
HAL Id: hal-03517857
https://brgm.hal.science/hal-03517857

Submitted on 28 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Water and soil contaminated by arsenic: the use of
microorganisms and plants in bioremediation

Fabienne Battaglia-Brunet, Philippe Bertin, Simona Crognale, Frédéric
Plewniak, Simona Rossetti, Michel J Mench

To cite this version:
Fabienne Battaglia-Brunet, Philippe Bertin, Simona Crognale, Frédéric Plewniak, Simona Rossetti, et
al.. Water and soil contaminated by arsenic: the use of microorganisms and plants in bioremediation.
Environmental Science and Pollution Research, 2021, �10.1007/s11356-021-17817-4�. �hal-03517857�

https://brgm.hal.science/hal-03517857
https://hal.archives-ouvertes.fr


https://doi.org/10.1007/s11356-021-17817-4

REVIEW ARTICLE

Water and soil contaminated by arsenic: the use of microorganisms 
and plants in bioremediation

Philippe N. Bertin1  · Simona Crognale2 · Frédéric Plewniak1 · Fabienne Battaglia‑Brunet3 · Simona Rossetti2 · 
Michel Mench4 

Received: 17 February 2021 / Accepted: 23 November 2021 
© The Author(s) 2021, corrected publication 2021

Abstract
Owing to their roles in the arsenic (As) biogeochemical cycle, microorganisms and plants offer significant potential for 
developing innovative biotechnological applications able to remediate As pollutions. This possible use in bioremediation 
processes and phytomanagement is based on their ability to catalyse various biotransformation reactions leading to, e.g. the 
precipitation, dissolution, and sequestration of As, stabilisation in the root zone and shoot As removal. On the one hand, 
genomic studies of microorganisms and their communities are useful in understanding their metabolic activities and their 
interaction with As. On the other hand, our knowledge of molecular mechanisms and fate of As in plants has been improved 
by laboratory and field experiments. Such studies pave new avenues for developing environmentally friendly bioprocessing 
options targeting As, which worldwide represents a major risk to many ecosystems and human health.
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Introduction

Arsenic (As), which is often considered a non-essential 
element except for some organisms (but would be in fact 
an ultratrace element) and classified as a carcinogen, is a 
common contaminant of water, soil and food, and a global 
danger to human health (Nordstrom 2002; Zhao et al. 2010; 
ATSDR 2017; Marchant et al. 2017; da Silva et al. 2018a). 
Drinking water being considered as the main source of As 
ingestion, WHO recommended 10 µg  L−1 as the As drinking 
water guideline value (WHO 2017), which has been adopted 

as the concentration limit in drinking water in most coun-
tries. Only a few guideline values for As concentrations in 
foodstuffs were defined. In Europe (EU 2015/1006), As con-
centration limits are given for some rice products (from 0.1 
to 0.3 mg  kg−1 wet weight). An acute or chronic exposure to 
As excess can cause many diseases, including various cancer 
forms. Its presence in water is one main source of contami-
nation, but many studies have demonstrated its presence in 
fishes and crops from contaminated areas (Carlin et al. 2016; 
Jackson et al. 2012; Manjón and Ramírez-Andreotta 2020; 
Molin et al. 2015; WHO 2011; Zhao 2020). In several Chi-
nese provinces, As-contaminated farmland impairs rice pro-
duction (Li et al. 2019b). Irrigation of agricultural soils with 
As-rich water may contribute to As accumulation in soil and 
crops, and its entry into the food chain (Sandhi et al. 2018).

From natural or anthropogenic sources, As is present 
worldwide in the environment and many areas have a 
high As geochemical background suffering from soil and 
groundwater contamination, e.g. Chaco-Pampean plain in 
Argentina, West Bengal in India, Bangladesh, South-East 
Asia, and Limousin in France (Singh et al. 2015; March-
ant et al. 2017; Antoni et al. 2019). Soil As contamination 
oftenly increases due to anthropogenic activities, e.g. As 
wood preservatives and treated wood washings, glassworks 
and crystal, mining and tailings, smelting, semiconductors, 
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electronics and batteries, paints, toner, weapons, adhesives, 
disposal of industrial effluents, fossil fuel combustion, pesti-
cides, and P fertilisers (Belon et al. 2012; Singh et al. 2015; 
Tóth et al. 2016; Reimann et al. 2017; Navazas et al. 2019). 
Mid-2018, 1355 out of 6808 French polluted sites (19.9%) 
display an As contamination, including 806 sites for soils 
and 317 ones for soils and groundwater (Antoni et al. 2019). 
More than 600 As-contaminated sites require remediation 
in the USA (da Silva et al. 2018a, 2019a). Reducing As 
accumulation in rice is a top priority in the management of 
Chinese contaminated soils (Zhao 2020).

Background values for total soil As (in mg  kg−1) usually 
range from 0.1 to 67 with an average value around 5 (Singh 
et al. 2015; da Silva et al. 2018a), e.g. frequent French val-
ues: 1–25 and geochemical outliers: 30–60, median and 
mean values for French topsoils: 12 and 18 (Baize 2016). 
French topsoils exceeding potential guideline values 
(45–50 mg As  kg−1) occur in localised hot-spots primar-
ily attributed to geology and mineralisation, mining, pes-
ticides, and some anthropogenic activities (Marchant et al. 
2017). Mean, median, minimum, maximum, and outlier 
values in English topsoils are respectively (mg As  kg−1): 
16, 14.1, < 0.5, 1008, and 555–15,100 (Ander et al. 2013).

Major bioavailable As forms are arsenates (As(V), 
i.e.  H2AsO4

− and  HAsO4
2−) and arsenites (As(III), 

i.e.  H3AsO3, and  H2AsO3
−). Arsenical species depend on 

soil types, pH and their redox status, their toxicity ranking 
as As(III) > As(V) > organic forms: monomethylarsonic acid 
(MMA) > dimethylarsinic acid (DMA) (Jain and Ali 2000). 
Inorganic As forms react with soil Al/Fe/Mn oxides, Ca/
Mg carbonates, and clay minerals whereas dissolved organic 
matter can promote As desorption (Kumpiene et al. 2019). 
Arsenical species display contrasting properties for their 
sorption to Fe/Mn-containing minerals, depending on soil 
pH and other soil factors (Vega et al. 2017; Kumpiene et al. 
2019). As(V) generally predominates in aerobic conditions, 
while As(III) prevails under anaerobic conditions being 
more (bio)available than As(V). Various organic arsenicals 
are reported (Singh et al. 2015). Soil flooding and aerobic-
anaerobic transitions affect As speciation, sorption, and bio-
availability in relation to the soil redox status and potential 
releases due to Fe oxyhydroxide dissolution (Li et al. 2019b; 
Zhao 2020). One option to reduce As exposure in contami-
nated soils and water is the use of Fe/Mn-based minerals 
and their derivatives in line with As speciation. However, 
bioremediation options for As-contaminated soils must gen-
erally address both metal(loid)s and xenobiotics, account-
ing for benefits and limits, including energy and C balance 
(Plewniak et al. 2018; Gonzalez-Martinez et al. 2019).

Maximum permitted concentrations are in force or guide-
line values proposed in several countries according to the use 
(e.g. for drinking water and soil, WHO 10 µg As  L−1 and US 
EPA 24 mg As  kg−1, respectively), but this is hampered by 

the bioavailable As fraction and the variability of soil types. 
Remediation costs, time frame, water and soil volumes to 
treat with physico-chemical technologies, and by-products/
secondary contamination to manage are frequently not finan-
cially and technically sustainable. This leads most countries 
to adopt a risk-based management system to manage/reme-
diate polluted sites and soils, e.g. France (Info Terre 2017), 
UK (Jiang et al. 2015). This review aims to inventory the 
current knowledge on the interactions between As, microbes 
and plants, supporting the development of promising meth-
ods based on microbiological processes or phytotechnolo-
gies that could therefore be useful to reduce the harmful 
effects on human health due to As contamination of soils 
and groundwater.

From microbial genomics to metagenomics

Throughout geological periods, microorganisms have occu-
pied multiple ecological niches, including those whose 
physico-chemical conditions are deemed to be extreme. The 
diversity of their metabolic activities is pivotal in biogeo-
chemical cycles, which can have a deep impact on water 
quality and soil productivity (Madsen 2011). In addition, 
they represent a huge gene reservoir, many of which are 
still of unknown function and which could present a strong 
potential for developing biotechnological applications (Yang 
and Ding 2014, Krüger et al. 2018).

The rise of molecular biology and the considerable 
advances in DNA sequencing methods have contributed to 
the emergence of genomics, whose methods aim to study 
the organisation and activity of living organisms based on 
the understanding of their genome (Bertin et al. 2015, Land 
et al. 2015). However, data on microbial diversity within 
ecosystems provided by conventional molecular methods 
have revealed that a large majority of microorganisms belong 
to taxa for which no representative has been isolated yet in 
pure culture (Rashid and Stingl 2015). Indeed, the culture of 
a majority of them can be extremely tedious and, therefore, 
accessing their genome and their metabolic potential could 
be facilitated by the use of environmental genomics meth-
ods. For example, the genome of a new uncultured betapro-
teobacterial species was assembled from metagenomic data 
obtained from a polymetallic mine. The physiology of this 
strain, i.e. ‘Candidatus Gallionella acididurans’, was inves-
tigated, in particular regarding Fe metabolism (Kadnikov 
et al. 2016). Likewise, the genome of a Ferrovum bacterial 
strain, able to oxidise Fe, was rebuilt using a mixed culture 
made from samples taken in a mining water treatment plant 
(Ullrich et al. 2016), and both metagenomic and metatran-
scriptomic data (Plewniak et al. 2020).

Combined with genome bioinformatic analysis, molecular 
techniques have proven to be valuable tools for deciphering 
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genomic data (Vallenet et al. 2017, Machado et al. 2017). 
Nevertheless, cultural approaches are still required in micro-
biology to broaden our knowledge of the microorganism 
physiology for exploiting their properties in bioremediation 
strategies (Overmann et al. 2017). Such approaches repre-
sent a significant challenge because microorganisms isolated 
from various environments can grow extremely slowly and 
may require specific nutrients and growth conditions. Con-
sequently, the genome characterisation of an organism can 
be used to try to identify its metabolic characteristics and 
use them to attempt to cultivate it (Garza and Dutilh 2015). 
The isolation of Leptospirillum ferrodiazotrophum, an aci-
dophilic Fe-oxidising bacterium is an example (Tyson et al. 
2005). Similarly, from environmental DNA sequencing, 
non-cultured ‘Candidatus Desulforudis audaxviator’ was 
described as virtually the only species identified in a gold 
mine (Chivian et al. 2008), until another strain with a highly 
similar genome was isolated from a deep aquifer in Siberia 
and grown in laboratory conditions (Karnachuk et al. 2019).

The genome of several microorganisms metabolising As 
has been characterised from various ecosystems, as well as 
the genes involved in the various aspects of this metabolism 
(Fig. 1, Andres and Bertin 2016, Ben Fekih et al. 2018). 
The first described bacterium is Herminiimonas arsenicoxy-
dans, a β-proteobacterium isolated from an industrial water 

treatment plant. It is resistant to high As concentrations and 
able to oxidise As(III) to As(V) (Muller et al. 2007). Based 
on functional genomics, a biphasic response to the As pres-
ence occurs: H. arsenicoxydans firstly activates resistance 
mechanisms partly based on efflux pumps; then the meta-
bolic processes driving to the As(III) oxidation are triggered 
(Cleiss-Arnold et al. 2010, Koechler et al. 2010). Based on 
electron microscopy, this strain synthesises an exopolysac-
charide (extracellular polymeric substance: EPS) able to 
sequester As in its matrix (Muller et al. 2007). The strain 
Thiomonas sp. 3As, isolated from an abandoned mine in 
southern France, also produces significant EPS amounts 
when exposed to arsenite; it would be therefore a relevant 
candidate for developing bioremediation processes based 
on biofilm-based bioreactors (Arsène-Ploetze et al. 2010). 
Unlike the previous two, a Rhizobium strain isolated from 
a gold mine in Australia carries the genes involved in the 
resistance and detoxification of As on a plasmid. Such a 
genetic tool could be interesting from a phytoremediation 
perspective by transferring the As detoxification capacity 
to related plant-associated bacteria (Andres et al. 2013). 
Finally, we can mention the genome of two hyper-As(III)-
tolerant strains able to oxidise arsenite: Halomonas A3H3 
and Pseudomonas xanthomarina S11, respectively iso-
lated from the Mediterranean Sea-contaminated sediments 

Fig. 1  Genomic studies applied 
to isolated microorganisms and 
microbial communities can 
provide information about their 
metabolic capacities. Predic-
tions of trophic and energy 
metabolism may thus help 
design or improve an efficient 
growing medium. Other meta-
bolic activities involving arsenic 
(methylation, reduction, and 
oxidation) or whose products 
can interact with arsenic may 
be leveraged for As removal by 
either volatilisation, precipita-
tion, or adsorption
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(Koechler et al. 2013) and a French old gold mine (Koechler 
et al. 2015).

High-throughput sequencing techniques and the devel-
opment of assembly software are continuously improved 
and facilitate to determine the genomic sequences of non-
cultured microorganisms by direct sequencing of environ-
mental DNA extracted from complex microbial communities 
(Fig. 1). Even though some problems remain concerning 
notably sampling, collating, and annotating (Thomas et al. 
2012, Teeling and Glöckner 2012), in 2018 the Genomes 
Online database contained nearly 40,000 analysed metage-
nomes (Mukherjee et al. 2018). This number should fur-
ther increase accounting for gigantic projects like the Earth 
Microbiome Project. Nearly 500,000 genomes would indeed 
be used to build a global genetic atlas of microbial com-
munities (Gilbert et al. 2010; Thompson et al. 2017; Danko 
et al. 2019).

Currently, environmental descriptive and functional 
genomics can provide a comprehensive overview of micro-
bial communities extending studies focusing on specific 
organisms. Such a global vision of both community struc-
ture and functioning would improve our understanding of 
natural remediation processes and help to find candidate spe-
cies suitable for designing bioprocesses. In line, ecological 
questions related to the diversity and dynamics of micro-
bial populations can be addressed using high-throughput 
sequencing methods. For example, bacterial, archaeal and 
fungal communities in rice paddy soils were inventoried 
by such approach, and shown to be strongly affected by 
irrigation with waters contaminated by metals such as Cu, 
Pb, and Zn (Wang et al. 2018b). Environmental DNA and 
RNA sequencing was also successfully used to analyse the 
response of bacteria belonging to a new deltaproteobacte-
rial order, ‘Candidatus acidulodesulfobacterales’. Based on 
metabolic pathways reconstructed from metagenome-assem-
bled genomes (MAG) and gene expression profiles, these 
microorganisms would be facultative anaerobic autotrophs 
possibly involved in Fe cycling (Tan et al. 2019).

Similarly, environmental genomics have been used on As-
contaminated ecosystems (Andres and Bertin 2016; Huang 
et al. 2016). For example, seven microbial genomes pre-
sent in an acid mine drainage (AMD) (Carnoulès, France) 
were almost completely reconstructed. The combination 
of the metabolic activities of the corresponding microor-
ganisms, in particular the oxidation of arsenite and its co-
precipitation with Fe and S, leads to a natural attenuation 
process, which greatly reduces the As concentration along 
the stream (Bertin et al. 2011). Recently, a metatranscrip-
tomic study of Carnoulès AMD sediment samples shed light 
on how food webs may affect the structure and activities 
of microbial communities in such environments. In par-
ticular C:N and N:P ratios, influenced by the presence of 
metazoa and the riparian vegetation, may be pivotal, along 

with predation patterns, in shaping microbial communities 
(Plewniak et al. 2021). Another study has compared sedi-
ments extracted from two ports in the Mediterranean Sea. 
The specific sequences belonging to bacteria metabolising 
S match with both the biotic reduction of sulfates and the 
abiotic production of thioarsenical compounds. These ele-
ments being highly soluble, this likely explains why the 
most contaminated site has higher As mobility (Plewniak 
et al. 2013). Moreover, 27 genomes of Micrarcheota and 12 
Parvarchaeota were assembled from 12 metagenomes from 
the Richmond mine, California. These organisms could 
participate in C and N cycles by degrading organic mat-
ter and be key players in Fe oxidation (Chen et al. 2017). 
Therefore, many microbial communities and their hosted 
organisms metabolising Fe, S, and As could be candidates 
for the development of novel bioremediation processes. In 
this regard, sulfate-reducing bacteria resistant to metal(loid)s 
and acidic conditions were used to remove As from an AMD 
(Serrano and Leiva 2017).

Arsenic microbial metabolisms 
and bioremediation

Conventional technologies for As removal from As-rich 
waters mainly include physico-chemical treatments like 
alum, Fe and Mn precipitation, enhanced lime softening, 
ion exchange, electro dialysis, reverse osmosis, coagula-
tion/filtration, and adsorption (Ng et al. 2004; Nicomel et al. 
2016). For reducing management costs and enhancing the 
water treatment capacity, several adsorption technologies 
have been developed (Mohan and Pittman 2007; Nicomel 
et al. 2016). Considering that these technologies are very 
effective in removing As(V), a pre-oxidation step allowing 
the conversion of As(III) to As(V) is often required. For this 
purpose, strong chemical oxidising agents are commonly 
utilised (Katsoyiannis et al. 2002; Simeonova et al. 2005).

Over the last years, the use of biological processes for As 
removal has been widely investigated and a large number of 
potential applications were proposed to remediate As-con-
taminated ecosystems due to their environmental compat-
ibility and cost-effectiveness (Kruger et al. 2013; Plewniak 
et al. 2018; Sher and Rehman 2019; Upadhyay et al. 2018; 
Wang and Zhao 2009). Among the bacterial As-remediation 
processes, biosynthesis of adsorbent materials, biovolatili-
sation, bioprecipitation and biosorption are mostly applied 
(Fig. 1, Fazi et al. 2016a). The occurrence of sulfides and 
biogenic iron oxides in groundwater facilitates As biopre-
cipitation resulting in a low As concentration (Omoregie 
et al. 2013). Many bacteria, indeed, are able to reduce As-, 
Fe-, and Mn-bearing minerals and promote As sorption 
onto freshly formed hydrous ferric oxide (HFO) (Katsoy-
iannis and Zouboulis 2004; Omoregie et al. 2013). Many 
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microorganisms may also produce adsorbent materials, such 
as FeOOH nanoparticles within extracellular polymeric sub-
stance (EPS) hydrogel (Fe-EPS), used to treat As-rich drink-
ing water (Casentini et al. 2015; Mandal et al. 2006). In 
addition, biosorption processes could be applied for remov-
ing metal(loid)s and other elements from diluted aqueous 
solutions even though few studies reported its application in 
drinking water treatment (Mohan and Pittman 2007; Hasan 
et al. 2010; Prasad et al. 2013).

Although with a limited impact on aquifer contamina-
tion, biovolatilisation may contribute to the As removal 
from soil and water (Jakob et al. 2010; Lloyd 2010; Liu 
et al. 2011). Arsenic methylation is considered a key player 
of the As cycle on Earth (Bhattacharjee and Rosen 2007). 
Volatile arsenic is formed through a consecutive transforma-
tion of inorganic As to methylated species (Rahman et al. 
2014). In spite of this process being widely investigated, 
its exploitation for bioremediation purposes is still limited 
(Zhang et al. 2015a; Wang and Zhao 2009). Indeed, although 
many microbes may aerobically or anaerobically perform 
the methylation of As species, low rates of biological As 
volatilisation are reported in soil (< 10% of total As content) 
(Liu et al. 2011). The first described microorganism able 
to convert As(V) to volatile methylarsines is Methanobac-
terium bryantii (McBride and Wolfe 1971). Achromobac-
ter sp. and Enterobacter sp. have the capability to convert 
As(V) to mono- and di-methylarsine, while Aeromonas sp. 
and Nocardia sp transform this element in mono-, di-, and 
trimethylarsine (Cullen and Reimer 1989). Although the vol-
atilisation is considered a detoxification process, it produces 
highly toxic species whose availability in soils and ground-
water can represent a serious threat (Bentley and Chasteen 
2002; Wang and Mulligan 2006).

Arsenic oxidising microorganisms

Among the bioprocesses involved in the regulation of As bio-
geochemical cycle in aquifers, the capability of microorgan-
isms to transform As through oxidation–reduction reactions 
are of great interest in As bioremediation applications. In 
recent years, the As(III) oxidation mediated by microorgan-
isms has assumed increasing importance as a precursor step 
of commonly used iron-based treatment methods (Crognale 
et al. 2017; Fazi et al. 2016a). Usually, chemical oxidising 
reagents (e.g. chlorine, potassium permanganate, manganese 
oxide, hydrogen peroxide, and ozone) are added to the water 
(Driehaus et al. 1995; Kim and Nriagu 2000). However, this 
chemical pre-oxidation may cause secondary problems due 
to the occurrence of residuals or by-products formation, and 
a significant increase in operational costs (Katsoyiannis and 
Zouboulis 2004). To circumvent these limitations, the micro-
biological As(III) oxidation has been proposed as an eco-
friendly alternative to conventional chemical pre-treatment 

methods (Bahar et al. 2013). Several As(III)-oxidising micro-
organisms have been recovered in various As-rich environ-
ments including geothermal sites, soils, sediments, mine, 
arsenical pesticides and smelter-impacted sites (Engel et al. 
2013; Fazi et al. 2016b; Heinrich-Salmeron et al. 2011; Lami 
et al. 2013; Paul et al. 2018; Quéméneur et al. 2008, 2010; 
Satyapal et al. 2018; Sultana et al. 2012; Thul et al. 2019). 
The As(III) oxidation is a detoxification process in hetero-
trophic bacteria (Bahar et al. 2012; Muller et al. 2003; Van-
den Hoven and Santini 2004), or an energetic metabolism in 
chemolithoautotrophic microorganisms, such as Rhizobium 
NT-26 and T. arsenivorans (Battaglia-Brunet et al. 2006; 
Garcia-Dominguez et al. 2008; Hoeft et al. 2007; Santini 
et al. 2000). The capability of microorganisms to anaerobi-
cally oxidize As(III) in combination with nitrate respiration 
or anoxygenic photosynthesis is reported in several studies 
(Cui et al. 2018; Hoeft et al. 2007; Kulp et al. 2008; Ospino 
et al. 2019; Zargar et al. 2012; Zhang et al. 2015b, 2017). Over 
the last years, lab-scale experiments have been performed on 
immobilised bacteria, biofilms, and planktonic cells to better 
elucidate the potential of the aerobic biological As(III) oxi-
dation process in water treatment (Battaglia-Brunet et al. 
2002; Dastidar and Wang 2012; Ito et al. 2012; Michel et al. 
2007; Michon et al. 2010). The capability to oxidise As(III) is 
reported in several bacterial strains, e.g. Aliihoeflea sp. 2WW, 
Bacillus spp., Bosea sp. AS-1, Delftia spp. BAs29, Ensifer 
adhaerens, Micrococcus sp., Pseudomonas chengduensis, and 
T. arsenivorans (Biswas and Sarkar 2019; Biswas et al. 2019; 
Corsini et al. 2014; Ito et al. 2012; Jebelli et al. 2018; Lu et al. 
2018; Roychowdhury et al. 2018; Wan et al. 2010).

A fixed bed up-flow filtration unit allowing for the simul-
taneous biotic oxidation and removal of As(III) and Fe(II)/
Mn(II) has been developed and tested in several studies 
(Hassan et al. 2009; Katsoyiannis and Zouboulis 2004; Kat-
soyiannis et al. 2004; Tani et al. 2004). Few investigations 
have combined biological As(III) oxidation with the use of 
activated alumina and metallic Fe adsorbents to remove As 
(Ike et al. 2008; Wan et al. 2010). The use of a polarised 
electrode as terminal electron acceptor for the bioelectro-
chemical As(III) oxidation has been recently investigated 
(Pous et al. 2015; Nguyen et al. 2017). Additionally, the 
cathodic electroactivity of a new chemolithoautotrophic 
arsenite oxidising bacterium, Ancylobacter Ts-1 has been 
proved suggesting the potential application of bioelectro-
chemical process in bioremediation of natural and bio-engi-
neered environments (Anguita et al. 2018).

As(III) oxidising biofilms can play a key role in the 
design of simple passive bio-processes (Battaglia-Brunet 
et al. 2005). Initially, this approach has been investigated 
by using mixed microbial communities or populations 
recovered from As-rich extreme environments. For exam-
ple, an autotrophic As(III) oxidising bacterial population, 
named CAsO1, has been tested at lab-scale in a fixed bed 
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column reactor revealing a high capability in oxidising 
As(III) at a rate of 166 mg  L−1  h−1 (Battaglia-Brunet et al. 
2002, 2005). Due to the formation of an EPS matrix, the 
biofilm may act as a physical barrier for several parti-
cles, cations, anions and apolar compounds occurring in 
the water (Flemming and Wingender 2010; Michel et al. 
2007). The application of As(III) oxidising biofilms in 
combination with Fe- and Fe-/Mn-oxidation processes 
may increase the efficiency of simultaneous As-, Fe-, and 
Mn- removal from groundwater (Casiot et al. 2006; Has-
san et al. 2009; Katsoyiannis and Zouboulis 2004; Kat-
soyiannis et al. 2004, 2007; Tani et al. 2004). Moreover, 
the As(III)-oxidising biofilters have high potentialities in 
the treatment of As-contaminated groundwater (Crognale 
et al. 2019; Gude et al. 2018; Li et al. 2016; Yang et al. 
2014). Up to 150 mg As  L−1 ( ̴ 98.2% of total As), 1.5 mg 
Fe  L−1 and 1.2 mg Mn  L−1 have been simultaneously 
removed from groundwater within 180  days by using 
quartz sand biofilter (Yang et al. 2014). Li et al. (2016) 
reported the capability of a lab-scale biofilter, inoculated 
with an As(III)-oxidising population to oxidise 1.1 mg 
As(III)  L−1 within 10 min. Gude et al. (2018) have tested 
the As(III) oxidising potentialities of a biofilter started up 
with a native As-rich groundwater microbial community 
showing the importance of initial acclimation to As(III)-
rich groundwater. Indeed, up to 98% of 0.1 mg  L−1 of 
As(III) has been oxidised in 38 days by using a not-accli-
mated biofilter and within three weeks with a biofilter pre-
viously exposed to As-contaminated groundwater (Gude 
et al. 2018). Crognale et al. (2019) have tested the biofilter 
potentialities using autochthonous As-rich groundwater 
microbial communities under experimental conditions 
mimicking those used in household-scale treatment sys-
tem (Casentini et al. 2016). This study evidenced a high 
oxidation efficiency (up to 90% of 0.1 mg As(III)  L−1 in 
3 h) in a biofilter filled with coarse sand.

The use of combined As(III) and Fe(II) bio-oxidising 
activities was developed for treating a neutral pH surface 
water containing 5 to 12 mg Fe  L−1 and 0.2 to 2.0 mg 
As  L−1 - with 50 to 100% As(III) - in an entirely passive 
system at the Loperec site (Finistère, France) (Battaglia-
Brunet et al. 2006). Bacteria developed as a biofilm com-
posed of a complex community, on pozzolana support, and 
promoted the precipitation of Fe hydroxides (ferrihydrite) 
as an efficient adsorbent for As(V) resulting from bacte-
rial As(III) oxidation. This process implemented at real 
scale since 2017 is treating an average 15  m3  h−1 flux of 
water flowing from an exploration gallery. The residence 
time optimised at the laboratory could be decreased to 
0.5 h without affecting the treatment efficiency, the total 
As concentration being reduced below the 100 µg  L−1 limit 
for discharge in the environment.

Bioreduction mechanisms for As bio‑precipitation

In low-pH conditions, characteristic of AMD, efficient Fe 
precipitation can be problematic. In other polluted waters, 
Fe concentration in the water to be treated is too low for 
the efficient co-precipitation of As with Fe. An alternative 
to oxidising processes can be the bio-precipitation of As 
sulfides with the help of bacteria able to perform the dis-
similatory reduction of sulfate, sulfate-reducing bacteria 
(SRB), and bacteria able to reduce As(V) into As(III), either 
through dissimilatory As(V) reduction or As(V) reduction 
linked to the As resistance system. Arsenate respiration is 
based on the activity of the arsenate respiratory reductase 
(ARR, Afkar et al. 2003). This enzyme is a periplasmic 
dimethyl sulfoxide (DMSO)-type reductase that reduces 
As(V) to As(III) (Saltikov and Newman 2003). Arsenic, in 
the As(III) state, precipitates with sulfide to form the insolu-
ble yellow amorphous orpiment  As2S3. Eary (1992) was the 
first to report solubility data for amorphous  As2S3, which 
suggested the following two equilibria:

When sulfide concentration exceed 1 mg  L−1, soluble 
complex thioarsenate species would form at circa neutral 
and higher pH (Smieja and Wilkin 2003).

The first characterised sulfate-reducing organism able to 
use As(V) as terminal electron acceptor was isolated from 
surface sediments of the Upper Mystic Lake, Massachusetts, 
USA (Newman et al. 1997a, b). This bacterium described as 
Desulfosporosinus auripigmenti (Stackebrandt et al. 2003) 
is a freshwater, gram-positive, non-motile, strictly anaero-
bic chemoorganotroph. It oxidises  H2, lactate, pyruvate, 
butyrate, ethanol, glycerol, and malate for its growth con-
comitantly with the reduction of either sulfate or arsenate. 
Macy et al. (2000) worked with two SRB able to reduce both 
As(V) and  SO4 concomitantly. One of them, Desulfomicro-
bium Ben-RB, used As(V) as terminal electron acceptor. The 
second SRB, Desulfovibrio Ben-RA, reduced As(V) through 
an As resistance system. Although Desulfovibrio Ben-RA 
did not perform dissimilatory As(V) reduction, it was able 
to promote  As2S3 precipitation. Both D. auripigmenti, Des-
ulfomicrobium Ben-RB and Desulfovibrio Ben-RA were 
grown in near-neutral pH conditions.

Another SRB related to D. auripigmenti was isolated 
from sediments of the polluted Onondaga Lake (Syracuse, 
NY, USA). This As(V) respiring isolate, named strain Y5, 
can utilise aromatic substrates (Liu et al. 2004). Both D. 
auripigmenti and strain Y5 are spore-forming rods. The lack 
of motility differentiates D. auripigmenti from the other 
Desulfosporosinus strains (D. orientis, D. meridiei and 
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strain Y5). In this group, only D. auripigmenti and strain 
Y5 are known to reduce As(V). Demergasso et al. (2007) 
obtained enrichments and isolates from boron deposits in 
Andean salt flats. Two strains isolated, CC-1 and Asc-3 grew 
using  SO4 or As(V) as electron acceptors. The nearest phy-
logenetic relatives (based on 16S rRNA sequences) of CC-1 
and Asc-3 are Pseudomonas sp. PHLL and Enterobacter sp. 
BL2, respectively.

Bio-precipitation of As sulfide from synthetic acid solu-
tions was performed in continuously fed laboratory column 
bioreactor (Battaglia-Brunet et al. 2012). In this system, the 
acid (pH 2.7 to 5) feeding solution contained 100 mg As(V) 
 L−1, and glycerol or  H2 were provided as energy sources. 
Bacteria embedded in As- and S-rich mineral phases were 
observed at the surface of the bioreactor filling material 
(Fig. 2). The removal rate reached 2.5 mg As  L−1  h−1. The 
diverse bacterial community developed in the bioreactor 
included Desulfosporosinus-like sulfate-reducing bacteria 
and fermenting ones. The retrieved arrA sequences were 
100% identical to that of the As(V)-respiring SRB strain 
Desulfosporosinus Y5 (Liu et al. 2004); this suggested that 
a Desulfosporosinus-related bacteria contributed to As(V) 
reduction via a dissimilatory mechanism.

With a real As-rich AMD water containing 90 mg As 
 L−1 (Carnoules site, Gard, France), growth of SRB induc-
ing precipitation of the As sulfides orpiment and realgar, 
together with ZnS nanoparticles, has been proven in batch 
experiments (Le Pape et al. 2017). This bioprocess was then 
tested at laboratory scale in continuous feeding conditions 
(Battaglia-Brunet et al. 2021) and is currently up-scaled to 
be tested on site. Up to now, As removal in SRB systems was 
reported at real scale on a few sites, but with mine waters 
and effluents less acidic than that of the Carnoules site. One 

is located at the Wood Cadillac mine, Northwestern Que-
bec, which features sulfide poor but As rich, tailings, laid 
down between 1939 and 1949 (Tassé et al. 2003). A biofilter 
(50 m × 57 m, 1 m thick, vertical flow and residence time of 
25 h) was implemented, with wood chips as low-rate deliv-
ered energy source, to treat mine water at pH 6–7 with rela-
tively low As concentrations (0.1 to 1.2 mg  L−1). Another 
real scale application has been implemented near the city of 
Trail in British Columbia, Canada (Al et al. 2011). Anaero-
bic biofilters filled with a mixture of limestone, quartz sand 
and biosolids, a by-product of the pulp and paper industry, 
are treating effluent water from smelting operations at pH 5.9 
containing around 50 mg As  L−1. The size of both bioreac-
tors in series are 18 × 30 m and 18 × 25 m, and the residence 
time of the water in these two systems is 720 and 600 h, 
respectively.

Phytoremediation of As‑contaminated soils

Phosphate transporters (Pht) mediate root uptake of 
As(V), which competes with phosphates (Farooq et  al. 
2016; Kofronova et al. 2018, Vromman et al. 2018, Zhao 
and Wang 2020). In Pteris vittata (As hyperaccumulator) 
three genes would collaborate, i.e. PvPht1;3, a phosphate 
(P) transporter gene; PvACR2, an As(V) reductase gene; 
and PvACR3, an As(III) transport gene, in sensitive As(V) 
absorption, constitutive As(V) reduction, and subsequent 
As(III) transportation (Wei et al. 2021). Several elements, 
i.e. Si, Se, Fe, P, and Mo, can challenge As uptake by roots 
(Mu et al. 2019). As(V) taken up is mostly reduced to As(III) 
through arsenate reductases in higher plant tissues (Triptahti 
et al. 2012; Kofronova et al. 2018). The protein high arsenic 

Fig. 2  SEM observation (A) of biofilm embedded in bioprecipi-
tates in a sulfate-reducing column bioreactor fed with a 100-mg As 
 L−1 solution (Battaglia-Brunet et  al. 2012) and (B) corresponding 
EDS spectrum analysis. EDWARDS Auto 306 apparatus (EMS, Hat-

field, PA, USA), then observed using a JSM 6100 Scanning Electron 
Microscope (JEOL, Tokyo, Japan) coupled to an X-ray Energy Dis-
persive Spectrometer KEVEX Quantum (Thermo Electron Corp., 
Dreieich, Germany)
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concentration 1 (HAC1) would drive As(V) reductase activ-
ity in the outer root layer (epidermis) and the inner one 
adjacent to the xylem (pericycle). Nodulin 26-like intrinsic 
protein (NIPs) aquaporine channel transports As(III) in the 
plants; the OsLsi1/NIP2;1 transporter, mediating transport 
of silicic acid into roots, is expressed in the zone of Caspar-
ian strips at plasma membrane and contributes to As(III) 
intake in rice and maize. The As methylated forms display 
generally a lower uptake rate than that of the inorganic ones. 
Monomethylarsonic acid (MMA) and dimethylarsinic acid 
(DMA) are detected in plant parts (Kofronova et al. 2018). 
Arabidopsis plants with mutated inositol transporter genes 
(i.e. AtINT2, AtINT4) exhibit lower As(III) concentrations 
in the phloem. As(III) binding to sulfhydryl groups can 
affect the function of several proteins; it can be chelated by 
phytochelatins (PCs) and then transported and sequestered 
in vacuoles (Zhao et al. 2010; Triptahti et al. 2012; Zhao and 
Wang 2020; Wei et al. 2021). Arsenic forms differ between 
root tissues. The translocation of As species from roots to 
shoots depends on plant species: As(III) predominates in the 
xylem sap of tomato, cucumber, rice, and the fern Pteris vit-
tata; larger As(V) amounts occur in Indian mustard, wheat, 
and barley. Arsenic excess can be phytotoxic: it decreases 
plant growth, alters inorganic nutrition, impairs the plant 
water status, generates oxidative stress and may be a nitrosa-
tive one, restrains photosynthesis, and changes the hormonal 
content. This leads to physiological disruptions and finally 
the plants die (Farooq et al. 2016). As(III) inactivates many 
enzymes by disorganising their structure and damages the 
metabolism by impeding protein–protein interactions (Nav-
azas et al. 2019). This impacts many cellular metabolic key 
processes, e.g. glucose uptake, glutathione production, and 
fatty acid metabolism. For reviews on plant responses to As 
excess, see, e.g. Clemens and Ma (2016), Kofronova et al. 
(2018), Zhang et al. (2018), Zhao (2020), and Wei et al. 
(2021).

Obvious ways to alleviate pollutant linkages due to As 
excess are to avoid sources leading to As contamination and 
exposure, to select plant species and associated microorgan-
isms for minimising As concentration in edible plant parts, 
and to reduce As in exposure pathways (Kofronova et al. 
2018; Zhao 2020). Physico-chemical technologies, e.g. oxi-
dation, coagulation-flocculation, soil washing, adsorption, 
ion exchange, electrokinetics and membrane technologies, 
are reviewed elsewhere (Singh et al. 2015; Kumpiene et al. 
2019). Development of efficient, less-invasive remediation 
(phyto)technologies is crucial for soils and water contami-
nated with both metal(loid)s and xenobiotics, notably to phy-
tostabilise/exclude or phytoextract As, and large volume/
area. Several shortcomings accompany As phytoextraction. 
One is the number of successive crops needed to extract 
bioavailable soil As (the remediation time should not be 
estimated on the basis of total soil As). The phytoextraction 

option is also limited to the surface soil (~ 1 m). For all phy-
tomanagement options, heatwaves, drought, late frost, pests, 
etc. and hydric conditions may hinder the plant development. 
Climate change must be considered, including storms to pre-
vent flooding and erosion.

Arsenic is tolerated and accumulated in roots, with low 
translocation in shoots, by many plant species, so-called 
excluders. Some others retain As in their roots but also dis-
play high shoot As concentration, i.e. (hyper)accumulators. 
Use of these plant phenotypes leads to various phytotech-
nologies and phytomanagement options, from sequestration 
of labile As pools in the root zone (exclusion, phytostabi-
lisation) to harvest of As accumulated in plant parts (phy-
toextraction) (Hettick et al. 2015; Wang et al. 2017). Pteris 
vittata (Chinese brake fern) is a notorious As hyperaccumu-
lator, its fronds being able to amass up to 23 g As  kg−1 (da 
Silva et al. 2018a). These phytoremediation options influ-
ence physico-chemical and biological soil properties under-
lying ecosystem services, including gain in biodiversity and 
resilience to metal(loid) excess and climate changes (Mench 
et al. 2003a, b, 2010, 2014; Renella et al. 2008; Kidd et al. 
2015).

Phytovolatilisation of arsenicals during phytomanage-
ment is questionable. Dimethylchloroarsine (AsCl(CH3)2) 
and pentamethylarsine (As(CH3)5) were released by rab-
bitfoot grass (Polypogon monspeliensis) but not the more 
toxic organic As forms, i.e. arsine, MMA, DMA, and tri-
methylarsinic acid (TMA) (Ruppert et al. 2013). Phytovola-
tilisation of arsenicals from fronds of P. vittata grown in 
As-contaminated soil was claimed, but the method used is 
controversial and may just reflect evapotranspiration and As 
leaching from fronds (Sakakibara et al. 2010).

Phytomanagement concept

Phytomanagement options (POs) for remediating con-
taminated land are a set of long-term, risk management 
phytotechnologies, involving plants and associated micro-
organisms, that promote a profitable crop production or 
other beneficial land uses (e.g. recreational park) and also 
lead gradually to the reduction of pollutant linkages due to 
contaminant excess (e.g. As) and a net gain in soil ecologi-
cal functions underlying ecosystem services (Cundy et al. 
2016). POs can be customised along contaminant linkages 
related to site/contaminant specificity and time frame, and 
can provide a wide range of environmental, economic and 
societal profits during and after the polluted land phytoman-
agement (Kidd et al. 2015). POs encompass the former phy-
toremediation options, which are long treatment time, but 
the phytomanagement concept overtakes them. One main 
purpose is to assist low-and medium-level polluted sites to 
return to productive usage, including either urban design, 
landscape architecture, or community gardens/parkland, in 
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rural, urban, and suburban areas. The harvested biomass, 
produced by excluders or hyperaccumulators, is not a waste 
to dispose but a resource.

Where the marked lengthy time scales needed to achieve 
soil remediation, notably if based on total soil contami-
nants, has banned phytoremediation as a common technical 
option for urban polluted sites, phytomanagement, notably 
with either excluders or bioavailable contaminant strip-
ping, is more considered by local and national authorities. 
(Aided) phytoextraction consists to (yearly) strip phytoa-
vailable contaminants accumulate in harvestable plant parts 
(accounting for tissue concentration and biomass), even-
tually in combination with soil conditioners. It is mainly 
applicable to reduce pollutant linkages for large soil areas or 
water volume with low and medium exposure levels. How-
ever, phytoextraction using As-hyperaccumulators may be 
challenged, due to their specificity, at sites with multiple 
contaminants. Potential candidates for As-focused phy-
toremediation options are worldwide explored in hydro-
ponics, pot experiments and field surveys (Table 1, Jiang 
et al. 2015). Only pot experiments with real As-contami-
nated soils (not spiked with salts), without dust exposure 
(for shoots collected on contaminated sites, dust trapped in 
stomatal chambers and wax cannot be simply washed) and 
giving information on plant growth and health (no necrotic 
plants), and thereafter confirm by field trials (accounting 
for climatic conditions and water supply), can validate such 
candidates (Table 1; Fig. 3). Among As-tolerant plant spe-
cies, van der Ent et al. (2013) suggest 1000 mg As  kg−1 DW 
in shoots as hyperaccumulation threshold criteria (excluding 
shoots contaminated by dust particles, notably in stomatal 
chambers), however shoot As removal (and bioavailable As 
stripping) is also a matter of biomass. Hyperaccumulators 
frequently have a low biomass production, and tolerance to 
either one, two, or rarely more elements, which limits the 
metal(loid) phytoextraction. In addition, their resilience to 
xenobiotic exposure at site with mixed pollution is poorly 
explored. In contrast, root compartments and excluders are 
useful to sequester bioavailable As in the root zone, but As 
phytostabilization can be only claimed when decreases in 
bioavailable soil As and As-focused pollutant linkages are 
demonstrated.

Plant traits

Several model plants with potential use in phytoremedia-
tion are investigated for their biological responses to As 
excess and their As accumulation in plant parts (Table 1). 
Rice is of concern for grain As and one studied crop for the 
mechanisms of As uptake, distribution, and detoxification 
(Zhao 2020). As tolerance in As excluders is likely partly 
based on the suppression of high affinity phosphate/arsenate 

co-transport systems (Karimi et al. 2009, Karimi and Souri 
2016).

Brassicaceae

Isatis cappadocica metallicolous (M) and non-metallicol-
ous (NM) populations (Iran, temperate Asia) are claimed 
As accumulators, with potentially constitutive As chelation 
by thiols and PCs, and tolerance not based through dele-
tion of high-affinity P/As co-transport (Karimi et al. 2009). 
Both NM and M populations are more resistant than other 
commercial Brassicaceae (e.g. broccoli, cabbage, and cauli-
flower), M plants being more As-tolerant than NM ones over 
1.3 mM As. At 1825 mg As  kg−1 (fading soil series with 
mine soil), I. cappadocica shoots displayed 350 mg As  kg−1. 
Potential mechanisms, e.g. detoxification of oxidative stress, 
are discussed in Souri et al. (2020). Indian mustard (Brassica 
juncea, Gupta et al. 2009) and Ethiopian mustard (B. cari-
nata, Irtelli and Nacari-Izzo 2008) can display high shoot 
As concentration, but their phenotype is not well established 
(Karimi et al. 2009). In Indian mustard cultivars with shoot 
As concentration ranging from 16 to 1138 mg  kg−1 DW, 
10,870 genes are differentially expressed mainly in reaction 
to stress, metabolic processes, transporter activity, and signal 
transduction (Thakur et al. 2019). Transcription regulator 
activity is up-modulated whereas many genes implied in 
photosynthesis, developmental processes, and cell growth 
are downregulated.

Arabidopsis thaliana was modified into an As accumu-
lator by heterologously expressing PvACR3 in the athac1 
background and knocking out the HAC1 gene, AtHAC1 
being an As reductase (Wang et al. 2018a). Muting the As 
reductase reduced As efflux into the medium (Zhang et al. 
2018). For these transgenic plants, expression of the vacuo-
lar As transporter ACR3 in the roots did not promote As(III) 
efflux into the medium, nor its vacuolar sequestration, but 
helped As loading into the vasculature and promoted trans-
location to the shoots. In transgenic A. thaliana and soybean, 
PvPht1;3 is expressed in stele cells and probably contributed 
to P/As translocation. Such PvPht1;3 expression raises As 
transfer and build-up in shoots, which may improve As phy-
toextraction in As-polluted soils.

Ferns

Several ferns (Pteridaceae), i.e. Pteris vittata, P. cretica, can 
tolerate and hyperaccumulate high As levels, without vis-
ible phytotoxicity symptoms. For sporophytes exposed to 
As(V), arsenate is absorbed by the roots, translocated via 
the xylem, and stored in the vacuoles of the leaf-like fronds 
as As(III) (Cai et al. 2019). Pteris vittata efficiently extracts 
As in low-P soils, increases in root growth and exudation 
helping to solubilise non-labile As and P from soils (da Silva 
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Table 1  Candidate plant species for As-focused phytoremediation in hydroponics, pot experiments, and field trials

Plant species Exposure/growth period Phenotype for As Remediation option Reference

Field experiments
  Lolium spp., Eschschol-

zia californica
6 years Excluders Phytostabilisation Pardo et al. (2018)

  Pityrogramma calo-
melanos

136–269 mg As  kg−1, 
12 weeks

Hyperaccumulator Phytoextraction Jankong et al. (2007)

  Pityrogramma 
calomelanos, Pteris 
vittata

324–909 mg As  kg−1 Hyperaccumulators Phytoextraction Niazi et al. (2012)

  Dicranopteris linearis, 
Histiopteris incisa, 
Nephrolepis hirsu-
tula, Pinus sp., Thy-
sanolaena latifolia, 
Melastoma malabath-
ricum, Pityrogramma 
calomelanos, Pteris 
vittata

1091 mg As  kg−1

mining site
Excluders; accumulators Phytostabilisation; phyto-

extraction
Claveria et al. (2019)

  Agrostis castellana, 
Holcus lanatus

1325 mg As  kg−1, 4 years Excluders (Aided) phytostabilisation Bleeker et al. (2002)

  Triticum aestivum 
(Pteris vittata, 
Phragmites australis, 
Vetiveria zizanioides)

50 mg As  kg−1, 2 years Excluders Phytostabilisation Praveen et al. (2019)

  Lolium multiflorum. 
var. italicum, Secale 
cereale, Vicia vil-
losa, and Trifolium 
pratense

642 mg As  kg−1, 3 months Excluders Phytostabilisation Kim et al. (2018)

  Halogeton glomeratus 3 mg  kg−1, 1 year Accumulator Phytoextraction Li et al. (2019a)
  Pteris vittata 190 mg As  kg−1, 2 years Hyperaccumulator Phytoextraction Kertulis-Tartar et al. (2006)
  Pteris vittata 26.7 and 129 mg As  kg−1 Hyperaccumulator Phytoextraction da Silva et al. (2018a)
  Pteris vittata Hyperaccumulator Phytoextraction Gray et al. 2005; Shelmer-

dine et al. 2009 (cited in 
Jiang et al. 2015)

  Pteris vittata inter-
cropped with Zea 
mays

93 mg As  kg−1 Hyperaccumulator + excluder Phytoextraction; inter-
cropping

Ma et al. (2018)

  Pteris ensiformis, 
Boehmeria nivea, and 
18 other species

125–6656 mg As  kg−1 Phytoextraction; phytosta-
bilisation

Pan et al. (2019)

  Oryza sativa 72.7 mg As  kg−1, 
5 months

Excluder Phytostabilisation/in situ 
immobilisation

Li et al. (2019b)

Watercourse/stream
  Sagittaria montevi-

densis
Rhizofiltration Demarco et al. (2019)

  20 macrophytes 9.7–13.6 mg As  kg−1 Excluders Phytostabilisation Bonanno et al. (2018)
Outdoor lysimeters/vats

  Pinus pinaster 1325 mg As  kg−1, 3 years Excluders Phytostabilisation Mench et al. (2003a)
  Holcus lanatus 1325 mg As  kg−1, 3 years Excluders Phytostabilisation Mench et al. (2003a)
  Pteris vittata 113 mg As  kg−1, 7 years Hyperaccumulator Phytoextraction Mench et al. (2014)

Pot experiments
  Dahlia pinnata Excluder Phytostabilisation Raza et al. (2019)
  Aromatic plants for 

essential oils
Excluders Phytoremediation Pandey et al. (2019)
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Table 1  (continued)

Plant species Exposure/growth period Phenotype for As Remediation option Reference

  Miscanthus sacchari-
florus A0104, M. 
sinensis C0424 and 
C0640

36–250 mg As  kg−1 
(spiked soils)

Excluders Phytostabilisation Jiang et al. (2018)

  Miscanthus x giganteus 75–515 mg As  kg−1 
2 years

Excluder Phytostabilisation Pidlisnyuk et al. (2019)

  Salix miyabeana 
‘SX67’

12 weeks CCA/PCDD/Fs Excluder Phytostabilisation Fredette et al. (2019)

  Salix alba, Salix sp. Mine tailings Excluders Phytostabilisation Vamerali et al. (2009)
  Salix viminalis, Salix 

purpurea
Mine tailings Excluders Phytostabilisation Bart et al. (2016)

  Populus Mine tailings Excluder Phytostabilisation Vamerali et al. (2009)
  Populus nigra 728 mg As  kg−1, 28 days Excluder Phytostabilisation Nandillon et al. (2019)
  Acer platanoides 90 days Excluder Phytostabilisation Budzynska et al. (2019b)
  Acer pseudoplatanus 90 days Excluder Phytostabilisation Budzynska et al. (2019b)
  Betula pendula 90 days Excluder Phytostabilisation Budzynska et al. (2019b)
  Quercus robur 90 days Excluder Phytostabilisation Budzynska et al. (2019b)
  Tilia cordata 90 days Excluder Phytostabilisation Budzynska et al. (2019b)
  Ulmus laevis 90 days Excluder Phytostabilisation Budzynska et al. (2019b)
  Jatropha curcas 60–120 days, 18–1121 mg 

As  kg−1
Excluder Phytostabilisation Alvarez-Mateos et al. 

(2019)
  Brassica juncea 30 days Indicator +  K2HPO4 + PGPB Aided phytoextraction Franchi et al. (2019)
  Isatis cappadocica cab-

bage (Brassica olera-
cea var. sabauda), 
broccoli (B. oleracea 
var. italica), cauli-
flower (B. oleracea 
var. botrytis)

145–6525/1825 mg As 
 kg−1

Hyperaccumulators Phytoextraction Karimi et al. (2009)

  Zea mays 30 days Excluder +  K2HPO4 + PGPB Aided phytoextraction Franchi et al. (2019)
  Helianthus annuus 30 days Excluder +  K2HPO4 + PGPB Aided phytoextraction Franchi et al. (2019)

Helianthus annuus, Lolium 
perenne

15.9 g As  kg−1 Excluders Aided phytostabilisation Vitkova et al. (2018)

  Lactuca sativa 2 months In situ immobilisation Arco-Lázaro et al. (2018)
  Barley; wheat 40–80 mg As  kg−1 

4 months
Indicator; excluder Phytoextraction; phytosta-

bilisation
Gonzalez et al. (2019a)

  Brassica napus 60 days Excluder Phytostabilisation Gasco et al. (2019)
  Vetiveria zizanioides 6 months Excluder Phytostabilisation Mu et al. (2019)
  Oriza sativa 0–100 mg  kg−1 Excluder Phytostabilisation Irem et al. (2019)
  Arundo donax 79.6 mg As  kg−1, 

9 months
Excluder Co-planting with P. vittata Zeng et al. (2019a)

  Arundo donax, Phrag-
mites australis

371 to 22,661 mg As  kg−1 Excluders Phytostabilisation Castaldi et al. (2018)

  Morus alba, Brousson-
etia papyrifera

41 mg As  kg−1, 9 months Excluders Co-planting with P. vittata Zeng et al. (2019a, b)

  Pteris cretica 30 days, 200 mg As  kg−1 Hyperaccumulator Phytoextraction Eze and Harvey (2018)
  Pteris vittata Hyperaccumulator Phytoextraction Yang et al. (2018)
  Pteris vittata 251 mg As  kg−1, 4 months Hyperaccumulator Phytoextraction Wu et al. (2018)
  Pteris vittata 65.8 mg As  kg−1, 28 days Hyperaccumulator Phytoextraction Wan et al. (2018)
  Pteris multifida 0.5 mg As  kg−1 (spiked 

soil), 3 months
Accumulator Phytoextraction Rahman et al. (2018)

  Holcus lanatus 65.8 mg As  kg−1, 28 days Excluder Phytostabilisation Wan et al. (2018)
  Rosmarinus officinalis 4–2738 mg As  kg−1 Excluder Phytostabilisation Affholder et al. (2014)
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et al. 2018a, Fig. 3). The P. vittata roots absorb arsenate via 
a  PO4 transporter (PvPht1;3), while the aquaporin tonoplast 
intrinsic protein 4 (PvTIP4) eases the arsenite absorption. 
The PvACR2 As(V) reductase, the PvGRX5 glutaredoxin, 
and maybe other reductases are then converting arsenate 

to As(III) (Cai et al. 2019). The As(III) loading into the 
vacuoles of P. vittata gametophytes is facilitated by the 
PvACR3 As(III) transporter. Three genes, i.e. glyceralde-
hyde 3-phosphate dehydrogenase (PvGAPC1), glutathione 
S-transferase (PvGSTF1), and organic cation transporter 

Table 1  (continued)

Plant species Exposure/growth period Phenotype for As Remediation option Reference

  Polypogon monspelien-
sis

250 mg As  kg−1 (spiked 
soil)

Phytovolatilisation Ruppert et al. (2013)

  Eupatorium cannabi-
num

11 mg As  L−1, 20 days Excluder Phytostabilisation Gonzalez et al. (2019b)

Mesocosms/columns
  Kosteletzkya penta-

carpos
75 mg As  kg−1 Excluder Rhizofiltration/phytostabi-

lisation
Zhou et al. (2019)

  Tamarix gallica Excluder Phytostabilisation Sghaier et al. (2019)
  Phragmites australis 8 months Excluder Phytoextraction Cortes-Torres et al. (2019)

Constructed wetlands
  Cyperus haspan 85 µg  L−1, 419 days Indicator Rhizofiltration Corroto et al. (2019)
  Juncus effusus 85 µg  L−1, 419 days Excluder Rhizofiltration Corroto et al. (2019)
  Colocasia esculenta 0.48 mg  L−1, 122 days Excluder Rhizofiltration Vanlop et al. (2019)

Hydroponics
  Salix atrocinerea 18 mg As  L−1, 30 days Excluder Phytostabilisation Navazas et al. (2019)
  Salix spp. Excluder Phytostabilisation Purdy and Smart (2008)
  Salix purpurea cv. 

‘Fish Creek’
0–100 mg As/L 

(0–1335 µM)
Excluder Phytostabilisation Yanitch et al. (2017)

  Pteris vittata 2 mM As(III) or As(V), 
24 h

Hyperaccumulator Phytoextraction Yang et al. (2018)

  Pteris multifida 21 µg  L−1 As(III) 
 (NaAsO2), 5 days; 33 µg 
 L−1 As(III) 24 days

Hyperaccumulator Phytoextraction Rahman et al. (2018)

  Acer pseudoplatanus 1 month, 1 mM As; 
3 months,0.06–0.6 mM 
As(III), As(V), DMA

Excluder (sensitive) Phytostabilisation Budzynska et al. (2019a); 
Budzynska et al. (2018)

  Betula pendula 1 month, 1 mM As Excluder Phytostabilisation Budzynska et al. (2019b)
  Quercus robur 1 month, 1 mM As Excluder (sensitive) Phytostabilisation Budzynska et al. (2019b)
  Ulmus laevis 1 month, 1 mM As Excluder (sensitive) Phytostabilisation Budzynska et al. (2019b)
  Atriplex atacamensis 2 weeks, 50 µM As(III) or 

As(V)
Excluder Phytostabilisation/rhizo-

filtration
Vromman et al. (2018)

  Lemna valdiviana 0.5 mg  L−1 As(V), 7 days Accumulator Rhizofiltration Souza et al. (2019)
  Pistia stratiotes 1–4 days, 5–20 µM As(III) Excluder Rhizofiltration de Campos et al. (2019)
  Pistia stratiotes, 

Spirodela polyrhiza, 
Eichhornia crassipes

15 days Accumulators Phytofiltration Rai (2019)

  Eichhornia crassipes 3 days, 7 μM As Accumulator Rhizofiltration de Souza Reis et al. (2020)
  Elodea canadensis 15–250 µg As  L−1 72 h Excluder Rhizofiltration Picco et al. (2019)
  Vallisneria natans 14 days Excluder Rhizofiltration Li et al. (2018b)
  Salvinia molesta 0–20 µM As(III), 96 h Accumulator Phytofiltration da Silva et al. (2018b)
  Eupatorium cannabi-

num, Dittrichia vis-
cosa, Melilotus alba, 
Betula pubescens, 
Populus nigra

11 mg  L−1 As(V) Excluders Phytostabilisation Gonzalez et al. (2019b)

  Dahlia pinnata Cav 0–120 µM Excluder Potential phytostabilisa-
tion

Raza et al. (2019)
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4 (PvOCT4), As-upregulated, are needed for As tolerance 
(Cai et al. 2019). The PvGAPC1 protein includes an uncom-
mon active site having a lower affinity for phosphate than 
arsenate; PvOCT4 is present as puncta in the cytoplasm 
and PvGSTF1 displays As(V)-reductase activity. Arse-
nate, PvGSTF1, and PvGAPC1 are co-located. Once As(V) 
enters the cell, it would be converted into 1-arseno-3-phos-
phoglycerate by PvGAPC1. This one would be pumped 
into As-metabolising vesicles by the PvOCT4 protein and 
then hydrolysed to release As(V); this allows thereafter its 
reduction by PvGSTF1 to As(III) and vacuolar compart-
mentation. While phosphate limits As root uptake, phytate 
increases As absorption and development of P. vittata by 
regulating phosphate transporters, i.e. PvPht1:3 increased 
while PvPht1;1 decreased (Liu et al. 2018). The P and Si 
transporters mainly facilitate As absorption and its excess 
damages plant metabolism at various levels, e.g. impacts 
through oxidative stress, carbohydrate metabolism tightly 
connected to photosynthesis, and metabolic pathways cop-
ing with As-induced oxidative and nitrosative stresses. The 
PvPht1;3 gene from P. vittata complements a yeast P-uptake 
mutant and has a greater affinity and carriage capacity to 
As(V) than PvPht1;2 (Cao et al. 2019).

Vacuolar sequestration is one main mechanisms for 
plants to control excessive exposure to metal(oid)s. Angio-
sperms sequester PC–As(III) or GSH (glutathione)–As(III) 
conjugates in their root vacuoles (Zhao et  al. 2010). 
PvACR3 occurs in the genomes of all the main plant lines 
but not in angiosperms, possibly explaining why they can-
not accumulate or tolerate high As levels. Arsenic trans-
porters are identified in P. vittata: a MIP (major intrinsic 
protein), PvTIP4;1, is mediating As(III) inflow into cells, 
whereas PvACR3 and PvACR3;1 intervene As(III) efflux 
into vacuoles (Yang et al. 2018). 824 transcripts are differ-
entially expressed in As-stressed P. vittata ferns (Potdukhe 
et al. 2018). These genes are transcription factors and 
metal transporters, or are involved in chelator biosynthesis 
in line with absorption and accumulation mechanisms: e.g. 
cysteine-rich RLK, and ABC transporter G family member 
26. Yan et al. (2019) have proposed a network consisting 
of six major transporter families, i.e. arsenical resistance 
protein Acr3 (ACR3), the major facilitator superfamily 
(MFS), the ABC superfamily, P-type ATPase, MIP, and 
nitrate transporter 3.1 (NRT3.1), two resistance pathways 
(i.e. GSH metabolism, notably Glutathione S-transferase 
(GST) and endoplasmic reticulum-associated protein deg-
radation (ERAD) in roots, and a regulatory system for As 

Fig. 3  Clockwise: Pteris vittata growing on the As-contaminated 
Reppel soil placed in large mesocosms at the INRAE research center, 
Villenave d’Ornon, France (Phytorehab and Greenland EU projects); 
focus on passive samplers of soil pore water (Rhizon) inserted for 
monitoring changes in As exposure in the P. vittata rhizosphere; year 
2 of the phytostabilisation field trial implemented at the Jales tail-

ings, Portugal (EU Phytorehab project, FP5): (left) untreated topsoil; 
(right) topsoil amended with compost, coal fly ashes (beringite), and 
iron grit and colonised by As-tolerant populations of Agrostis castel-
lana, Holcus lanatus, and Cytisus striatus. Photo © Dr. M. Mench (in 
collaboration with Pr. J. Vangronsveld, Hasselt Universiteit, Dr. P. 
Bleeker and Dr T. De Koe, Bleeker et al. 2002)
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hyperaccumulation—regulation mechanisms in P. vittata 
tissues following high acute As(III) and As(V) exposure.

As‑(hyper)tolerant grasses and dicots

Cultivation of forage crops and perennial grasses may either 
reduce the human exposure to As while increasing the 
farmer incomes or promote the vegetation cover reducing the 
contaminant dispersion by natural agents. As-hypertolerant 
populations of Holcus lanatus are identified and assessed 
at several contaminated sites (Hartley-Whitaker et al. 2002; 
Mench et al. 2003a, b, 2010; Karczewska et al. 2013). At 
the acidic metal/As-polluted Jales mine tailings, the com-
bined addition of Beringite (a fly ash containing modified 
aluminosilicates), iron grit and compost was most effective 
to change As phytoavailability and soil pH and, after 4 years, 
to sustainably improve the revegetation by As-excluder colo-
nists, notably Agrostis castellana and H. lanatus (Bleeker 
et al. 2002, Fig. 3). Rosmarinus officinalis has a potential 
to phytostabilise As and metals in Mediterranean area (Aff-
holder et al. 2014).

Lolium multiflorum var. italicum, Secale cereale, Vicia 
villosa, and Trifolium pratense were cultivated in an agri-
cultural soil adjacent to a mining area after amendment 
with either pig manure or AMD sludge (AMDS) (Kim et al. 
2018). Bioavailable soil As increased in pig manure-treated 
soil, due to desorption by dissolved organic matter, in both 
non-cultivated and cultivated soils, apart for T. pratense; in 
contrast, it fell down in all AMDS-treatments. To cultivate 
such excluders resulted in safe crops. Water stable aggrega-
tion was enhanced by these plants, but As phytostabilisation 
did not occur. In situ soil flushing (8 days, with monopotas-
sium phosphate  (KH2PO4) solutions) combined with culti-
vating P. vittata and L. multiflorum facilitated As removal 
from the rhizosphere soil, reaching 35% and 53%, respec-
tively, which exceed the 9% removal rate from soil flush-
ing alone (Yan et al. 2018). Some As excluders, aromatic 
plants from the Poaceae (e.g. Vetiver (Chrysopogon ziza-
nioides), Lemon grass (Cymbopogon flexuosus), Palmarosa 
(Cymbopogon martinii), and Citronella (Cymbopogon win-
terianus), Lamiaceae (Ocimum, Mentha, Lavender, Salvia, 
and Rosemary), Asteraceae (Chamomile), and Geraniaceae 
(Pelargonium sp.) families, used for producing essential oils, 
can give financial returns and have a potential for phytoman-
aging As-contaminated soils as these non-food crops are 
reducing the hazard of food chain contamination (Pandey 
et al. 2019).

Miscanthus x giganteus was growing well during 2-year 
in potted soils collected at former military sites, i.e. Sliac, 
Slovakia and Kamenetz-Podilsky, Ukraine (Pidlisnyuk et al. 
2019). Major part of the metal(loid)s remained in the roots, 
notably in year 2, and rather limited amounts moved to 
the shoots, foliar As concentrations being below detection 

limit. Both Miscanthus sacchariflorus A0104, and M. sin-
ensis C0424 and C0640 exposed to As-spiked soil display 
As-excluder phenotype (Jiang et al. 2018). The biomass 
of Phragmites australis and Arundo donax, both being As 
excluders, increased in amended, As/metal-contaminated 
soils and soil amendments promoted aided phytostabilisa-
tion in the decreasing order: municipal solid waste com-
post (MSW-C) > Fe-rich water treatment residue (Fe-
WTR) + MSW-C > Fe-WTR (Castaldi et al. 2018). At acidic 
soil pH (3.8), the highest As accumulation was recorded for 
plants grown on untreated soil. At neutral and alkaline soil 
pH, root As concentrations increased for compost-amended 
soils.

Macrophytes

Macrophytes are potentially useful for filtering As-contami-
nated effluents and water through their rhizosphere and root 
mats. In Eichhornia crassipes 3-day-exposed to 7 µM As, 
defense mechanisms against oxidative stress, enzyme activi-
ties related to S metabolism, and chelating substances are 
stimulated: the ATP sulphurylase (ATPS) activity increases 
in roots (de Souza Reis et al. 2020). Glutathione reductase 
(GR) activity in leaves and glutathione peroxidase (GSH‐
Px) in roots decrease. Glutathione sulphotransferase (GST) 
activity is enhanced in roots, suggesting increased GSH con-
jugation to As, and limited in leaves, and γ‐glutamylcysteine 
synthetase (γ‐ECS) activity is higher in leaves, suggesting 
PCs synthesis.

The aquatic moss Warnstorfia fluitans can filtrate As(V) 
and As(III) from As-contaminated-water (Sandhi et  al. 
2018). Arsenic removal was faster in arsenite than arsenate 
solutions, optimum (80–90% within 2 h) being at pH 6.5 and 
9.5 and at 20 and 30 °C, and at low oxygenation levels. No 
As net efflux process occurred in the water system except 
after 48 h in As(V)-treated medium at 30 °C. Most internal 
As, i.e. 95% in the As(V) and 85% in the As(III) treatments, 
was bound to the tissue.

Rhizofiltration of As by macrophytes is also documented 
for Sagittaria montevidensis (Demarco et al. 2019); water 
hyacinth (E. crassipes), water ferns (Azolla spp.), duckweeds 
(Lemna sp., Spirodela sp. and Wolffia sp.), hydrilla (Hydrilla 
verticillata), and water cresses (Nasturtium officinale, N. 
microphyllum) have a potential for phytofiltration (Rahman 
and Hasegawa 2011). Twenty macrophytes from an Italian 
wetland area affected by urban and industrial pollutants dis-
play high tolerance to metal(loid) excess and capacity for 
phytostabilisation (Bonanno et al. 2018). Bioconcentration 
factor (BCF) values (from sediment to roots) for As ranged 
from 0.02 (N. officinale, Paspalum paspaloides) to 0.25 
(E. crassipes, P. australis); leaf/ root transfer factor (TF) 
values varied from 0.12 (Cyperus longus) to 1.32 (Lemna 
gibba). Lemna sp. can uptake high amounts of metal(loid)
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s with a relatively high biomass yield. Efficiency of Lemna 
valdiviana for As removal peaked between pH 6.3 and 7.0, 
with available phosphorus of 0.049 mmol P-PO4  L−1 and 
7.9 mmol N-NO3  L−1, accumulating up to 1190 mg As  kg−1 
DW (Souza et al. 2019). Eichhornia crassipes (60%) was 
more efficient for As removal than Pistia stratiotes (water 
lettuce, 49%) and Spirodela polyrhiza (a duckweed, 37%) in 
a microcosm experiment (Rai 2019).

In Elodea canadensis plants exposed to 15 µg and 250 µg 
As  L−1, foliar As concentration reached 0.34 and 0.4 mg 
As  kg−1, and roots 0.34 and 4.3 mg As  kg−1, as an excluder 
(Picco et al. 2019). These plants can filtrate As from tap 
water of an Argentine city located in an As-endemic area 
from 36 µg As  L−1 to undetectable levels (10 ng As  L−1). 
The submerged macrophyte Vallisneria natans was exposed 
to the binary As(III)/As(V) system (Li et al. 2018b). Total 
As and As(III) in water dropped within 3  days, while 
As(V) first increased slightly and then gradually decreased. 
About 1.2% DMA was detected at day 14. Both As(III) and 
As(V) were higher in roots than in leaves. In leaves, As(III) 
increased with the elapsed exposure time. The proportions 
of As(V) (28–40%) were lower than those of As(III) and 
arsenobetaine (AsB) was detected (0.5–1.9 mg  kg−1) after 
day 7, suggesting As(V) reduction and As(III) methylation to 
AsB. In Salvinia molesta (an aquatic fern) exposed to 20 µM 
As(III) for 4 days at pH 6.5 floating leaves reached 103 mg 
As  kg−1 (da Silva et al. 2018b).

In constructed wetlands (CW), high As removal is 
obtained with Zantedeschia aethiopica and Anemopsis cali-
fornica, Eleocharis macrostachya, Schoenoplectus ameri-
canus, Juncus effusus, Phragmites australis, and Echino-
dorus cordifolius (Corroto et al. 2019). Pistia stratiotes 
plants were exposed in the 0–20-µM As(III) range for 4 days 
(de Campos et al. 2019). Root and shoot As concentrations 
peaked at 10 µM As(III) (i.e. 1120 and 31 mg  kg−1 DW), 
displaying an excluder phenotype. At the lower As exposure, 
the biomass production was not affected; at 20 µM As(III), 
it decreased by 77%. Chlorosis, darkening, and reduction 
of the root system were mirrored by increased membrane 
damages and the contents of reactive oxygen species. Rhizo-
filtration using Cyperus haspan (A), Juncus effusus (B), and 
a mix of laterite and gravel (substrate as a control, (C)) in 
subsurface horizontal-flow constructed wetlands (CW) was 
assessed to decrease As concentration in the reverse osmosis 
residues in Buenos Aires province, Argentina, because As 
concentrations in drinking water for c.a. 10% of the popula-
tion exceed the WHO threshold value (10 µg  L−1) (Corroto 
et al. 2019). Arsenic removal ranged from 30 to 80% in the 
J. effusus-planted CW and between 10 and 40% using the 
C. haspan-planted CW. Arsenic concentration along CW 
was similar in the C and A treatments. The cumulative As 
mass was 62%, 34%, and 27% for A, B, and C treatments, 
respectively. During the elapsed time, C. haspan and J. 

effusus contributed between 12 and 67% and 22 and 87%, 
respectively. For J. effusus, the accumulation is higher than 
the translocation process (BCF 1.6 and TF 0.2), whereas for 
C. haspan both factors were analogous (1.1 and 1.0, respec-
tively). In a pilot-scale CW filled with laterite soil (20–28% 
Fe by weight) and planted with Colocasia esculenta, water 
As concentration decreased by 89% in the planted CW as 
compared to 52% in the unplanted one (Vanlop et al. 2019). 
Arsenic was mostly located within the root zone, because of 
rhizo-stabilisation and the Fe-adsorbing process within the 
laterite soil. Its sorption increased with the elapsed time. 
CWs planted with P. australis (Mexico) displayed high As 
removal rate (73–83%), and metal(loid) amounts removed 
from the substrates were in decreasing order: Fe > Cu > As 
(Cortes-Torres et al. 2019).

Trees

Tree root systems are an advantage to colonise and remedi-
ate deep contaminated soil layers. Salicaceae, i.e. willows, 
poplars, is one option for biomass production on As-contam-
inated soils (Purdy and Smart 2008; Vamerali et al. 2009; 
Janssen et al. 2015; Jiang et al. 2015, Bart et al. 2016). Their 
high biomass may compensate for their moderate shoot 
metal(loid)-concentrations. In hydroponics, S. viminalis x 
S. miyabeana and S. sachalinensis x S. miyabeana hybrids 
were most tolerant to As excess (Purdy and Smart 2008). 
Mechanisms involved in As root uptake, storage in vacuole, 
potential transport through the plant, and As tolerance of 
Salix purpurea and S. atrocinerea are described in transcrip-
tomic analyses (Yanitch et al. 2017; Navazas et al. 2019). 
In As-stressed S. purpurea, biosynthesis of phenylpropa-
noids is induced, with the increased production of tannins. 
In hydroponics (18 mg As  L−1), a S. atrocinerea clone, from 
an As-contaminated brownfield, concentrates up to 2400 mg 
As  kg−1 DW in roots and 25 mg As  kg−1 DW in leaves. 
Roots reducing As(V) to As(III), As(III) predominates in 
roots and As(V) in leaves (Navazas et al. 2019). Since day 
1, leaves and roots display de novo synthesis and increased 
non-protein thiols. To cultivate fast-growing willow shrubs, 
either in CWs or soils, can be a flexible and inexpensive 
solution to treat wood leaching containing metal(loid)s or 
polychlorinated dibenzo-dioxin/furan congeners (PCDD/Fs) 
generated at wood preservation sites (Fredette et al. 2019). 
Salix miyabeana ‘SX67’ was grown in three substrates irri-
gated with leachates containing increasing concentration of 
pentachlorophenol (PCP) and chromated chromium arsenate 
(CCA) over 12 weeks. The growing substrate affected wil-
low ecophysiological responses and overall performance, 
leaf area being decreased with rising leachate concentration. 
Contaminants were stored in willow roots, but PCDD/Fs and 
Cu were also allocated to shoots.
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Populus nigra seeds collected in the Loire Valley, France, 
were short-term cultivated on a potted soil from As/Pb mine 
tailings with three amendments, i.e. garden soil, compost 
and biochar, either alone or combined (Nandillon et al. 
2019). The As concentration in the soil pore water (SPW) 
increased in all amended soils (18 to 416 times) notably with 
the compost treatment, which may promote As leaching. 
Seed germinated and plant grew only on amended soils, but 
adding biochar was less efficient. Poplar plantlets were As 
excluders, but the sustainable colonisation of such tailings 
by poplar populations remain to prove. Arsenic phytoextrac-
tion by four tree species, i.e. Acer pseudoplatanus, Quercus 
robur, Betula pendula, and Ulmus laevis, was evaluated in 
hydroponics (1 mM As(V), Budzynska et al. 2019a). The 
As accumulation peaked in B. pendula (BCF = 0.87) and Q. 
robur (BCF = 0.5). Betula pendula retained about 80% of As 
in its roots (excluder, TF = 0.2) whereas Q. robur allocated 
more than 60% of As in its shoots (TF = 1.6), which can be in 
hydroponics a sensitive behavior due to As excess as well as 
for U. laevis and A. pseudoplatanus. As(V) phytoextraction 
decreased root P and S concentrations in these tree species. 
The absorption of inorganic (As(III), As(V)) and organic 
arsenic (As-org) forms was then assessed with these tree spe-
cies and  two others, i.e. Acer platanoides, and Tilia cordata, 
in a pot experiment with As-contaminated mining sludge 
(Budzynska et al. 2019b). Total As was mainly stored in the 
roots of all these tree species, which were generally thinner, 
shorter and/or black after the experiment. The As(III) and 
As(V) concentrations peaked in the A. pseudoplatanus and 
A. platanoides roots (174 and 420 mg  kg−1, respectively). 
Relatively high As(III) concentrations (in mg  kg−1) were 
recorded in the B. pendula shoots (12) and As(V) in the 
shoots of U. laevis and A. pseudoplatanus (77 and 70). With 
some exceptions, As-org (present in mining sludge in low 
concentration) predominated in the tree organs. Influence 
of As forms, i.e. As(III), As(V), and DMA was assessed 
with A. platanoides in hydroponics (Budzynska et al. 2018). 
The exposure to particular As forms in single, double, and 
triple experimental systems decreased the seedling biomass. 
Negative symptoms depended on arsenicals and their con-
centration in solution, ranging from slight visible changes 
(inorganic compounds separately or jointly), through smaller 
and discolored leaves (DMA exposure), and finally to their 
withering (high DMA excess). Changes in color and shape 
for root systems exposed to arsenical combination occurred, 
despite seedling biomass were not affected. Root, stem, and 
foliar concentrations plateaued at 590, 70, and 140 mg As 
 kg−1 DW, respectively, under different combinations, show-
ing an excluder phenotype. The highest BCF values reached 
10.8 for root systems exposed to 0.06 mM of As(V) and 
DMA, while the highest TF value (1.0) was for 0.6 As(V) 
plus 0.06 mM DMA.

Halophytes

Phytomanagement of contaminated soils is of concern also 
in area affected by salinity (Sghaier et al. 2019). Atriplex 
atacamensis, a perennial shrub from Northern Chile occur-
ring on As-contaminated area, may experience transient 
flooding conditions. This As excluder was exposed to either 
50 µM As(III) or As(V) (Vromman et al. 2018). As(III) 
decreased plant development, stomatal conductance, and 
photosystem II efficiency while As(V) did not. Root As con-
centration peaked in reaction to As(III) excess in contrast to 
As(V). As(III) oxidation may occur because As forms are 
detected in roots for each treatment. Over 40% of As was 
sorbed to the cell wall in the As(V)-exposed roots whereas 
this rate decreased in the As(III)-exposed ones. Total As 
and its cell wall-bound fraction in leaves were similar after 
As(V) and As(III) exposure. Non-protein thiols peaked in 
response to As(V) excess in comparison to As(III), whilst 
ethylene synthesis was only enhanced in As(III)-exposed 
plants. Kosteletzkya pentacarpos was cultivated on a column 
device allowing leachate harvest, on a metal(loid)-spiked 
soil (i.e. 6.5 mg Cd, 75 mg As, 200 mg Zn, and 300 mg Pb 
 kg−1 DW) and irrigated with salt water (final soil electri-
cal conductivity 5.0 mS  cm−1) (Zhou et al. 2019). Salinity 
decreased bioavailable soil As and shoot As concentration 
(0.7–1 mg As  kg−1, excluder).

Halogeton glomeratus seeds, from arid regions in North-
west China, were sown in metal(loid)-contaminated saline 
soil plots (Li et al. 2019a). In year 1, total salt yield extracted 
from plants was 2105 kg  ha−1, and salt concentration was 
1.61 g As  kg−1. Seeds contained 0.26 mg As  kg−1 and their 
oil content was 19% with 91% of unsaturated fatty acids.

Field survey and case studies

Out of 20 native species from the Baoshan mining area 
(China, total soil As: 125–6656 mg  kg−1), Pteris ensiformis 
accumulated 1091 mg As  kg−1 in its shoots, with potential 
use for As phytoextraction (Pan et al. 2019); Boehmeria 
nivea shoots, usable for textile fibers, reached 701 mg As 
 kg−1. In both cases, high root-to-shoot transfer factor and 
unexpected high shoot Pb concentrations however may mir-
ror foliar exposure. Several As excluders, i.e. Dicranopteris 
linearis, Histiopteris incisa, Nephrolepis hirsutula, Pinus 
sp., Thysanolaena latifolia, and Melastoma malabathri-
cum, and As-accumulators, i.e. Pityrogramma calomelanos 
(210 mg As  kg−1) and P. vittata, were identified nearby the 
Lepanto As–Cu–Au mine in the Philippines, being options 
to post-mining rehabilitation (Claveria et al. 2019). Many 
herbaceous plant species growing in mining area, e.g. Agros-
tis castellana, Rumex acetosella, can display high root As 
concentration (> 200 mg  kg−1), being candidates for phyto-
stabilisation (Otones et al. 2011).
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One option to phytoextract As from contaminated soils 
is to use As-hyperaccumulating ferns from the Pteris genus, 
e.g. P. vittata, P. cretica, P. longifolia, and P. umbrosa, 
and other ones, e.g. Pityrogramma calomelanos var. aus-
troamericana (gold dust fern) and P. calomelanos (silver 
fern) (Francesconi et al. 2002; Niazi et al. 2012). Pteris 
vittata prefers to grow in alkaline soils, shady area and in 
warm, humid climates. However, it can be grown outside in 
mild-Atlantic climate (SW France), and protect from strong 
frost under cold greenhouse or by mulching.

As hyperaccumulation is a constitutive trait for P. vit-
tata, but M populations from As-contaminated soils differ 
from NM ones for As accumulation (Wu et al. 2018). Fern 
NM populations were collected from two Chinese uncon-
taminated sites, i.e. ZD and NN, and M ones in As and Pb/
Zn mining and/or smelting sites, i.e. SG and GY. Both NM 
populations display higher As(V) and As(III) uptake than 
the M ones. Arsenate reductase activities in roots peaked in 
the NM populations. Root exudates from the NN and GY 
populations contained similar organic acid patterns, domi-
nated by oxalic acid (> 67%) plus malic and succinic acids. 
For oxalate, the NN population released 4.2 times more than 
the SG one. The NN root exudates mobilised more As from 
polluted soils than the SG ones, oxalate being the most effi-
cient to extract As.

In hydroponics (24 days) and in the presence of Pb and 
Cd, the temperate zone fern P. multifida (able to tolerate low 
temperatures from 5 to − 4.6 °C) removed 50% of As(III) 
(Rahman et al. 2018). Frond As concentration was higher 
than in other plant parts whereas Cd and Pb concentrations 
peaked in roots and rhizome. In potted spiked soils, As 
concentration reached 1200 and roughly 250 mg  kg−1 in 
the rhizome and fronds of P. multifida, whereas the frond 
As concentration of the tropical zone fern P. vittata was 
2100 mg  kg−1. Co-accumulation of metal(loid)s by P. vit-
tata is questionable. Two Chinese P. vittata populations, 
one from a Sb smelting area (total soil As: 147) and one 
from a Pb–Zn mining area (total soil As: 572), and one As-
excluder Holcus lanatus population were cultivated on a Sb/
As-polluted soil (Wan et al. 2018). The fern displayed high 
As- but limited Sb-accumulating capacity: shoot As and Sb 
concentrations culminated at 455 and 26 mg  kg−1, respec-
tively. At day 28, the Sb and As concentrations in the soil 
solution were respectively decreased by 22% and 36% in 
the fern treatments. In contrast, the Sb and As accumulation 
by H. lanatus shoots was limited. In P. vittata, As(V) was 
converted to As(III), which dominated in shoots, but reduc-
tion of antimonate to antimonite was limited (with > 90% 
of shoot Sb existing as antimonate). The fern M population 
showed 35% higher As uptake than the NM one. Both popu-
lations did not differ for Sb accumulation. In contaminated 
soils dominated by Cu excess from a wood preservation site, 
P. vittata growth is affected and As-phytoextraction limited 

(Mench unpublished). For P. calomelanos plants exposed 
at 1 mM As, 90% of the As absorbed was accumulated in 
shoots, and no As stress symptoms were visible on plant 
parts (Campos et al. 2018). At higher exposure (10 and 
30 mM As), As uptake by roots was mainly translocated 
into the shoots (81–74%), with marginal and apical necroses 
on pinnae, damages being mainly in the secondary veins and 
adjacent cells. In the As-stressed roots, tenuous alterations 
were identified, i.e. separation of border-like cells and pres-
ence of granular substances in cortical cells.

Several field trials are cited by Jiang et al. (2015): P. vit-
tata and P. cretica in southwest England (Gray et al. 2005), 
low shoot DW yield (P. vittata, 0.76 t DW  ha−1) being the 
main drawback; P. vittata assessment at 21 As-contaminated 
sites in England (Shelmerdine et al. 2009) demonstrating 
that the As amount phytoextracted generally fell down as 
total soil As expanded and pointing out the low fern yield; 
and a Chinese trial (2t DW  ha−1, Chen et al. 2006). At a 
former CCA-contaminated site in Florida, total topsoil As 
was decreased from 190 to 140 mg  kg−1 following a 2 year-
cultivation of P. vittata. (Kertulis-Tartar et al. 2006). Using 
this fern, 8 years would be required to decrease the acid-
extractable soil As from 80 to 40 mg  kg−1 (US-EPA limit) 
at an EPA Superfund site (Salido et al. 2003). The P. vittata 
capacity to phytoextract As decreases after several consecu-
tive frond harvests and this fern species did not well regrow 
in the plots due to competition with weeds (Reichmann et al. 
2004 cited in Niazi et al. 2012; Mench et al. 2014).

Silverback fern, P. calomelanos, is able to better prosper 
on tropical As-polluted soils than Pteris sp. (Clemens and 
Ma 2016). It was cultivated in both greenhouse and field tri-
als in an As-polluted area of the Ron Phibun District, Thai-
land (Jankong et al. 2007). Rhizosphere bacteria and fungi 
were isolated from the fern roots. P fertiliser and rhizobac-
teria increased plant biomass and As accumulation, thus As 
phytoextraction. Rhizofungi decreased plant As concentra-
tion but enhanced plant biomass. Gold dust fern and Chi-
nese brake fern were compared at a disused As-contaminated 
cattle-dip site for their As-phytoextraction capacities over 
27 months (Wollongbar, NSW, Australia; Niazi et al. 2012). 
The frond DW yield, As concentration and As uptake were 
higher in the Gold dust fern than in P. vittata, at all harvests 
(i.e. 10, 22, and 27 months). Gold dust fern phytoextracted 
25.4 kg As  ha−1 (cumulative over three harvests), 2.65 times 
more than P. vittata (9.7 kg As  ha−1), corresponding to 
1.7–3.9% and 0.53 − 1.5% of total topsoil As. To assess P/As 
interaction, P. vittata was cultivated in two sandy polluted 
soils (C soil from an As-treated wood facility and D soil 
from a cattle-dipping vat, 129 and 26.7 mg As  kg−1) over 
5 years and during 10 harvests, under P-sufficient (P-ferti-
liser) and P-limiting (phosphate rock) conditions (da Silva 
et al. 2018a). Frond biomass production and As removal 
peaked for the 9th (62–64 and 35–63 g As  plant−1) and 10th 
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harvests (58–60 and 52–57 g As  plant−1) for C and D soils, 
even though As concentration in fronds dropped. Soil As 
phytoextracted averaged 7–10% per harvest during the 1–6th 
harvests; it decreased to 0–3% during the 7–10th harvests for 
D and C soils. All soil As fractions, except the residual one, 
were concerned by plant uptake. Highest decrease occurred 
in the amorphous fraction of the C soil (64–66%) and in the 
crystalline fraction of the D soil (50–86%). Soil As concen-
trations decreased respectively by 37–47% from 26.7 and 
129 to 16 and 69 mg  kg−1 for the D and C soils. Non-labile 
As was efficiently mobilised by P. vittata under P-limiting 
conditions without affecting its As depletion.

Soil pH is one major driving force for As phytoextraction. 
In a field survey, P. vittata and P. calomelanos only occurred 
in As-polluted areas with soil pH 7.2–8.8 and 2.3–4.2, 
respectively (Anh et al. 2018). Both fern species were fur-
ther grown in potted soils spiked with 300 mg As  kg−1 with 
soil pH set at 5.1, 7.2, and 9. Silverback fern subsisted at 
these three soil pH and showed the highest frond As concen-
tration and soil As phytoextraction at soil pH 5.1. In contrast, 
all P. vittata plants perished at this soil pH. At soil pH of 7.2 
and 9, P. vittata displayed higher frond As concentration, 
shoot biomass, and shoot As removal than P. calomelanos. 
For alkaline soil (pH 7.8) spiked with increasing As levels, 
P. vittata exhibited higher life time, shoot biomass, As toler-
ance, and phytoextraction than P. calomelanos.

Conclusions and perspectives

The evidences so far available indicate the exploitation of 
the microbial As(III) oxidation as the most promising appli-
cation for water treatment and bioremediation purposes. To 
date, the As transformation processes and the associated 
high microbial and functional diversity have been broadly 
studied and described. Only few investigations have how-
ever tested the biological As(III) oxidation process under 
exploratory settings mimicking real situations (e.g. long-
term experiments managed at large scale and/or in water 
treatment plant) and this has strongly impacted on the fur-
ther development of bio-based technologies. Consequently 
thereof, the field applicability of As microbiological reme-
diation processes in combination with conventional meth-
ods was not fully exploited and evaluated so far. Overall, to 
employ autotrophic As(III) oxidisers may be favoured as the 
process does not required the addition of any organic carbon 
sources. However, this metabolism has been till now exclu-
sively found in microorganisms isolated from extreme envi-
ronments. Nevertheless, several bench scale studies showed 
the efficient exploitation of heterotrophic As(III) oxidation 
in bioremediation strategies. This potential deserves to be 
further investigated and assessed in systems at higher scale. 
Reductive microbial bio-processes also present interesting 

potential in terms of As removal from water, in particular for 
mine and industrial polluted streams. The anaerobic bioreac-
tors could be judiciously combined with downstream aero-
bic oxidative and/or phytoremediation steps, for removing 
the residual dissolved As and organic carbon, as shown in 
the example of Trail site (Al et al. 2011). As observed with 
other pollutant classes, the use of native bacteria is surely 
a feasible option for bioremediation purpose due to their 
high compatibility with the environment and tolerance to 
toxicity. Diversely, bioaugmentation with specialised bacte-
ria implies the analysis of additional constrains that may be 
costly (e.g. the pre-cultivation and addition of highly con-
centrated microbial cultures) and may negatively impact 
the As transformation rate (e.g. the limited adaptation and 
persistence of the added microorganisms in the highly com-
petitive environment).

Recent methods of genomics, such as DNA sequencing 
and transcriptome analysis, are at the interface between 
molecular biology and ecology. When they are applied to 
environmental issues, they go beyond the simple descrip-
tion of organisms present in ecosystems. They make indeed 
possible to characterise microbial communities, which are 
sometimes complex and which can shelter organisms recal-
citrant to conventional cultural methods. Combined with 
functional approaches such as metaproteomics, metabo-
lomics, and stable isotope probing (Fischer et al. 2016; 
Musat et al. 2016; Vogt et al. 2016; Zuñiga et al. 2017), 
these various methods can provide an overall vision of the 
ecosystem structure and functioning. Moreover, with the 
sequencing depth that these recent technologies are able to 
do, access to the less-depicted species, the so-called rare 
biosphere, becomes possible. Such an opportunity to char-
acterise microbial communities quickly and cost-effectively 
could be particularly useful in monitoring bioremediation 
processes in As-contaminated environments, thus avoiding 
changes in parameters that would compromise the efficacy of 
bioremediation (Lovley 2003; Stenuit et al. 2008; Techtmann 
and Hazen 2016). Nevertheless, these approaches must be 
combined with laboratory and field experiments. In addi-
tion, they often require the development and optimisation of 
reproducible and efficient biological sampling and extraction 
methods. Finally, storing, exchanging and analysing the mas-
sive data amounts generated by high-throughput sequencing 
methods require the implementation of robust new comput-
ing methods, much more complex than those required by 
conventional statistical analyses (Pasolli et al. 2016; Li 
et al. 2017). The resulting studies must also include a set 
of complementary data, called metadata. Collected for each 
genome or metagenome studied, they must allow appropriate 
data exploitation (Satinsky et al. 2013), as specified by the 
Genomic Standard Consortium (Yilmaz et al. 2011).

Several practices are developed to enhance or reduce 
As (phyto)availability depending on the (bio)remediation 
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purposes and pollutant linkages. Use of chelating agents in 
combination with plants can promote either As phytostabili-
sation in excluder roots or bioavailable As stripping by accu-
mulators, but it is controversial as metal(loid)-chelates may 
be lixiviated and contaminate the groundwater. Soil amend-
ments, e.g. Fe/Mn bearing phases, alkaline silicon slags, are 
investigated to regulate root As exposure (Kumpiene et al. 
2019, 2021). Effectiveness of composts and biochars in 
reducing As bioavailability depends on many factors includ-
ing the release of dissolved organic matter, Fe/Mn oxide 
content, dosage rate, etc. (O’Connor et al. 2018). Si-based 
fertiliser can mitigate As accumulation in rice (Zhao et al. 
2010; Zhao 2020). Soil fertilisation (e.g. N, calcium phos-
phate) and inoculation with arbuscular mycorrhizal fungi 
(e.g. Funneliformis mosseae, Glomus mosseae) can increase 
fern biomass but with few or no effect on frond As removal 
(due to dilution in the biomass), whereas soluble P addition 
may desorb As from the soil bearing phases and promote its 
leaching (Matzen et al. 2020). The selection of plant species 
and genotypes can be used to produce safe crops regarding 
As (Allevato et al. 2019). The genetic engineering is also 
explored to improve As excluders or (hyper)accumulators 
(Clemens and Ma 2016; Zhang et al. 2018; Allevato et al. 
2019; Zhao 2020). Bioaugmentation with Plant Growth 
Promoting Bacteria (PGPB) and endophytic bacteria can 
promote root As uptake and plant growth, and thus As phy-
toextraction. Intercropping and co-cropping of As-excluder 
cash crops with As-(hyper)accumulator ones is an option 
for maintaining agricultural production and harvesting valu-
able biomass during the phytoextraction of labile fraction 
of soil As in excess. Phytomanagement-borne biomass is 
a resource and not a waste. Combustion is becoming a past 
option (Nzihou and Stanmore 2013). Research trends focus 
on optimising the processing of such biomass in various 
ways. It can be converted into valuable platform-chemical 
compounds, bio-active products, biogas/syngas, bio-oils and 
biofuels (Carrier et al. 2012; Cai et al. 2021, Wang et al. 
2021). (Hyper)accumulator biomass can be converted into 
biocatalysts. Ethanol extraction with anaerobic digestion is 
an option mobilising As from P. vittata biomass and produc-
ing methane (da Silva et al. 2019a, b). Solid residues can be 
processed by pyrolysis, producing biochars, and other tech-
nologies. Thermochemical processes, e.g. gasification and 
pyrolysis, can provide syngas and bio-oil products useable 
for heat and electricity generation and biosourced chemistry 
(He et al. 2019). Cai et al. (2021) extracted phenolic com-
pounds from P. vittata biomass. Vegetal fibers and powders 
to reinforce bio-sourced plastics and cements are other pro-
cesses to be explored.

Depending on the type of As-contaminated site and 
future land use, the science front (in a holistic approach) 
includes: to continue to identify relevant plant species and 
microorganisms regarding soil As phytomanagement, to 

focus on molecular mechanisms of As phytomanagement 
(Thakur et al. 2020), promotion of mesofauna and bacte-
rial communities through agricultural practices such as the 
permaculture (especially to facilitate rooting, water and 
nutrient uptake), (phyto)management of other contaminants 
combined with the soil As contamination (notably the case-
studies of soil As/Cd co-contamination (Zhao 2020) and As/
persistent organic pollutants), use of agro-ecology for As-
contaminated agricultural areas, biomonitoring of the food 
chain transfer (Grignet et al. 2020), use of nanoparticles to 
reduce As exposure, and development of the (phyto-borne)-
biomass-processing technologies.

Some phytomanagement gaps can be complemented by 
bioremediation (Roy et al. 2015), as microbes can: carry out 
the bioremediation out of the root zone and for groundwater; 
reduce bioavailable soil As, allowing plant colonists to cover 
the soil and to initiate a complementary phytoremediation; 
enhance contaminant removal (or xenobiotic dissipation) 
by promoting plant growth (e.g. atmospheric N fixation, 
mineral solubilisation and release of nutrients, production 
of plant growth regulators such as auxins, gibberellins and 
cytokinins, decrease of ethylene synthesis by 1-aminocyclo-
propane-1-carboxylate (ACC) deaminase, and challenging 
of pathogenic bacteria) and changing arsenical speciation; 
processing of plant biomass by anaerobic digestion etc. The 
use of transgenic plants and microbes is not addressed here 
but discussed elsewhere (Roy et al. 2015; Thakur et al. 2020; 
Zhao and Wang 2020) and currently not applicable in reme-
diation strategies in Europe.

Public access to thousands of metagenomic samples, for 
example, from sites such as EBI metagenomics (Mitchell 
et al. 2017), associated with large data mining and analy-
sis algorithms, and metabolic modeling methods is a real 
opportunity to better comprise how the various constituents 
of an ecosystem can work together in response to the biotic 
and abiotic factors of the environment. Rather than a simple 
inventory of biological objects, such a descriptive analysis 
can allow to answer questions such as: how do the concerned 
organisms work, what is their spatial and temporal distribu-
tion, what are the adaptive and even evolutionary processes 
involved and what are the metabolic interactions they may 
develop. In particular, such an integrated frame of the meta-
bolic functions exerted by microbial communities should 
provide a better knowledge of the microbial processes at 
work in the biological treatment of As-contaminated water. 
Combined with the use of appropriate predictive models, 
this understanding should allow an optimal use of micro-
organisms and their properties for developing new biotech-
nological applications in the bioremediation field of As-
contaminated soils and waters. They could also contribute 
to improve the functioning of existing bio-treatment pro-
cesses and to better control and stabilise their long-term effi-
ciency. The proof of the stability of biological activities in 
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continuously fed treatment plants would help to increase the 
applicability of As bioremediation options and their accept-
ance as robust low-cost technologies by the economic sector. 
The biological data generated by metagenomics approaches 
could also be a source of information to propose and test the 
validity of bioindicators, potentially useful for monitoring 
the bioremediation processes or to assess the As bioavail-
ability. Moreover, extended microbial metagenomic analyses 
of the different environmental compartments, i.e. soil, water, 
and rhizosphere soil, and the different plant parts will con-
tribute to the development of As bioremediation processes 
involving cooperation between bacteria, fungi, and plants.
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