in any type of water, e.g., soil pore water
and groundwater. The annual average concentration of nitrate in water was used as a water quality
state indicator (unit: mg NO3

−/L). The groundwater age data were measured or simulated values
of residence times and/or water ages (unit: year). A few studies have reported chlorofluorocarbon
(CFC) reduction in reduced groundwater [41,42]; hence, in this study, we only collected data of oxic
and nitrate-reducing groundwater. In this study, we did not conduct extra measurements. Instead,
we focused on existing data available from public databases and reports, where the data have been
collected and reported following the national regulations and official guidelines at the time of collection.

3.2.1. Tunø Island, Denmark

For the Tunø study sites, input data to calculate soil surface N surplus at field scale were available;
therefore, this was calculated for the period from 1975 to 2018 at the 345 m2 outer protection area. A
time series of modeled annual atmospheric N deposition is publicly available at the municipality scale
(2006–2016) [43]. Time series of the main crop type and fertilization were constructed for Tunø for the
period of 1975–2018, at the field scale. Recent data (2010–2018) on the main crop type are available from
the Ministry of Environment and Food, Danish Agricultural Agency [44], while older data from the
Tunø study site were reconstructed from information on crop rotations obtained from reports [45,46].
Information on the use of fertilizer was based on reported values [46].

In Denmark, all the groundwater chemistry data are registered in the national borehole database,
JUPITER, and are managed by the Geological Survey of Denmark and Greenland. The data are publicly
available. Therefore, nitrate data for both Danish case study sites were obtained from JUPITER [47]. In
Tunø, groundwater ages were determined at seven monitoring points using the CFC method [48].

3.2.2. Aalborg-Drastrup, Denmark

Soil surface N surplus at regional scale (1990–2018) was used for the Aalbog-Drastrup site, and
the detailed method and input data for the calculations are described in Windolf et al. [49]. Hansen et
al. [50] reported farm gate N surplus of Denmark at the geo-region scale for the period of 1950–2007.
Between 1990 to 2007, the soil surface N surplus was offset by 39 kg/ha/year on average compared to
the farm gate N surplus; therefore, the soil surface N surplus for the Aalborg-Drastrup site before 1990
was estimated from the farm gate N surplus by subtracting the offset.

Within the action areas of the Aalborg-Drastrup site, monitoring wells that are part of the national
groundwater monitoring program are located (Figure 3). The groundwater chemistry of these wells
has been monitored regularly since 1989, and groundwater age was also determined using the CFCs
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method [51]. The groundwater chemistry and groundwater age data were extracted from JUPITER
and the report [51].

3.2.3. La Voulzie, France

For the La Voulzie site, the N surplus calculated at the University of Tours was used, with
detailed description of the calculation being found in Poivert et al. [52]. The methods for N surplus
calculation of Denmark and France are similar. The N surplus for the study area was extracted from
an online tool available for France (Cassis-N; https://geosciences.univ-tours.fr/cassis/login) [52,53].
The concentrations of nitrate were collected by the water company “Eau de Paris” at the “La Voulzie”
springs. Water chemistry has been monitored since 1927. The water chemistry was monitored 1–4
times per year before 1986 and then every month after 1986. In this study, we focused on three sampling
points: top, main, and bottom springs, which are naturally under pressure (Figure 3). The main spring
is the primary source of drinking water produced at the water company, and its volume represents
45% of the total volume of the drinking water production. The top spring collects water in the top
limestone layer over the thin clay layer that is situated about 5 m below the land surface (Figure 3).
The bottom spring and the main spring collect water in a ≈10 m thick limestone layer situated below
the thin clay layer (Figure 3). The average depth of the three wells is 14 m, and the groundwater table
at the main spring is 1 m below the land surface.

3.3. Lag Time Estimations

The lag time between soil surface N surplus (x) and annual average concentrations of nitrate in
water (y) was calculated using a cross-correlation method (CCF) using a correlation coefficient function
of Matlab. The CCF method assumes a linear dependency of two variables, i.e., soil N surplus and
nitrate concentrations, and the lag time is the time difference between a soil surface N surplus peak
and a nitrate concentration peak. The lag times were calculated for a range of time lags (k; year); for
example, a correlation between x at time t and y at time t + k was calculated. The range of k was from
0 to 50 years. The CCF provides two main results: (1) the strength of the correlations between x and
y (correlation coefficient, r), and (2) the significance of the correlation (p-value). The strength of the
correlation varies between 0 (no correlation) and ±1 (strong correlation). The highest r and statistically
significant k-year was defined as lag time.

4. Results

4.1. Time-Series of Surface Soil N Surplus and Water Chemistry

Figure 4a shows the soil surface N surplus at the field scale calculated in this study and the farm
gate N surplus at the geo-regional scale of Tunø Island [50]. When the protection plans were first
introduced, the soil N surplus at the field scale from the agricultural system in the inner action area
decreased to the input from the atmospheric deposition, as no other input and no harvest occurred
from those fields (yellow circles in Figure 4a). No manure was applied in both the inner and the outer
protection area. The soil N surplus at the field scale of the total protection area was averaged at 35 kg
N/ha/year before the protection plan period (1975–1990) and was averaged 12 kg N/ha/year after that
(1991–2018; gray bars in Figure 4a). The farm gate N surplus at the geo-regional scale peaked around
the mid-80s (≈90 kg N/ha/year) and has decreased since then (≈40 kg N/ha/year), which is explained
by the effects of the national N regulations [50]. The farm gate N surplus at the geo-regional scale was
much higher than the soil surface N surplus at the field scale (Figure 4a). The discrepancy may be
because of stricter regulations implemented at the local scale.

As a result of the intensified agriculture, the nitrate concentrations in groundwater and drinking
water increased up to >100 mg NO3

−/L in the 1980s (Figure 4d). As the protection plans set in, nitrate
concentrations in soil pore water and groundwater started to respond. The annual average concentrations of
nitrate of soil pore water (1.2 m) in the inner protection area decreased nearly to zero almost instantaneously

https://geosciences.univ-tours.fr/cassis/login
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(Figure 4b). The annual average concentration of nitrate in shallow groundwater (<9 m deep) started
to decrease a few years after the protection plans (Figure 4c) and those in the deeper groundwater
slowly decreased down to ≈10 mg NO3

−/L over the past two decades (Figure 4d). The annual average
concentration of nitrate of groundwater in the outer protection area also decreased over time, but the
concentrations were still relatively high (50–100 mg NO3

−/L; Figure 4e).
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Figure 4. Overview of the nitrogen (N) surpluses and annual averages of nitrate concentrations in
the soil pore water and groundwater of Tunø Island, Denmark. (a) The soil surface N surplus at the
field level of the inner protection area and in the total protection area are shown in yellow circles and
gray bars, respectively. The black arrows and dotted vertical lines show the years that the mitigation
measures were implemented. The horizontal red line is the drinking water standard for nitrate (50
mg/L). The annual average concentrations of nitrate in soil pore water (circles), shallow groundwater
(squares), and deep groundwater (squares) in the inner action area are shown in (b–d), respectively.
Those of groundwater in the outer protection zone (triangles) are shown in (e). (f) shows the annual
average nitrate concentrations of nine (**** n = 9; dots) monitoring points where the cross-correlation
function (CCF) analysis could not be conducted due to either small variabilities of nitrate concentrations
or an insufficient data length (* Hansen et al. [50]).
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In terms of Aalborg-Drastrup, the two regional N surpluses, the soil surface and the farm gate, are
shown in Figure 5a. These regional scale data do not precisely represent the impact of the mitigation
measured implemented at the local level; however, they may be a good proxy to estimate the overall
trend of agricultural N pressure of the study area. The soil surface N surplus decreased from 159 kg
N/ha/year in 1990 to 83 kg N/ha/year in 2018. In this period, the annual input of manure was at a stable
level of approximately 104 kg N/ha/year, while the input of mineral fertilizer decreased from 139 to 70
kg N/ha/year, as mitigation measures for higher utilization of N in manure were implemented, e.g.,
higher manure storage capacity and increased manure application in spring and summer rather than
in the period with higher leaching in autumn and winter.
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Figure 5. Overview of regional N surpluses and annual averages concentrations of nitrate in
groundwater of Aalborg-Drastrup. The soil surface N surplus and farm gate N surplus at the
regional scale (* Hansen et al. [50]) are shown in (a). The annual average concentrations of nitrate of
shallow (filter interval < 20 m), middle (filter interval between 20 and 40 m), and deep groundwater (filter
interval deeper than 40 m) are shown in (b–d), respectively. Those of groundwater with insufficient
data and no temporal variability are shown in (e). The annotations in the figure are the same as those
of Figure 4. ** number of groundwater wells.

In the monitoring site of the Aalborg-Drastrup (Figure 3), the annual average concentrations of
nitrate of groundwater varied within a wide range (1–200 mg NO3

−/L), and their temporal variability
also was heterogeneous (Figure 5b–e). The groundwater in shallower depth (filter interval < 20
m) showed the greatest temporal variability, and the nitrate concentrations showed peaks around
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2000–2010 and decreased over time (Figure 5b). The groundwater measured between 20–40 m intervals
showed relatively damped responses (Figure 5c). In some monitoring points, the nitrate concentrations
peaked around 2010 and slowly decreased over the past 10 years (e.g., 34. 1743 in Figure 5c). While
nitrate of groundwater in the deeper intervals (>40 m) were relatively low, i.e., <10 mg NO3

−/L, in some
groundwater wells, the concentrations continuously increased over the entire monitoring period (e.g.,
34. 1663 in Figure 5d). At 14 monitoring points, either the groundwater was in reduced conditions, the
nitrate concentrations were temporally invariant, or the nitrate concentrations showed only increasing
trends (Figure 5f).

In the La Voulzie catchment area, the soil surface N surplus at the catchment scale was highest
around the mid-80s (≈77 kg N/ha/year) and then decreased to ≈55 kg N/ha/year around 1990 (Figure 6a).
Over the past 30 years, the soil surface N surplus ranged between 15 and 66 kg N/ha/year (Figure 6a).
The groundwater chemistry has been monitored since 1927. Until the 1960s, the annual average
concentrations of nitrate of groundwater and spring waters ranged between 20 and 25 mg NO3

−/L,
but the level continuously increased up to 50–110 mg NO3

−/L until 1993 (Figure 6b). The nitrate
concentrations of the top spring decreased back to approximately 74 mg NO3

−/L around 2000 and
then were temporally invariant for the last 20 years at this level (Figure 6b). Those of the main and
bottom springs also were relatively stable at around 55 mg NO3

−/L for the last 30 years (Figure 6b).
The monthly data revealed that the nitrate concentrations of all three springs did not show any
seasonality—standard deviations of all the nitrate measurements between 2000 and 2014 were 2.8 (top
spring), 2.2 (main spring), and 1.8 (bottom spring).
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4.2. Lag Time between Agricultural Pressure and Groundwater Quality State

Table 2 summarizes the results of the lag time analysis of the case study sites and water chemistry.
For the Tunø site, at the 15 points with statistically significant results, the soil surface N surplus showed
strong correlation with the annual average concentrations of nitrate in water. For example, except
for the deepest groundwater, the correlation coefficients were higher than 0.76 and the results were
statistically significant (p < 0.005) in all the cases (Table 2). For the deepest well (monitoring point 100.
109), which is in nitrate-reducing conditions, the correlation coefficient was 0.53, and it was statistically
significant (p < 0.05; Table 2). The lag times progressively increased with an increasing depth (Figure 7a
and Table 2). For instance, the soil pore water measured at 1.2 m below the land surface and showed
lag times of 0–2 years, while the deep wells (deeper than 10 m) showed lag times of 5–16 years.
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Table 2. Summary of water chemistry and the lag time estimation.

Observation Period
of Water Chemistry

Data
(Total Number of

Observations)

Average of
Nitrate in

mg/L
(Standard
Deviation)

Average of
Dissolved

Oxygen in mg/L
(Standard
Deviation)

Lag Time in
Years

(Correlation
Coefficient)

Groundwater
Age (Year)

Tunø Island, Denmark

Soil pore water (3
points) 1989–2007 (130–142) 35 (69) - 0–2 (0.75–0.85) **

100. 118 (4.92 m) 1994–2007 (20) 16 (14) 7.3 (0.1) 5 (0.81) **
100. 118 (6.72 m) 1993–2010 (30) 44 (54) 7.8 (1.9) 5 (0.85) **
100. 118 (6.92 m) 1994–2007 (26) 49 (59) 6.8 (3.9) 5 (0.82) **
100. 116 (8.07 m) 1993–2010 (28) 9.8 (13) 5.5 (0.2) 3 (0.76) **
100. 110 (9.1 m) 1989–2010 (44) 87 (30) 6.7 (1.2) 4 (0.76) ** 15

100. 112 (9.2 m) † 1989–2010 (40) 176 (38) 3.7 (1.1) 9 (0.86) ** 15
100. 37 (11 m) 1989–2017 (50) 77 (43) 3.7 (1.8) 5 (0.87) **

100. 117 (11.7 m) 1993–2010 (30) 100 (50) 4.6 (2.3) 6 (0.78) **
100. 38 (12.5 m) 1978–2010 (53) 118 (34) 5.3 (1.1) 8 (0.78) ** 21
100. 59 (14.5 m) 1985–2017 (76) 44 (19) 2.3 (1.9) 10 (0.88) **

100. 111 (15.8 m) † 1989–2010 (40) 100 (26) 0.2 (0.2) 16 (0.77) ** 22
100. 109 (16.25 m) 1989–2010 (40) 24 (13) 0.2 (0.2) 20 (0.53) * 26

Aaborg-Drastrup, Denmark

34. 1737 (1–9 m) 1989–2018 (45) 43 (19) 1.9 (1.7) 3 (0.78) ** 21
34. 1744 (9–17 m) 1989–2019 (46) 119 (15) 8.2 (0.9) 16 (0.78) ** 23
34. 1745 (9–17 m) 1989–2019 (44) 95 (18) 8.7 (0.7) 23 (0.48) * 20
34. 1647 (10–16 m) 1988–2018 (45) 69 (18) 0.4 (0.3) 12 (0.90) ** 22

34. 1739 (11.5—19.5 m) 1989–2019 (45) 88 (18) 6.8 (0.8) 9 (0.73) ** 16
34. 1738 (12.5–20.5 m) 1989–2019 (42) 158 (27) 6.8 (1.6) 12 (0.94) ** 16

34. 1055 (15–40 m) 1986–2019 (18) 38 (4.5) 4.5 (1.1) 26 (0.84) **
34. 1742 (16–24 m) 1989–2019 (45) 53 (8.4) 5.7 (0.6) 10 (0.83) ** 30
34. 1736 (18–21 m) 1989–2018 (44) 50 (7.3) 4.7 (1.6) 28 (0.76) ** 19
34. 1706 (21–33 m) 1988–2017 (46) 8.1 (4.8) 6.2 (2.2) 4 (0.78) ** 8
34. 1743 (21–24 m) 1989–2019 (44) 106 (14) 8.6 (0.9) 25 (0.91) ** 26
34. 1736 (26–29 m) 1989–2018 (44) 34 (5.3) 3.4 (0.4) 29 (0.92) ** 30
34. 1743 (36–39 m) 1989—2018 (43) 69 (13) 7.5 (0.5) 29 (0.96) ** 40
34. 1646 (38–50 m) 1988–2019 (45) 57 (12) 5.2 (0.3) 29 (0.88) ** 28
34. 1663 (47–62 m) 1987–2019 (17) 26 (12) 3.2 (2.5) 28 (0.86) **
34. 1664 (49–64 m) 1987–2018 (20) 16 (7.8) 2.4 (2.5) 35 (0.98) **
34. 1736 (51–54 m) 1989–2018 (43) 9.3 (3.7) 0.7 (0.5) 29 (0.82) ** 48
34. 1662 (56–74 m) 1987–2018 (15) 11 (6.2) 0.8 (0.3) 29 (0.86) **
34. 1743 (61–64 m) 1989–2019 (42) 18 (2.6) 3.4 (0.3) 42 (0.91) ** 46
34. 2364 (61–73 m) 2003–2019 (12) 5.5 (1.9) 1.2 (1.3) 38 (0.95) **
34. 2365 (66–78 m) 2002–2019 (14) 3.0 (1.2) 1.1 (2.1) 38 (0.76) *

La Voulzie Catchment, France

Top spring 1928–2014 (456) 66 - 8 (0.78) ** −

Main spring 1927–2014 (469) 47 9.2 15 (0.70) ** −

Bottom spring 1927–2014 (463) 43 9.9 24 (0.83) ** −

* Statistically significant at p < 0.05; ** p < 0.005; † outer protection zone.

In the Aalborg-Drastrup site, at 21 of the 35 monitoring points, the nitrate concentrations in
groundwater showed significant correlations with the surface soil N surplus at the regional scale
(Table 2). Except for one monitoring point (34. 1745 in Table 2), the correlation coefficients were higher
than 0.73 and they were statistically significant (p < 0.005). Like Tunø, the lag times roughly increased
with an increasing depth; however, they showed a greater variability (Figure 7 and Table 2). For
example, at the filter interval between 21–33 m (34. 1706), 4 years of lag year was estimated. In the
deeper part of the groundwater (>40 m), the lag times also varied between 29 to 42 years.

In the La Voulzie catchment area, the soil surface N surplus and the annual average concentrations
of nitrate of all three springs showed strong (r = 0.70–0.83) and statistically significant correlations
(p < 0.005). The lag times estimated for the top, main, and bottom springs were 8, 15, and 24 years
(Table 2).
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4.3. Groundwater Age

For the Danish case study sites, groundwater age data were collected to compare them with the lag
time analysis results. In Tunø, groundwater age data are available at five monitoring points in the inner
action area and at two points outside the inner action area [48]. Like the lag time, the groundwater
age of the Tunø groundwater linearly increased with an increasing depth (Figure 7a). However, the
groundwater ages for the same depth were 6–14 years longer than the lag times estimated in this study
(Figure 7a). In the Aalborg-Drastrup site, like lag times, groundwater ages varied widely with depth
(Figure 7b). For instance, young groundwater (<10 years old) was found at 21–33 m below the land
surface, while old groundwater (≈20 years old) was found in the near surface groundwater (Figure 7b).
Like in Tunø, the groundwater ages were relatively longer than the lag times calculated in this study.

5. Discussion

5.1. Methodological Evaluation of the Lag Time Estimation and Data Requirements

Lag times may be one of the key pieces of information for developing water protection programs
and setting achievable goals [54–57]. Various models have been developed to estimate the lag times
between mitigation measures and the water quality changes [55–59]. Most models are process-based
and provide comprehensive views of the system. Modelling is applicable both data-rich and data-poor
sites [55]. However, these models often require scientific and technical training to use them. Therefore,
these tools may not be readily available for many stakeholders. Furthermore, such models are
often based on various assumptions; therefore, building trust on the modeling results may require
considerable efforts. Studies have reported that involving the stakeholders in the modelling processes
improve the acceptable of the modeling results [55]. This study selected the CCF analysis, which is
based on direct measurements. This method is a simple, intuitive, and easy-to-use method for the
stakeholders. Such measurement-based methods require good quality and quantity of data [55], and
we also found that the CCF analysis may provide meaningful and statistically significant results if the
following conditions are satisfied.

First, continuous, long-term monitoring data on both the agricultural pressure and groundwater
state should be available. Obviously, the time series of the data must be sufficiently long to document
the cause and effect relations between the pressure and state. For example, in La Voulzie, both
agricultural pressure and groundwater state data were available for nearly a century and could thus
fully cover the changes in agricultural pressure and the groundwater state responses (Figure 6). For
the two Danish sites, regional long-term farm gate N surplus data indicated the trends in agricultural
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pressure, confirmed by overlapping more recent soil surface balances. These long-term data allowed
statistical analysis and the results of the CCF analysis were statistically significant. However, links
between regional N-surplus pressure data and effects on resulting levels of nitrate leaching should
be subject to further research [40]. Supplementary analyses of more detailed historical, agricultural
pressure data [60] for the local Parishes covering both of the two Danish sites showed that the farm gate
N surplus levels for both Tunø (represented by the Parish of Tunø) and Aalborg-Drastrup (represented
by the two Parishes of Dall and Navling) were about 20% and 10% lower than the regional balances
shown in Figures 4 and 5, respectively, but with similar decadal trends. This confirms the validity of
the current analyses. Furthermore, the local data confirmed the high decrease in N surplus pressure
for Tunø after the 1980s, as well as historical trends back in time similar to the regional results. For
Aalborg-Drastrup, the agricultural pressure according to local agricultural N-surplus followed the
regional trend after 1980 but was significantly higher before 1980. Thereby, the value of localized data
about links between agricultural pressures and lag time in groundwater quality was supported.

Second, particularly for evaluating the effectiveness of the mitigation measures, the time series
should capture the changes in pressure and state. For instance, in Tunø, at some sampling points,
groundwater monitoring had started a few years after the protection plans were implemented (Figure 4f).
The nitrate concentrations in those wells already decreased below 10 mg NO3

−/L, and they were
relatively invariant over time. With these time series, the CCF analysis cannot produce statistically
meaningful results.

Third, in cases of the groundwater state, only oxic groundwater should be considered because
nitrate is redox-sensitive. In nitrate-reducing and/or -reduced conditions, nitrate concentrations
decrease not only because of the changes in the inputs from the agricultural system, but also because
of biogeochemical reactions (denitrification to gaseous N compounds) in the subsurface. If the
denitrification reactions dominantly control the nitrate concentrations in groundwater, the correlations
between the agricultural pressure and groundwater state might not be strong or statistically significant.
For example, in Tunø, the deepest groundwater (100. 109) was nitrate-reducing, the CCF analysis
estimated weak correlations, and one of the pressure indicators showed an insignificant result (Table 2).
These results are attributed to its nitrate-reducing condition. In this well, oxygen was nearly depleted,
but its nitrate concentrations were much lower (approximately 25 mg NO3

−/L) than the overlying part
of the groundwater (44–170 mg NO3

−/L), indicating that nitrate had begun to be reduced. Therefore,
to evaluate the effects of agricultural activities, including mitigation measures, on the groundwater
quality, the role of nitrate reduction reactions in the hydrogeological system should be excluded.

5.2. Hydrogeological Control of Lag Times

The hydrological system determines the pathways between a source (i.e., agricultural soil) and
a sink (i.e., groundwater) and the travel speed of the contaminants through the pathways. All the
hydrogeological systems, however, have complex networks of flow pathways, and this complexity
has been a major challenge in communication among stakeholders, water authorities, and scientists.
To develop a water protection program with local stakeholders, it may be more important to identify
the most dominant pathways of water and nitrate transport, rather than to fully understand the
complexity of the hydrogeological system. By targeting the primary pathways, the efficiency of the
mitigation measures may be increased [19,61]. The main role of the link indicators is to reveal the
primary pathways of the site so that the stakeholders can develop action plans and set achievable goals.
Tunø is a sandy aquifer underlain by Quaternary glacial deposits, where heterogeneous geology and
flow pathway network are expected. However, our data showed that lag times and groundwater ages
linearly increased with an increasing depth at this site (Figure 7a). These results imply that the signals
of the agricultural pressure are propagated downward, predominantly via matrix flow (i.e., diffusion
and dispersion through the porous medium) to groundwater. In a matrix flow-dominated system,
the groundwater state may respond to the agricultural pressure slowly, which is consistent with the
relatively long lag times of the Tunø site.
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The Aalborg-Drastrup site is underlain by limestone. Limestone aquifers are also well known
for their complexity and anisotropy of flow networks because both matrix flow via porous medium
and preferential flow via fractures play a key role in transporting water and contaminants [62]. This
complexity may explain why the lag time and residence times heterogeneously varied with depth.
When preferential flow via large fractures is the dominant pathway, the agricultural pressure signals
will rapidly propagate to groundwater, and consequently young groundwater and short lag times
can be found at deep depths in this case (Figure 7b). Conversely if matrix flow via porous medium or
macroscale fractures plays a more important role in delivering water and nitrate, the groundwater
state responses will be significantly delayed. At the Aalborg-Drastrup site, we observed both patterns
and these observations imply that both pathways may be active. In this case study site, mitigation
measures that target rapid (i.e., preferential flow) and slow (i.e., matrix flow) pathways will be needed.

La Voulzie is also underlain by limestone. A previous study using multiple tracers in this
area revealed that, at this site, nitrate transport mainly occurs through matrix flow on a long-term
timescale [63]. Consistent with this, the lag times of nitrate were 8–24 years (Table 2) and the monthly
water chemistry data showed no seasonal variations. At this site, therefore, a long-term water protection
program will be necessary. Furthermore, the results also show that the lag time variability among the
springs may be explained by the hydrogeological structure of the subsurface. At the top spring, the
estimated lag time is shorter than those of the other two springs. These differences may be because
the top spring is located above the relatively impermeable clay layer (Figure 3), while the other two
are located below it. Therefore, the top spring may receive water that circulates only within the top
limestone layer. In sum, we conclude that the link indicators may be useful for better understanding
of how water and nitrate move through the hydrological system and selecting the best mitigation
measures. The underlying hydrogeology is the primary control of the relations between the agricultural
pressure and groundwater state. Therefore, the hydrogeological system should be well-characterized
in the context of the objectives and the spatial and temporal scales of the water protection programs.

5.3. Link Indicators: Groundwater Age vs. Lag Time

The time lags between pressure and state can also be estimated through groundwater age
measurements using environmental tracers such as CFCs, 3H/3He, and noble gases (Ar, He, Kr, Ne,
and Xe) if the contaminant is highly soluble [64–68]. Nitrate is primarily transported as solutes and
behaves conservatively in the oxic zone; therefore, the groundwater age may be a useful indicator for
estimating the time lag of groundwater state responses. Indeed, previous studies of groundwater ages
and groundwater chemistry have successfully documented the changes of nitrate concentrations in
groundwater chemistry as responses to the changes of regulations or agricultural practices at decadal
scale [64–68].

Our results show that the lag times estimated using the statistical CCF method were shorter than
the measured CFC groundwater ages in Tunø. Such differences could be attributed to uncertainties
associated with each measurement; however, in principle, lag time and groundwater age represent
two different hydrological timescales. Lag time measures the time difference between a pressure peak
and a state peak; therefore, it quantifies how fast a water parcel or an input signal moves through a
groundwater system [69]. In other words, lag time is transit time. Comparatively, groundwater age is
the mean residence time of the water; therefore, it is related to water mass movement and the volume
of the groundwater. If the lengths of pathways of a hydrogeological system are identical, its lag time is
half of the mean residence time [70]. However, such hydrogeological systems do not exist. The lengths
of pathways are greatly different, even for a relatively homogeneous system; therefore, some signals
can propagate through the system via short pathways (i.e., short lag time), while the rest take longer
pathways (i.e., long residence time). In other words, water can be contaminated quickly, but it will
take much longer to remediate it.

When the lag time and groundwater age are used as link indicators in communications with
stakeholders, it is important to make a distinction between these two link indicators and to assess the
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limitations of each indicator. The CCF method is a statistical analysis tool and it does not provide
process-based understandings of the lag time between the agricultural pressure and groundwater state.
The lag time is controlled by the interplay between hydrological and biogeochemical processes [71],
which potentially results in an unclear correlation between the agricultural pressure and groundwater
state and in highly uncertain estimations of lag times. Therefore, lag time results should be carefully
examined on the basis of good understandings of the hydrogeological system.

The groundwater age is the mean age of the exiting waters at the monitoring point in the aquifer,
and it does not provide information about the age distribution by itself. Information about the age
distribution, however, may be critical to identifying the sources and timing of the contamination [72]
and to estimating the time span of the water protection plans. If the ages of a water body show a
normal distribution, for example, then it will take twice as long as the mean residence time to replace
all the waters in the water body. However, it is well documented that groundwater is a mixture of
waters with vastly different ages, often displaying a skewed distribution with a long tail or a bimodal
distribution (e.g., [72,73]). Several models and multiple tracers methods are available to estimate
the distribution of water ages, and different methods may predict different distribution patterns
(e.g., [66,72,74]). Therefore, when using the groundwater age as a link indicator, the age distribution
and limitations associated with the employed method should be provided.

5.4. Lag Time as a Criterion for the Selection of Pressure and State Indicators

Because different stakeholders have different interests, they focus on different aspects of drinking
water protection plans. For example, farmers may be interested in the effects of the implemented
measures on their fields. For the field level evaluation, the spatial scale of the agricultural N pressure
(i.e., N surplus) will be essential. For example, the farm gate N surplus at the geo-regional scale of the
Tunø case study site did not show the effects of the local mitigation measures, whereas soil surface
N surplus at the field scale showed instantaneous reduction (Figure 4a). Indeed, many EU member
states have adopted N surplus (or N balance, N budget) at the field level as an advisory or regulatory
tool [40]. For instance, the Danish agriculture and Food Council works on a fertilizer planning system
that precisely calculates the soil surface N balance and surplus on individual fields of the farmer, giving
the farmer the opportunity to take this soil surface N surplus into account when the farmer plans
the application of mineral and manure nitrogen to his or her crops. Therefore, farmers can readily
calculate N surplus at the field scale.

In combination with the soil surface N surplus, soil pore water chemistry may be useful to
evaluate the effects of mitigation measures at the field scale because of its short lag time. Our results
show that nitrate in soil pore water responds to the agricultural pressure almost instantaneously
(lag time between 0 and 2 years; Table 2) and the strength of their correlation was strong (0.75–0.85;
Table 2) in Tunø. Indeed, the soil pore water chemistry, which is generally referred to as N leaching,
is one of the most widely monitored parameters for scientific, monitoring, and regulatory purposes
in order to quantify N losses from the agricultural system to the hydrogeological system [36,75–77].
Several methods have been developed, and the advantages and limitations of each method are well
documented (e.g., [75,78,79]). Because of the spatial heterogeneity and temporal variability of soil
pore water chemistry, establishing monitoring networks and obtaining representative values for N
leaching will be costly and labor-intensive; however, nitrate in soil pore water collected below the root
zone directly measures the amount of nitrate loss after the complex interplay between agricultural and
biogeochemical N cycles in the soil layer. Furthermore, farmers or citizens can be part of the monitoring
procedure; therefore, this may contribute to increasing the transparency of the indicator. We strongly
recommend developing a sampling protocol to account for the spatial and temporal variability of the
soil pore water chemistry that can document the link between N surplus and nitrate concentration in
soil pore water.

On the other hand, water companies and authorities may be more interested in the changes
in the quality of drinking water resources that likely integrate signals from the entire catchment or
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recharging area. In order to do this, N surplus may be calculated for the area of interest, i.e., catchment
or recharging area, and nitrate concentrations in oxic groundwater can be used as a water quality state
indicator. To specifically evaluate the effects of the mitigation measures, oxic groundwater should be
focused upon because the effects of naturally occurring N reduction reactions are negligible in oxic
conditions. In addition, our results of all three case study sites showed that the lag times generally
increased with an increasing distance from the N source (e.g., depth or flow pathways). Therefore,
oxic groundwater close to the N source may be most effective for rapid communication with the
stakeholders. It is equally important to select representative locations for oxic groundwater monitoring
because the groundwater chemistry and lag time responses can be spatially heterogenous. Therefore,
monitoring programs should be carefully established to document the spatial and temporal variability
of the site.

6. Conclusions

This study investigated lag times as a link indicator to better understand the cause–effect relations
between agricultural N pressure and groundwater quality state using data from the three case study
sites. We showed that the cross-correlation (CCF) analysis of soil surface N surplus and annual average
concentrations of nitrate in water can be a simple and useful method to determine the lag times
between agricultural N pressure and groundwater quality state if long-term pressure and state data are
available. Furthermore, the spatial patterns of lag time distribution revealed the dominant pathways
of water and nitrate, which then provide valuable information for the selection of mitigation measures.
Groundwater age is another useful link indicator to estimate the timescale of the water quality state
responses to the agricultural pressure, particularly in data-limited circumstances. However, lag time
represents transit time while groundwater age measures residence time; thus, these two should be
distinguished in communication with the stakeholders.

Altogether, we concluded that the link indicators investigated under the DPLSIR framework can
illustrate some of the potential for enhancing the communication of uncertainties and complexity
between the agricultural pressure and groundwater state. When dealing with groundwater and
agriculture-related issues, the link between the pressure and state is important for the responses
(in terms of measures and policies) adopted by authorities that are to be accepted and used by
farmers. If there is a common understanding of the link among the stakeholders, then decisions
and water protection plans might be easier to implement. Knowledge exchange on the link between
decision-takers (farmers) and decision-makers (policymakers and water work) should be one of the
first steps when developing water protection plans in the future.
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