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Abstract 

Assessing the potential impacts associated with CO2 storage operations implies using large-scale models 
characterized by a very large number of grid cells (>500,000) and high computation time cost (> several hours). Yet, 
investigating the influence of the input parameters on the model results requires multiple simulations (>1,000), which 
might become impracticable due to the computation burden. A meta-modelling strategy is then proposed, basically 
consisting in approximating the long running model by a costless-to-evaluate model, for instance a Gaussian Process, 
based on a very limited number of simulations (e.g., 50). This strategy is tested to investigate the sensitivity of the 
overpressure induced by an industrial-scale CO2 injection into a fluvial heterogeneous reservoir, to the properties of 
the shale formation using a 3-dimensional long running multiphase flow model (with CPU time > 5 days).  
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1. Introduction  

CO2 capture and geological storage is seen as a promising technology in the portfolio of measures 
required to mitigate the effects of anthropogenic greenhouse gas emissions (IPCC [1]). Yet, a pre-requisite 
to its wide scale implementation is demonstrating safety. Assessing the potential risk events and 
associated impacts resulting from CO2 storage operations (e.g., CO2 leakage; brine displacements; far-
field pressurization; ...) is typically supported by large-scale 
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numerical simulations i.e. dynamic modeling at the spatial scales of the storage complex, as advocated for 
instance by the recent European directive on geological storage of carbon dioxide (directive 2009/31/EC). 
Such numerical tools offer the advantages of capturing complex geological architecture of storage 
formation (based on the static model), as well as coupling processes (e.g., multiphase flow transport, 
geochemical, mechanical, etc.) with regards to specific features, along with complex injection scenario 
(leakage, buoyancy inside dipp  

In practice, such numerical models are based on a large variety of input parameters and hypotheses. 
Each of these input parameters is associated with uncertainty, so that the European directive has 
advocated the need for measuring the influence of these sources of uncertainty and providing a ranking 
procedure for an appropriate decision for risk management (directive 2009/31/EC Annex I Step 3.2 
Sensitivity characterization), especially to guide future lab or in site characterizations and studies, but also 
to simplify  the model by fixing the input parameters with negligible influence. Variance-based global 
sensitivity analysis (GSA), (i.e. sensitivity indices), can provide such 
valuable information (see Saltelli et al. [2]). This analysis presents the advantages of exploring the 
sensitivity to input parameters over their whole range of variation (i.e. in a global manner contrary to 
other local approaches relying on the calculation of partial derivatives), of fully accounting for possible 
interaction between the input parameters and of being applicable without introducing a priori assumptions 
on the mathematical formulation of the numerical model (e.g., linearity, monotonicity, etc.).  

Conducting GSA is hindered by a major difficulty: the different algorithms available for the estimation 
indices require a large number of model evaluations (of the order of thousands, see Saltelli 

et al. [2]). Yet, numerical models for large-scale impact assessment of CO2 storage operations are 
generally characterized by high number of grid cells (> 500,000) and with high CPU time (> several 
hours) of a single simulation. To overcome this computation challenge, the objective of the present study 
is to explore the applicability of the combination of an appropriate grid computing architecture and of the 
meta-modeling technique (Storlie et al. [3]). The latter technique basically consists in replacing the 

-to-evalu -model also named response surface 
or surrogate model or reduced model). 

The remainder is organized as follows. In a first section, we describe the steps of the strategy 
combining meta-modelling technique for conducting GSA. In a second section, we apply such a 
methodology on a simple 1-d analytical model, with low CPU time (Manceau and Rohmer [4]). Using this 
analytical example enables us to compare the results of the meta-  ones. In a third 
section, the methodology is applied to a long running 3-d multiphase flow model, with CPU time of 
several days (Issautier et al. [5]), to rank in terms of importance the multiphase properties of the shale 
rock formation embedding complex porous sandstone bodies (fluvial heterogeneous reservoir). 

2. A meta-modelling strategy 

2.1. Principles 

-
running model, we rely on the meta-modelling technique (Storlie et al. [3]). The basic idea of meta-
modelling is to replace the long running numerical model f by a mathematical approximation (denoted g) 

- -model 
-to-  f 

in the domain of model input parameters x and at predicting the model responses y=f(x) with a negligible 
CPU time (y can be for instance the gaseous saturation value at a given distance from the injection zone). 
The main steps of the methodology are summarized in Table 1.  
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Table 1. Description of the meta-modelling strategy for conducting global sensitivity analysis  

Step Description 

1 Generate n0 different values for the input parameters x using a LHS technique and simulate the 
corresponding model outputs y; 

2 Based on this training data, construct a meta-model and assess the approximation and the predictive 
quality using cross-validation procedure; 

3 -to- -model, compute 
importance of each of the input parameters. Compute a confidence interval on each sensitivity index 
to account for uncertainty in the construction of the approximation. 

2.2. Step 1 

The first step is to run f for a limited number n0 of different configurations (named training samples) of 
m-dimensional vectors of input parameters xi=(x1 ; x2 xm n0. To choose them, a trade-

d minimizing 
the number of simulations, i.e. a trade-off between the accuracy of the approximation (directly linked 
with n0) and the CPU cost. To fulfill such requirements, we propose to randomly select the training 
samples by means of the Latin Hypercube Sampling LHS method (see e.g., McKay et al. [6]) in 

-   
For each of the randomly selected training sample xi, the corresponding model output yi is calculated 

by running the computationally intensive model. The set of n0 pairs of the form {xi ; yi  n0, 
constitute the training data on which the meta-model is constructed in step 2. 

2.3. Step 2 

Using the training data, f can then be approximated by a meta-model g so that y=f(x) g(x). Several 
types of meta-models exist: simple polynomial regression techniques, non-parametric regression 
techniques, Gaussian process, etc. See Storlie et al. [3] for a recent review. The choice of the meta-model 
type is guided by the a priori non-linear functional form of f, as well as the number of input parameters. In 
the following, we will more specifically focus on the meta-model class of Gaussian processes. For full 
details, the interested reader can refer to Gramacy and Herbert [7] and references therein.  

As the methodology involves replacing f by an approximation g, it introduces a new source of 
uncertainty. Two issues should be addressed: 1. the approximation quality, i.e. to which extent g manages 
at reproducing the observed yi, i.e. the ones calculated based on the set of different long running 
simulations; 2. the predictive quality, i.e. to which extent g manages at predicting y -

 
Regarding the first issue, the differences between the approximated and the true quantity of interest 

(i.e. the residuals) are usually used. On this basis, the coefficient of determination R² can be computed so 
that if R² is close to one, the approximation can be considered of good quality. 

Regarding the second quality issue, a first approach would consist in using a test sample of new data. 
Though the most efficient, this might be often impracticable as additional numerical simulations are 
costly to collect. An alternative relies on cross-validation procedures (see e.g., Hastie et al. [8]). This 
technique involves: 1. randomly splitting the initial training data into q equal sub-sets; 2. removing each 
of these sub-sets in turn from the initial set; fitting a new meta-model using the remaining q-1 sub-sets; 3. 
the sub-set removed from the initial set constitutes the validation set , which is estimated using the new 
meta- -one- -set is 
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composed of a single observation. Using the residuals computed at each iteration of the procedure, a 
coefficient of determination R² can be estimated to be used as a metric of predictive quality. 

2.4. Step 3 

Once validated, the costless-to-evaluate meta-model can be used to estimate y -
values of the input parameters We 
introduce hereafter the basic concepts of GSA. For a more complete introduction and full derivation of 
equations, the interested reader can refer to (Saltelli et al. [2] and references therein).  

Considering the m-dimensional vector X as a random vector of independent random variable Xi 
m), then the output Y=f(X) is also a random variable (as a function of a random vector). A 

variance-based sensitivity analysis aims at determining the part of the total unconditional variance Var(Y) 
of the output Y resulting from each input random variable Xi. This analysis relies on the functional 
analysis of variance (ANOVA) decomposition of f 
and 1) can be defined: 
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The first-order Si Xi  can be interpreted as the expected amount of 
Var(Y) (i.e. representing the uncertainty in Y) that would be reduced if it was possible to learn the true 
value of Xi. This index provides a measure of importance useful to rank in terms of importance the 
different input parameters (Saltelli et al. [2]). The second order term Sij measures the combined effect of 
both parameters Xi and Xj. Higher order terms can be defined in a similar fashion. 

3. Illustration of the meta-modelling technique 

3.1. Description of the analytical model  

We aim at illustrating step 1 and 2 of the afore-described methodology using the one-dimensional 
version of the analytical model developed by Manceau and Rohmer [4] with low CPU time (<2 seconds). 
This model is used to compute the time duration T necessary to trap the whole amount of CO2 stored 
(~1.5 Mt) in a 20m thick, 1200m deep aquifer reservoir formation. We consider here the residual trapping 
associated with the natural groundwater flow acting within the aquifer formation at ~3.5 m/year.  

We restrict the analysis to the gaseous and liquid residual saturation (respectively denoted Sgr and Slr) 
of the aquifer formation. Both uncertain input parameters respectively vary between 0.05 and 0.30 and 
between 0.30 and 0.5. The other input parameters are set at the values described in Manceau and Rohmer 
[4]. 

3.2. Application  

To assess the efficiency of the meta-modelling strategy, we first calculate the time duration T 
considering different pairs of {Sgr ; Slr} using a grid design of 21x21. In total, 441 simulations using the 
analytical model were performed. Figure 1 depicts the evolution of T in this 2-dimensional domain (red 
straight lines). This constitutes the reference, which we aim at approximating.  

In this purpose, we generate 10 training data selected through the LHS approach (outlined by a black 
dot in Figure 1A). On this basis, we construct a meta-model of the form of a Gaussian Process (see e.g., 
Gramacy and Herbert [7]). The validation phase (through leave-one-out cross validation technique) 
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provides a satisfactory coefficient of determination of ~95%. The approximation is depicted in Figure 1A 
by black dashed lines. We can see that in the region where training data where simulated, the reference 
and the approximation are in good agreement. On the other hand, in regions where poor knowledge has 
been gathered (in particular in the vicinity of Sgr~0.25 and Slr~0.50), we can notice discrepancies. When 
using more training data (20 samples), we show that the agreement is very good (Figure 1B).  

 

Fig. 1. Residual trapping time duration T (expressed in years) as a function of Slr and Sgr. The red straight lines correspond to the 
 (441 simulations). (A) The black dashed lines correspond to the 

approximation provided by the Gaussian-Process meta-model (mean predictive estimate) constructed using only 10 samples (black 
dots). (B) The approximation is constructed using 20 training data. See text for further details. 

model by the meta-model to conduct the GSA. In the case of long running simulations, the most often 
encountered situation is likely to be the one of Figure 1A, i.e. the total computation time cost dictates the 
affordable number of simulations. Therefore, the uncertainty in the construction of the approximation 
should be accounted for when presenting the results calculated using the meta-model. Different 
approaches can be proposed: bootstrap technique, as proposed by Storlie et al. [3] or in the Bayesian 
framework. In the following, we will concentrate on the second approach, because this formalism is a 
natural framework for estimating the (hyper-) parameters of Gaussian Processes (Gramacy and Herbert 
[7]). 

4. Long-running application case 

4.1. Model set-up and parameters 

We aim at applying the methodology using the very long running 3- dimensional multiphase flow 
model (Issautier et al. [5]) used to simulate an industrial-scale CO2 injection (i.e. > 1 Mt/y) into a 1200m 
deep, 60m thick fluvial heterogeneous reservoir seen as a complex layout of highly heterogeneous sandy 
sedimentary bodies with varying connectivity. Figure 2 provides an overview of the sedimentary bodies 
embedded in a shaly floodplain. The system corresponding to a 25 km x 25 km x 60 m heterogeneous 
aquifer formation (open lateral boundaries) is represented by a grid mesh of more than 840,000 cells (with 
a refined zone at 80m x 80m x 2m in the central part where the injection is conducted). The objective is to 
investigate the sensitivity of the over- pressure induced by the injection at a distance of 5km from the 
injector, i.e. at the transition between the sedimentary bodies and the floodplain (along the profile 
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outlined in Figure 2 by a red straight line). Five input parameters characterizing the shale are considered: 
the pore compressibility  and the four multiphase flow properties, namely the parameters of the Van-

 n(VG) and P0, and the gaseous and 
liquid residual saturation Sgr and Slr. Table 2 gives the assumptions for the upper and lower bounds of 
these parameters.  

Table 2. Lower and Upper bound associated to each input parameter 

Property Lower bound Upper bound 

1 Pore compressibility  9.e-10 Pa-1 4.5e-10 Pa-1 

2 Van- n(VG) 0.46 0.60 

3 Liquid residual saturation Slr 0.20 0.50 

4 Gaseous residual saturation Sgr 0.05 0.35 

P0 5 bar 50 bar 

Note that we intentionally choose a problem for which we know before-hand the intuitive solution, 
namely: the pore compressibility  should have the strongest influence on the variation of the over- 
pressure. This allows us to lesser extent verifying the results of the sensitivity analysis using the meta-
model. 

 

Fig. 2. Overview of the heterogeneous reservoir. The sedimentary bodies are outlined in yellow and the floodplain in grey. The 
straight red line corresponds to the profile along which the analysis is conducted. 

4.2. Application of the meta-modelling strategy 

We generate 25 different configurations of input parameters using the LHS technique. Simulations of 
10 years of injection (at a constant injection pressure of ~50 % the initial pore pressure) are conducted 
using the massively parallelized version TOUGH2-MP simulator (Zhang et al. [9]). The CPU time for a 
single simulation ranges from 5 to 10 days (depending on the values of the input parameters) using 35 
CPU running in parallel. The over- pressure at 5 km from the injector ranges from ~3 to ~5 bars.  

Using the training data, we approximate the over- pressure at 4 km using a Gaussian process. More 
precisely, due to the complex relationship between the input parameters and the over- pressure, we use a 
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- authors (see Gramacy and 
Herbert [7] and references therein). Figure 3A depicts the comparison for the cross-validation procedure 
between the observed over-pressure values (i.e. the ones simulated with the long running model) and the 
approximated ones. The closer the dots from the first bisector (outlined in blue), the better the 
approximation. This validation phase provides a coefficient of determination of around ~87%, which can 
be considered satisfactory despite the poor estimations of some observations (in particular at low over- 
pressure, see the leftmost part of Figure 3A). 

 

Fig. 3. (A) Comparison between the observed and the approximated (estimated) over- pressures (bar) for the cross-validation 
procedure. The error- bars correspond to the 95% confidence interval provided by the (treed) Gaussian Process. (B) Main effects 

estimated for the 5 input parameters using the (treed) Gaussian process. The red dots represent the mean of the main effects and the 
error bars correspond to the 95% confidence interval representing the uncertainty associated with the construction of the Gaussian 

Process. See Table 2 for description of the input parameter N°1 to 5. 

Finally, using the validated meta-model, we conduct GSA and evaluate the main effects of each of the 
5 input parameters on the over- pressure. A Monte-Carlo-based approach is used requiring a total number 
of 14,000 runs. Obviously, directly using 3-dimensional model would not have been achievable regarding 
the CPU time of a single simulation (>5 days).  

Treating the Gaussian- Process in the Bayesian framework allows us to account for the uncertainty in 
the construction of the approximation, which is summarized by a 95% confidence interval assigned to 
each sensitivity measure (Figure 3B). As expected, the pore compressibility (input parameter n°1) has the 
strongest influence with a main effect of ~0.45, while the others remain below 0.1. Due to the uncertainty 
introduced by the approximation, the ranking of the input parameters N°2 to 5 is made difficult, because 
of the overlapping confidence intervals.  

Noteworthy, a small value for the main effect does not necessarily mean that the input parameter has a 
negligible influence on the results. The sum of all the sensitivity measures reaches ~0.60 indicating the 
high non- linearity of the relationship between the over- pressure and the 5 input parameters. Computing 
the total effects (see Saltelli et al. [2]) indicates that none of the input parameters can be neglected, 
because they all reach values above 0.10 (not shown for sake of space). 

5. Concluding remarks and further work 

In the present study, we investigated the applicability of the meta-modelling technique to conduct 
global sensitivity analysis of large scale models sued to assess large-scale impacts associated with CO2 
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storage operations. Such models are characterized with a very large number of grid cells (>500,000) and 
high computation time cost (> several hours). The application case is the computationally intensive 
multiphase flow modeling (with CPU time > 5 days for a single simulation) of an industrial-scale CO2 
injection (i.e. > 1 Mt/y) into a fluvial heterogeneous reservoir. We showed how to estimate the sensitivity 
measures of each of the input parameters using only a low number of simulations (of the order a few 
tens). One limitation of the proposed is to introduce a new kind of uncertainty associated with the 
construction of the approximation. Thus, the need for accounting for the approximation uncertainty in the 
sensitivity results is highlighted.  

The analysis is conducted using a scalar model output (the value of the over- pressure at 5 km from the 
injector). The next challenge is to deal with spatially-varying or/and time-dependent outputs (e.g., 
temporal evolution of the over- pressurized area). Further works on this issue can for instance rely on the 
recent developments of Marrel et al. [10]. 
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