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ABSTRACT. Surrogate models are often used to replace costly-to-evaluate complex coastal
codes to achieve substantial computational savings. In many of those models, the hydrometeo-
rological forcing conditions (inputs) or flood events (outputs) are conveniently parameterized by
scalar representations, neglecting that the inputs are actually time series and that floods propagate
spatially inland. Both facts are crucial in flood prediction for complex coastal systems. Our aim is
to establish a surrogate model that accounts for time-varying inputs and provides information on
spatially varying inland flooding. We introduce a multioutput Gaussian process model based on a
separable kernel that correlates both functional inputs and spatial locations. Efficient implementations
consider tensor-structured computations or sparse-variational approximations. In several experiments,
we demonstrate the versatility of the model for both learning maps and inferring unobserved maps,
numerically showing the convergence of predictions as the number of learning maps increases. We
assess our framework in a coastal flood prediction application. Predictions are obtained with small
error values within computation time highly compatible with short-term forecast requirements (on
the order of minutes compared to the days required by hydrodynamic simulators). We conclude that
our framework is a promising approach for forecast and early-warning systems.

1 Introduction

Natural hazards, such as floods induced by Hurricane Katrina (2005) or by the more recent storms Xynthia (2010)
and Johanna (2008), have strong negative impacts on the living conditions of hundreds of people (Blake et al., 2006;
Lumbroso and Vinet, 2011; André et al., 2013; Bathrellos et al., 2017). These events caused harmful coastal flooding
that resulted in a significant number of deaths. Hurricane Katrina was one of the six most powerful hurricanes ever
recorded in the Atlantic. It resulted in a death toll of 1836 and approximately 80 billion dollars of damage (Blake et al.,
2006). The storm Xynthia severely impacted low-lying French coastal areas located in the central part of the Bay of
Biscay on February 27 and 28, 2010 (Bertin et al., 2012). The flood induced by Xynthia caused 53 fatalities and more
than 1 billion euros of material damage. The storm Johanna had minor effects on the French Atlantic coast but still led
to significant flooding damage, such as in the town of Gâvres (Britany; André et al., 2013; Idier et al., 2020b). These
historical flood episodes reflect the need for accurate forecast and early-warning systems (FEWSs) to reduce the loss of
human life and damage in areas at risk of flooding (André et al., 2013; Hoggart et al., 2014; Idier et al., 2020b).

Most of the existing coastal flood FEWSs do not model floods and rely on the prediction of hydrodynamic conditions
on the coast and expert judgment (see, e.g., Doong et al., 2012). Some systems under development rely on simplified
inland flood computations (see, e.g., Tromble et al., 2019; Stansby et al., 2013), expecting that high-performance
computing will allow their integration in operational platforms. In the Netherlands, the operational FEWS issues
warnings based on the forecast of the near-shore conditions (like many other FEWSs), but in the case of warnings,
floods are estimated using a database of precomputed flooding scenarios. These scenarios were generated for a limited
set of dike breach locations and water levels using a model resolution of approximately 10 m. Most of the recent
contributions allow modeling of high-resolution floods, even if wave overtopping plays an important role (see, e.g.,
Le Roy et al., 2015; Idier et al., 2020b). However, those models are costly to evaluate, requiring up to days of parallel
computations, making their use in warning forecasting systems impractical.
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To overcome the computational complexity of coastal flooding codes, data-driven surrogate models have been widely
explored (Sacks et al., 1989; Rohmer et al., 2016; Liu and Guillas, 2017; Li et al., 2020; Bolle et al., 2018; Rueda et al.,
2019). These models are initially fed with a statistically rich but tractable number of simulations of a former model. By
learning statistical features, surrogate models are then used to predict floods based on knowledge of the coastal state. As
shown in (Rohmer and Idier, 2012; Jia and Taflanidis, 2013; Liu and Guillas, 2017; Azzimonti et al., 2019; Betancourt
et al., 2020; Perrin et al., 2021), Gaussian process (GP)-based stochastic surrogates can be successfully applied in a
wide range of coastal engineering applications. More precisely, they are often used as surrogate models for expensive
codes that can be later exploited, such as in regression and sensitivity analysis, both of which are of great interest for
reliability engineering and system safety (Betancourt et al., 2020; Perrin et al., 2021; Cao et al., 2021; Da Veiga and
Marrel, 2020; Li et al., 2020; Iooss and Ribatet, 2009; Marrel et al., 2009). In (Rohmer and Idier, 2012; Azzimonti
et al., 2019), GP-based approaches are used to assess the impact of critical spatial offshore conditions. Both frameworks
address level set estimation problems aiming to identify when the offshore conditions exceed a fixed risk threshold. In
(Jia and Taflanidis, 2013; Liu and Guillas, 2017), the authors focused on the dimension reduction of expensive computer
codes via GP emulators for tsunamis and storm/hurricane risk assessment, respectively. In (Li et al., 2020), a GP-based
sensitivity analysis study in the context of expensive models with high-dimensional outputs is conducted. Additional
works related to dimension reduction and GPs have been proposed in (Fukutani et al., 2021; Rohmer et al., 2016; Perrin
et al., 2021)

Many of the aforementioned works have in common that they consider scalar representations of the hydrodynamic
forcing conditions (inputs) rather than their functional structures (e.g., time series). We particularly refer to (Azzimonti
et al., 2019; Rohmer et al., 2018) for some examples where hydrodynamic functional drivers are parameterized by scalar
representations before assessing the surrogate models. To date, the frameworks in (Betancourt et al., 2020; Kim et al.,
2015) are the only frameworks that consider time-varying inputs in the domains of flood hazard assessment and storm
surge prediction, respectively. Betancourt et al. (2020) further investigate dedicated kernels based on proper distances
in function spaces aiming to correlate hydrodynamic functional drivers. Kim et al. (2015) introduce a time-dependent
surrogate model of storm surge based on an artificial neural network.

Betancourt et al. (2020) have shown that considering hydrodynamic drivers as functions rather than scalars results
in significant improvements in prediction as more precise physical information is encoded into kernels. Their work
has focused on modeling, such as a scalar representation of the maximum cumulative overtopped and overflowed
water volume. However, in practice, these global scalar indicators may be insufficient; and spatial information, e.g.,
the maximum inland water level, is often needed. Therefore, inspired by (Betancourt et al., 2020), our aim here is to
establish a GP model that accounts for the effects of time-varying forcing conditions and provides spatially varying
inland flood information. Our framework builds on the construction of a separable kernel that incorporates both
functional and spatial correlations. The resulting process can be viewed as a multioutput GP (see, e.g. Alvarez et al.,
2012) where spatial flood indicators (outputs) are driven by a set of hydrometeorological drivers (functional inputs).
In our case, the outputs are correlated by a kernel that exploits the “similarity” between the functional inputs. This
leads to a framework that can be easily connected to other GP-based approaches (Lázaro-Gredilla and Figueiras-Vidal,
2009). Furthermore, efficient implementations can be developed based on Kronecker-structured computations (see, e.g.,
Alvarez et al., 2012) or sparse-variational approximations (see, e.g., Van der Wilk et al., 2020). For the former case, we
provide R codes based on the kergp package (Deville et al., 2019); and for the latter case, we adapt the multioutput GP
models from the GPflow library (Matthews et al., 2017) to account for functional input data.

There are alternative approaches that treat spatial outputs as functional data. For instance, we refer to (Marrel
et al., 2011) for a framework modeling the pollution produced by radioactive wastes, to (Chang and Guillas, 2019)
for an approach capable of learning spatial patterns in climate experiments, and to (Perrin et al., 2021) for a surrogate
model for the assessment of coastal flooding risks. These approaches first project the outputs into truncated basis
representations (e.g., wavelets) to reduce the dimensionality. Then, prior distributions are placed at the level of the
representation coefficients and not in the output space. Although their works scale well with the number of spatial
points, they typically require a large number of learning simulations (e.g., over 500 events) to properly capture spatial
patterns (see, e.g., Perrin et al., 2021). Here, we are restricted to highly constraining situations where fewer than 200
flood scenarios are available. This limitation arises from the use of costly-to-evaluate numerical simulators: a flood
event requires almost three days of parallel computing (see, e.g., the model used by Idier et al., 2020b). We must also
point out that (Marrel et al., 2011; Chang and Guillas, 2019; Perrin et al., 2021) do not account for functional inputs, a
condition that is crucial for properly learning hydrometeorological forcing conditions, as our framework does (see the
discussion in Section 2.1). To the best of our knowledge, our proposal is the first to consider both inputs and outputs as
functions in the field of flood hazard assessment. Furthermore, unlike the aforementioned works, our framework allows
us to focus predictions on spatial design points placed in key sectors identified as of uttermost importance regarding the
vulnerability of the territory (see, e.g., Idier et al., 2013, 2020a, for a further discussion).
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Map Data: Google, Maxar Technologies.

Figure 1: (left) The Gâvres municipality (red contour). (right) The town of Gâvres (Grande Plage and the cemetery).

The remaining sections are organized as follows. In Section 2, we describe the coastal flooding application that
motivated the contributions in this paper. We briefly explain how to establish GP models for functional data, and we
introduce the extension to spatial GPs with functional data where the covariance function is built via separable kernels.
We also discuss the connection of the proposed framework with multioutput GP models. In Section 3, we assess the
performance of the resulting GP model on various synthetic examples considering different situations depending on the
data availability. We also apply our framework to a coastal flooding application. Finally, in Section 4, we summarize
our results and outline potential future work.

2 Study Site, Data and Methods

In this section, we first describe the study site and the dataset used in the numerical experiments of Section 3.4. We then
provide the background related to Gaussian process models with time-varying functional inputs. Finally, we introduce
the extension to the case of spatial outputs.

2.1 Coastal flooding application: study site and dataset

In our study, we focus on the town of Gâvres (Figure 1, left) located along the French Atlantic coast in Brittany. The
Gâvres municipality is a peninsula that is connected to the mainland by a 6 km long tombolo (Figure 1, right). The town
has faced five significant coastal flood events since 1900 (Idier et al., 2020b). The latest memorable event occurred on
10 March 2008 (Johanna storm): a combination of a spring tide, a storm surge larger than 0.5 m, and energetic waves
led to the flooding of approximately 120 houses (Idier et al., 2020b), some by approximately 1 m of water, along the
street of the sports park (Le Roy et al., 2015; André et al., 2013). This marine submersion was induced mainly by waves
overtopping the sea dike at the Grande-Plage beach and a bit of overflow close to the cemetery (Figure 1, right).

In such environments, estimating floods requires the use of advanced hydrodynamic numerical models able to account
for overflow and overtopping processes with good precision. Such models emulate the hydrodynamics (water level and
current) induced by hydrometeorological forcing conditions (e.g., the mean sea level, tide, atmospheric surge, and wave
conditions). An example is the nonhydrostatic phase-resolving SWASH model (Zijlema et al., 2011). The SWASH
model, nested with a spectral wave model that propagates the offshore wave conditions to the SWASH model’s boundary,
can successfully reproduce local past flood events (see Idier et al., 2020b). However, this modeling configuration is
time consuming (6 h simulated in 3 days on 48 cores) and is therefore inapplicable for flood forecasting.

Thus, to support the development of fast-running surrogate models for flood forecasting, the BRGM and IMT1 built a
dataset (Xo → Yo) based on numerical modeling. In the present work, we use this dataset. The hydrometeorological
forcing conditions (Xo) are time series of the mean sea level (MSL [m]), tide (T [m]), atmospheric storm surge (S
[m]), significant wave height (Hs [m]), wave peak period (Tp [s]), wave peak direction (Dp [◦]), wind speed (U [m/s])
and wind direction (Du [◦]) (see Idier et al., 2020b, for more details). These drivers, discretized with a 10 min time
step over a 6 h window centered on high tide, are represented by a 37 observation long time series. The stored model
results (Yo) are the maximal inland water height (Hmax) at each grid point every 3 m (see Figure 2). This leads to

1BRGM: The French Geological Survey (acronym in French). IMT: Toulouse Mathematics Institute (acronym in French).
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Figure 2: Three flood examples from the dataset in Section 2.1. The panels show the maximal inland water level Hmax
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Figure 3: Hydrometeorological functional inputs from the dataset in Section 2.1. The panels show the 131 replicates of
the mean sea level (MSL [m]), tide (T [m]), surge (S [m]), wave peak period (Tp [s]), wave height (Hs [m]), wave peak
direction (Dp [◦]), wind speed (U [m/s]) and wind direction (Du [◦]).

spatial flood events containing approximately 64.6k inland observations. The dataset contains 131 scenarios of Xo,
including 21 historical flood (9) and no flood (12) events (see Idier et al., 2020b); 16 scenarios simulated from small
variations of the 9 historical flood events; and 94 additional scenarios with both zero, moderate and significant marine
submersions. The latter (94) scenarios were built by applying a combination of methods to a hydrometeorological
dataset covering the 1900-2016 period with a 10 min time step. Namely, multivariate extreme value analysis was applied
to randomly generate the joint distribution of the maximum values of forcing conditions, a probabilistic classifier
was applied to locate the time instant of these maximum values, and a multivariate Gaussian Monte Carlo-based
sampling procedure was applied to generate the time series accordingly. We refer to (Idier et al., 2020b) for the dataset
description and (Rohmer and Idier, 2012; Idier et al., 2020b) for the extreme value analysis. The 131 scenarios of the
hydrometeorological functional inputs are shown in Figure 3.

2.2 Background on Gaussian processes with functional inputs

2.2.1 Gaussian processes

GP-based surrogate models have been widely used to replace costly-to-evaluate numerical simulators due to their
well-founded and nonparametric framework for statistical learning (Rasmussen and Williams, 2005; Camps-Valls et al.,
2016). GPs form a flexible prior over functions where regularity assumptions can be encoded into covariance functions
also known as kernels (Genton, 2001; Paciorek and Schervish, 2004).
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Kernel Mathematical expression kθ=(σ2,`)(R)

Squared exponential (SE) σ2 exp
{
− 1

2‖R‖2`
}

Matérn 5/2 σ2
(
1 +
√

5‖R‖`+ 5
3‖R‖2`

)
exp

{
−
√

5‖R‖`
}

Matérn 3/2 σ2
(
1 +
√

3‖R‖`
)

exp
{
−
√

3‖R‖`
}

Exponential σ2 exp {−‖R‖`}
Table 1: Examples of valid stationary kernel functions

Let {Y (F);F ∈ F(T ,R)Q}, where F(T ,R) is the set of functions from T to R, be a stochastic process with
functional inputs F = (f1, . . . , fQ). Consistent with Section 2.1, here, we consider time-varying inputs f : T → R
with T ⊆ R. We must note that our developments can be extended to the multivariate case, i.e., T ⊆ RD with D ≥ 2.

We say that Y is GP-distributed if any finite subset of random variables extracted from Y has a joint Gaussian
distribution (Rasmussen and Williams, 2005). By focusing on centered GP priors,2 then Y is completely defined by

Y ∼ GP(0, k), (1)

where the kernel k(F ,F ′) evaluates the correlation between Y (F) and Y (F ′). For instance, k(F ,F ′) = 0 if Y (F)
and Y (F ′) are uncorrelated and is nonzero otherwise.

One of the main benefits of GPs relies on the tractability of conditional distributions. Let us consider Y conditioned on
an observation vector yN = [y1, . . . , yN ]> evaluated at (F1, . . . ,FN ), whereF i = (fi,1, . . . , fi,Q) for i = 1, . . . , N .
Then, the conditional distribution Y |{YN = yN} for the Gaussian vector YN = [Y (F1), . . . , Y (FN )]> is also
Gaussian with conditional mean and conditional covariance functions given by

µ(F∗) = k>(F∗)K−1yN , (2)

c(F∗,F ′∗) = k(F∗,F ′∗)− k>(F∗)K−1k(F ′∗),

with covariance matrix K = (k(F i,F j))1≤i,j≤N and cross-covariance vector k(F) = [k(F ,F1), . . . , k(F ,FN )]>.
The conditional mean Ŷ (F∗) = µ(F∗) is usually used as a point estimate of Y (F∗), and the conditional variance
v(F∗) = c(F∗,F∗) is the expected square error of this estimate.

2.2.2 Construction of stationary kernels for functional inputs

To establish proper kernels, we need to define the distance between functions. We consider the L2-norm as it leads to
simpler and closed-form expressions in Section 2.2.3:

‖R‖2`= ‖F −F ′‖2`=
Q∑

i=1

∫
T (fi(t)− f ′i(t))2dt

`2i
, (3)

where `i ∈ R+ and
∫
T (fi(t) − f ′i(t))2dt < ∞, for i = 1, . . . , Q. The length-scale parameter `i can be viewed as a

scale parameter for the ith functional input.

Examples of valid stationary kernels are shown in Table 1, and illustrations of the effect of those kernels are displayed
in Figure 4. We consider F1 = (f(t) = 1), F2 = (f(t) = t), F3 = (f(t) = t2) and F4 = (f(t) = t3) as inputs.
We fix the variance parameter σ2 = 1 and the length-scale parameter ` = 1. We can observe that the cross-covariance
values k(F i,F j), for i, j = 2, 3, 4 with i 6= j, are greater than those involving k(F1,F j). This results from the
similarity between the functions f(t) = t, f(t) = t2 and f(t) = t3 on T = [0, 1]. Furthermore, from Figure 4(a) to
4(d), we note that GP models can be more or less sensitive to dissimilarities depending on the choice of the kernel. For
example, while the squared exponential (SE) kernel provides a correlation between F2 and F4 equal to one (Figure
4(a)), the exponential kernel suggests that the similarity between those inputs is weaker and equal to 0.73 (Figure 4(d)).

The exact computation of (3) relies on its Q integrals. Depending on the complexity of fi and f ′i , such integrals
can be intractable. Furthermore, in many situations, only a finite number of evaluations of fi and f ′i are available, but
their functional structures are actually unknown (e.g., for the case of discrete time series). For these reasons, functions
are usually replaced by linear approximations where (3) has a closed-form solution since the integrals operate over
well-defined basis functions.

2A GPZ with mean function µ and kernel k can be written in terms of a centered GP Y with same kernel: Z(F) = µ(F)+Y (F).
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(a) SE (b) Matérn 5/2
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Figure 4: Effect of the kernels in Table 1 with F1 = (f(t) = 1), F2 = (f(t) = t), F3 = (f(t) = t2) and
F4 = (f(t) = t3) as functional inputs. The covariance parameters are set to (σ2 = 1, ` = 1). The panels show the
kernels (left) and the functions f (right).

2.2.3 Projection of functional inputs onto basis functions

Consider the projection of f onto a set of basis functions (Ramsay and Silverman, 2005):

f(t) ≈
p∑

j=1

φj(t)αj := g(t). (4)

Similarly, let g′ be the linear approximation of f ′ with the same set of basis functions φ1, . . . , φp and with the
coefficients α′1, . . . , α

′
p. Using (4), the integrals in (3) are then approximated by the form

∫
T (gi(t)− g′i(t))2dt. Note

that in (4), for ease of notation, we intentionally dropped the subindex i in the definition of fi.

Matricially, the integral in (4) is given by
∫

T
(g(t)− g′(t))2dt = β>Ψβ, (5)

where Ψ =
∫
T φ(t)φ>(t)dt, φ(t) = [φ1(t), . . . , φp(t)]

>, β = [β1, . . . , βp]
> and βj = αj − α′j . Note from (5) that

the integral now operates over φ1, . . . , φp whose functional structures are known.

For a wide range of basis families, such as in splines and PCA, the Gram matrix Ψ has an analytical form (see, e.g.,
Ramsay and Silverman, 2005; Shi and Choi, 2011). In terms of computational savings, since Ψ does not depend on f
or f ′, it can be computed only once, stored and reused when building up the kernels in Table 1. The consideration of
orthogonal or orthonormal families of basis functions (e.g., in PCA) results in significant simplifications. For the former
family, Ψ is a diagonal matrix given by Ψ = diag(

∫
T φ(t)φ>(t)dt). For the orthonormal case, Ψ is the identity.

In this paper, we focus on projections based on PCA approximations as they lead to two main computational benefits
(see, e.g., Betancourt et al., 2020, for other implementations based on splines). First, Ψ = I due to the orthonormality
of the basis functions. Second, the most relevant information from functional inputs is encoded in a few principal
components. As an example, to satisfy a total inertia of 99.9% for the 37 observation long discrete time series in Figure

6
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3, PCA led to p = [1, 4, 3, 3, 2, 6, 4, 9] where pi is the number of principal components for the ith functional input.
Note that smaller values of pi are assigned to less varied functional profiles. We refer to Appendix A for a further
discussion on the construction of the PCA basis functions.

In the coastal flooding application, we consider discrete representations of the functional inputs. Therefore, we may
be interested in exploiting classic measure distances such as the Euclidean or Mahalanobis distances; moreover, we may
contemplate dedicated distance measures proposed for time series (see, e.g., Górecki and Piasecki, 2019; Mori et al.,
2016). Note that those distances will consider 37-dimensional input spaces compared to the p-dimensional spaces,
where p ∈ {1, 9}, obtained by the PCA projection. The increase in the computational costs here can be mild, but the
PCA approximation will be better in other situations where the input space generated by the discrete time series is large.
For example, if time series contain hundreds or thousands of discrete values, it is preferable to use the PCA projection
to achieve cheaper and faster computations.

2.3 Extension to spatial Gaussian processes

We now consider that {Y (F ,x);F ∈ F(T ,R)Q,x ∈ R2} is a centered spatial GP with functional inputs F and
spatial coordinates x = (x1, x2). Hence, GP Y can be fully defined by constructing a valid kernel k that accounts for
both spatial information and functional inputs, i.e., k((F ,x), (F ′,x′)). Note that if the approximations g1, . . . , gQ
are considered instead, then k((F ,x), (F ′,x′)) must be rewritten for k((G,x), (G′,x′)). For the sake of consistency
with Sections 2.2.1 and 2.2.2, we continue the discussion with the notations of F and F ′.

2.3.1 Construction of the covariance function via separable kernels

A natural extension of GPs accounting for mixed variables relies on separable kernels defined by the product of
subkernels (see, e.g., Fricker et al., 2013; Roustant et al., 2020). In our case, the kernel can be written as

k((F ,x), (F ′,x′)) = kf (F ,F ′)kx(x,x′), (6)

where subkernels kx : R2 × R2 → R and kf : F(T ,R)Q × F(T ,R)Q → R.3 Note now that the kernel in (6) is
attenuated by the spatial correlation. Therefore, although having similar functional inputs F and F ′, distant values of
x and x′ can result in small correlations. Since the process Y remains a GP, the conditional formulas in (2) hold for (6)
with tuples (F i,xi)1≤i≤N .

One of the main benefits of using (6) relies on the exploitation of Kronecker structures. In that case, we should
consider tuples (F i,xj)1≤i≤R,1≤j≤S , where R is the number of functional replicates (i.e. number of flood scenarios)
and S is the number of spatial points per map. This leads to a total of N = R× S observations. Denote the covariance
matrices as Kf = (kf (F i,F j))1≤i,j≤R and Kx = (kx(xi,xj))1≤i,j≤S . Then, from (6), we have the Kronecker
product K = Kf ⊗Kx; and the Cholesky factorization of K given by L = Lf ⊗ Lx, where Lf and Lx are the (lower
triangular) Cholesky matrices of Kf and Kx, respectively. This results in less expensive procedures since both Cholesky
and inverse operations are applied on smaller matrices, reducing the computational complexity to O(R3) + O(S3)
(compared to O(R3S3) for standard implementations, Alvarez et al., 2012). For large datasets such as the one detailed
in Section 2.1, computing either K or L (or their inverses) can easily run out of memory as either R or S increases. To
mitigate this drawback, more efficient computations can be obtained by solving triangular-structured linear systems
rather than directly computing those matrices (see, e.g., Bilionis et al., 2013). For easy self-reading, in Appendix B, we
summarize the main Kronecker-based computations used in this paper.

2.3.2 Connection to other GP developments

Linear models of coregionalization (LMC). The process Y can be written as a multioutput process Z where the
outputs are driven by a given set of functions, i.e., Zi(x) := Y (F i,x), for i = 1, · · · , R. In that case, (6) yields:

ki,j(x,x
′) = bi,j kx(x,x′), (7)

where bi,j := kf (F i,F j) for i, j = 1, . . . , R. The kernel in (7) follows a similar structure to the one in LMC, more
precisely, to the one in intrinsic coregionalization models (ICMs, Alvarez et al., 2012). Note that kf involves only the
estimation of Q length-scale parameters rather than the R(R+ 1)/2 coefficients (R� Q) corresponding to the upper
triangular block of the symmetric coregionalization matrix B = (bi,j)1≤i,j≤R. Another benefit of considering Kf is its
positive definiteness condition since kf is defined as a kernel. Since this condition is not necessarily satisfied by B,
ICMs may lead to numerical instabilities due to noninvertible matrices. In practice, B̃ = B + diag([κ1, . . . , κR]) is
considered to ensure the positive definiteness condition, but this implies the estimation of the R parameters κ1, . . . , κR.

3To avoid nonidentifiability of the variance parameters, kf is considered a correlation function, i.e., the variance is σ2
f = 1.
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Sparse approximations. Further simplifications are obtained by sparse approximations (Titsias, 2009; Hensman
et al., 2013). Recall that Zi(x) = Y (F i,x) for i = 1, . . . , R. The distribution of (Z1, . . . , ZR), conditioned to
(Zi(x1) = zi,1, . . . , Zi(xS) = zi,S)1≤i≤R, can be approximated by a cheaper but tractable variational distribution
conditioned to (Zi(u1) = z̃i,1, . . . , Zi(uM ) = z̃i,M )1≤i≤R, with M � S. Then, using a low rank approximation
of ks, the complexity O(R3) + O(S3) is reduced to O(R3) + O(SM2). The inducing variables u1, . . . ,uM are
estimated via variational inference (see, e.g., Hensman et al., 2013), and M is fixed seeking a trade-off between the
computational complexity and approximation quality. While a large value of M leads to more precise but expensive
models, a small value results in faster but less accurate approximations.

Variational inference (VI). As our functional framework preserves the structure of ICMs, it can be easily plugged
into other types of multioutput GPs (MoGPs) based on VI (see, e.g., Hensman et al., 2013; Moreno-Muñoz et al., 2018;
Van der Wilk et al., 2020). As an example, our functional framework can be fitted via stochastic VI (SVI), which scales
well for large values of S (Hensman et al., 2013). Considering a separable Kronecker-based kernel and applying SVI
(under sparse assumptions) only to the spatial kernel, the complexity of the resulting GP decreases toO(R3)+O(BM2)
with batch size B � S. The value of B is manually fixed depending on the available storage capacity. More efficient
variational implementations are obtained by using interdomain approximations (see Lázaro-Gredilla and Figueiras-Vidal,
2009; Van der Wilk et al., 2020). As another example, heterogeneous MoGPs can also be established by considering
that each output has its own likelihood function (e.g. a Gaussian, a Bernoulli or a Poisson likelihood, Moreno-Muñoz
et al., 2018).

Since our MoGP implementations are based on the GPflow Python library, they enjoy a great variety of dedicated VI
developments (see the documentation in Matthews et al., 2017), including those for the SVI and heterogeneous MoGPs.
Although the variational features in (Moreno-Muñoz et al., 2018) are not exploited in this paper, they are available for
the scientific community for further research (see Section 3.1 for further details).

3 Results and Discussions

3.1 Python and R implementations

The GPflow Python library relies on variational inference to meet the twin challenges of nonconjugacy and scale
(Matthews et al., 2017). To the best of our knowledge, GPflow does not support Kronecker-based composite kernels in
its latest release. Therefore, implementing Kronecker-structured objects requires significant modifications at the root
level. This motivates developments based on the kergp R package (Deville et al., 2019). The kergp package is not
equipped with sparse-variational approximations as GPflow is. Nevertheless, the kergp package is sufficiently flexible
to account for both functional data and Kronecker-structured composite kernels. Both Python and R implementations
are available on GitHub: https://github.com/anfelopera/spatfGPs.

3.2 Performance indicators

We consider the three following performance indicators for the predictions: the root mean square error (RMSE), the Q2

value and the coverage accuracy (CA). The first two assess the quality of the predictive mean, and the CA evaluates the
quality of the predictive variance. The Q2 criterion is given by

Q2 = 1−
∑Ntest
i=1 (yi − ŷi)2∑Ntest
i=1 (yi − y)2

, (8)

where ŷ1, . . . , ŷNtest and y are the predictions and the average of test data y1, . . . , yNtest , respectively. For noise-free
observations, Q2 is equal to one if predictions are exactly equal to the test data, zero if they are equal to y, and negative
if they perform worse than y.

The CA of the c-standard deviation confidence intervals, denoted as CA±cσ , indicates the proportion of the test data
that is contained in the confidence intervals:

CA±cσ =

Ntest∑

i=1

1yi∈[ŷi−cσ,ŷi+cσ], (9)

where σ2 is the predictive variance provided by the GP model, and 1yi∈[ŷi−cσ,ŷi+cσ] is equal to one if yi ∈ [ŷi −
cσ, ŷi + cσ] and zero otherwise.
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Figure 5: (top) Sampled replicates for the (8) inputs and (bottom) examples of sampled spatial events (20) used in the
illustration of Section 3.3.1.

3.3 Numerical illustrations on synthetic examples

We test the proposed GP framework under different situations depending on the data availability. First, we consider the
case where different design points per map are considered. To simplify the multioutput learning task, strong correlations
between spatial events and functional inputs are assumed. Second, highly variable maps are predicted considering
Kronecker-structured design points. Finally, we apply the model for predicting unobserved events given a set of learning
events (forecasting task).

3.3.1 Multioutput illustration

Synthetic dataset. We consider a coupled system consisting of R = 20 outputs and Q = 8 inputs. To emulate
functional patterns, the latter functions are sampled from the predefined GPs given by fi ∼ GP(µi, ko) for i = 1, . . . , Q,
with mean function µi and Matérn 5/2 kernel ko. We fix the variance σ2

o = 2.5 × 10−3 and the length-scale
`o = 0.8 seeking small variations between fi and µi. The mean functions µ1, . . . , µQ are also GP realizations, i.e.,
µi ∼ GP(0, ki), with Matérn 5/2 kernels, variances σ2

µi
= 1

2 and length-scales `µi
= i

10 . Note that fi becomes less
variable as `µi

increases (Figure 5). Then, we sample 100 × 100 maps using a 2D Matérn 5/2 kernel with variance
σ2
x = 1 and length-scales `x,1 = `x,2 = 0.2. To correlate the inputs, a Matérn 5/2 kernel is used with length-scales
`f,i = 2 for i = 1, · · · , 8. For convenience, strong correlations are considered to determine sampled maps that resemble
each other (Figure 5).

Exact multioutput learning. We now compare the performance of the proposed functional MoGP (denoted as
fMoGP) to the performance of the standard MoGP via LCM. For the MoGP, we use the developments available in
GPflow (Matthews et al., 2017). Both models consider Matérn 5/2 kernels with the same initial spatial parameterization:
σ2
x,o = 1 and `x,1,o = `x,2,o = 0.5. For the MoGP, as suggested by Matthews et al. (2017), we randomly initialize the

coefficients of B. For the fMoGP, a Matérn 5/2 kernel is used with initial length-scales `f,i,o = 0.5 for i = 1, . . . , 8.
Then, the hyperparameters and covariance parameters of both models are estimated via maximum likelihood (ML)
using (σ2

x,o, `f,1,o, . . . , `f,8,o) as the initial values of a gradient-based optimization. The gradients are computed using
the automatic differentiation tool from GPflow.
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Ŷ10(x1, x2) [Q2 = 93.2%]

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2
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Figure 6: Predictions for the spatial events in Figure 5. The results are shown using either the standard MoGP via LMC
(top) or the proposed functional MoGP framework (bottom). The white dots represent the spatial design points. The
resulting Q2 value per map is also shown on top of each panel.

In the training step, we consider different maximin Latin hypercube designs (LHDs) with S = 35 spatial points
per map, leading to a total of 700 training points.4 We use the enhanced stochastic evolutionary (ESE)-based LHD
implementation in the SMT Python library (Bouhlel et al., 2019; Jin et al., 2005). Note that since tensorized designs are
not considered, Kronecker-structured models cannot be exploited.

Results. Figure 6 shows the predictions provided by both MoGP and fMoGP. We can observe that both models
capture the spatial dynamics of the maps in Figure 5, leading to Q2 values of approximately 0.943 and 0.960 (averaged
values over the 20 maps), respectively. Here, the Q2 criterion is computed over an equispaced 100× 100 grid fixed
for all the maps Y1, . . . , Y20. After repeating this experiment using ten different LHDs, the MoGP and fMoGP led to
Q2 = 93.2± 1.4 % (mean ± standard deviation) and Q2 = 95.9± 0.6 %, respectively. This raises the conclusion that
accounting for the functional structure in the coregionalization matrix results in prediction improvements.

Although both matrices B and Kf = (kf (F i,F j))1≤i,j≤R exhibit the strongest correlations in the diagonal (Figure
7), B led to extremely high values. This affects the estimation of the variance, leading to σ̂2

x,MoGP = 5.8×10−4 compared
to σ2

x = 1 (true variance) and σ̂2
x,fMoGP = 0.96. For the length-scales of kx, models led to ˆ̀

x,MoGP = (0.20, 0.22) and
ˆ̀
x,fMoGP = (0.20, 0.21) compared to the true results fixed to `x = (0.2, 0.2). For the length-scales of kf , the fMoGP

estimated ˆ̀
f = (2.57, 1.84, 1.83, 1.66, 1.74, 3.55, 1.46, 1.53) compared to the true results fixed to 2.

3.3.2 Sparse-variational illustration

Synthetic dataset. The synthetic dataset is generated by following the sampling scheme used in Section 3.3.1 but
with some covariance parameters slightly changed to find more variable spatial events. We fix σ2

o = 4 × 10−2 and

4The budget has been fixed considering the computational capacity of an Intel(R) Core(TM) i5-4300M CPU @ 2.60GHz and 8
Gb RAM.
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Figure 7: Coregionalization matrices for the MoGP (left) and fMoGP (right) models used in Section 3.3.1.
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Figure 8: Examples of the sampled maps used in the illustration of Section 3.3.2.

`x,1,o = `x,2,o = 0.1. We then sample 50 maps using a 100× 100 grid. Examples of the generated spatial events are
shown in Figure 8.

Approximate multioutput learning. We have adapted the sparse-variational MoGP (sv-MoGP) framework in (Van
der Wilk et al., 2020) to account for functional inputs. We denote the resulting model as sv-fMoGP. The efficiency of
sv-MoGP relies on considering sparse approximations together with dedicated SVI schemes and tensor-structured data.

For the spatial design points, we use a maximin LHD of S = 500 points. This results in N = 25 × 103 training
data, a significantly larger amount of data compared to the nontensorized illustration proposed in Section 3.3.1. The 50
spatial events are assumed to share the same inducing variables.5 Those variables are initialized as a maximin LHD
seeking to cover the spatial space. To assess the influence of the inducing variables, we test models where the value
of M is gradually increased, i.e., M = 20, 50, 100, 200. In order to avoid running out of memory,6 we apply the SVI
with a minibatch size of B = 200. Both the covariance and variational parameters are estimated via SVI based on
gradient-based optimization using automatic differentiation (see Hensman et al., 2013; Van der Wilk et al., 2020).

Results. We tested both sv-MoGP and sv-fMoGP using ten different designs with S = 500 spatial points. The Q2

results (mean ± standard deviation) are shown in Table 2. The Q2 criterion was computed considering the spatial
locations that were not used for training the models for all 50 maps. From Table 2, we observe that sv-fMoGP
outperformed sv-MoGP, leading to absolute Q2 improvements greater than 12%. We can also note that sv-fMoGP
resulted in accurate predictions for M ≥ 100.

Although the predictability of both models improves as M increases, fitting them to training data becomes costly.
While for M = 100 the CPU times for 4× 103 gradient evaluations of the SVI were approximately 0.32 h and 0.74 h

5This assumption can be relaxed to address different sets of inducing variables per map but at the cost of complex inference.
6The experiments here have been executed on a single core of an Intel(R) Core(TM) i5-4300M CPU @ 2.60 GHz and 8 Gb RAM.
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Table 2: Multioutput learning performance of sv-MoGP and sv-fMoGP. The Q2 results (mean ± standard deviation)
are computed considering 10 replicates of the experiment in Section 3.3.2.

Q2 [%] (mean ± standard deviation)

Model Number of Inducing Variables
M = 20 M = 50 M = 100 M = 200

sv-MoGP 53.6± 3.2 75.1± 2.1 81.4± 1.5 84.0± 0.8
sv-fMoGP 69.9± 1.7 87.4± 0.9 93.6± 1.2 96.6± 0.1

(for sv-MoGP and sv-fMoGP, respectively), for M = 200, they were approximately 0.96 h and 1.85 h, respectively.
sv-fMoGP was much slower since the gradients with respect to the length-scales `f,1, . . . , `f,8 were more expensive to
evaluate.

3.3.3 Inference of unobserved outputs

Synthetic dataset. We consider a coupled system consisting of R = 1001 outputs and Q = 8 functional inputs. We
sample the latter functions as proposed in Section 3.3.1 but consider centered processes: fi ∼ GP(0, ki) with Matérn
5/2 kernels, σ2

i = 1
2 and `i = i

10 for i = 1, . . . , q. We generate the corresponding 1001 maps using an equispaced grid
of 10× 10 spatial locations. This leads to S = 100 design points per map. We use the same kernel parameterization
proposed in Sections 3.3.1 and 3.3.2.

Inference of new maps. As discussed in Section 2.1, our goal is to predict the consequence (i.e., the map of
maximum water level Hmax) of unobserved storm events. This is achieved by correlating the hydrometeorological
drivers (functional inputs). The length-scales `1, . . . , `Q of kernel kf can be estimated using data from the observed
events. Therefore, since the structure of kf is completely defined after fitting the GP, our model can be applied for
forecasting purposes. The framework in (Van der Wilk et al., 2020) requires the estimation of the mean and covariance
functions of the variational distribution, which can only be estimated for observed outputs. This makes both sv-MoGP
and sv-fMoGP inapplicable to forecasting tasks. However, we can still exploit Kronecker-based composite kernels
using kergp.7

In this example, we are interested in the inference of the 1001st map using data from the first 1000 maps. The
performance of the model is assessed in terms of the number of learning maps R. Here, the covariance parameters are
estimated via ML using the derivative-free constrained optimizer by linear approximations (COBYLA) implemented in
the NLOpt package (Johnson, 2020). We have also tested gradient-based optimizers, but they led to more expensive
procedures.

Results. Figure 9 shows predictions using one standard deviation confidence intervals. We can observe that the
predictive mean becomes closer to the test data as R increases, with a Q2 improvement of 24.1% between the results
using 5 and 1000 learning events. Moreover, the model only needed R = 200 learning events to achieve accurate
predictive performance of Q2 ∼ 90%. In terms of the uncertainties, the predictive intervals cover the test data and
decrease as R increases.

3.4 Coastal flooding application

We now apply our framework to the coastal flooding application described in Section 2.1. As we focus on forecasting
purposes, we use our R implementations based on kergp (Deville et al., 2019).

3.4.1 Numerical settings

Data preprocessing. Some of the hydrometeorological forcing conditions, such as the wave peak direction Dp and
the wind direction Du, are defined using nautical conventions (i.e., with north considered the reference). Then, as Du
represents an angle, a slight change in winds coming from the north may lead to high angle variations and therefore to
complex PCA representations. To avoid this drawback, in our experiments, we replace the tuples (Hs,Dp) and (U,Du)
with the Cartesian tuples (Hsx,Hsy) and (Ux,Uy) given by Hsx = Hs ·sin(Dp), Hsy = Hs ·cos(Dp), Ux = U ·sin(Du)
and Uy = U · cos(Du). This results in a set of hydrometeorological functional inputs consisting of (MSL, T, S, Tp,
Hsx, Hsy , Ux, Uy).

7Experiments here are executed on a single core of an HP cluster with an Intel biprocessor, 32×2.2 GHz cores, 64 GB RAM.
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Figure 9: Predictions from Section 3.3.3 considering one standard deviation confidence intervals. Each panel shows the
following: the sampled test data (blue dots), the predictive mean (red dots) and the confidence intervals (red whiskers).
Outputs are sorted by increasing order of the sampled test data.
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Figure 10: (left) Empirical flooding probability (EFP) over the 131 map replicates. (right) Histogram of the EFP. Both
panels only consider nonzero values of the EFP. For the EFP, the contour line at 0.4 is shown in red.

Design of experiments (DoE). The complexity of our model increases with the number of spatial design points S.
Therefore, we focus the computational budget on a subset of spatial locations. First, we consider locations where
the empirical flooding probability (EFP) over the 131 flood scenarios is nonzero. This results in a total of 34× 103

(approximately) possible candidates where EFP ∈ (0, 0.8] (Figure 10, left). Second, we conveniently divide data into
two classes. The DoE for the first class targets the neighborhood of the road network. The DoE of the second domain
is space-filling over the entire domain. After analysis of the flood maps using expert knowledge, we noticed that
spatial locations associated with the main road network led to EFP ∈ [0.4, 0.8]. Thus, we define the second class with
locations where EFP ∈ (0, 0.4). For each class, a k-means clustering scheme is applied (see, e.g., Hartigan and Wong,
1979), where the closest point to each cluster will be part of the DoE. The clustering scheme uses the spatial coordinates
and the EFP as inputs, i.e., xclustering = (x1, x2,EFP). The influence of the EFP contributes to grouping spatially close
points into different clusters if they exhibit different flooding probabilities. Note that the number of clusters κ1, κ2 are
hyperparameters to be defined depending on how many spatial design points we consider per class. While κ1 defines the
desired number of design points with significant EFP values in the resulting DoE, κ2 will control the number of design
points used for space filling. We also consider three locations of interest from the neighboring district: the town hall, the
gym and the lowest point of the sports field. They will be represented by a square, a circle and a triangle, respectively.

We must note that alternative approaches for the construction of DoEs, such as the PCA-based approach proposed
by Zhang and Edgar (2008), could be considered. However, our aim here is not to provide optimal DoEs for further
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Figure 11: Hmax predictions for the experiment in Section 3.4.2: (left) ground truth, (middle) predictions, and (right)
ground truth (blue) vs. the predictive mean (± two-standard deviation confidence intervals, red). For the flood event
profiles, the town hall, gym and sports field are represented by a red square, a red circle and a red triangle, respectively.
For the right side panels, the Hmax values are sorted in increasing order of the true observations. The RMSE, Q2 and
CA±2σ values are shown on top of the right side panels.

implementations but to provide DoEs that contain spatial locations where floods have a strong impact while promoting
space filling.

3.4.2 Leave-one-out (LOO) test

To validate our framework, we first test it on an LOO experiment where each scenario from the dataset is predicted using
data from the other scenarios. This will give us an idea about the capability of the model for forecasting flood events.
To train the 131 models, the same spatial design points are fixed for each scenario in order to apply Kronecker-based
computations. For instance, we define a DoE with S = 103 locations (including the town hall, the gym and the sports
field) using the k-means-based methodology discussed in Section 3.4.1. This leads to N = 13390 spatial points that are
then used for the covariance parameter estimation. For the selection of the types of kernels used for correlating the
functional inputs and spatial locations, different combinations of kernels in Table 1 have been tested. After running the
corresponding LOO tests, the use of Matérn 5/2 kernels commonly outperformed any other combination. Therefore, the
results here and in further experiments will consider functional and spatial Matérn 5/2 kernels.

Examples of the LOO predictions are shown in Figure 11. Since negative predictions do not have physical meaning
in our application, we set them to zero for further analysis. From scenarios 43 and 100, our framework properly infers
their flood levels, leading to accurate RMSE and Q2 values.8 Note that for both scenarios, CA±2σ covers more than
92% of the test data.

8TheQ2 in (8) is invalid when the variance of the test data (the flood event that is predicted) is equal to zero. In our application,
since some of the scenarios are not flooded, we redefine the Q2 criterion by normalizing the MSE using the variance of the 131
scenarios instead but considering only spatial locations where the EFP is nonzero.

14



A PREPRINT - MULTIOUTPUT GAUSSIAN PROCESSES WITH FUNCTIONAL
DATA: A STUDY ON COASTAL FLOOD HAZARD ASSESSMENT

• ×•×

0.00

0.25

0.50

0.75

1.00

0 50 100
scenario j

k
f
(F

i,
F j

)

target scenario i 38 132

0

1

2

0 25 50 75 100
xi

H
m
a
x
(x
i)

RMSE = 0.138, Q2 = 0.808, CA±2σ = 91.3%

flood event 38

0

1

2

0 25 50 75 100
xi

H
m
a
x
(x
i)

RMSE = 0.110, Q2 = 0.877, CA±2σ = 95.1%

flood event 132

Figure 12: (top) Correlations between the hydrometeorological functional conditions of the predicted scenario and
those of the learning set. (bottom) The Hmax values (sorted in increasing order of the true observations) are shown after
adding scenario 132. The panel description is the same as that of Figure 11.

Considering the predictions for the 131 LOO tests, they resulted in Q2 and CA±2σ median values of approximately
95.8% and 99%, respectively. However, for some scenarios, our framework led to misprediction, as observed for the
38th scenario (see Figure 11). Indeed, in the coastal flooding dataset, there are scenarios that strongly differ from each
other or that are unique in their type, and misprediction arises when one of those scenarios is analyzed and if there are
no similar flood events available in the learning dataset. As we show in Figure 12, this drawback can be mitigated by
incorporating additional and similar scenarios in the learning set of flood events. There, a new flood event, denoted
as scenario 132, was added to the LOO test. The hydrometeorological conditions for this scenario are generated by
slightly modifying the (Tp, Hsx, Hsy , Ux, and Uy) from the 38th scenario but preserving the same profiles for (MSL, T,
and S). From Figure 12, the correlations between the hydrometeorological functional inputs of scenarios 38 and 132 are
stronger than if we compare their inputs with those of other scenarios. Note also that predictions for the 38th scenario
were significantly improved by exploiting data from the 132nd scenario, and vice versa.

3.4.3 Influence of the number of learning scenarios

As stated in Section 3.4.2, the performance of the model depends on the availability and diversity of learning flood
scenarios. In this experiment, we stress the impact of enriching the set of learning scenarios for forecasting purposes.
We focus on the prediction of (21) historical flood and no-flood events and (16) slightly reinforced historical flood
events, i.e., the first 37 scenarios of the dataset. Those scenarios are predicted using data from the remaining 94
simulated scenarios. Since the latter set of scenarios was generated to cover a wide range of hydrometeorological
conditions (see Section 2.1), accurate predictions are also expected when considering only a few learning scenarios.

We train models considering different subsets of the 94 learning scenarios. The selection of those scenarios is
performed via k-means clustering using the scalar representations of the hydrometeorological forcing conditions
proposed in (Rohmer et al., 2020) as inputs. A k-means algorithm considering 20 clusters is applied where the index
(number of scenarios) of the closest point (set of scalar hydrometeorological conditions) to each cluster is retained to
construct the learning set of scenarios. This leads to an initial set of Ro = 20 learning scenarios. To enrich the learning
dataset, new scenarios are added by repeating the same procedure but applying the k-means algorithm to the scenarios
that have not been previously chosen. Therefore, for each addition, we have that Ri = Ri−1 + ∆Ri, for i = 1, . . . , NR,
where ∆Ri is the number of added scenarios and NR is the number of enrichments. After defining the learning sets of
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Figure 13: RMSE (left), Q2 (middle) and CA±2σ (right) results for the experiment in Section 3.4.3. The boxplots
are computed over the first 37 scenarios of the dataset in Section 2.1. The results are shown for different numbers of
learning scenarios. The learning scenarios are taken only from the remaining 94 simulated scenarios of the coastal
flooding dataset.
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Figure 14: RMSE results of predictions for the first 37 scenarios of the dataset in Section 2.1 and considering
R = 20, 40, 60, 94. The bars represent the magnitude of the RMSE criterion for each scenario. The fifteen scenarios
where the RMSEs improved at each of the three increases of R are in bold. The subindices at the bottom of the x-axis
designate which case provided the smaller RMSE.

flood scenarios, we then fit the corresponding GP models for the resulting 37 test cases. Both the training and prediction
steps are performed considering the spatial design points proposed in Section 3.4.2.

Boxplots of the RMSE, Q2 and CA±2σ values of the 37 predictions and considering R = 20, 40, 60, 94 learning
scenarios are shown in Figure 13. Improvements are obtained on the three performance indicators as R increases,
leading to smaller dispersion of the boxplots. For each test scenario, the CA±2σ remains satisfactory regardless of R,
and the RMSE and Q2 results are commonly outperformed when considering a larger learning dataset. More precisely,
24 of the 37 predictions are improved by considering all 94 learning scenarios. However, for some cases (see Figure 14,
e.g., the RMSE results for scenarios 31 and 32), the prediction quality decreased.

We first analyze results for the 32nd scenario. By comparing the similarity between the hydrometeorological
conditions using either 20 or 94 learning scenarios, the strongest correlations are provided with scenarios 64 and 68,
respectively (Figure 15(a)). For the ease of the discussion, we focus on the comparison of the still water level (SWL),
which is given by SWL(t) = MSL(t) + T(t) + S(t).9 Figure 15(b) shows that the SWL of scenario 68 is actually closer
to that of scenario 32. Therefore, after adding scenario 68 to the learning dataset (event already added for R = 60),
models may consider stronger correlations with respect to this scenario rather than the 64th scenario. However, while
scenarios 32 and 64 correspond to moderate flood events, the 68th scenario corresponds to a weaker flood event (Figure
15(c)), explaining the misprediction when considering such scenarios in the learning dataset.

9By performing sensitivity analysis (SA) based on GPs, models were more sensitive to the MSL, T and S rather than the other
hydrometeorological drivers. For the SA, the sensitivity package (Iooss et al., 2020) was adapted to account for functional data.
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Figure 15: (a) Correlations between the hydrometeorological conditions of scenario 32 and those of the learning set.
The results considering different numbers of learning scenarios are shown. (b) Time series of the still water level
(SWL(t) = MSL(t) + T(t) + S(t)) for scenarios 32, 64 and 68. (c) True Hmax maps of the scenarios under analysis.

Similar to scenario 32, similar behaviors were observed in other scenarios where the RMSE systematically decreased
as R increased. To avoid this type of drawback, we can enrich the learning dataset with additional flood scenarios and/or
consider adding complementary hydrometeorological conditions (or prior information on flood events) as inputs of the
GP model that may help to discriminate scenarios. Figure 15(b) shows that small variations in the hydrometeorological
conditions may lead to events with and without floods. Indeed, this remind us that floods occur only if the instantaneous
water level resulting from the joint action of the MSL, tide, surge, waves and wind exceeds the level of the (natural or
man-made) coastal defense crests. In that case, our framework must instead be adapted to learn the critical forcing
conditions leading the instantaneous water level to exceed the defense crests.

3.4.4 Influence of the number of spatial design points

We now assess the impact of the number of spatial design points S in predictions. To do so, we repeat the experiment
in Section 3.4.2 but consider 900 additional design points per flood event, i.e., S = 1003. This leads to a total of
N ∼ 1.3 × 105 spatial design points. The same parameterization proposed in Section 3.4.2 is used here. Figure 16
shows the predictions for scenarios 43 and 100. As also observed in Figure 11, the model provides accurate predictions,
leading to Q2 and CA±2σ values above 85% and 99%, respectively. In practice, we may be interested in predicting
flood areas rather than locally predicting values only at the subset of S spatial locations. This can be achieved by
applying the conditional predictive GP formulas to the spatial domain of interest (see the discussion in Sections 2.2 and
2.3). Predictions of scenarios 1, 43 and 100 considering only spatial locations with nonzero EFPs (∼ 34× 103 points)
are shown in Figure 17 for S = 103, 1003. For both cases, our framework tends to capture the intensity of those flood
events. While spatial profiles are smoother by considering S = 103, a better predictability resolution is obtained for
S = 1003. This is caused by the difference in the magnitude of the estimated length-scales (`x,1, `x,2) [m]. This should
remind us that for larger values of (`x,1, `x,2), models lead to stronger spatial correlations and therefore to smoother
predictions. Here, while the former GP model with S = 103 resulted in length-scale (median) estimations equal to
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RMSE = 0.127, Q2 = 0.902, CA±2σ = 99.5%

Figure 16: The Hmax predictions for the experiments in Figure 11 considering 1003 spatial design points per flood
scenario. The panel description is the same as that in Figure 11.

Table 3: Quality assessment of predictions in Figure 17 considering the flood categories recommended by the French
Risk Prevention Plan. Flood events are classified as minor (Hmax ≤ 0.5), moderate (0.5 < Hmax ≤ 1), serious
(1 < Hmax ≤ 1.5) and severe (Hmax > 1.5). The proportions [%] per category are computed using spatial locations
with nonzero EFPs. The results are shown considering the true observations (Hmax := H) and predictions using
either S1 = 103 (ĤS1) or S2 = 1003 (ĤS2). The closest proportions to the ones provided by H (given in gray) are
highlighted in bold.

Flood Proportions [%] per Category

Category Scenario 1 Scenario 43 Scenario 100
H ĤS1

ĤS2
H ĤS1

ĤS2
H ĤS1

ĤS2

minor 99.9 99.7 99.6 90.9 86.6 83.3 50.6 51.3 50.8
moderate 0.1 0.3 0.3 7.9 12.0 15.4 16.1 17.3 19.9
serious 0.0 0.0 0.1 0.9 0.8 0.9 20.0 20.9 18.0
severe 0.0 0.0 0.0 0.3 0.6 0.4 13.4 10.5 11.2

ˆ̀
x,1,103 = 42.7 and ˆ̀

x,2,103 = 135.1, the latter model with S = 1003 resulted in smaller length-scales: ˆ̀
x,1,1003 = 19.1

and ˆ̀
x,2,1003 = 28.4. For S = 1003, overestimations commonly occur in the areas surrounding buildings (small white

zones). Indeed, the model overestimates Hmax values at the center of buildings (locations that were never observed in
the training step; see the discussion in Section 3.4.1) where those values are actually equal to zero. Therefore, because
of the smoothness condition of GPs, predictions in the buildings’ neighborhood are affected.

Table 3 assesses the quality of the predictions in Figure 17 according to the flood categories recommended by the
French Risk Prevention Plan (Direction Générale de la Prévention des Risques, 2014). In this plan, depending on the
impact of the flood (e.g., the water height of the neighboring district and/or in the road network), events are classified as
follows: minor if Hmax ≤ 0.5, moderate if 0.5 < Hmax ≤ 1, serious if 1 < Hmax ≤ 1.5 and severe if Hmax > 1.5.
Then, for scenarios in Figure 17, we pointwise assign predictions Ĥmax to their corresponding categories, and we
compare the resulting proportions [%] per flood category with respect to those led by the true observations Hmax. From
Table 3, we can observe that both models, considering S = 103 or S = 1003, globally lead to reliable flood proportions.
Misclassification between consecutive categories mainly results from the overestimation or underestimation around the
Hmax threshold that defines the limit of each category. As an example, for scenario 43, a significant number of Hmax

values close to 0.5 were assigned in the moderate category when they actually belong to the minor category.
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Figure 17: Predictions for the experiment in Section 3.4.2 considering only spatial locations with nonzero EFPs. The
panels show the true Hmax maps (top) and the predictions using either 103 (middle) or 1003 design points per flood
event (bottom).

Finally, Figure 18 shows the boxplots of the performance indicator values for the LOO predictions and considering
S = 103, 503, 1003. As discussed in Sections 3.4.2 and 3.4.3, to avoid misprediction due to the uniqueness of some
scenarios, the analysis is focused on the first 37 flood events. The indicators (RMSE, Q2, and CA±2σ) are computed
considering only spatial locations with nonzero EFPs (see Figure 10). They improve as S increases, leading to smaller
dispersion of the boxplots. In terms of the computational costs, note that although the CPU times for both training and
prediction steps increase as S increases, they remain tractable.10 In practice, since the training step is executed only
once and can be computed offline, we only need to be aware of the computational costs of the prediction step. Here,

10These experiments were executed on a single core of an HP cluster with an AMD quadprocessor and 256 GB RAM.
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RMSE Q2 CA±2σ [%] CPU Time [h]: training CPU Time [min]: prediction
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Figure 18: Performance indicators for the experiment in Section 3.4.4 considering the first 37 scenarios of the dataset in
Section 2.1. The results are shown for S = 103, 503, 1003.

the prediction of a single map takes a couple of minutes, an advantage compared to the couple of days required by
numerical simulators. Hence, this makes possible the use of our framework for FEWSs.

4 Conclusions

In this paper, we established a GP-based surrogate model that accounts for the effect of time-varying forcing conditions
(e.g., tides, storms, surges, etc.) and provides spatially varying inland flood information (maximal inland water
height, Hmax). We demonstrated that our framework can be easily applied without any parameterization of the
hydrometeorological drivers in scalar representations, a step that is not always simple and that can lead to misleading
predictions. To the best of our knowledge, our proposal is the first to consider both inputs and outputs of a coastal
computer code as functions.

The proposed GP model was built on the proposition of a separable kernel that correlates both hydrometeorological
forcing conditions (functional inputs) and spatial input locations. The resulting process can be seen as a multioutput GP
where correlated spatial outputs are driven by multiple hydrometeorological functional inputs. Efficient implementations
were explored by considering Kronecker-structured operations and/or sparse-variational approximations. This led to
models that run fast for up to hundreds of outputs and thousands of spatial design points. Both Python and R codes
were provided.

Our framework was widely tested on various examples considering different situations depending on data availability.
According to the numerical experiments, our approach led to accurate predictions that outperformed standard GP
implementations that cannot account for functional data. For forecasting unobserved spatial events, we numerically
showed the convergence of our approach as the number of learning flood events increased. We demonstrated that
accurate predictions can be obtained within tractable time lapses in the coastal flooding application. More precisely,
predictions were obtained on the order of minutes compared to the couple of days required by dedicated simulators.
This is key for FEWSs. We must note that the performance of the proposed framework depends on the availability and
diversity of learning flood scenarios. The richer and diverse the learning dataset is, the better the predictability.

The framework presented here can be improved in different ways. A natural extension relies on projecting the
spatial outputs onto (truncated) basis representations such as wavelets. In that case, functional inputs can be treated as
discussed in this paper, and Gaussian priors will be placed over the space of the coefficients of representations rather
than the output space. This would lead to significant improvements in terms of the computational costs for applications
with large learning datasets, e.g., involving thousands of outputs and tens of thousands of design points. The nature of
coastal flooding data, more precisely, the nonnegative, zero-inflated and discontinuous patterns (as illustrated by Figure
2), cannot be easily learned using purely GP assumptions. Hence, alternative (nonstationary) GP-based priors may be
explored to obtain more realistic surrogate models.
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A Projection of Functional Inputs onto PCA Basis Functions

Consider the τ -length functional vector f = [f(t1), . . . , f(tτ )]>. Let F = [f1, . . . ,fN ]> be a matrix containing N
replicates of f . The PCA of F can be obtained using the variance-covariance matrix (Ramsay and Silverman, 2005).
Denote the matrix Fc as the centered version of F , where the mean of each column of F is subtracted from the column.
Then, the variance-covariance matrix is given by

Ωτ =
1

N
F>c Fc =

τ∑

j=1

λjνjν
>
j , (10)

where λ1 ≥ · · · ≥ λτ and ν1, . . . ,ντ are the corresponding eigenvalues and eigenvectors of Ωτ , respectively. In prac-
tice, (10) is commonly truncated after reaching a predefined inertia I∗, where the contribution of each eigencomponent
is given by

Ij =
λj∑τ
κ=1 λκ

.

Then, the “optimal” number of PCA components is obtained by the smallest value of τ∗ such that
∑τ∗
j=1 Ij ≥ I∗, where

τ∗ ≤ τ . Finally, the eigenvectors of the truncated matrix Ωτ∗ can be used as basis functions in the linear approximation
in (4), i.e., [φi,1, . . . , φi,pi ] = [ν1, . . . ,ντ∗ ] where pi = τ∗. Due to the orthonormality of ν1, . . . ,ντ∗ , the vector of
coefficients ακ, for κ = 1, . . . , N , associated with the replicate fκ is given by ακ = Φ>fκ with Φ = [ν1, . . . ,ντ∗ ].

B Kronecker-based Operations for Gaussian Processes with Separable Kernels

For large datasets, computing the covariance matrix K = (Kf ⊗Kx) ∈ RRS×RS with R outputs and S spatial design
points per output may easily run out the memory. This limitation exists when constructing the (lower triangular)
Cholesky factorization L = (Lf ⊗ Lx) ∈ RRS×RS and its inverse. To mitigate this drawback, instead of computing K
or L, we propose solving triangular-structured linear systems involving Kronecker products.

B.1 Properties of the Kronecker product

We first recall the properties of the Kronecker product that are needed in this appendix (see Laub, 2004; Alvarez et al.,
2012, for further details). Consider the matrices A,A′ ∈ RM×N ,B,B′ ∈ RP×Q and the vectors u ∈ RNQ,v ∈ RMP .
Then, some useful properties of the Kronecker product are:

(A⊗ B)> = A> ⊗ B>,
(A⊗ B)−1 = A−1 ⊗ B−1, (11)

(A⊗ B)(A′ ⊗ B′) = (AA′ ⊗ BB′).

We are also interested in computing (or solving) linear systems of the form:

v = (A⊗ B)u. (12)

For computing (12), note that it is possible to rearrange the vectors u and v in matrices in order to avoid constructing
(A⊗ B) (a step that required computing and storing an MP ×NQ matrix). Consider the matrices U ∈ RQ×N and
V ∈ RP×M , where the elements of u and v are indexed by columns. Then, (12) is given by

V = BUA>. (13)

After computing V, which involves computing and storing smaller matrices, we can obtain v by vectorizing V.

B.2 Computation of the likelihood

We must note that the complexity of the Gaussian likelihood relies on the computation of the quadratic term:

z = y>K−1y, (14)

with covariance matrix K = Kx ⊗ Kf and an observation vector y = [y1, . . . , yN ]> with N = SR. Note that to
achieve numerical simplifications in further steps, we change the order of the Kronecker product proposed in (6) since
commonly R� S. This only implies properly rearranging the indexation of the observations in y, i.e..,

y = [Y (F1,x1), . . . , Y (F1,xS), . . . , Y (FR,x1), . . . , Y (FR,xS)]>.
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Then, using the Cholesky factorization of K, we can show that (14) is given by

z = y>(LL>)−1y = (L−1y)>(L−1y) = a>a.

For computing a = L−1y = (L−1x ⊗ L−1f )y ∈ RN , by using (13), we then have:

A = L−1f Y(L−1x )> = (Lx−1[Lf−1Y]>)> = (Lx−1B>)>, (15)

where B = Lf−1Y. Hence, to construct the matrix B ∈ RR×N , we need to solve the linear system LfB = Y, which
can be efficiently computed since Lf is a lower triangular matrix. Similarly, matrix A ∈ RR×S is obtained by solving
the triangular-structured system LxA> = B>. Finally, vector a results from vectorizing the matrix A.

Note that for computing (14) using (15), intermediate steps require constructing and storing R × N and R × S
matrices rather than the inverse of the N ×N covariance matrix. In our application, this led to significant computational
improvements since we considered large numbers of spatial design points S.

B.3 Computation of the conditional mean and covariance functions

From (2), we can note that the conditional mean function µ and the conditional covariance function c also depend on
the computation of K. As in Appendix B.2, here, we provide efficient computations of those quantities by exploiting
the properties of the Kronecker product (see Appendix B.1).

We first focus on the computation of µ. For the ease of the notation, we denote µ := µ(x∗,F∗) and

k := k(x∗,F∗) = [k((x∗,F∗), (x1,F1)), . . . , k((x∗,F∗), (xN ,FN ))]>.

Then, following a similar procedure as the one used in Appendix B.2 and using (11), we can show that µ is given by

µ = k>K−1y = k>(Lx> ⊗ Lf>)−1a,

with a = (L−1x ⊗ L−1f )y. Now, since k = kx ⊗ kf with kx = [kx(x∗,x1), . . . , kx(x∗,xS)]> and kf =

[kf (F∗,F1), . . . , kf (F∗,FR)]>, (11) yields:

µ = ([Lx−1kx]> ⊗ [Lf−1kf ]>)a. (16)

As discussed in Appendix B.2, the computations bx = Lx−1kx and bf = Lf−1kf are efficient since Lx and Lf are
lower triangular matrices. Then, (16) is obtained by applying (13).

Now, denote c := c((x∗,F∗), (x′∗,F ′∗)), k := k((x∗,F∗), (x′∗,F ′∗)) and k′ := k(x′∗,F ′∗) =
[k((x1,F1), (x′∗,F ′∗)), . . . , k((xN ,FN ), (x′∗,F ′∗))]>. Following a similar procedure as the one used for µ, we
have that c is given by

c = k − k>K−1k′ = k − (bx ⊗ bf )>(b′x ⊗ b′f ) = k − (b>x b
′
x)(bfb

′
f ), (17)

with bx = Lx−1kx, bf = Lf−1kf , b′x = Lx−1k′x, and bf = Lf−1k′f .
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