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Examining the contribution of near
real-time data for rapid seismic loss
assessment of structures

Enrico Tubaldi1 , Ekin Ozer1 , John Douglas1 and Pierre Gehl2

Abstract
This study proposes a probabilistic framework for near real-time seismic damage assessment that exploits heteroge-
neous sources of information about the seismic input and the structural response to the earthquake. A Bayesian net-
work is built to describe the relationship between the various random variables that play a role in the seismic damage
assessment, ranging from those describing the seismic source (magnitude and location) to those describing the structural
performance (drifts and accelerations) as well as relevant damage and loss measures. The a priori estimate of the damage,
based on information about the seismic source, is updated by performing Bayesian inference using the information from
multiple data sources such as free-field seismic stations, global positioning system receivers and structure-mounted
accelerometers. A bridge model is considered to illustrate the application of the framework, and the uncertainty reduc-
tion stemming from sensor data is demonstrated by comparing prior and posterior statistical distributions. Two mea-
sures are used to quantify the added value of information from the observations, based on the concepts of pre-
posterior variance and relative entropy reduction. The results shed light on the effectiveness of the various sources of
information for the evaluation of the response, damage and losses of the considered bridge and on the benefit of data
fusion from all considered sources.

Keywords
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Introduction

The rapid assessment of the ground-shaking intensity
and damage distribution in the aftermath of a major
earthquake is of paramount importance for ensuring a
timely emergency response, accurate loss estimation,
and for providing accurate information to the public. It
enables emergency management authorities to take
action immediately after the earthquake and correctly
allocate and prioritize resources to minimize further
casualties and speed up recovery from disruption.1

ShakeMaps have proven to be very effective tools
for rapidly responding to earthquakes.2 They are con-
tour maps of several ground-motion parameters (also
called intensity measures), such as peak ground accel-
eration and pseudo-spectral acceleration at different
system periods estimated using empirical ground-
motion prediction equations (GMPEs) based on infor-
mation on the earthquake source (magnitude and loca-
tion) and instrumental data from available seismic
stations. Some examples of similar approaches include

works by Gehl et al.,3 Michelini et al.4 and Bragato.5

ShakeMap information can also be combined with vul-
nerability curves (e.g. those provided by HAZUS6) for
structural damage estimation in an area (see, for
instance, the studies by Wald et al.2 and Lagomarsino
et al.7).

Structural health monitoring (SHM) systems have
also been proven to provide useful information for
rapid seismic damage assessment8,9. Most existing
SHM methodologies rely on the use of vibration mea-
surements through accelerometers to detect potential
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structural damage.10 Encouraged by the recent techno-
logical developments in the field, global positioning
system (GPS) receivers have also been increasingly used
for damage detection.11–14 Yet, associating damage
with dynamic features is heavily restrained by the
instrumentation layout/specifications, environmental
effects and even the algorithms or methods used.15–18

In addition to the specific sensing techniques focussed
on a particular physical parameter, there are recent
applications that make use of the multisensory environ-
ment and heterogeneous data for SHM.19 This can take
the form of converting sensor information from one
domain to another for corrected or enhanced20–22

dynamic characterization, seeking changes in vibration
behaviour as indicators of damage.

Seismic damage assessments should be carried out
with probabilistic approaches, given the many uncer-
tainties inherent to the problem. For example, even if
the earthquake location and magnitude are known with
good accuracy, significant uncertainty stems from the
use of GMPEs.23–27 Moreover, SHM sensor measure-
ments are affected by noise, errors and have limited
accuracy. Acknowledging the important role of uncer-
tainties, in recent years an increasing number of studies
have combined SHM and performance-based earth-
quake engineering (PBEE) concepts for rapid quantifi-
cation of earthquake-induced building losses.8,28–30

Bayesian modelling is a natural choice for carrying
out rapid earthquake damage assessments, as it permits
the propagation of uncertainties through models and
allows updating the a priori estimates when new infor-
mation becomes available. In particular, Bayesian net-
works (BNs) are ideal tools for describing the
probabilistic relationships between the various para-
meters involved in the damage assessment and for inte-
grating the available knowledge of the earthquake
scenario and the structural response. In this context,
Bayraktarli et al.,31 Bensi,32 Broglio et al.33 and Gehl34

proposed BN frameworks for risk assessment of urban
infrastructure systems. Wu35 developed a Bayesian
framework for estimating the seismic damage in a
structural system both before and after an earthquake,
combining earthquake early warning and SHM data.
Bayesian modelling can also be useful for quantifying
the added value of the information provided by sensors
and monitoring systems.36–40 Approaches commonly
employed for quantifying the reduction of uncertainty
due to the available information are based on the con-
cept of pre-posterior variance36,40–42 or relative entropy
reduction.43

In this article, a probabilistic framework based on
BNs is developed to quantify the benefit of various sen-
sors for seismic damage assessment of critical structures
under earthquake loading. The proposed framework
relies on heterogeneous sources of information, such as

those provided by seismometers typically used for
deriving ShakeMaps, structure-mounted accelerometers
and GPS receivers. The framework is applied to evalu-
ate the seismic damage of a two-span bridge model
located in a zone of high seismicity. To the authors’
knowledge, this is the first time that heterogeneous sen-
sing techniques are used in a BN framework to update
the estimates of the seismic losses of a system, and that
the effectiveness of these sensing techniques is com-
pared by using the pre-posterior variance and relative
entropy reduction metrics.

The section ‘Seismic damage assessment’ illustrates
in detail the various stages of the seismic damage
assessment, the parameters involved and the technolo-
gies that are available to measure them. The section
‘Bayesian framework’ illustrates the BN developed to
describe the relationship between the various para-
meters involved in the seismic damage assessment, and
to update these parameters based on additional avail-
able information from different sources. It also presents
the alternative approaches for quantifying the uncer-
tainty reduction stemming from the sensor data. The
section ‘Case study’ illustrates the implementation of
the method on the two-span bridge considered as a case
study. This is followed by a discussion of the results
and the conclusion.

Seismic damage assessment

The Bayesian framework for seismic damage assess-
ment combines four types of analyses, namely hazard
analysis, structural analysis, response analysis and loss
analysis, which is consistent with PBEE frame-
works.44,45 Since the focus of this study is the rapid
damage assessment in the aftermath of an earthquake,
the first stage is replaced by the assessment of the level
of shaking at the site, given that the main characteris-
tics of the earthquake are known. The subsequent sub-
sections describe in more detail the four analysis stages,
together with the involved parameters and the technol-
ogies for measuring them.

Seismic shaking analysis

This analysis provides an estimate of the probabilistic
distribution of a given ground-motion parameter or
intensity measure (IM) at the site of interest given the
following variables that are assumed to be known: the
moment magnitude of the earthquake (Mw); the epicen-
tre of the earthquake, if a point-source event is
assumed, or the rupture location and its extent for
finite-fault scenarios; and other parameters characteriz-
ing the fault such as the faulting mechanism, the fault
geometry and the depth to the top of the rupture. The
analysis is carried out following the Bayesian procedure
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developed by Gehl et al.3 for generating ShakeMaps. A
GMPE is used to estimate the ground motion at the
site, given the earthquake’s characteristics. The GMPE
is generally characterized by the following form23

log IMið Þ= f Mw,Ri, sð Þ+h+ zi ð1Þ

where f (Mw,Ri, s) is a function describing the lognor-
mal mean of IMi, that is, the IM at the location ‘i’,
based on the earthquake magnitude Mw, a measure of
the source-to-site distance Ri and other parameters col-
lected in the vector s; h is the inter-event (or between-
event) error term from the GMPE; and zi is the intra-
event (or within-event) error term from the GMPE.

The interevent error term describes the systematic
variability in the ground motions throughout the region
produced by different earthquakes of the same magni-
tude and rupture mechanism. The intra-event error
describes the variability in ground-motion intensity at
various sites of same soil classification and distance
from the source during a single earthquake.24 Thus, fol-
lowing the studies by Park et al.25 and Crowley et al.,26

the same interevent variability is applied to all sites of
interest within a given earthquake scenario, whereas
the intra-event variability is represented by a spatially
correlated Gaussian random field. This can be built
based on the intra-event error terms zi and the correla-
tion coefficient rij between the ground-motion para-
meters at two sites i and j, for i,j = 1,2,...Nsites, where
Nsites is the number of sites of interest. The correspond-
ing covariance matrix of the ground-motion IM field
has the following form

SIM =

s2
h +s

2
ji � � � s2

h + rijsjisjj

..

. . .
. ..

.

� � � � � � s2
h +s

2
jj

2
64

3
75 ð2Þ

where sh and sj represent the standard deviations of
the inter- and intra-event error terms, respectively, pro-
vided by the GMPE. Further details about this repre-
sentation of the ground-motion field can be found in
the study by Gehl et al.3 and in Schiappapietra et al.46

The field observations of the ground-motion para-
meters at seismic stations can be used as evidence to
update the prior estimates of the IM at the site of inter-
est. The spatial correlation structure between the IMs
at the monitored points and at the site plays a major
role in the propagation of the observations.47

Structural analysis

Structural analysis is performed to estimate the prob-
abilistic distribution of one or more engineering
demand parameters (EDPs), describing the response of
structural and non-structural components, based on

the seismic shaking intensity. A joint probabilistic seis-
mic demand model should be considered to describe
the relationship between the EDPs and the IM, by also
accounting for the correlation between the various
EDPs. This is very important because the correlation
structure is a basis for updating the probabilistic distri-
bution of one EDP (e.g. floor acceleration in a build-
ing) given the observation of another (e.g. storey drift).

Alternative approaches can be employed to develop
the joint probabilistic seismic damage model (PSDM),
such as multi-stripe analysis,48 incremental dynamic
analysis,49 or cloud analysis.50 In this study, cloud anal-
ysis is adopted. For this purpose, the structural model
is analysed under a set of ground-motion records of dif-
ferent IM levels. The samples of the various response
parameters (EDPi, for i = 1,2,...,NEDP) are then fitted
by a regression model. In particular, a bilinear model is
considered in this study,51,52 since it allows a better
description of the evolution of the structural response
with the seismic intensity. The model for the generic ith
EDP has the following form (see Figure 1)

ln EDPijIMð Þ= a1 + b1 ln IMð Þ+ ln e1½ �H IM � IM�ð Þ
+ a1 + b1 ln IM�ð Þ+ b2 ln IMð Þ � ln IM�ð Þð Þ+ ln e2½ �
H IM � �IMð Þ½ �

ð3Þ

in which a1 is the intercept of the first segment, bi for
i = 1, 2 are the slopes of the two segments (see
Figure 1), IM � is the breakpoint IM, which is defined
as the point of intersection of the two segments. The
step function H(g) controls which of the two segments
must be considered (i.e. H = 0 for IM<IM� and
H = 1 for IM.IM�). The probability distribution of
each EDP is also described by the values of the error
functions ei, which are characterized by a lognormal
distribution with lognormal zero mean and lognormal
standard deviations bi. Moreover, in order to define a
joint probability density function (PDF) for the various
EDPs, a covariance matrix must be assigned, which has

ln(EDP)

ln(IM*)

b21

ln(IM)

a1 b11

Figure 1. Illustration of the bilinear regression model.
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the same form as that of equation (2). For this purpose,
different correlation coefficients must be estimated for
the two conditions corresponding to IM<IM� and
IM.IM�, thus leading to two correlation matrices,PI

EDP and
PII

EDP.
A brief description of the EDPs considered in this

study and relevant measurement techniques is given
below. Table 1 summarizes the EDPs of interest and
possible sensors to collect observations directly and
indirectly.

Peak transient displacements. The maximum absolute val-
ues of the transient displacements (or of geometrically
derived quantities, such as drifts) during the time his-
tory of motion of a structure are important indicators
of structural performance. Many vulnerability curves
for structures are based on these EDPs. Peak transient
displacements (TDs) can be derived from the time his-
tories of structures’ relative displacements with respect
to the base, and a wide range of sensors (both contact
and non-contact) can be used to measure them.

Lemnitzer et al.53 employed transducers such as lin-
ear variable differential transformers (LVDTs) to mea-
sure the shear deformations of a wall across two floors
of a building, whereas Li et al.54 proposed the use of
smartphone cameras. Trapani55 developed
SAFEQUAKE, a hinged bar instrumented with two
bi-axial accelerometers measuring accelerations, one at
each end of the beam and remaining parallel to the
building floors, and one bi-axial inclinometer or accel-
erometer measuring the tilt of the beam. There are also
some applications of GPS systems for real-time moni-
toring of displacement measurements. However, GPS
technology is limited by low sampling rates and
because it only measures the displacements at the build-
ing roof or bridge deck level.56

Residual displacements. The residual drift or permanent
deformations of structural components after the earth-
quake may be used to infer the degree of damage sus-
tained by the structure. Many studies have investigated

the correlation between maximum drifts and residual
displacements (RDs; see study by Dai et al.57 for a
recent review on the topic). However, most of these
studies have aimed at developing empirical formulae to
relate the RDs and TDs and to provide a deterministic
relation between the two EDPs, without any informa-
tion regarding the dispersion58 nor any consideration
of its dependence on the seismic intensity. Probabilistic
studies relating TDs and RDs or drifts are scarce.
Goda59 developed a joint PDF for the probability dis-
tribution of TD and RD seismic demands using a
copula. Ruiz-Garcı́a and Miranda60 evaluated and
compared demand hazard curves for residual drifts and
maximum transient drifts in multi-storey building
frames. Uma et al.61 developed a probabilistic
performance-based seismic assessment framework
where the performance levels defined by pairs of
maximum-residual deformations are derived using
bivariate probability distributions. Yazgan and Dazio62

proposed a Bayesian approach for post-earthquake
damage assessment using the information from known
RDs to update the probability distribution of maxi-
mum transient drifts in building frames.

Peak absolute accelerations. Many non-structural compo-
nents in buildings are damaged during earthquakes
when subjected to large absolute acceleration demands
rather than high drift demands. Suspended ceilings,
parapets and light fixtures are typical building compo-
nents sensitive to accelerations. Along with masonry
infills, ceiling systems are the non-structural elements
most prone to damage during an earthquake. Absolute
accelerations are typically measured via accelerometers.
Accelerations may also be derived by differentiating
velocities and displacements but obtaining reliable esti-
mates can be problematic unless smooth velocity or dis-
placement signals with high sample rates are available.

Excessive bridge accelerations can cause serviceabil-
ity problems, and in case of an earthquake, may distort
operational flow (e.g. driver safety63). Although mostly
disregarded, vertical bridge accelerations can sometimes

Table 1. Engineering demand parameters and measurement possibilities.

EDP Component performance Direct measurement Indirect measurement

Peak transient displacement (TD) Global structural components,
non-structural components

GPS receivers, laser vibrometer,
transducers, camera

Accelerometers

Residual displacement (RD) Global structural components GPS receivers, laser vibrometer,
transducers, camera

Accelerometers

Peak absolute acceleration (PA) Non-structural building
components, bridge deck

Accelerometers GPS receivers

EDP: engineering demand parameter; GPS: global positioning system.

4 Structural Health Monitoring 00(0)
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be excessive and may necessitate external devices for
control.64

Damage analysis

In this stage, the EDPs are used to estimate the level of
damage of the structure, typically described by one or
more damage states (DSs). In buildings, damage of
structural components can be described as a function
of the peak inter-storey drift ratio, and that of non-
structural components based on the peak absolute
accelerations (PAs).29,65 In bridges, the damage of the
bearings, shear keys, columns and abutments is con-
trolled by kinematic quantities, such as displacements
and curvatures. Bridge piers are often the most vulner-
able components of a bridge66,67 and their damage can
be expressed as a function of the peak drift ratio68 or it
can be related to the maximum displacement ductility
experienced.69,70

Loss analysis

In this final stage, various decision variables (DVs) can
be calculated, such as repair cost, casualties and loss-
of-use duration (money, deaths and downtime), based
on the damage sustained by the structural components.
Padgett et al.71 after Basöz and Mander72 associated
loss levels with damage measures experienced by
bridges. Lu et al.73 pursued a similar loss assessment
scheme for buildings with multi-class damage descrip-
tions. Similar to these studies, in this article, structural
losses related to damage are formulated in terms of loss
ratios (LRs), repair and replacement costs normalized
by the bridge cost.

Bayesian framework

This section presents the Bayesian framework devel-
oped for near real-time loss assessment and describes
the methods used for quantifying the effectiveness of
sensors for uncertainty reduction.

Bayesian network

This subsection illustrates the BN developed to describe
the probabilistic relationship between the parameters
specified in the previous section, to perform predictive
analysis and to update these parameters based on addi-
tional information from different observations (see
Figure 2). The magnitude Mw and epicentre of the
earthquake are assumed to be known, and three differ-
ent types of information are assumed to be available to
update the probabilistic relationship of the variables in
the network: on-site seismometers located close to the
site of the structure, providing information on IM lev-
els; GPS data, updating the knowledge of the RD; and

accelerometer data, updating the knowledge of the PA
in the bridge deck.

The nodes of the BN represent random variables
characterized by a PDF. In particular, nodes are related
to their parent and child variables through edges stating
conditional dependencies between variables (i.e. use of
conditional probability distributions). The nodes that
have no parents are termed as root nodes and they are
associated with marginal probability distributions.
Node junction patterns can take different forms such as
collider (Mw and R to IM), fork (IM to EDPs) and
chain (TD to damage, damage to loss) with varying
dependency features. Two forms of probabilistic infer-
ence can be carried out in BNs: predictive analysis that
is based on evidence (i.e. information that the node is in
a particular state) on root nodes and diagnostic analy-
sis, also called Bayesian learning, where observations
enter into the BN through the child nodes. When evi-
dence enters the BN, it is spread inside the network
thereby updating the probability distribution of the
variables through one of the two forms of inference
mentioned above.

The seismic shaking is modelled by the deterministic
root nodes that describe the magnitude of the

ln(TD)ln(RD) ln(PA)

PAobsRDobs

U1, PSDM

IM1

eGPS
ePA

DS

IM2

W

LR

IM3

U1 U2 U3

W

Mw Re

U2, PSDM U3,PSDM

SEISMIC SHAKING

SEISMIC RESPONSE

SEISMIC DAMAGE

SEISMIC LOSSES

Figure 2. Bayesian network illustrating the relationship
between the parameters involved in the damage and loss
assessment (observed quantities indicated with thick lines).
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earthquake event, Mw, and the vector Re that collects
the distances between the source and the site, and the
source and the seismic stations. For demonstration pur-
poses, two seismic stations (represented by IM2 and
IM3) are assumed here to be in the vicinity of the bridge
site (represented by IM1).

Following the study by Gehl et al.,3 the interevent
variability is modelled by the root node W, which is
parent to the three IMs of interest (i.e. the one at the
site and the ones at the seismic stations) and follows a
normal standard distribution. The intra-event variabil-
ity is modelled via three root nodes, Uj, for j = 1,2,3,
which also follow a normal standard distribution. The
joint conditional distribution of the IMs, given W and
Ui, can be expressed by the following relation

ln IMijW ,Uj

� �
= ln IMi Mw,Rið Þ +sj

X3
j = 1

tijUj +shW

i= 1, 2, 3

ð4Þ

where IMi is the median value of the IM and
ln IMi(Mw,Ri) is the lognormal mean, which is a func-
tion of Mw and Ri (see also equation (1)); sj and sh are
the lognormal standard deviations describing, respec-
tively, the intra-event and interevent variability; tij is a
term of the lower triangular matrix obtained through a
Cholesky factorization of CIM, which is the spatial cor-
relation matrix expressing the correlation between the
IMs at the various sites.

A similar approach is used for the PSDM describing
the conditional distribution of the EDPs given the IM at
the site, IM1. However, in this case, a bilinear model is
employed, and thus two different error variables and
correlation matrixes have to be considered, one for
IM1\IM� and the other for IM1.IM�. Two other root
nodes, denoted as eGPS and eACC, are used to describe
the measurement errors of the observations obtained
with GPS and accelerometers. These error variables are
assumed to be zero-mean normally distributed variables.
Finally, a damage model is employed to describe the
conditional relationship between the various DSs of the
system and the EDPs, and a loss model to relate the
losses to damage.

The BN detailed in Figure 2 is used to perform pre-
dictive analysis, starting from the prior distribution of
the root nodes, and diagnostic analysis, entering an
observation at the nodes IM2, IM3, RDobs and PAobs.
For this purpose, the OpenBUGS software74 is
employed, which is interfaced with the R statistical
tool. OpenBUGS is able to treat both deterministic
(e.g. Mw and Re) and probabilistic (e.g. IMi, ln(TD))
variables, which are sampled through a Markov-chain
Monte-Carlo (MCMC) sampling scheme. Each chain is
built with a Gibbs sampling scheme, where variables

are successively sampled from the posterior distribution
of previous variables: the posterior distribution of a
variable is obtained from the product of the prior dis-
tribution and the likelihood function (probability of a
given observation occurring given the prior distribu-
tion). The samples are then aggregated in order to esti-
mate empirical statistics of the variables of interest,
which represent the posterior distributions. Although
Bayesian inference based on sampling provides only
approximate solutions (i.e. the posterior distribution is
built from the samples), it has the benefit of being
much more flexible than exact inference algorithms
such as junction-tree inference (e.g. it allows modelling
continuous variables using various probability distribu-
tions). Due to the approximate nature of the posterior
distributions sampled by the MCMC scheme, there is
no absolute guarantee that exact distribution para-
meters may be obtained. However, various steps may
be taken in order to ensure a reasonable accuracy of
the results:

� Generation of multiple MCMC chains starting with
different combinations of initial conditions, in order
to ensure that all chains end up converging towards
the same values.

� Generation of a high number of samples for each
chain (e.g. several tens of thousands).

� Definition of a ‘burn-in phase’, where the first part
of each chain is taken out from the estimation of
the posterior distribution, in order to remove sam-
ples that have not yet converged.

� Thinning of the samples (i.e. only one sample in
every five is considered in each chain), in order to
reduce autocorrelation effects that are inherent to
MCMC sampling.

Specific statistical tools in OpenBUGS are dedicated
to the estimation of auto-correlation and of the mini-
mum number of samples. In any case, preliminary tests
are necessary to calibrate the sampling parameters care-
fully. The chosen sampling results from a trade-off
between the required accuracy level and the computa-
tional cost.

Quantification of sensors’ effectiveness for
uncertainty reduction

Pre-posterior variance. The effectiveness of the monitor-
ing strategy can be described based on the concept of
pre-posterior variance,41 which represents the expected
value of the variance of the random variable of interest
(e.g. EDP) after monitoring is performed, that is, after
Bayesian updating is carried out based on the available
information. The pre-posterior variance accounts for

6 Structural Health Monitoring 00(0)
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all the possible combinations of outcomes of the moni-
toring system and thus it is independent of any specific
observation. Compared with the prior variance, the
pre-posterior variance gives an idea of how useful the
monitoring process is in gaining information on the
unknown parameter. A pre-posterior variance much
smaller than the prior indicates that the proposed mon-
itoring method improves our knowledge of the para-
meter. On the contrary, similar values of the pre-
posterior and prior variances indicate that monitoring
is not expected to bring any significant knowledge
improvement.

Let p(u) denote the prior distribution of a generic
random variable u, such as a node of the BN which is
not deterministic, and p(ujy) the posterior distribution,
following an observation y. The expected value and var-
iance of the posterior distribution of u can be expressed
as

mujy yð Þ=

Ð
Du

p ujyð Þ � u � du
Ð
Du

p ujyð Þ � du =

Ð
Du

p ujyð Þ � u � du

p yð Þ ð5Þ

s2
ujy yð Þ=

Ð
Du

p ujyð Þ � u� mujy yð Þ
� �2

� du

p yð Þ ð6Þ

Since the observation is unknown a priori, these
quantities can be seen as function of the observation y.
The pre-posterior variance can be obtained by taking
the expectation with respect to y

s2
u,PP =E s2

ujy yð Þ
h i

=

ð

Dy

s2
ujy yð Þ � p(y) � dy

=

ð

D(u, y)

p ujyð Þ � (u� mujy yð Þ)2 � du � dy
ð7Þ

In practice, s2
u,PP can be estimated with a Monte-

Carlo approach. For this purpose, a set of possible
monitoring scenarios are generated by performing pre-
dictive analysis and generating multiple samples of the
possible observations. Each observation is then used as
input in a diagnostic analysis to produce a sample of
the posterior distribution of the variable of interest.
The pre-posterior variance is then obtained by aver-
aging the values of s2

ujy(y) obtained for the different
observations.

The expected effectiveness of the monitoring system
is measured by the square root of the ratio between the
prior and the pre-posterior variances

h=

ffiffiffiffiffiffiffiffiffiffiffi
s2
u

s2
u,PP

s
=

su

su,PP
ð8Þ

This synthetic parameter can be used to compare the
reduction of uncertainty in the estimation of u obtained
via alternative monitoring techniques, and can also be
used to evaluate the benefits of fusing the data from
different sensors. It can be demonstrated that this para-
meter is always higher than 1, even though for some
observations y the ratio between s2

u and s2
ujy(y) can be

less than 1.

Reduction of relative entropy. As an alternative to the pre-
posterior analysis approach, a relative entropy measure
can be used to quantify the information gain from the
available observations. Relative entropy, also called
Kullback–Leibler divergence, expresses the difference
between two probability distributions when identifying
the value of new information or more specifically,
observations.75,76,43 According to Shannon, the infor-
mation entropy for a random variable u with posterior
distribution p(ujy) is defined as the following

H p ujyð Þ½ �= �
ð

Du

ln p ujyð Þ½ �p ujyð Þdu ð9Þ

The cross entropy between two posterior and prior
probability distributions, which measures the expected
information that is required to get from one distribu-
tion to another, is

H p ujyð Þ, p uð Þ½ �= �
ð

Du

ln p uð Þ½ �p ujyð Þdu ð10Þ

The relative entropy DKL½p(ujy), p(u)� measures the
so-called information geometry in moving from the
prior to the posterior and can be expressed as

DKL p ujyð Þ, p uð Þ½ �=H p ujyð Þ, p uð Þ½ � � H p ujyð Þ½ �

=

ð

Du

ln p uð Þ½ �
ln p ujyð Þ½ � p ujyð Þdu ð11Þ

According to the formulation, the relative entropy
of the observation and reference distribution is lower
bounded by 0. In other words, the greater the difference
between the two probability distributions, the greater
the relative entropy gained from the arrival of observa-
tional data. As for the case of the pre-posterior var-
iance, the relative entropy is estimated via a Monte-
Carlo approach by averaging all the possible monitor-
ing outcomes. Thus, the obtained effectiveness measure
is independent of the specific observation y.

Case study

In this section, the application of the framework pre-
sented above to a bridge structure is described.

Tubaldi et al. 7



Tubaldi et al. 125

Case study description

Structural system model for damage and loss assessment. For
demonstration purposes, the structural system consid-

ered in this study consists of a two-span bridge with a

continuous multi-span steel–concrete composite deck,

arbitrarily located in the area of Patras, Greece (longi-

tude 21.906, latitude 38.278, in decimal degrees). The

bridge is representative of a class of regular medium-

span bridges commonly used in transportation net-

works77–78 (see Figure 3). The bridge superstructure,

designed according to the specifications given in

Eurocode 4,79 consists of a reinforced concrete slab of

width B = 12 m, which hosts two traffic lanes, and of

two steel girders positioned symmetrically with respect

to the deck centreline at a distance of 6 m. Class C35/

45 concrete is used for the superstructure slab. The

reinforcement bars are made of grade B450C steel, and

the deck girders are made of grade S355 steel. The dis-

tributed gravity load due to the self-weight of the deck

and of non-structural elements is 138 kN/m, for a

weight per unit length md = 14.07 ton/m. The rein-

forced concrete piers have a circular cross-section of

diameter D = 1.8 m. They are made of class C30/37
concrete, with a longitudinal reinforcement steel ratio
of 1% and a transverse reinforcement volumetric ratio
rw = 0.5%. Further details about the bridge can be
found in the study by Tubaldi et al.78

A three-dimensional finite element (FE) model of the
bridge is developed in OpenSees80 following the same
approach described in the study by Tubaldi et al.,66 that
is, using linear elastic beam elements for describing the
deck, and the beam element with inelastic hinges devel-
oped by Scott and Fenves81 to describe the pier. Further
details of the FE model and of the pier properties are
given in the study by Tubaldi et al.66 The elastic damp-
ing properties of the system are described by a Rayleigh
damping model, assigning a 2% damping ratio at the
first two vibration modes. The FE model described in
this study is assumed to be deterministic and character-
ized by no epistemic uncertainties. Future extensions of
the methodology will consider how introducing some
uncertainty in the model (e.g. considering the approach
outlined by Tubaldi et al.67) would affect the results.

Figure 4 shows the hysteretic response of the pier to
a bi-directional ground-motion record, in terms of

(a)

40m40m
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(b)
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Figure 3. (a) Two-span bridge profile and (b) transverse deck section.
Source: Study by Tubaldi et al.78
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Figure 4. (a) Base moment–curvature response and (b) base shear–top displacement response.
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moment–curvature of the base section, and base shear–
top displacement, along the two principal directions of
the bridge. It can be observed that the model is charac-
terized by some degradation of stiffness and pinching,
that results from the constitutive model adopted to
describe the concrete fibres in the plastic hinge region
(Concrete 02 in OpenSees80). A more sophisticated
description of the hysteretic behaviour of the pier is out
of the scope of this study.

A set of 221 ground-motion records is used to derive
the PSDM: 120 of these were selected by Baker et al.82

for the performance assessment of a variety of struc-
tural systems located in active seismic regions. These
records are representative of a wide range of variation
in terms of source-to-site distance (R) (from 8.71 to
126.9 km), soil characteristics (the average shear wave
velocity VS in the top 30 m of soil spans from 203 to
2016 m/s) and moment magnitude (Mw) (from 5.3 to
7.9), so as to obtain more robust and general results. It
is noted that the VS values of many of these records are
higher than those assumed for deriving the seismic
shaking scenarios considered here. This approach,
potentially resulting in some bias in the estimation of
the PSDM, is consistent with current practice. An alter-
native approach would have been to select records
based on the actual soil conditions at the bridge site
and on the actual seismotectonic context around the
site. It would have been difficult to find sufficient
records to build an accurate PSDM if this approach
had been followed. The remaining ground motions are
taken from the recordings of different stations during
the 1994 Northridge earthquake and they were added
to achieve a more confident estimate of the response
for high IM values. The large number of records in the
set allows estimation with good confidence of the statis-
tics of the response parameters, even of those which are
characterized by a significant dispersion such as the
RD.48 The median horizontal (geometrical mean) spec-
tral displacement response Sd(T) at the fundamental
period of the bridge (T = 0.45 s) for a damping ratio
of 2% is selected as the IM. It is noteworthy that the
GMPE by Akkar and Bommer,83 which is used in this
study, is formulated in terms of the pseudo-spectral
acceleration Sa(T), which is related to Sd(T) through
the expression Sd(T) = Sa(T)=v

2, where v = 2p/T. An
amplification factor = 1:195 is used to account for a
2% damping factor instead of 5%, based on the expres-
sion for the damping reduction factor taken from
Eurocode 8.82

The PSDM described in the section ‘Structural anal-
ysis’ is fitted to the 221 samples of the various response
parameters of interest for the performance assessment,
namely the RD (EDP1 = RD), the TD (EDP2 = TD)
and the PA (EDP3 = PA). Figure 5 shows the sample
values of the EDPs versus IM in the log–log plane and

in the untransformed plane. In the same figures, the
lognormal mean and median of the fitted PSDM are
also plotted. The same value of IM* is used for various
EDPs. It is obtained by considering the samples of the
RDs, since the change of slope is more evident from
these. In fact, for IM<IM� the response of the system is
in the linear range, and the RDs are zero, whereas for
IM.IM� the RDs assume values different from zero
and increase for increasing IM levels. It is noteworthy
that the value of IM� = 0.0286 m corresponds on aver-
age to a drift ratio of 0.68% (defined as the ratio between
the TD and the pier height), which signals the onset of
nonlinearity of the system due to concrete cracking and
rebar yielding. The peak top displacements and the abso-
lute accelerations increase almost linearly with the seismic
intensity and their trend of variation does not change sig-
nificantly when IM exceeds IM�.

The covariance matrices
PI

EDP and
PII

EDP, collecting
the information on the variance of the error variables
(in the lognormal space) and on their correlation, for
the two branches of the PSDM (corresponding, respec-
tively, to IM1<IM� and IM1.IM�) are

XI

EDP
=

3:700 0:271 0:039

0:270 0:222 0:114

0:039 0:114 0:156

2
64

3
75

XII

EDP
=

2:875 0:612 0:203

0:612 0:293 0:126

0:203 0:126 0:098

2
64

3
75

ð12Þ

and the corresponding correlation matrices are

CI
EDP =

1 0:299 0:0516

0:299 1 0:611

0:051 0:611 1

2
64

3
75

CII
EDP =

1 0:667 0:382

0:667 1 0:744

0:382 0:744 1

2
64

3
75

ð13Þ

It can be observed that the RDs are characterized by
significant dispersion, which is much higher than that
of the other EDPs. Moreover, the correlation between
the error variable in the PSDM of RD and the error
variable in the PSDMs for the other EDPs is quite low
for IM1<IM � , but it increases for IM1.IM�. This is
expected, since for IM1<IM� the residual drifts are very
low. The highest correlations are observed for high seis-
mic intensities between the errors for the PSDMs of
RD and TD (correlation coefficient of 0.667 for the sec-
ond branch of the PSDM) and for the PSDMs of TD
and PA (correlation coefficient of 0.774). The correla-
tion between RD and PA is quite low, though not negli-
gible for high seismic intensities (correlation coefficient

Tubaldi et al. 9



Tubaldi et al. 127

of 0.382). This suggests that the information on accel-
erations may be used to reduce uncertainty in the esti-
mation of the bridge’s TDs and RDs. It is noteworthy
that the proposed approach is different from resorting
to double integration of the measured acceleration sig-
nal for estimating the displacements, which is charac-
terized by several limitations.85

The damage of the bridge is assumed to be con-
trolled by the pier. Similar to the study by Choi et al.,69

the pier damage is expressed as a function of the ducti-
lity demand as follows

DS =

m\1 no damageð Þ
1\m\2 DS1ð Þ
2\m\4 DS2ð Þ
4\m\7 DS3ð Þ
7\m collapseð Þ

8>>>><
>>>>:

ð14Þ

Figure 5. Sample values and model results in terms of RD, TD and PA versus IM in the log–log plane (left column) and in the
untransformed plane (right column).
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where m and DS denote, respectively, the ductility
demand and the damage state of the bridge. The
relationship between the pier top displacement TD and
the ductility demand m is evaluated by performing
pushover analysis of the bridge in the longitudinal
direction.

The losses are obtained using the equation below71,72

Loss=

3% x\DS1ð Þ
8% DS1\x\DS2ð Þ
25% DS2\x\DS3ð Þ
100% DS3\xð Þ

8>><
>>:

ð15Þ

Seismic scenarios and field observations. It is assumed that
the bridge is equipped with one accelerometer and one
GPS antenna, both mounted at the level of the super-
structure above the pier. The measurement error of the
GPS antenna is characterized by a normal distribution
with zero mean and a standard deviation of 1 mm,
whereas that of the accelerometer is characterized by a
normal distribution with zero mean and a standard
deviation of 0.002 m/s2. These values are based on the
noise root mean square (RMS) levels of exemplary
low-cost sensor specifications extracted from represen-
tative datasheets (refer to86 for the noise of a global
navigation satellite system (GNSS)-based displacement
measurement device and STMicroelectronics87 for a
low-cost micro electro-mechanical systems (MEMS)

accelerometer). The hypothetical bridge is located close
to two existing seismic stations (see Figure 6). The first
one (PATRA-C) is at the latitude 38.269 and longitude
21.760, whereas the second one (RIO) is at the latitude
38.296 and longitude 21.791. These coordinates corre-
spond to a distance between the site and PATRA-C of
12.8 km, and between the site and RIO of 10.2 km.
The distance between the two stations is 4 km.

The seismic hazard at the site is quantified by con-
sidering the seismic source zonation of the European
Seismic Hazard Model 2013.88 The earthquake scenar-
ios used in the subsequent sections are two possible rea-
lizations obtained by sampling from this model. The
prediction of the ground motions at the site from the
considered earthquake point sources is made using
GMPE by Akkar and Bommer,83 assuming soft soil
conditions (Vs \ 360 m/s) and a strike-slip fault
mechanism. The spatial correlation model proposed by
Jayaram and Baker47 is used to build the correlation
matrix CIM expressing the correlation between the IMs
at different sites. The terms of CIM are the correlation
coefficients rij between the ground-motion parameters
at two sites i and j, expressed as

rij = exp � 3rij

b

� �
ð16Þ

in which rij is the distance between the sites and b is the
correlation distance.

Figure 6. Map with indications of bridge site, seismic point sources for scenarios 1 and 2, and seismic stations.
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It is noteworthy that the correlation distance varies
significantly from site to site and from earthquake to
earthquake, and it also changes with the structural
period.46 Equations for capturing the dependence of b
on these parameters are provided by Jayaram and
Baker,47 from which the value of b for this study
(15.9 km) is taken.

As a result, the covariance matrix SIM related to the
IMs (IM1, IM2, IM3 corresponding, respectively, to the
bridge site, and the PATRA-C and RIO stations) in
lognormal space, as well as the spatial correlation
matrix CIM between the sites, are estimated as follows

SIM =

0:105 0:021 0:026

0:021 0:105 0:056

0:026 0:056 0:105

2
64

3
75

CIM =

1 0:089 0:146

0:089 1 0:470

0:146 0:470 1

2
64

3
75

ð17Þ

It is worth noting that the correlation values between
the sites are very low, which is due to the quickly
decreasing spatial correlation model. However, the
arbitrary case study that is defined here is consistent
with the usual seismic network density in Europe (e.g.
exposed sites are often a dozen kilometres or more
away from the nearest seismic station). Since the infor-
mation gain provided by the seismic stations in terms
of uncertainty reduction at the bridge site is expected to
be low due to the low correlation between IM1 and IM2

and IM3, the case of a ground accelerometer placed at
the base of the bridge is also considered to quantify the
maximum uncertainty reduction achievable by a perfect
knowledge of the IM1.

Rapid damage assessment for a single scenario

This subsection describes the results of the Bayesian
updating for scenario 1, which corresponds to the seis-
mic point source 1, with Magnitude Mw 5, located
28.0 km from the site and 40.6 and 38.2 km from the
stations PATRA-C and RIO, respectively (Figure 6).

Predictive analysis is first run based on the informa-
tion at the root nodes (including the deterministic ones,
Mw and Re, that describe the earthquake scenario).
Subsequently, multiple independent diagnostic analyses
are performed by entering a piece of evidence one at a
time at the nodes IM2, IM3, RDobs and PAobs and also
by entering all the information at these nodes at the
same time. These analyses are performed with
OpenBugs74 using three MCMC chains generated with
different combinations of initial conditions. This is to
ensure that the three different starting points converge
towards similar posterior distributions. Each chain

contains 10,000 samples, which are obtained by starting
from 60,000 iterations, discarding the first 10,000
(burn-in) and thinning to reduce autocorrelation.
Ultimately, a total of 30,000 samples is used to estimate
the posterior distributions. It is noteworthy that the
time required to perform a single Bayesian Inference
analysis is quite low (of the order of a few seconds on a
standard personal computer.

Figure 7 shows the empirical cumulative distribution
function (CDF) for the prior distribution of the various
parameters of interest, and the posterior distributions
given the observations of the GPS, accelerometers
(Acc) and seismic stations (Map). The results obtained
by combining the observations are also shown for com-
parison (Com). Table 2 reports median values and
standard deviations of the prior and posterior distribu-
tions, together with the observations from the various
sensors.

The prior distribution is characterized by low values
of the various EDPs, as expected, given the low magni-
tude and high epicentral distance of the source. Thus,
the expected losses are zero. The RDs are very small,
though significantly dispersed, with a value of lognor-
mal standard deviation b of the order of 2.8, whereas
the other parameters are characterized by smaller dis-
persion, with values of b of the order of 0.7–0.8. The
information from the sensors generally results in a
reduction of the uncertainty, corresponding to a steeper
empirical CDF for the posterior distributions of the
parameters of interest compared to the prior, and to a
reduced lognormal standard deviation. The use of an
accelerometer clearly outperforms the other sensing
strategies in terms of uncertainty reduction. In particu-
lar, using the accelerometer, the dispersion of the abso-
lute acceleration of the deck reduces from 0.7 to about
0.03, but the dispersion of the RDs remains unvaried,
due to the low correlation between accelerations and
RDs for low seismic intensities, when the RDs are very
low. The reduction of uncertainty of the RDs is not sig-
nificant even if GPS data are used, due to the significant
noise-to-signal ratio, thus resulting in a reduction in the
dispersion of the residual only by 10%. The overall
reduction of uncertainty is more significant if the com-
bined observations from the various sensors are used.
However, there is only a minimal improvement by con-
sidering additional information from other sensors if
the accelerometers are already used, as demonstrated
by the fact that the distributions of all the EDPs, with
the exception of the RD for the Acc and Com cases,
almost overlap.

A larger earthquake (scenario 2) is considered, which
corresponds to a realization generated considering seis-
mic point source 2, with magnitude Mw 6.5, located
20.7 km from the site and 14.6 and 12.7 km from the
stations PATRA-C and RIO, respectively (Figure 6).
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The results corresponding to this realization are shown
in Figure 8 and in Table 3.

In this case, the prior distribution is characterized by
relatively high values of the TD, resulting in a median
drift ratio of 0.78%, which corresponds to an inelastic
behaviour of the pier. However, the median value of the
RD is still very low, as a result of the hysteretic beha-
viour of the pier and the stiffness degradation and
pinching (see Figure 4). The realization considered is

characterized by a high value of the observation of the
accelerometer compared to the prior median estimate,
which results in an increased median value of PA and
of the other response parameters compared to the prior
one. It is noteworthy that the posterior CDFs of all the
monitored random variables (with the exception of the
absolute accelerations) updated considering the obser-
vation of the accelerometer are characteristic of a bimo-
dal distribution. This can again be explained by the

Figure 7. Empirical cumulative distribution function (CDF) of the parameters of interest before and after updating with
observations from scenario 1.

Table 2. Median and lognormal standard deviation of prior and posterior distribution of parameters of interest for a realization
from scenario 1.

Observation
source

Observation RD TD PA IM LR

Median (m) b Median
(m)

b Median
(m/s2)

b Median
(m)

b Median
(–)

b

None (prior) – 1.22 3 1025 2.873 0.0031 0.845 0.389 0.704 0.0019 0.744 0 0
Seismic stations 0.0011 m,

0.0000596 m
1.20 3 1025 2.877 0.00270 0.828 0.351 0.696 0.0017 0.724 0 0

GPS 2.8 3 1024 m 1.02 3 1025 2.599 0.00260 0.834 0.343 0.691 0.0016 0.726 0 0
Accelerometer 0.672 m/s2 1.60 3 1025 2.897 0.00449 0.406 0.695 0.029 0.0028 0.447 0 0
Combined – 1.45 3 1025 2.491 0.005 0.446 0.694 0.029 0.0028 0.486 0 0

RD: residual displacement; TD: peak transient displacement; PA: peak absolute acceleration; IM: intensity measure; LR: loss ratio; GPS: global

positioning system.
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observation that the PA is significantly different from
the median value of the prior (three times higher),
which is also the result of the relatively high noise-to-
signal ratio of the accelerometer. It is also worth obser-
ving that there is also an increase in the dispersion of all
the parameters that are not directly measured by the
accelerometers. The median value of the LR increases
from 0 to 1, although the dispersion increases too.
Using the information from ShakeMaps also results in
a general increase of median values and of dispersion of
the parameters. This is because the observed values of
IM2 and IM3 (0.0627 and 0.0904 m, respectively) are
higher than the median values of the prior estimates
(0.0429 and 0.0488 m, respectively). The GPS observa-
tions do not change the median values significantly but
reduce the dispersions slightly. Combining the observa-
tions from the various sensors results in lower uncer-
tainty in the estimates of the RD, TD, PA and IM
compared to the prior estimates, whereas the uncer-
tainty in the LR remains quite high. This trend may be
explained by the fact that all the observed quantities
(i.e. IMs at seismic stations, RDs and PAs of the bridge)
are consistently higher than the median prior estimates
and thus when the observations are combined, this
results in more confident and less-disperse estimates of
the EDPs. It is noteworthy that in order to properly
quantify the uncertainty reduction, the average results
from multiple realizations of observations must be con-
sidered, as discussed in the section ‘Quantification of

sensors’ effectiveness for uncertainty reduction’ and
done in the subsequent subsection.

Quantification of uncertainty reduction

This subsection describes the results of the quantifica-
tion of the uncertainty reduction for the two earth-
quake scenarios of Figure 6. In particular, Figure 9
illustrates the evolution of the estimates of h for the
various parameters of interest with the number of sam-
ples drawn from scenario 1 (moderate earthquake). The
results for PA when accelerometer observations are
used are not shown because they are very high due to
the low noise-to-signal ratio. It can be observed that
1000 samples are sufficient to achieve quite accurate
estimates of this monitoring effectiveness measure
based on pre-posterior variance analysis for all the
parameters of interest. For the case of the loss ratio LR,
characterized by higher values of h and a lower conver-
gence rate, 2000 samples are required. Considering
more samples would not significantly increase the accu-
racy of the estimates. With this number of samples,
confident estimates of the values of the relative entropy
measure DKL can also be achieved for all the para-
meters of interest.

Tables 4 and 5 show the values of the effectiveness
measures obtained based on the pre-posterior variance
and the reduction of relative entropy for scenarios 1
and 2, respectively. These estimates of h and DKL are

Figure 8. Empirical cumulative distribution function (CDF) of the parameters of interest before and after updating with
observations from scenario 2.
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based on 1000 samples in the case of all the parameters
except LR, for which 2000 samples are used. With
regard to the first measure of effectiveness, it can be
observed that the values of h are all higher than 1 as
expected, since adding information from sensors can
only reduce uncertainty on average. For the same rea-
son, the combined observations from multiple sensors
result in a higher effectiveness, due to the lower var-
iance of the parameters of interest compared to that
obtained with a single sensor’s observation. GPSs are

the most effective sensors for reducing the uncertainty
in the residual drifts, and their effectiveness increases
with the seismic intensity, since for low intensities the
noise-to-signal ratio of the RD is high (the RDs are
zero until the pier yields). Accelerometers are the most
effective sensors for reducing the uncertainty of the
PA, and also of the TD, given the significant correla-
tion existing between PA and TD. The information
from seismic stations located at reasonable distance
from the site does not provide any benefit in terms of

Table 3. Median and lognormal standard deviation of prior and posterior distribution of parameters of interest for a realization
from scenario 2.

Observation
source

Observation RD TD PA IM LR

Median (m) b Median
(m)

b Median
(m/s2)

b Median
(m)

b Median
(–)

b

None (prior) – 9.2 3 1025 2.672 0.042 0.857 2.76 0.696 0.0272 0.744 0 0.04
Seismic
stations

0.0627 m,
0.0904 m

6.67 3 1024 3.0744 0.077 1.040 4.826 0.855 0.0486 0.947 0.08 0.5

GPS 5.4 3 1024 m 0.00023 1.841 0.057 0.702 3.955 0.607 0.0429 0.719 0.03 0.125
Accelerometer 8.103 m/s2 0.0195 2.52 0.194 0.437 8.1 0.002 0.122 0.807 1 1.097
Combined – 0.0008 0.919 0.101 0.172 8.1 0.002 0.065 0.282 0.25 1.339

RD: residual displacement; TD: peak transient displacement; PA: peak absolute acceleration; IM: intensity measure; LR: loss ratio; GPS: global

positioning system.

Figure 9. Evolution with the number of samples of the monitoring effectiveness measure based on pre-posterior variance for the
various parameters of interest and observation sources (scenario 1).
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uncertainty reduction, given the low correlation exist-
ing between the IM at the site and that at the stations.

The reduction of uncertainty achieved for the losses
is high in the case of low seismic intensity, and low for
high seismic intensity. Moreover, in the case of low lev-
els of shaking, sensors mounted on a structure can help
to reduce the uncertainty in the estimation of the shak-
ing intensity, and thus can be used to further improve
ShakeMaps and achieve better estimates of the losses
at structures not directly equipped with sensors. In the
case of strong earthquakes, this effect of uncertainty
reduction in the estimation of the IM is lost.

To shed further light on the reduction of uncertainty
achievable with information on ground-shaking inten-
sity, the case of a ground accelerometer placed at the
base of the structure is also considered, providing an
upper bound of the benefit in terms of uncertainty
reduction derived from the use of ShakeMaps. It can be
observed that if the seismic stations are located very

close to the site, then the information they provide helps
to reduce the uncertainty of the various parameters of
interest. Similar observations were made in other stud-
ies,89,90 indicating that a very dense network of seism-
ometers in the vicinity of the site is required to obtain
accurate estimates of the ground-motion intensity.

With regard to the second measure of the sensors’
effectiveness (DKL), the observed trends are quite simi-
lar to those obtained for the first one, that is, the accel-
erometer mounted on the structure is the most effective
for estimating displacements and accelerations, the
GPS for the residuals, and higher effectiveness is
achieved by combining more and more data. The
reduction of uncertainty associated with ShakeMaps
observations is quite low but slightly higher in the case
of higher seismic intensities. This phenomenon is again
explained by the distance from the two seismic stations
to the bridge site (i.e. around a dozen kilometres),
which is close to the spatial correlation distance of the

Table 4. Pre-posterior variance-based effectiveness measure for estimation of various parameters of interest.

Scenario Mw (–) R (km) Observation source RD TD PA IM LR

1 5 30 Seismic stations (1) 1.002 1.015 1.011 1.025 1.000
GPS (2) 1.110 1.012 1.000 1.017 1.000
Accelerometer (3) 1.010 1.717 9.315 1.504 15.150
Ground accelerometer (4) 1.003 1.982 1.507 28.020 4.575
Combined (1,2,3) 1.120 1.730 9.327 1.524 15.150
Combined (2,3,4) 1.124 2.321 10.009 28.280 42.580

2 6.5 20.7 Seismic stations (1) 1.000 1.000 1.000 1.000 1.000
GPS (2) 1.344 1.055 1.008 1.017 1.086
Accelerometer (3) 1.000 1.477 49.220 1.000 1.921
Ground accelerometer (4) 1.277 1.869 2.164 316.160 1.305
Combined (1,2,3) 1.428 2.305 49.220 1.026 2.348
Combined (2,3,4) 1.579 3.531 50.430 317.826 2.250

RD: residual displacement; TD: peak transient displacement; PA: peak absolute acceleration; IM: intensity measure; LR: loss ratio; GPS: global

positioning system.

Table 5. Reduction of relative entropy-based effectiveness measure for estimation of various parameters of interest.

Scenario Mw (–) R (km) Observation source RD TD PA IM LR

1 5 30 Seismic station (1) 0.045 0.193 0.164 0.472 0.012
GPS (2) 9.004 0.195 0.152 0.323 0.017
Accelerometer (3) 0.121 28.261 182.464 18.838 0.200
Ground accelerometer (4) 0.094 31.891 11.628 211.279 0.176
Combined (1,2,3) 9.729 28.625 182.279 18.960 0.201
Combined (2,3,4) 11.403 58.142 184.095 211.551 0.200

2 6.5 20.7 Seismic station (1) 0.374 1.217 1.259 5.415 0.073
GPS (2) 31.771 8.794 6.296 12.151 0.139
Accelerometer (3) 31.983 72.592 215.994 111.206 34.637
Ground accelerometer (4) 4.126 27.991 41.805 220.421 4.067
Combined (1,2,3) 51.566 119.331 216.049 112.024 36.688
Combined (2,3,4) 62.447 132.049 214.224 220.441 32.072

RD: residual displacement; TD: peak transient displacement; PA: peak absolute acceleration; IM: intensity measure; LR: loss ratio; GPS: global

positioning system.
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Jayaram and Baker47 model, that is, 15.9 km. As a
result, the updates made to the values of the IM are
much reduced, highlighting the need to deploy dense
networks of seismic stations around exposed assets.

The only significant difference between the trends of
the two effectiveness measures is for the LR estimates
for scenario 1, characterized by high values of h for the
accelerometer and combined observations, and gener-
ally low values of DKL for all the observations. The
opposite trend is observed for scenario 2. This discre-
pancy can be caused by the fact that the losses are gen-
erally very small, with a median value of 0 of the prior
distribution. Moreover, in contrast to what is observed
using the other effectiveness measurement, the reduc-
tion of uncertainty in the IM due to the observations is
quite significant.

Conclusion and future work

This article illustrates a Bayesian framework for near
real-time seismic damage assessment of critical struc-
tures that exploits heterogeneous sources of informa-
tion from ShakeMaps, GPS receivers and
accelerometers placed on the structure. Two alternative
measures are proposed for quantifying the reduction of
uncertainty from the observations, based on the con-
cepts of pre-posterior variance and relative entropy
reduction. The proposed framework is applied to inves-
tigate the effectiveness of the alternative sensing strate-
gies for the rapid estimation of the response and the
losses at a bridge under a moderate and a strong earth-
quake scenario.

Based on the observed results, the following conclu-
sions can be drawn:

� Among the sensors considered, the GPS sensor pro-
vides the best results in terms of uncertainty reduc-
tion when used to compute RDs of the piers,
whereas the accelerometer placed at the top of the
deck provides the best results in terms of reducing
the uncertainty in the estimate of the absolute
accelerations and drifts. The expected effectiveness
of ShakeMaps is quite low, unless a seismic station
is located very close to the structure.

� The effectiveness of the sensors changes signifi-
cantly with the shaking intensity. In the case of low
shaking intensity, the effectiveness of the sensors in
reducing the uncertainty is jeopardized by noise/
measurement errors, particularly in the case of
RDs. These errors become less significant in the
case of high seismic shaking.

� When the data from different sensors are combined
together through the proposed BN, higher

reductions of uncertainty are achieved as compared
to when only single observation sources are consid-
ered separately.

� The reduction of uncertainty in the losses can be
very significant, whereas that in the estimate of the
seismic shaking intensity is generally quite low.

� The two measures of the monitoring effectiveness
provide consistent results for most of the observed
parameters and can be used interchangeably to
quantify the reduction of uncertainty achievable
with a monitoring strategy.

Future studies will address the quantification of the
effectiveness of earthquake early warning techniques
with a similar approach to that developed in this study
and will also address alternative structural health moni-
toring schemes. Moreover, the proposed framework
and results of these analyses will be used to develop a
decision support system for bridges under extreme sce-
narios and to define optimal actions based on expected
utility theory concepts. While the present study has
demonstrated theoretical concepts on an arbitrary case
study, further efforts within the TURNkey project
(http://www.earthquake-turnkey.eu) may lead to an
actual test and implementation of the approach, includ-
ing the collection of real measurements.
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