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Abstract 12 

Lithium (Li) is a strategic metal - especially for batteries in electric vehicles - for which worldwide 13 

demand is constantly increasing. Presently, several investigations are examining if a part of 14 

lithium could be extracted from deep European geothermal fluids. Among the data from 15 

geothermal and hydrocarbon wells found in the literature review carried out by BRGM and 16 

EIFER, only six areas stand out with deep fluids containing high Li concentrations from 125 to 17 

480 mg/l in Italy, Germany, France and the United-Kingdom. Except the UK fluid, which has a 18 

relatively low salinity (TDS = 19 g/l) and reservoir temperature (around 52 °C) as well as the 19 

lowest Li concentration (125 mg/l), these deep Li-rich fluids are Na-Cl brines (TDS ≥ 56 g/l) with 20 

high concentrations of Na (> 18 g/l) and Cl (> 25 g/l) and high temperatures (≥ 120 °C and up to 21 

380 °C in Italy). If high TDS and temperature values seem to be key factors for triggering high Li 22 

concentrations in such fluids, these two factors alone cannot be sufficient. Indeed, our study 23 
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confirms that Li concentrations not only depend on temperature and fluid salinity, but also on 24 

the type of reservoir rock and its mineralogical constituents, as demonstrated by the good 25 

results obtained using two different Na-Li thermometric relationships existing in the literature. 26 

One fits well with the brines from low to high temperature (120-250 °C) reservoirs in deep 27 

tectonic sedimentary basins over a crystalline basement (France, Germany) and the other with 28 

the fluids from ultra-high temperature (≥ 300 °C) reservoirs in volcano-sedimentary environment 29 

(Italy). If the high chloride concentrations values in these brines mainly depend on the fluid 30 

origin (evaporated seawater or freshwater, halite dissolution, primary neutralization fluids or 31 

parent-geothermal fluids in high-temperature and -pressure volcanic environments, water 32 

mixing, etc.), the other aqueous major species are mostly controlled by hydrothermal water-rock 33 

interaction processes. At these temperatures (≥ 120 °C), the fluid-rock interaction processes are 34 

generally dominated by plagioclase and K-feldspar dissolution, followed by albitization of these 35 

minerals, dissolution of white micas and biotite, precipitation of illite, and chloritization. 36 

According to the two Na-Li thermometric relationships, existing mineralogical and isotopic data, 37 

this study suggests that the main sources of Li are white micas and biotite dissolution. Among 38 

the European areas, it shows that the Upper Rhine Graben (URG) along the French/German 39 

border is probably the most promising zone. For the URG geothermal brines, the main source 40 

and control of lithium, at about 225 °C, at reservoir depth, is probably the up to 450-m-thick 41 

micaceous continental sandstone of Triassic Buntsandstein. A minor contribution from the 42 

granite basement can also not be excluded. Though the Li concentration values of these brines 43 

(≥ 150 mg/l) seem to be favourable for geothermal Li exploitation, it is essential to make an as 44 

accurate as possible estimate of the Li resource of these brines, design the Li extraction 45 

process, and examine the economic conditions of its exploitation.  46 

 47 
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1. Introduction 49 

Lithium (Li) and its chemical compounds are widely used in numerous industries such as glass, 50 

ceramics, lubricating grease, or polymer production. With the recent development of electro-51 

mobility and the evolution of energy systems to achieve Green Deal goals, energy storage 52 

devices and batteries are significant new market segments for lithium, thus driving an increasing 53 

demand for this metal. In 2008, global lithium consumption was 21,300 t of Li metal, with 20% 54 

for (rechargeable) batteries (4,260 t of Li metal), whereas in 2019, total consumption had more 55 

than doubled to about 48,500 t Li, with 54% or 26,190 t Li metal for rechargeable batteries 56 

(Gourcerol et al., 2021). Consequently, many mining companies, governments and private 57 

investors seek to supply this continuously increasing demand with new mine openings as well 58 

as expanding producing mines, and encouraging projects for Li-ion battery recycling.  59 

Li is widely distributed on the Earth, with concentrations of 24 ppm in the upper continental 60 

crust, 12 ppm in the middle continental crust, 13 ppm in the lower continental crust, and 61 

1.5 ppm in the mantle (Jagoutz et al., 1979; Rudnick and Gao, 2014; Liu et al., 2018). The 62 

mean Li concentration in seawater is 0.18 mg/l (Riley and Tongudai, 1964). In most rocks, 63 

silicate minerals, especially Mg-rich silicates, are the almost exclusive hosts for Li (Misra and 64 

Froelich, 2012) because Li can have a similar radius to Mg (Shannon, 1976), depending on its 65 

coordination number in these minerals. High Li contents can be identified in intermediate-acid 66 

rock bodies, in igneous rocks (granite, pegmatite; Li et al., 2018a), in volcanic tuff and rhyolite 67 

(Li et al., 2018b), and in detrital materials (e.g., lacustrine deposits, sandstone).  68 

Lithium resources are historically divided into three types: 1) hard-rock deposits, 2) surface and 69 

near surface brines, and 3) unconventional resources such as seawater or deep geothermal 70 

brines. Hard-rock deposits reflect endogenous/exogenous processes and may be related to 71 

magmatic and sedimentary rocks (Kesler et al., 2012; Gourcerol et al., 2019). Li-bearing 72 

minerals are numerous (spodumene, petalite, lepidolite, hectorite, jadarite, etc.) and require 73 

various processes for extracting lithium. Surface brines refer to arid to semi-arid salt pans and 74 
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ephemeral salt lakes in tectonically active sedimentary basins, called “salars” in South America. 75 

Extracting lithium from these salt lakes is relatively easy and cheap, compared to the complex 76 

and energy-intensive extraction technologies involved for hard-rock deposits, which may require 77 

several chemical transformations. The most known salt pans are located in the lithium triangle - 78 

also called lithium ABC (Argentina, Bolivia, Chile) - which stretches from northern Argentina 79 

(salar de Hombre Muerto) to western Bolivia (salar de Uyuni) and northern Chile (salar de 80 

Atacama) and have been studied by numerous authors (Risacher, 1984; Risacher and Fritz, 81 

2000; Risacher et al., 2003; Kesler et al., 2012; Godfrey et al., 2013; Munk et al., 2018; 82 

Schmidt, 2019; Garcia et al., 2021; Lopez Steinmetz, 2021). High lithium contents can be found 83 

in these salars (up to 6,400 mg/l, being the maximum known Li concentration; Lopez Steinmetz 84 

et al., 2018). Other well-known lithium-rich surface brines are found in the Qaidam Basin and on 85 

the Tibet plateau, in China (Li et al., 2018a; 2019).  86 

The near surface brines that are pumped from beneath the Clayton Valley in the Basin and 87 

Range extensional province of Nevada, USA, from depths of about 100-250 m, into evaporating 88 

ponds (Barrett and O’Neil, 1970; Davis et al., 1986; Ventura et al., 2016) have produced lithium-89 

metal since the mid-1960s and are the only producer in North America. Such brines contain 90 

about 20% NaCl and up to 400 ppm of lithium. Their formation was studied in detail by Davis et 91 

al. (1986). 92 

Our present work only deals with unconventional European Li resources, such as deep 93 

geothermal and oil & gas field Li-rich brines, which were identified to assess the lithium 94 

resources that could be extracted from these brines for supplying Europe with this metal. 95 

Outside Europe, Li-rich deep brines (up to 983 mg/l of Li) are found in some geothermal fields 96 

like Salton Sea, in California, USA (Werner, 1970; Elders and Cohen, 1983; Williams and 97 

McKibben, 1989; Sanjuan and Millot, 2009), in the Siberian sedimentary platform (Shouakar-98 

Stash et al., 2007; Alekseeva and Alekseev, 2018), or in the Tibet Plateau (Li et al., 2018a; 99 

2019). Average Li contents of oilfield brines are usually below 10 mg/l, but brines with high Li 100 
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concentrations of up to 500 mg/l occur in some hydrocarbon source rocks (Blake, 1974; Collins, 101 

1975; Connolly et al., 1990; Moldovanyi et al., 1993; Stueber et al., 1993; Wilson and Long, 102 

1993; Chan et al., 2002; Williams and Hervig, 2005; Tabarès, 2013). High Li concentrations 103 

have also been observed in deep ocean thermal vents (Garrett, 2004).  104 

Based on a state-of-the-art literature review and use of the BRGM-EIFER database for deep 105 

geothermal and oil-field Li-rich brines in Europe (Sanjuan et al., 2019; 2020), here we present 106 

and discuss the main chemical and isotope characteristics of these brines. We also contribute to 107 

identify the main Li source in such deep brines, which is poorly known, and to understand 108 

natural processes of lithium enrichment, as the influence of temperature, fluid salinity and nature 109 

of the reservoir rocks. The resolution of such scientific questions is very important to launch and 110 

optimize the Li exploitation from geothermal brines.   111 

 112 

2. Main Li-rich deep geothermal brines in Europe  113 

In principle high-lithium concentrations (≥ 150 mg/l) are recommended for an economically 114 

effective Li extraction (Sanjuan et al., 2020). Among the data of the BRGM-EIFER database, 115 

only six geothermal areas with deep fluids containing Li concentrations ranging from 125 to 116 

480 mg/l are registered in Europe (Fig. 1), in Italy, Germany, France and the United Kingdom.  117 

2.1 Main play types of geothermal systems 118 

These areas, which were selected for this study, can be divided in two main play types of 119 

geothermal systems, as recommended by Sanyal (2005) and Moeck (2014):  120 

- ultra-high temperature geothermal systems (≥ 300 °C), with Li concentrations ranging 121 

from 250 to 480 mg/l, in Mesozoic sedimentary reservoirs associated with relatively 122 

young volcanic environments (Quaternary volcanism), where the heat is provided by 123 

intrusive magmatic activity (presence of volcanic rocks and magma degassing), as the 124 
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two well-known geothermal areas in Italy: Cesano (Monte Sabatini area) in the Latium 125 

region, and Campi Flegrei in the Campania region (Calamai et al., 1976; Carella and 126 

Guglielminetti, 1983; Pauwels et al., 1991; Buonasorte et al., 1993; Cinti et al., 2011, 127 

2017).  128 

• The Monte Sabatini area  129 

This area is located along the peri-Tyrrhenian sector of Central Italy. In this region, a 130 

post-collisional tectonic activity occurred during the Neogene, generating dominantly 131 

extensional NNW-SSE-trending fault systems and minor NE-SW-trending transtensive 132 

structures that accommodated differential extension. The progressive eastward 133 

migration of the extension wave produced a strong crustal thinning (> 25 km), high heat 134 

flow (locally > 200 mW/m2) and subduction-related magmatism. Volcanic complexes 135 

grew up on buried horst-graben structures, whilst marine clastic sediments filled up the 136 

structure lows (Barberi et al., 1994; Cinti et al., 2017). This area was volcanically active 137 

from 0.60 to 0.08 Ma. The alkaline volcanic products overlay a tectono-stratigraphic 138 

sequence consisting of 1) a Plio-Pleistocene complex, consisting of conglomerates, 139 

sandstones and clays, 2) Cretaceous-Oligocene Ligurian and sub-Ligurian units, 140 

including calcareous-pelitic calcarenites and arenaceous-pelitic turbidites, 3) Mesozoic 141 

carbonates, and 4) Triassic evaporites (Burano Formation). In this region, mantle 142 

degassing and thermo-metamorphic processes feed a regional pressurized CO2 gas 143 

system. The hydrogeological setting is dominated by a regional hydrothermal reservoir 144 

hosted in the Mesozoic carbonate-evaporite units.  145 

• The Campi Flegrei area 146 

This area is a large volcano situated to the west of Naples and was the result of 147 

voluminous Pliocene-Quaternary volcanism in the Campania margin, which presents 148 

peculiar physiographic, volcanic, and tectonic features and is of critical importance in 149 

understanding the tectonic and geodynamic evolution of the Tyrrhenian Sea back-arc 150 
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basin. Two alternative geodynamic models have been used to explain the evolution of 151 

the Tyrrhenian Sea-Apennine system. The subduction model maintains that subduction 152 

of the Adriatic-Ionian lithosphere and its slab retreat are responsible for an asymmetric 153 

migration of the extension in the Tyrrhenian upper plate. Instead, the astenosphere 154 

upwelling model invokes a lithospheric stretching driven by mantle astenosphere 155 

expansion due to the growth of a plume head (Torrente and Milia, 2015). The recent 156 

volcanism developed in the Campania tectonic depression formed at the borders of the 157 

Apennine mountain chain. Significant subsidence occurred in this depression, and the 158 

carbonate basement down-lifted by more than 3500 m below sea level. The presence of 159 

a shallow magmatic chamber of large dimensions provides the heat source for the 160 

geothermal system.  161 

Both Italian geothermal areas in the Latium and Campania regions are high-pressure 162 

water dominated geothermal plays, and both present ultra-high temperatures (up to 380 163 

°C). However, considering the high cost and other risks associated with their potential 164 

exploitation, both areas were abandoned a long time ago. In addition, high temperatures 165 

(≥ 340 °C), associated with hydrothermal and thermo-metasomatic phenomena, were 166 

measured in wells at depths of 2000-3000 m. These phenomena, implying large volumes 167 

of hot dry rock, often cause a drastic reduction in permeability that remains low if natural 168 

fracturing is not continually reactivated. Another negative factor for a cost-effective 169 

exploitation was the type of geothermal fluids, which were highly reactive, prone to 170 

scaling and with high concentrations of CO2 and H2S gases. 171 

- low to high temperature  geothermal systems (120-250 °C) without an associated 172 

magmatic heat source, with Li concentrations ranging from 140 to 210 mg/l, in deep 173 

tectonic sedimentary basins over a crystalline basement, which are less common and 174 

deeper (Nicholson, 1993), as the two German geothermal areas (Groβ Schönebeck 175 

geothermal site located in the North German Basin, about 50 km north of Berlin, and 176 
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South German Molasse Basin located in southwestern Germany), explicitly described by 177 

Regenspurg et al. (2010; 2015) and Stober (2014) respectively, and the Upper Rhine 178 

Graben (URG) area in both Germany and France (Fig. 2), where numerous Na-Cl brines 179 

discharged from deep wells have very similar features (Sanjuan et al., 2016a; 2021; 180 

Bosia et al., 2021). 181 

• The North German Basin  182 

The North German Basin is a passive-active rift basin located in central and west 183 

Europe, lying within the southeasternmost portions of the North Sea and the 184 

southwestern Baltic Sea and across terrestrial portions of northern Germany, 185 

Netherlands, and Poland. The North German Basin is a sub-basin of the Southern 186 

Permian Basin, that accounts for a composite of intracontinental rift basin composed of 187 

Permian to Cenozoic sediments, which have accumulated to thicknesses around 10-12 188 

kilometres. The complex evolution of the basin takes place from the Permian to the 189 

Cenozoic, and is largely influenced by multiple stages of rifting, subsidence, and salt 190 

tectonic events.  191 

• The Molasse Basin  192 

The so-called Molasse Basin is a foreland basin of the Alps that formed during the 193 

Cenozoic Oligocene and Miocene because of the flexure of the European plate under 194 

the weight of the orogenic wedge of the Alps. The basin filled with a sedimentary 195 

sequence for the most part removed from the developing mountain chain by erosion and 196 

denudation. After several periods of tectonic subsidence and uplift in the alpine foreland, 197 

the Molasse Basin ceased to be an area of net sedimentation during the late Miocene 198 

and early Pliocene. The basis of the Molasse sedimentary units is formed by the Upper 199 

Jurassic and the Triassic series. The Upper Jurassic (Malm) limestone and the Middle 200 

Triassic Muschelkalk limestone are the major thermal aquifers in the Southwest German 201 

alpine foreland. The hydrochemical properties of the two aquifers differ in several 202 
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aspects. The total amounts of dissolved salts (TDS) are much higher within the Upper 203 

Muschelkalk aquifer than within the Upper Jurassic. With increasing depth, the total of 204 

dissolved salts increases. In the case of the Upper Muschelkalk, the fluid salinity is 205 

linked to deep circulation systems (Stober, 2014). The high Li concentrations (143-162 206 

mg/l) observed in some deep wells (HC-14, HC-15 and HC-19) are rather limited to the 207 

Upper Muschelkalk aquifer and are not representative of the Molasse Basin geothermal 208 

fluids in general. The Li concentrations are much less in the Upper Jurassic aquifer 209 

(Stober, 2014). According to the temperature assessment given by the Na-K, Na-K-Ca 210 

and K-Mg geothermometers, the temperature of the brines discharged from the HC-14, 211 

HC-15 and HC-19 deep wells could be rather close to 190-200°C in the reservoir.  212 

• The Upper Rhine Graben (URG)  213 

The NNE-trending URG of the European Cenozoic Rift System (ECRIS) developed from 214 

ca. 47 Ma onwards in response to changing lithospheric stresses in the north-western 215 

foreland of the Alps (Grimmer et al., 2017). The Graben itself, with an average width of 216 

35 km and extending approximately 300 km from Frankfurt (Germany) in the north to 217 

Basel (Switzerland) in the south, is located in the upper-middle Rhine river basin (Fig. 3). 218 

It forms an evaporite setting mainly consisted of fine-grained, low energy silt-clay-marls 219 

with minor intercalations of sand, carbonates, and minor evaporites, in which the rifting 220 

process played a major role by a) providing the physical space for sedimentation, b) 221 

creating a series of intermediate basins, and c) facilitating a network of faults along the 222 

active rift margins that promoted fluid circulation and controlled water exchanges with 223 

other basins and/or the open sea. The Graben’s Palaeozoic crystalline basement, 224 

underlying a Mesozoic to Cenozoic sedimentary cover as much as 4-5 km thick in its 225 

asymmetrical centre (Fig. 4), comprises massive granite (334 ± 3.8 Myr; Cocherie et al., 226 

2004), the top of which, where unaltered, is a porphyritic granite with quartz, K-feldspar 227 

megacrysts, plagioclase, biotite, hornblende and accessory titanite, apatite, zircon and 228 
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magnetite. However, the crystalline basement of the URG does not consist solely of 229 

granites: in the Baden-Baden 1, quartz-phyllites were drilled and in the west of 230 

Wissembourg, a basement outcrop exposes steep dipping meta-greywacke and volcanic 231 

rocks. The low-metamorphic rocks of the Baden-Baden zone and the northern Vosges 232 

trend NE-SW across the URG are therefore expected to occur in the subsurface, likely 233 

intruded by granites, but it is highly unlikely to expect that there is nothing else but 234 

granite. In the Kaiserstuhl volcanic rocks, xenoliths comprise amphibolites and gneisses 235 

documenting that the crystalline basement contains rocks different from granite 236 

(Wimmenauer, 2003). The overlying sedimentary sequences, which are relatively well 237 

known from several oil- and mineral-exploration studies and from the drilling of 238 

numerous oil wells (Le Masne and Lambert, 1993), consist of Cenozoic evaporites and 239 

claystone underlain by Mesozoic limestone and sandstone. Cenozoic evaporites 240 

comprise major portions of the stratigraphic succession in the southern Graben (Eocene 241 

- Oligocene Wittelsheim Fm) and in the northern URG (Corbicula beds of the Landau 242 

Fm), where halite layers occur (e.g. Worms area). Intervals of relatively high permeability 243 

within the sedimentary succession make up the major aquifers, of which the most 244 

important is the Triassic Buntsandstein red sandstone composed of continental 245 

conglomerate to siltstone with interbeds of claystone and dolomite (Aquilina et al., 1997; 246 

Duringer et al., 2019). In this area, several geothermal sites have been developed with 247 

doublets drilled down to the granite basement in France (Soultz-sous-Forêts and 248 

Rittershoffen) and in Germany (Landau and Insheim). Another geothermal doublet in 249 

Germany (Bruchsal) has been drilled down to the lower Buntsandstein and the top of 250 

Permian (Bertleff et al., 1988; Kölbel et al., 2020). An old geothermal well was drilled 251 

down to this aquifer, at Cronenbourg, in France, in 1980 (Fig. 3). Several geothermal 252 

projects are ongoing, or under investigation (Vendenheim, Illkirch, in Alsace, France; 253 

Sanjuan et al., 2021; Bosia et al., 2021), for exploiting the hot fluids (≥ 160 °C) 254 

circulating in the deeper parts of the Basin and in the upper fractured part of the granite 255 
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basement, in order to produce electricity or/and heat. For the time being, these six 256 

geothermal sites are the only ones with wells drilled down to the URG granite basement, 257 

thus constituting the only direct source of information about the chemical and isotopic 258 

compositions of fluids circulating in this basement. 259 

The South Crofty mine, in Cornwall, United Kingdom, where economic vein deposits of Sn, Cu, 260 

Pb and Zn of Variscan age were found in the Carnmenellis granite which forms a near-circular 261 

outcrop of the Cornubian batholith intruded about 290 Ma ago into Devonian argillaceous 262 

sedimentary rocks (Wheildon et al., 1980; Edmunds et al., 1985) can be considered as a very 263 

low temperature geothermal system (< 100°C), but the Li concentrations in the fluids (> 125 264 

mg/l) are lower than in the previous geothermal systems. The last saline groundwaters (up to 265 

19 g/l) are found in four tin mines in granite or its thermal aureole, as well as in several closed 266 

mines along the northern margin of the granite belt. They generally show discharges between 1 267 

and 10 l/s, occur at depths between 200 and 700 m below surface and have discharge 268 

temperatures up to 52°C. 269 

2.2 Quality and representativeness of the analytical data 270 

The main geothermal and geological characteristics of the six European areas with deep Li rich-271 

brines, as well as the chemical and isotope compositions of these brines, are reported in Table 272 

1 and Table 2, respectively. No analytical data was produced during this study. All the data 273 

were selected from the literature review carried out during this study. The geochemical and 274 

physical data in the database are relatively heterogeneous, being well-documented and 275 

numerous for some geothermal sites, such as Soultz-sous-Forêts, Rittershoffen, Vendenheim, 276 

Illkirch, Insheim, Landau and Bruchsal, in the Upper Rhine Graben (URG), but rare and poorly-277 

documented for other sites, especially for old data on the Cesano and Campi Flegrei sites in 278 

Italy. For comparison and discussion, the main characteristics of the Salton Sea geothermal 279 

area, located in the volcanic Imperial Valley, USA, well-known for its Li rich-brines, and the 280 

corresponding chemical compositions, have also been reported in these tables.  281 
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Except the old data from archives for the brine discharged from the Cronenbourg well in the 282 

URG (Pauwels et al., 1993), and from the wells located in the two Italian geothermal areas 283 

(Pauwels et al., 1991), in the Molasse Basin (Stober, 2014), and in the South Crofty in Cornwall 284 

(Edmunds et al., 1985), the fluid sampling conditions, used analytical methods and associated 285 

uncertainty are given for all the other geothermal brines by the corresponding authors. So, for 286 

example, in May 2013 and in February 2014, deep fluid samples were collected with a Leutert 287 

Positive Displacement Sampler (PDS) at in situ P-T conditions at different depths of the Groβ 288 

Schönebeck production well (Regenspurg et al., 2015) and a detailed description of the fluid 289 

sampling procedure is given by Regenspurg et al. (2010). For the URG brines (Sanjuan et al., 290 

2016a; 2021; Bosia et al., 2021), the geothermal brines were collected at the well-head during 291 

normal operating conditions of the existing power plants (Soultz, Rittershoffen, Insheim, 292 

Landau, Bruchsal) or during production tests, when there are only wells (Vendenheim, Illkirch). 293 

Even if the quality of the old data is difficult to assess, we estimate that most of the data, 294 

especially the major species and lithium, in high concentrations, can be considered as 295 

representative of the deep reservoir brines. In the URG, the numerous fluid samples collected at 296 

different depths between 3500 and 5000 m, at Soultz-sous-Forêts, have indicated that the 297 

chemical and isotopic compositions of all these brines was homogeneous (Sanjuan et al., 298 

2010). Moreover, similar fluid chemistry is observed for all the deep brines from the URG 299 

(Sanjuan et al., 2016a; 2021; Bosia et al., 2021).  Comparable conclusions were performed by 300 

Regenspurg et al. (2015) for the brines collected at different great depths from the Groβ 301 

Schönebeck production well.  302 

In contrast, the pH values measured at surface are indicative and must be calculated using 303 

geochemical modelling to have a representative value of the fluid in the reservoir conditions. As 304 

only the concentrations of sodium, potassium and lithium (under a logarithmic form) are used in 305 

this study for geothermometric and thermodynamic considerations, the uncertainty of the old 306 
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data, which could be higher than that usually observed (3-5% for major species and 10-15% for 307 

trace species), should have minimal impact on these results. 308 

 309 

3. Main chemical fluid characteristics 310 

Figure 5, showing Cl versus Na concentrations and Li-concentration levels, indicates that the 311 

deep Li-rich fluids found in the BRGM-EIFER database (Li ≥ 90 mg/l) are generally Na-Cl brines 312 

with high concentrations of dissolved Na (> 18 g/l) and Cl (> 25 g/l), and TDS values over 56 g/l. 313 

As indicated in Table 1, all deep European Li-rich brines also have reservoir temperatures 314 

above 120 °C. Only the South Crofty mine fluids (UK) with lower salinity values (Na = 4.3 g/l, Cl 315 

= 11.5 g/l; TDS = 19 g/l), have lower temperatures, close to 52 °C (Edmunds et al., 1985).  316 

Other European high-salinity fluids of the database, with high Na and Cl concentrations, but low 317 

temperatures (Paris Basin, Landau oilfields and North Sea oilfields, for example), have relatively 318 

low Li concentrations (Fig. 5). Similarly, high-temperature geothermal fluids (≥ 250 °C) in 319 

worldwide volcanic environments (El Tatio in Chile, Wairakei in New Zealand, Bouillante in 320 

Guadeloupe, or Reykjanes in Iceland; Sanjuan and Millot, 2009), which have moderate salinity 321 

values ranging from 10 to 40 g/l, indicate relatively low Li concentrations (2 to 35 mg/l).   322 

After Munk et al. (2018), the geochemical processes that can explain the evolution of inflow 323 

waters to brine formation in the basins include evaporation processes, low-temperature 324 

weathering, formation of transition zone brines, and halite precipitation-dissolution cycles. The 325 

lithium in the deep Li-rich brines therefore results from a complex history, which needs the 326 

formation of preliminary Na-Cl brines formed by different processes depending on the geological 327 

environment. 328 

Deep Li-rich geothermal brines can have several origins: 329 

- brines formed by seawater evaporation (up to halite - NaCl - precipitation, at least) 330 

in closed catchment basins during dry and warm periods, with cycles of halite 331 
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precipitation-dissolution following successive marine transgression-regression 332 

periods and mixing with freshwaters, as described for most of the brines formed 333 

from the Triassic to the Oligocene in the URG (Sanjuan et al., 2016a). Indeed, 334 

during the Mesozoic, after a period of continental siliciclastic fluvial sedimentation in 335 

the Buntsandstein (Lower Triassic), due to the erosion of the Hercynian massifs 336 

under a tropical climate, a great part of France was flooded by the sea in the 337 

Muschelkalk (Middle Triassic). In the east of France where is located the URG, this 338 

sea was named German or Muschelkalk Sea. Due to several level decreases of this 339 

shallow and warm sea, the Keuper (Upper Triassic) is shown to be the result of 340 

evaporitic brines and sedimentation under a tropical climate. In the Jurassic, the 341 

major part of France was again flooded by the sea and a big amount of marine 342 

sediments was deposited. The Upper Jurassic and the Lower Cretaceous are 343 

characterized by a marine regression followed by the big Cenomanian-Turonian 344 

marine transgression in the Upper Cretaceous. The sea again receded at the end of 345 

the Cretaceous. There are no Cretaceous sediments preserved in the subcrop of 346 

the URG due to late Cretaceous inversion and doming (e.g. Grimmer et al., 2017). 347 

Doming was associated with intrusion and extrusion of minor low-percentage melt 348 

foidites and alkali-basalts, terminated at ca. 47 Ma when URG formation has started 349 

(e.g. Grimmer et al., 2017). The URG was the object of several marine 350 

transgressions from North Sea or Tethys Ocean during the Oligocene, at the end of 351 

the Paleogene (first period of the Cenozoic), characterized by a tropical climate in 352 

France and the setting of the present URG. This area sometimes constituted a strait 353 

between the North Sea and the Tethys Ocean in the south. During the marine 354 

regressions, lagoons and lakes were formed and evaporite minerals (gypsum, 355 

halite, etc.) were deposited during the dry periods. For example, the halite and 356 

potash salts in South Alsace, in France, and in SW Germany, were deposited in the 357 

late Eocene - early Oligocene (Wittelsheim Fm). The Chattian, at the end of the 358 
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Oligocene, marks the end of the marine transgressions in the URG and continental 359 

facies replaced marine or evaporitic deposits; 360 

- brines formed by freshwater evaporation and evaporite dissolution (e.g., Salton Sea 361 

geothermal reservoir, USA: Elders and Cohen, 1983; Mc Kibben et al., 1987; Williams et 362 

al., 1989; Lippmann et al., 1999; Birkle et al., 2010); 363 

- primary neutralization or parent geothermal Na-Cl brines in high-temperature and -364 

pressure volcanic environments associated with relatively recent magmatic activity 365 

(Giggenbach, 1992; Hedenquist, 1995); 366 

-  a combination of several of the aforementioned processes; 367 

- brines formed by water-rock interaction processes, as in Cornwall, UK (Edmunds et al., 368 

1985). 369 

For most of these brines, elements such as chloride and bromide are present in high 370 

concentrations and are commonly used for constraining the fluid origin, as well as the water 371 

stable isotopes δD and δ18O (Rittenhouse, 1967; Fontes and Matray, 1993; Stober and Bucher, 372 

1999a and b; Sanjuan et al., 2016a; 2021). The chloride and bromide concentrations are high in 373 

seawater and during the deposition of halite due to seawater evaporation, the Cl/Br ratio 374 

decreases compared to that of seawater because Br is lowly incorporated in this mineral. 375 

Converserly, the fluids which dissolve halite, indicate higher Cl/Br ratios than that of seawater 376 

(Rittenhouse, 1967; Sanjuan et al., 1990; Fontes and Matray, 1993). During the formation of 377 

sedimentary basins, surficial brines are buried with their geological formation or transferred to 378 

other, deeper, formations. The degree of water mineralization increases under the influence of 379 

increasing temperature (Lin et al., 1996; 2001; 2002).  380 

Except chloride, the major aqueous species of the deep brines are mostly controlled by 381 

hydrothermal water-rock interaction processes at medium and high temperatures (≥ 120 °C). 382 

Fluid-rock interaction is generally dominated by plagioclase and K-feldspar dissolution, followed 383 
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by albitization of these minerals, dissolution of white micas and biotite, and precipitation of illite 384 

and chloritization (Sanjuan et al., 2019). For instance, an increase of dissolved calcium and a 385 

decrease of aqueous sodium can be observed with increasing temperature, due to plagioclase 386 

dissolution and albite precipitation (op. cit.):  387 

CaAl2Si2O8 (anorthite) + 4 SiO2 (quartz) + 2 Na+ = 2 NaAlSi3O8 (albite) + Ca2+ 388 

The calcium and bicarbonate ions can be often associated with calcite, which is an omnipresent 389 

mineral in the hydrothermal reservoirs (Michard, 1985), following the equation: 390 

Ca2+ + HCO3
- = CaCO3 (calcite) + H+   391 

When calcium and pH are controlled by other mineral phases or CO2 pressure, bicarbonate is 392 

then controlled by calcite.  393 

In a similar way, increased potassium dissolution with increasing temperature due to K-feldspar 394 

dissolution, is also associated with albite precipitation following the chemical reaction: 395 

KAlSi3O8 + Na+ = NaAlSi3O8 + K+ 396 

This equilibrium reaction explains why the Na-K geothermometer (Fournier, 1979; Giggenbach, 397 

1988) gives a relatively good estimate of deep reservoir temperatures for most of the deep Li-398 

rich brines with reservoir temperatures over 120 °C (Fig. 6; Sanjuan et al., 2019). For fully 399 

equilibrated geothermal waters in granitic reservoirs, albite controls the Na concentration, while 400 

K-feldspar and muscovite fix K and Al contents (Giggenbach, 1997). In addition, the Na-K 401 

geothermometers are based on the ion-exchanging equilibrium of Na and K between co-existing 402 

alkali feldspars. It is generally recommended to use the Fournier (1979) thermometric 403 

relationship for temperature estimations below 200-250 °C, and that of Giggenbach (1988) for 404 

higher temperature estimates (Fig. 6). 405 

Inversely to the behaviour of aqueous calcium, potassium and silica species, the concentrations 406 

of dissolved magnesium and sulphate decrease with increasing temperatures.  407 
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Mg concentrations can be controlled by illite (represented by muscovite) and magnesian chlorite 408 

precipitation from biotite (represented by phlogopite component) and white micas (represented 409 

by Na-mica and pyrophyllite) dissolution, following the chemical reaction: 410 

KAlSi3O8 (K-feldspar) + KAlMg3Si3O10(OH)2 (phlogopite)+ NaAl3Si3O10(OH)2 (Na-mica) +  411 

2 Al2Si4O10(OH)2 (pyrophyllite) + 4 H2O + 2 Mg2+        =            412 

NaAlSi3O8 (albite) + 2 KAl3Si3O10(OH)2 (muscovite) + Mg5Al2Si3O10(OH)8 (chlorite) + 5 SiO2 413 

(quartz) + 4 H+ 414 

Secondary anhydrite (CaSO4) precipitation could explain the decrease of sulphate 415 

concentrations, as observed at Rittershoffen (Vidal et al., 2018). Secondary barite was noted at 416 

Soultz as fracture fillings, mainly in sandstone and some in granite (Genter and Traineau, 417 

1996). 418 

Such chemical reactions (dissolution of plagioclase and K-felspar, albitization of feldspar 419 

surfaces, chloritization of biotite, and precipitation of illite, anhydrite) are relatively common in 420 

high-temperature geothermal fields, but were especially observed in URG granite alteration 421 

processes (Genter, 1989; Ledésert et al., 1996; 1999; Hooijkaas et al., 2006; Vidal et al., 2018). 422 

They were also described by Savage et al. (1993), Lo Ré et al. (2014) and Drüppel et al. (2020), 423 

from their experimental work on the alteration of granitic rocks by NaCl brines at 200 and 424 

250 °C, and were partly observed in low-temperature tests of water-sandstone interactions 425 

carried out by Ludwig et al. (2011) and Schmidt et al. (2017), at 200 and 260 °C.  426 

For the deep URG Li-rich brines, Sanjuan et al. (2010; 2016a) determined that they had a pH of 427 

around 5.0 and were close to equilibrium for albite, K-feldspar, quartz, calcite, dolomite, 428 

CaSO4:0.5H2O (β), barite, fluorite, pyrite, Mg-illite, and smectite or montmorillonite at 200-429 

230 °C, with a CO2 pressure of about 6 bar, based on the brine’s chemical composition and on 430 

geochemical modelling work.  431 

 432 
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4. Possible sources and control of lithium in the brines 433 

Although remarkably high fluid-salinity values combined with high temperatures seem to be a 434 

proxy for high Li concentrations in geothermal brines, these two parameters alone are not 435 

sufficient for explaining the Li enrichment. Several Na-Cl brines in volcanic environments at 436 

high-temperatures have low Li concentrations (Sanjuan and Millot, 2009). For example, the 437 

geothermal Na-Cl brines (TDS about 120 g/l) in Djibouti, discharged from the Asal basalt 438 

reservoir at 260 °C in an arid volcanic area, have rather low Li concentrations (13-14 mg/l; 439 

Sanjuan et al., 1990). Similarly, the Na-Cl brine from the Riito well in the Baja California 440 

peninsula (Mexico), has a relatively low Li concentration (16 mg/l) in view of its salinity (TDS > 441 

60 g/l) and its temperature at depth (225 °C; Barragan et al., 2001). Other examples, such as 442 

geothermal brines in the USA and Iceland, and hydrothermal brines discharged from East 443 

Pacific rise, Mid-Atlantic ridge or other ridges at very high-temperatures (Sanjuan and Millot, 444 

2009), can be also mentioned.  445 

4.1 Thermodynamic considerations 446 

In addition to major species such as Na, K, Ca, Mg, SiO2, HCO3 and SO4, for which temperature 447 

is the main factor controlling their concentration in solution at medium-to-high temperatures 448 

(Reed, 1982; Michard and Roekens, 1983; Reed and Spycher, 1984; Michard, 1985; Spycher et 449 

al., 2014), Li concentrations also depend on fluid salinity, the type of reservoir rock, and its 450 

mineralogical constituents interacting with the geothermal fluid (Sanjuan et al., 2010; 2014). 451 

Consequently, different Na-Li thermometric relationships were determined in the literature 452 

following the fluid salinity and type of geological environment (Fouillac and Michard, 1981; 453 

Kharaka et al., 1982; Kharaka and Mariner, 1989; Michard, 1990; Sanjuan et al., 2014) and are 454 

shown on Figure 7, Na/Li being a molar ratio.  455 

Figure 8, showing Li versus Na concentrations and integrating the isotherms calculated with the 456 

Na-Li thermometric relationships determined by Fouillac and Michard (1981) for volcanic and 457 
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crystalline waters with Cl ≥ 0.3 M, by Kharaka et al. (1982) for geothermal and hydrocarbon 458 

brines in sedimentary basins and Sanjuan et al. (2014) for very high-temperature geothermal 459 

waters in volcanic environment, indicates that: 460 

- the ultra-high temperature (300-380 °C) deep Li-rich brines discharged from 461 

metamorphosed Mesozoic volcano-sedimentary rocks in volcanic environments (Cesano 462 

and Campi Flegrei in Italy, Salton Sea in USA, etc.) provide relatively good fits to the 463 

isotherms determined by the Na-Li thermometric relationship defined by Sanjuan et al. 464 

(2014);  465 

- the low to high temperature (120-235 °C) deep Li-rich brines from tectonic sedimentary 466 

basins over crystalline basements (URG in France and Germany, Molasse Basin and 467 

Groβ Schönebeck in Germany) follow the isotherms calculated with the Kharaka et al. 468 

(1982) Na-Li thermometric relationship relatively well; 469 

- the very low temperature (close to 52°C) South Crofty mine fluid (UK) does not fit any of 470 

the three Na-Li relationships. 471 

Figure 8 also shows that the Li concentration of deep brines from the tectonic sedimentary 472 

basins over crystalline basements is much higher than that of the brines from volcano-473 

sedimentary environment at equivalent temperature and sodium concentration.  474 

For the Na-Li relationship determined by Sanjuan et al. (2014) for ultra-high temperature 475 

geothermal waters in volcanic environment, and using thermodynamic calculations, these 476 

authors suggested that this relationship could be derived from the following chemical reaction 477 

(1): 478 

KAlSi3O8 (K-feldspar) + NaAl3Si3O10(OH)2 (Na-mica) + LiAl3Si3O10(OH)2 (Li-mica) + 2 SiO2 479 

(quartz) + H2O + Na+                =  480 

2 NaAlSi3O8 (albite) + KAl3Si3O10(OH)2 (muscovite) + Al2Si2O5(OH)4 (kaolinite) + Li+     (1) 481 
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In this study, with similar thermodynamic calculations, we have found that this Na-Li relationship 482 

could be also derived from the following chemical reaction (2): 483 

KAlSi3O8 (K-feldspar) + LiAl3Si3O10(OH)2 (Li-mica) + Al2Si2O5(OH)4 (kaolinite)  484 

+ 2 SiO2 (quartz) + Na+                          =  485 

NaAlSi3O8 (albite) + KAl3Si3O10(OH)2 (muscovite) + Al2Si4O10(OH)2 (pyrophyllite) + H2O + Li+    (2) 486 

Several same minerals are involved in both reactions, but the one with pyrophyllite as alteration 487 

product at high-temperature (metamorphic) conditions seems to be more consistent with the 488 

temperature conditions and geological environment. This mineral assemblage seems to be in 489 

accordance with the ultra-high temperature reservoirs constituted of metamorphosed Mesozoic 490 

sedimentary rocks in volcanic environment as those of the Italian and Salton Sea geothermal 491 

areas (Elders and Cohen, 1983).  492 

For the Na-Li relationship determined by Kharaka et al. (1982) for geothermal and oilfield brines 493 

in sedimentary basins, we carried out the same type of thermodynamic calculations in this 494 

study. These calculations leads us to suggest that this relationship could be derived from 495 

reaction (3): 496 

LiAl3Si3O10(OH)2 (Li-mica) + 4 SiO2 (quartz) + Na+ = NaAlSi3O8 (albite) +  497 

Al2Si2O10(OH)2 (pyrophyllite) + Li+                   (3) 498 

In all cases, Li-mica dissolution and albite precipitation are involved, suggesting that the mica 499 

mineral phase is the main source of lithium in both environments.  500 

Except for the South Crofty mine fluid that indicates a lower temperature (close to 52 °C) - and 501 

probably other (unknown) very low temperature cases -, the Na-K and Na-Li thermometric 502 

relationships of Figure 9 show that all Li-rich brines inventoried in this study are in chemical 503 

equilibrium with respect to Na- and K-feldspars at relatively high-temperatures and that they 504 

come from two only types of geological reservoirs, in which mica dissolution is suspected. 505 
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Relative to the geothermal brines discharged from the granite basement in the URG, which 506 

have comparable salinity (close to 90 to 100 g/l) and chemical and isotopic characteristics to 507 

those of the Buntsandstein brine from the 3400 m-deep Cronenbourg geothermal well in the 508 

sedimentary part of the URG (Pauwels et al., 1993; Aquilina et al., 1997), the results shown in 509 

Figure 9 are in good agreement with the model of deep fluid circulation proposed by Sanjuan et 510 

al. (2016a). Taking into account the thermal gradients that can reach 50-60 °C/km in this area 511 

(Vernoux and Lambert, 1993; Le Carlier et al., 1994, Aquilina et al., 2000), the deep brines in 512 

the granite might have acquired their salinity and much of their chemical and isotopic 513 

composition in the Triassic Buntsandstein reservoirs, at high temperatures (225 ± 25 °C) and 514 

depths (≥ 4 km) in the centre of the Graben. After that, they would have migrated to the Graben 515 

borders via the complex network of NW-SE and NE-SW faults (Fig. 3).  516 

At these low temperatures (close to 52 °C), the South Crofty mine fluids are not in full 517 

equilibrium with the reservoir rocks. Only the SiO2 (chalcedony) geothermometer indicates an 518 

equilibration temperature close to 54 °C, equivalent to a maximum circulation depth of about 519 

1200 m (Edmunds et al., 1985). Acid hydrolysis of plagioclase and biotite are proposed as the 520 

main source of salinity in the Carnmenellis granite groundwaters by these authors. The unusual 521 

chemistry combined with the water stable-isotope composition of these fluids riles out seawater 522 

and fluid inclusion    523 

4.2 Mineralogical considerations 524 

The thermodynamic considerations that suggest that micas would be the main source of Li for 525 

the geothermal brines seem to be in good agreement with the literature mineralogical data 526 

analyzed. As mentioned by McDowell and Marshall (1962), Calvet and Prost (1971), Maurel and 527 

Volfinger (1977), Chan et al. (1992; 2002), Vigier et al. (2008), Millot et al. (2010), Sanjuan et al. 528 

(2014), the Li concentrations in deep reservoirs are likely to be dominated by clay minerals, as 529 

Li can be incorporated in their octahedral layers.  530 
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Octahedral clay minerals, such as montmorillonite, smectite, illite, and chlorite, are some of the 531 

essential alteration products of water-rock interactions in geothermal systems (Browne, 1978; 532 

Elders and Cohen, 1983; Genter, 1989; Buonasorte et al., 1993; Giggenbach, 1984; Housse, 533 

1984; Fouillac et al., 1989; Ledésert et al., 1996; 1999; Aquilina et al., 1997; Hooijkaas et al., 534 

2006; Haffen, 2012; Vidal et al., 2018; Duringer et al., 2019). Illite or chlorite may also be 535 

present in mixed layer clays, and are commonly mentioned as hydrothermal alteration minerals. 536 

In parallel, dissolution of white micas, biotite, plagioclase and K-feldspar is frequently observed. 537 

White micas and biotite are among the main carriers of Li in granitic rocks (Li et al., 2018b) and 538 

in sandstones, especially those resulting from mechanical degradation of the granite basement 539 

like in the URG (Duringer et al., 2019). After Ogorodova et al. (2010), lithium micas are typically 540 

related to rare-metal granites and pegmatites, Ta-bearing metasomatic, topaz-lithium granites, 541 

and cassiterite-quartz deposits (tin greisens). In different rocks, lithium micas acquire specific 542 

composition, structure and properties related to their genetic conditions; they can be considered 543 

as mineralogical indicators of the formational affiliation of deposits, and commonly, of definite 544 

types of mineralization. 545 

According to Ogorodova et al. (2010), lithium micas stand out among layer silicates with 546 

interlayer K cations, by the amount and diversity of mineral species. A particular position of 547 

lithium micas is related to the presence of lithium cations, which, together with aluminium and 548 

ferrous iron, occupy octahedra of 2:1 layers, following a near tri-octahedral law. The lithium 549 

micas have a complex variable composition because of common isovalent and heterovalent 550 

isomorphic substitutions. In terms of composition, lithium micas were divided by Ogorodova et 551 

al. (2010) into poor-Fe lithium-aluminium (lepidolite, polylithionite), ferrous lithium (zinnwaldite, 552 

protolithionite), and lithium-magnesium (taeniolite, spodiophyllite) groups. There are also very 553 

scarce Mn-rich analogues of zinnwaldite, i.e. masutomilite and norrishite. 554 

According to Sturchio and Chan (2003), the mechanism for Li removal is most likely 555 

precipitation of minerals (Li incorporation into these alteration minerals), because Li may 556 
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substitute for Mg in the octahedral sites of phyllosilicates and other alteration minerals (similarity 557 

in ionic radii of Li and Mg). Using thermal waters collected from the Biscuit Basin Flow, 558 

Yellowstone National Park (USA), Shaw and Sturchio (1992) clearly demonstrated that lithium 559 

was preferentially trapped in illitic alteration products with increasing temperature and that, 560 

consequently, the retention of this element was favoured by abundant illitic alteration. Similar 561 

observations were made by these authors on rhyolites and associated thermal waters collected 562 

from the Valles caldera, New Mexico, and from the Inyo Domes chain, in the Long Valley 563 

caldera, California (USA).  564 

Li can also be scavenged by other clays such as smectites, mixed-layer clays, or chlorite (Chan 565 

et al., 1992, 2002; Millot et al., 2010). Numerous authors mentioned by Merceron et al. (1987) 566 

have described Li-rich chlorite and tosudite (ordered di-octahedral interstratified 567 

chlorite/smectite mineral). Li can be adsorbed in the interlayer region of swelling smectite-568 

containing minerals (Zhang et al., 1998), dramatically increasing the Li content of the bulk clay 569 

and affecting the overall isotopic composition. In the Cascadia Basin of northwest North 570 

America, argillaceous sedimentary units have high Li contents whereas sandy turbidites are low 571 

in Li (Chan et al., 2006). Clayey silt there is rich in phyllosilicates (e.g., smectite, chlorite, illite, 572 

muscovite), whereas sand and silt are rich in feldspars. However, in the hydrothermally altered 573 

sedimentary units in the Middle Valley of the Juan de Fuca Ridge, studied by Decitre et al. 574 

(2004), where alteration clays such as illite, smectite, corrensite, swelling chlorite, talc and 575 

micas were investigated at different depths, Li is more abundant (50-76 ppm) when illite and 576 

chlorite are present. When only abundant smectite was detected, Li concentrations were lower 577 

(13 ppm).  578 

In core samples from the URG granite, petrographic study shows that organic matter is 579 

exclusively associated with tosudite, which is mainly observed in relics of plagioclase grains, 580 

progressively altered through interaction with Li-bearing hydrothermal fluids percolating in the 581 

granite fractures (Ledésert et al., 1996, 1999; Bartier et al., 2008). Biotite is then locally 582 
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replaced by chlorite, carbonates and illite. Ledesert et al. (1996) clearly show the occurrence of 583 

specific secondary clay minerals bearing lithium in the damaged zone of a permeable fault in 584 

the Soultz granite. This clay bearing lithium was spatially associated to the occurrence of 585 

organic matter in the faulted and altered basement. 586 

To conclude, the above observations are in good agreement with a process of dissolution of 587 

white mica and biotite as main source of Li for geothermal brines. However, they also suggest 588 

that a part of Li could be also preferentially incorporated into illite, chlorite or tosudite structures 589 

related to alteration products. Considering these mineralogical points, the analysis of δ7Li values 590 

for aqueous Li (see 4.3, hereafter) can be a very useful tool for identifying which reservoir 591 

minerals interact with the geothermal fluids. 592 

4.3 Li-isotope considerations 593 

Due to the absence of Li-isotope data for most of the deep Li-rich brines of the BRGM-EIFER 594 

database, only the Li-rich brines from the Upper Rhine Graben (URG) could be studied and 595 

discussed. The δ7Li values in these brines display a narrow range from +1.0‰ to +1.7‰ 596 

(Sanjuan et al., 2016a). Similar δ7Li values (-0.4‰, -0.1‰ and +0.6‰) were reported for the 597 

Soultz-sous-Forêts geothermal brines by Sanjuan et al. (2010). These lithium-isotopic 598 

signatures agree with the Upper Continental Crust signature as reported by Teng et al. (2004), 599 

with δ7Li = 0‰ ± 2. Sanjuan et al. (2016a) observed that these Li-isotopic signatures are very 600 

different from the equivalent marine signatures of +31 ± 0.5‰ (Millot et al., 2010).  601 

The latter, in their study dealing with water-rock interactions at temperatures ranging from 25 to 602 

250 °C, experimentally determined a relationship of Li isotope fractionation between solution 603 

and solid to be a function of temperature (Δ solution - solid = 7847 / T(K) - 8.093). This gave a Li-604 

isotope fractionation between brine and rock (Δ solution - solid) value close to +7.7‰ at 225 °C.  605 

Isotopic fractionation factors inferred from studies of altered basalt and hydrothermal solutions 606 

indicate similar (slightly lower) values for Δ solution - solid (Chan and Edmond, 1988; Chan et al., 607 
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1992, 1993, 1994; James et al., 1999), with Li-isotope fractionation (Δ solution - solid) values close to 608 

+6.9‰ at 225 °C. 609 

Consequently, considering the recorded δ7Li values of the Li-rich URG brines (-0.4‰ to +1.7‰) 610 

and assuming similar isotope fractionation, it can be estimated that the δ7Li values of the rock in 611 

equilibrium with these brines vary from -8.1‰ to -5.2‰. Such values are not characteristic of 612 

granite (δ7Li from -2‰ to +2‰), but rather correspond to sedimentary rock (Coplen et al., 2002). 613 

A similar conclusion had already been drawn by Sanjuan et al. (2010) for the Soultz-sous-Forêts 614 

geothermal fluids. Sanjuan et al. (2016a) suggested that a major part of the high Li 615 

concentrations of Li-rich URG brines could well be due to the dissolution of micas. The 616 

laboratory work by Martin et al. (2015) about in situ lithium and boron isotope determinations by 617 

LA-MC-ICP-MS, showed that the δ7Li values in mica from a mica-albite rock (from -6.0‰ to 5‰) 618 

are compatible with those previously estimated (-8.1‰ to -5.2‰) from the URG Li-rich brines 619 

using the relationship of Li-isotope fractionation between brine and rock.  These micas could 620 

derive from Triassic Buntsandstein micaceous sandstone, which partly results from the 621 

mechanical degradation of the granite basement (Duringer et al., 2019) and Hercynian massifs. 622 

Augustsson et al. (2018) have shown that particularly rocks from the Variscan Orogen of the 623 

Massif Central and Bohemian Massif also contributed to the Lower and Middle Buntsandstein 624 

subgroups in the German Basin.  625 

According to Duringer et al. (2019), the Buntsandstein consists mainly of a 450 m thick 626 

continental red sandstone that is fine to coarse-grained with some conglomeratic beds. The 627 

Buntsandstein is subdivided into eight formations with thicknesses varying from 10 to 100 m. 628 

Several sandstones (Grès d’Annweiler in the Lower Buntsandstein, Couches Intermédiaires and 629 

Grès à Voltzia in the Upper Buntsandstein) are constituted of micaceous and clayey fine-to 630 

medium-grains. The top of many Grès à Voltzia is particularly rich in micas (Duringer et al., 631 

2019; Aichholzer et al., 2019). According to Mosser et al. (1971), the Grès à Voltzia, collected 632 

from the northern part of the Vosges, are made up of 45-60% quartz, 20-30% microcline, 1-3% 633 
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muscovite, about 1% biotite, 3-5% pelitic cement, and 10-15% micro-stones of quartzites, 634 

phyllitic piles and different accessory minerals. The fine fraction of these detrital sedimentary 635 

units is very often constituted of nearly pure illite. In biotite and muscovite, the Li concentrations 636 

range from 200 to 450 ppm whereas in illite, these concentrations are lower than 150 ppm 637 

(Mosser et al., 1971). 638 

The Cronenbourg geothermal well (about 3400 m deep), drilled in 1980, has intersected an 639 

apparent thickness of 465 m of Buntsandstein sandstone and 54 m of Permian sandstone 640 

(Housse, 1984; Haffen, 2012).  641 

The Buntsandstein formations consist of: 642 

- fine grained red micaceous and clayey sandstones, with interbeds of silt, kaolinite and 643 

micaceous reddish clays, between depths of 2701 and 2751 m; 644 

- fine to coarse-grained red micaceous and clayey sandstones with some conglomeratic 645 

beds and intercalations of silt, kaolinite and micaceous reddish clays, between depths of 646 

2751 and 2937 m; 647 

- medium reddish and little consolidated between depths of 2937 and 3027 m; 648 

- medium red sandstones with thin intercalations of medium grey, siliceous to quartz 649 

sandstones and thin layers of brown-red coloured micaceous clays between depths of 650 

3027 and 3166 m. 651 

Between depths of 3166 and 3220 m, the Permian formations are made up of medium to 652 

conglomerate red sandstones, with thin intercalations of medium grey, siliceous to quartz 653 

sandstones and thin layers of brown-red coloured micaceous clays.  654 

On the other hand, the work by Clauer et al. (2018) on illitization decrypted by B and Li isotope 655 

geochemistry of nanometer-size illite crystals from bentonite beds in the East Slovak Basin, 656 

indicated that the younger illite crystals contain increasing Li contents (up to 140 μg/g), with 657 

decreasing δ7Li values (from -7 to -22 ‰). The highest values are close to those estimated from 658 
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the Li-rich URG brines and are compatible with the fact that illite precipitation can partially 659 

remove Li from these brines at about 225 °C. 660 

Finally, the Li isotopic signatures of Li-rich URG brines thus seem to agree with a fluid signature 661 

mainly derived from high-temperature (225 ± 25 °C) water-rock interactions, mica dissolution 662 

and albite and illite precipitation, mainly in the up to 450-m-thick Buntsandstein micaceous 663 

continental sandstone and less in the granite basement, with a fluid whose origin is a seawater-664 

derived brine end-member diluted by meteoric water.  665 

The lower Li concentrations analysed in experimental NaCl solutions in contact with granite and 666 

monzonite at 200 °C (Savage et al., 1993; Drüppel et al., 2020), when compared to geothermal 667 

URG brines, suggest that the source of Li from the granite basement is not sufficient to explain 668 

the Li concentrations observed in these geothermal brines. In contrast, the high Li concentration 669 

determined in the Cronenbourg fluid (210 mg/l), which is only in contact with the Buntsandstein 670 

sandstone and has a similar geochemical composition than that of the geothermal brines from 671 

the granite basement, seems to agree with the fact that most of the Li comes from the 672 

Buntsandstein sandstone alteration, even if alteration of the granite basement can represent 673 

another potential source of lithium. Laboratory experiments on sandstone alteration with NaCl 674 

brines at 200 °C, similar to those carried out by Schmidt et al. (2017), but integrating Li chemical 675 

and isotope analyses, might confirm the Buntsandstein as the main lithium source. 676 

4.4 Future direction: Li resource assessment 677 

As mentioned above, the Upper Rhine Graben (URG) area along the French/German border 678 

hosts several geothermal projects, in operation or under development, and may be the most 679 

promising zone for geothermal Li mining in Europe. Though the Li concentrations in brines of 680 

the URG sites are relatively well known, production-fluid flow-rates and injectivity indices, the 681 

circulation of deep fluids in the complex fault networks, and their volume and recharge areas, 682 

remain poorly defined, but essential parameters in this fractured environment.  683 



28 

 

Based on current technical and scientific knowledge, it is difficult to assess the Li resource in the 684 

geothermal reservoirs of the URG area, such evaluation being the key parameter for deciding 685 

upon Li exploitation here. Considering: 1) a mean concentration of aqueous Li of 155 mg/l; 2) 686 

pessimistic and optimistic assumptions about the “useful reservoir volume”; 3) the porosity of 687 

the Buntsandstein and Muschelkalk geothermal aquifers in a 30 x 30 km area, Pauwels et al. 688 

(1991) estimated  the Li resource at 300,000 to 2,200,000 tons of lithium metal. The volume of 689 

fluid circulating in the granite basement was not integrated in these calculations.  690 

These values, based on the existence of a porous medium, can be considered as encouraging 691 

first-order evaluations of the potential Li resource in the Upper Rhine Graben area, given that: 692 

- the potential of dissolved Li in brines circulating in the granite was not recognized; 693 

- the prospective Li volume that may be dissolved from rock during reinjection of the Li-694 

depleted brines into the geothermal reservoir, was not considered. 695 

Nevertheless, these evaluations, based on information of thirty years ago, now known to be 696 

highly incomplete and inadequate, are not representative of the dissolved lithium that may be 697 

really extracted from the geothermal brines circulating in a fractured medium such as that of the 698 

Upper Rhine Graben. To obtain a more accurate estimate of the amount of available Li, and of 699 

the sustainable use and long-term capacity of the reservoir, it is necessary to work at the scale 700 

of a site rather than at a regional scale. It is thus important to know the location, size and 701 

geometry of the main faults, fractures, geological discontinuities, etc., in which the deep 702 

geothermal brines can circulate. To this end, 3D-geological models of the URG Triassic 703 

geothermal reservoirs are in construction with the Geomodeller code (Dezayes, 2007; Dezayes 704 

et al., 2011), which must be refined through integration of all recent data, such as those 705 

compiled by Haffen (2012). 706 

In this type of model, two key parameters are: 707 

- the estimated fracture density in the studied area; 708 
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- the percentage of tectonic structures and geological discontinuities through which the 709 

deep brines really circulate.  710 

In order to minimize the uncertainty concerning extractable Li volumes and to obtain the most 711 

realistic values, we now recommend to work at the scale of individual geothermal sites (Soultz-712 

sous-Forêts, Rittershoffen, etc.). Here, hydrodynamic parameters and fluid-circulation patterns 713 

are better constrained than at a regional scale, thanks to the data obtained during drilling of the 714 

deep heat-exchanger wells, the fluid-production and inter-well fluid-circulation tests, and the 715 

associated tracer tests (Sanjuan et al., 2006, 2015, 2016b; Dezayes et al., 2010; Gentier et al., 716 

2011; Radilla et al., 2012; Baujard et al., 2017; Vidal et al., 2018). Even if the site of Soultz-717 

sous-Forêts is probably the best-documented geothermal area in the Upper Rhine Graben 718 

(Sanjuan et al., 2019), more knowledge and numerical modelling is still needed to better 719 

understand the circulation of deep fluids and estimate the volume that they represent. 720 

Subsequently, the integration of hydrothermal and geochemical numerical models into 721 

geological models (especially of fault networks), should provide additional hydraulic and 722 

geochemical constraints for obtaining more realistic evaluations of the dissolved Li resources 723 

extractable from the geothermal brines. It is clear that such Li resources will depend on the 724 

different characteristics of each geothermal site (flow-rates of discharged and injected fluids, 725 

porosity and permeability, reservoir volume, inter-well connections, fluid-circulation paths, 726 

concentrations of aqueous Li, sources of Li supply, possible Li recharge, etc.), and may be 727 

relatively variable between sites.  728 

Assuming that the current and short-term planned geothermal projects of the URG area will 729 

produce brines for a long time with the presently known Li concentrations and production flow-730 

rates, it was estimated that these projects could generate a potential lithium production of 4,000 731 

to 6,000 tons per year from geothermal brines (Sanjuan et al., 2020). This corresponds to an 732 

annual turnover of 21,300 to 32,000 t/year of lithium carbonate equivalent (LCE). However, for 733 

sustainable Li exploitation, it is essential to estimate the long-term behaviour of capacity, and 734 
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the economic and technical conditions of exploitation for each geothermal site in terms of Li 735 

production, to render these estimations feasible.  736 

  737 

5. Conclusions 738 

Among all known European geothermal and hydrocarbon fields reviewed in the literature so far, 739 

six main geothermal areas were detected whose deep fluids contain high Li concentrations, 740 

ranging from 125 to 480 mg/l, in Italy, Germany, France and the United-Kingdom.  741 

This study shows that the URG area straddling the French/German border, which currently 742 

hosts several geothermal projects in operation or under development, is probably one of the 743 

most promising European zones for geothermal lithium extraction from brines in terms of Li 744 

resources. If geothermal brines can provide much needed local Li resources for Europe with a 745 

zero-carbon process, lithium production could also improve the business models of geothermal-746 

energy projects, which today are mainly based on heat and/or electricity sales. After 747 

presentation and discussion about the main geochemical characteristics of the European Li-rich 748 

geothermal brines, this study has also contributed to identify their main source of Li, which was 749 

poorly known, and to understand natural processes of lithium enrichment, as the influence of 750 

temperature, fluid salinity and nature of the reservoir rocks. 751 

Water-rock interaction processes at relatively high temperatures (≥ 120 °C) are the dominant 752 

source and control of these high Li contents in the deep fluids, but other important features 753 

govern these contents as well. They include the type of reservoir rock and all the processes that 754 

can influence the salinity of such fluids, especially their Na and Cl concentrations, like seawater 755 

or freshwater evaporation during arid-climate periods, halite dissolution by dilute waters, mixing 756 

of saline and dilute waters, low-temperature weathering, formation of transition zone brines, in 757 

sedimentary basins, or contributions of primary neutralization brines - or parent geothermal 758 

fluids - in active volcanic environments.  759 
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The two Na-Li thermometric relationships used in this study, defined for two different geological 760 

environments in the literature (sedimentary basins and volcanic environment), indicate that high 761 

initial Na concentrations and temperatures are required for obtaining high Li concentrations. 762 

However, for a same Na concentration, temperature must be higher in the volcanic environment 763 

than in sedimentary basins to have an equivalent Li concentration. All the deep brines are in 764 

chemical equilibrium with respect to albite and K-feldspar at their reservoir temperature, 765 

controlling the Na and K concentrations in solution. 766 

In this study, the South Crofty mine fluid in the UK, was the only known example of Li-rich water 767 

(about 125 mg/l) to have a relatively low salinity (TDS ≈ 19 g/l), indicating a low reservoir 768 

temperature, close to 52 °C. This fluid is not fully in chemical equilibrium with the host granite 769 

and only its SiO2 concentration corresponds to an equilibrium with respect to chalcedony at this 770 

temperature. 771 

The Li concentrations in geothermal brines at temperatures over 120 °C seem to be mainly 772 

controlled by the presence of clay minerals, as lithium is easily incorporated in their octahedral 773 

layers. Thermodynamic considerations derived from Na-Li thermometric relationships and Li-774 

isotope fractionation data suggest that the main source of Li would be white mica and biotite 775 

dissolution. Part of this lithium could also be fixed by hydrothermal alteration clays like illite, 776 

chlorite, tosudite, etc., depending on the characteristics of the geothermal reservoirs such as 777 

their temperature, fluid salinity, and mineralogical composition.  778 

For the URG brines, the major source and control of lithium probably is the fractured and 779 

permeable Triassic Buntsandstein micaceous continental sandstone, with a thickness of up to 780 

450 m, boosting the economic interest and sustainability of Li exploitation from these fluids. A 781 

major part of Li would come from mica dissolution and could be further controlled by illite, 782 

chlorite or tosudite precipitation at about 225 °C. Alteration of the fractured granite basement, 783 

which contains similar minerals interacting with brines, could be another - though smaller - 784 
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source of lithium, as suggested by recent experimental studies of granite-brine interaction at 785 

temperatures of up to 200 °C.  786 

Under this scenario, the Li reserves and their lifetime appear to be much higher than was 787 

initially assumed. It is also probable that reinjection of the Li-depleted brine into the 788 

underground, after Li extraction, will have a reduced medium- to long-term effect on the Li 789 

concentration of the remaining geothermal reservoir brine - in chemical and isotope equilibrium 790 

with mica and illite at 225 °C - through new Li input from mica into the reservoir brine. To 791 

confirm the rare data on this aspect and to make better estimates of the Li reserves, it will be 792 

necessary to carry out further mineralogical, chemical and isotope analyses on the 793 

Buntsandstein sandstones as well as on unaltered and altered granite samples. 794 

The Li-concentration values of these brines (≥ 150 mg/l) do not seem to be the limiting factor for 795 

geothermal Li exploitation. To arrive at an optimal estimation of the Li resource of these brines, 796 

we must, however, evaluate the reservoir volume of these geothermal brines, and obtain a 797 

better understanding of their origin, recharge and deep circulation in fractured rocks. The 798 

sources of the lithium supply (which may be site specific for each geothermal site), the 799 

optimization of the lithium extraction process, and a thorough evaluation examination of the 800 

economic conditions of its exploitation are further key parameters that will require much more 801 

work for the development of this type of Li exploitation.  802 
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Figure 1 - Map of Europe showing the six main geothermal areas with Li-rich fluids (red circles) 

and Li-concentration ranges in such fluids. The highest Li values are found in Italy (but no 

geothermal well is presently usable), and in Germany and France, especially in the Upper Rhine 

Graben (URG) where several geothermal sites are in operation (from Sanjuan et al., 2020). 

Figure 2 - Location of deep fluids in the Upper Rhine Graben (URG) and stratigraphic positions 

of wells and reservoirs (from Sanjuan et al., 2016a). 

Figure 3 - Map of temperatures extrapolated at a 5 km depth (based on Hurtig et al., 1992). 

Figure 4 - Schematic NW-SE cross-section of the Upper Rhine Graben (from Le Carlier et al., 

1994, and Sanjuan et al., 2010, 2016a) showing several deep wells (Bruchsal, Cronenbourg, 

Landau, Insheim, Soultz, Rittershoffen, Vendenheim, Illkirch, etc.) drilled to depths of 2540 to 

5000 m. Thermal-gradient values of 40 to 60 °C/km were observed in the URG sedimentary 

formations of deep wells (Vernoux and Lambert, 1993). Based on geochemical and 

geothermometric arguments, Sanjuan et al. (2016a) suggest that the Triassic Buntsandstein 

sandstone at depths of ≥ 4 km (in the graben centre) could represent the potential reservoir at 

225 ± 25°C for most of the these brines. The deep geothermal brine would then migrate from the 

graben centre to its outer boundaries, circulating both in granite and in the deep sedimentary 

rocks through a complex system of deep, still poorly defined faults (probably NW-SE, but also 

NE-SW). 

Figure 5 - Concentrations of Cl versus Na with Li-concentration ranges for deep fluids in the 

BRGM-EIFER database. 

 



Figure 6 - Log K versus Log Na (mg/l) for the Li-rich fluids, integrating the isotherms calculated 

with the Na-K thermometric relationships of Fournier (1979) and Giggenbach (1988). The well-

known Salton Sea geothermal area in California (USA), with high-temperature (330-360 °C) and 

high-TDS brines, indicating high Li concentrations (see Table 1; Werner, 1970; Elders and Cohen, 

1983; Mc Kibben et al., 1987; Williams et al., 1989; Lippmann et al., 1999; Birkle et al., 2010; 

Mazzini et al., 2011) was integrated here as volcanic reference area.  

Figure 7 - Main different Na-Li thermometric relationships found in the literature, presented as a 

diagram Log (Na/Li) versus 1000/T (Na/Li ratio is calculated in mol/l). 

Figure 8 - Log Li versus Log Na (mg/l) for Li-rich fluids, integrating the isotherms calculated using 

the Na-Li thermometric relationships determined by Fouillac and Michard (1981) for Cl ≥ 0.3 M, 

and by Kharaka et al. (1982) and Sanjuan et al. (2014) (see Figure 6).  

Figure 9 - Log (Na/Li) versus Log (Na/K), with molar ratios, for deep Li-rich fluids of this study, 

integrating the Na-K (Fournier, 1979; Gigenbach, 1988) and Na-Li (Fouillac and Michard, 1981; 

Kharaka et al., 1982; Sanjuan et al., 2014) thermometric relationships. 
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Table 1 - Main geothermal and geological characteristics of the six most potential European 

geothermal areas with deep Li-rich fluids (Li ≥ 125 mg/l).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Geothermal system Geological environment Location Reservoir rocks Depth Tmeas. res. Test. res. TDS fluid Li References

m °C °C g/l mg/l

Ultra-high temperature                           

(> 300°C) geothermal system

Sedimentary reservoirs 
associated with relatively young 
volcanic environments 

Campi Flegrei geothermal area (Mofete, Italy) Volcano-Sedimentary Complex (VSC)                         
with Mesozoic sediments                                           
Thermo-metamorphic zone                                         

Recent volcanism developed during the Late 
Pliocene to Recent                                                     

2310-2699 350-380 380 516 480 Pauwels et al.  (1991)  
Buonasorte et al.  (1993)

Cesano geothermal area (Italy) Sedimentary Tuscan and Umbrian series             
(Upper Triassic, Mesozoic carbonate rocks). 

Strong thermo-metasomatic phenomena. 
Quaternary alkaline-potassic volcanic center of 

Sabatini Mt. area           

960-3219 150-368 350 230-390 220-380 Pauwels et al.  (1991)  
Buonasorte et al.  (1993)

Salton Sea geothermal area - Imperial Valley                          
(Southern California, USA)

Hydrothermally altered Cenozoic-Quaternary 
terrigeneous deltaic sequence of sandstones with 

clay or carbonate cements, interbedded with 
lacustrine mudstones, siltstones and shales in 
various proportions. Quaternary (Pleistocene to 

Holocene) volcanic environment

2500 330-340 340-360 260-265 200-215 Williams and McKibben (1989)  
Elders and Cohen (1983)

Low to medium temperature        

(120-250°C) geothermal system

Tectonic sedimentary basins 
over a crystalline basement 
without an associated magmatic 
heat source

Groß Schönebeck geothermal area in the North 
German Basin (passive-active rift basin, sub-basin of 
the Southern Permian Basin, that accounts for a 
composite of intracontinental rift composed of 10-12 km 
of Permian to Cenozoic sediments)

Sandstones and volcanic rocks                                         
(Rotliegend, Lower Permian)                                        

Large amounts of dissolved gases (80 vol.% N2, 15 

vol.% CH4, 5 vol.% CO2, H2, He…)

3500-4309 150 220 212-269 180-237 Regenspurg et al.  (2010) 
Regenspurg et al.  (2015)

German Molasse Basin (South West Germany) : 
foreland basin of the Alps that formed during the 
Oligocene and Miocene because of the flexure of the 
European plate under the weight of the orogenic wedge 
of the Alps. The basin filled with a sedimentary 
sequence of the most part removed from the developing 
mountain chain by erosion and denudation

Fractured and karstified                                        
limestone/dolomite aquifer                                       

(Upper Muschelkalk)                           

1914-1976 67-94 210 55-62 143-162 Stober (2014)

Upper Rhine Graben (URG): as a part of the European 
Cenozoic Rift System, it developed from c. 47 Ma 
onwards in response to changing lithospheric stresses 
in the north-western foreland of the Alps. The overlying 
sedimentary sequences consist of Cenozoic evaporites 
and claystone underlain by Mesozoic limestone and 
sandstone. Its basement is mainly constitued of granite 

Bruchsal geothermal area - URG (Germany) Triassic Buntsandstein continental red                                 2542 120 190 121 159 Sanjuan et al.  (2016a)

Cronenbourg geothermal area - URG (France) sandstone that is fined to coarse-grained with 
some conglomeratic beds (up to 450 m thick)

2870 140 200-250 104 210 Pauwel et al.  (1993)

Soultz-sous-Forêts, Rittershoffen, Vendenheim, Illkirch, 
Landau, Insheim geothermal areas - URG (France and 
Germany)

Granite basement (Carboniferous) 2580-5000 156-200 200-250 93-107 161-190 Sanjuan et al.  (2016a)        
Sanjuan et al.  (2021)                    
Bosia et al. (2021)

Very low temperature                    

(< 100°C) geothermal system

Cornubian batholith intruded 
about 290 Ma ago into Devonian 
argillaceous sedimentary rocks

South Crofty mine well (Cornwall, England) Carnmenellis Granite 690 52 50-70 19 125 Edmunds et al.  (1985)



Table 2 - Chemical and isotope compositions of the main deep Li-rich fluids (Li ≥ 125 mg/l) from 

the six most potential European geothermal areas.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Location Well Depth Fluid pH Na K Ca Mg Cl SO4 Alk. SiO2 Li Sr F Br B δ18
O δD δ7

Li
87

Sr/
86

Sr References

m sampling date g/l g/l g/l mg/l g/l mg/l meq/l mg/l mg/l mg/l mg/l mg/l mg/l ‰ ‰ ‰

Campi Flegrei geothermal well            
(Mofete, Italy)

n°5 2310-2699 1983 85.2 43.4 54.0 314 traces traces 210 480 231 Pauwels et al.  (1991)  
Buonasorte et al.  (1993)

Cesano geothermal well (Italy) C-1-1 - initial 960-3219 1975 8.5 63.6 21.4 0.043 12 37.0 91010 31.2 130 350 100 2448
C-1-2 - initial 960-3219 1975 8.5 78.9 48.4 0.106 17 42.9 163290 95.9 132 380 2690

C-1-3 - stabilized 960-3219 1982 7.9 61.0 88.0 0.070 12 28.0 191000 202 100 250 140 1508
C-1-4 - stabilized 960-3219 1980 7.9 60.0 80.0 0.200 20 27.5 186000 41.0 120 220 1331

Salton Sea geothermal well SSSDP 2-14 2500 1986 5.1 54.8 17.7 28.5 49 158 53 > 588 209 421 111 271 0.6 -73.0 Williams and McKibben (1989)

(Southern California, USA) IID - 1 2500 1968 5.2 50.4 17.5 28.0 155 5.4 400 215 Elders and Cohen (1983)

Groß Schönebeck geothermal     GRSK-3 (injection) 4309 January 2001 5.5-6.4 39.1 3.91 56.1 437 167 139 0.50 201 1928
well (North German Basin) GRSK-4 (production) 4400 October 2007 5.5-6.4 32.2 3.52 48.1 243 128 38 180 1139

GRSK-4 (4200 m) 4200 October 2007 6.8 38.4 2.90 54.0 430 167 140 79 204 1900
GRSK-4 (3500 m) 3500 May 2013 7.6 39.6 3.12 53.8 382 144 175 6.2 215 1570 132 Regenspurg et al.  (2015)

GRSK-4 (4120 m) 4120 May 2013 7.7 39.2 2.74 54.0 397 155 6.5 212 1650 142
GRSK-4 (4200 m) 4200 January 2014 6.3 40.9 2.96 51.2 364 155 81 90 237 1630 147
GRSK-4 (4240 m) 4240 January 2014 7.1 33.6 2.56 45.4 233 138 94 94 212 1290 116

Molasse Basin well                      HC-14 1914 1975-2005 6.8 18.7 1.14 0.88 351 30.8 1852 19.0 143

(South West Germany) HC-15 1938 1975-2005 6.5 21.8 1.99 0.79 115 33.3 2065 21.6 162

HC-19 1976 1975-2005 6.4 20.6 2.22 1.08 195 31.9 1280 18.1 146

Bruchsal geothermal well -                   
Upper Rhine Graben (Germany)

GBRU-1 2542 03/04/2012 5.1 35.1 3.11 7.36 301 73.6 267 6.18 77 159 391 0.85 203 39.4 -2.8 -39.9 1.7 0.715028

Landau geothermal well -                          
Upper Rhine Graben (Germany)

GTLA-1 3044 20/06/2013 5.1 28.2 4.00 7.70 80 64.5 130 2.36 159 182 430 3.2 219 39.0 -1.4 -43.4 1.0 0.711512

Insheim geothermal well -                            
Upper  Rhine Graben (Germany)

INSH 3600 20/06/2013 5.2 29.9 3.82 7.25 99 64.9 131 2.46 167 168 456 2.9 185 41.1 -1.2 -44.4 1.4 0.711513

Cronenbourg geothermal well -                 
Upper Rhine Graben (France)

CRON 2870 1980 6.7 31.5 4.03 4.81 126 62.0 480 2.20 143 210 405 5.5 361 37.9 -2.2 -40.0 0.711800

Soultz-sous-Forêt geothermal well -                         
Upper Rhine Graben (France)

GPK-2 5000 19/06/2013 5.0 28.1 3.19 7.23 131 58.6 157 2.45 201 173 455 2.9 216 40.8 -2.4 -44.0 1.4 0.711319

Rittershoffen geothermal well -                            
Upper Rhine Graben (France)

GRT-1 2580 10/01/2013 6.3 28.5 3.79 7.20 138 59.9 220 3.06 146 190 498 1.8 251 45.9 -2.3 -41.2 1.1 0.711466

Rittershoffen geothermal well -                            
Upper Rhine Graben (France)

GRT-2 3196 23/04/2018 4.9 28.4 3.59 7.47 115 59.6 97 2.34 182 161 396 1.8 37.2 BRGM Internal analysis report 
(2018) 

Vendenheim geothermal well -                            
Upper Rhine Graben (France)

VDH-GT1 4660 08/03/2018 7.4 28.6 3.88 3.63 66 62.0 9.52 138 162 202 261 38.6 -1.9 -39.6 2.5 0.711735 Sanjuan et al.  (2021)

Illkirch geothermal well -                            
Upper Rhine Graben (France)

GIL-1 3319 19/05/2019 27.2 4.08 191 54.5 400 88 173 224 320 33.0 Bosia et al. (2021)

South Crofty mine well                          
(Cornwall, England)

SCMW 690 1982 6.5 4.30 0.18 2.47 73 11.5 145 1.11 34 125 40 2.7 43 11.0 -5.2 -29.0 Edmunds et al.  (1985)

Pauwels et al.  (1991)  
Buonasorte et al.  (1993)

Regenspurg et al.  (2010)

Stober (2014)

Sanjuan et al.  (2016a)

Sanjuan et al.  (2016a)  




