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Abstract: Given recent scientific advances, coastal flooding events can be properly modelled. Never-
theless, such models are computationally expensive (requiring many hours), which prevents their use
for forecasting and warning. In addition, there is a gap between the model outputs and information
actually needed by decision makers. The present work aims to develop and test a method capable
of forecasting coastal flood information adapted to users’ needs. The method must be robust and
fast and must integrate the complexity of coastal flood processes. The explored solution relies on
metamodels, i.e., mathematical functions that precisely and efficiently (within minutes) estimate the
results that would provide the numerical model. While the principle of relying on metamodel solu-
tions is not new, the originality of the present work is to tackle and validate the entire process from
the identification of user needs to the establishment and validation of the rapid forecast and early
warning system (FEWS) while relying on numerical modelling, metamodelling, the development of
indicators, and information technologies. The development and validation are performed at the study
site of Gâvres (France). This site is subject to wave overtopping, so the numerical phase-resolving
SWASH model is used to build the learning dataset required for the metamodel setup. Gaussian
process- and random forest classifier-based metamodels are used and post-processed to estimate
14 indicators of interest for FEWS users. These metamodelling and post-processing schemes are
implemented in an FEWS prototype, which is employed by local users and exhibits good warning
skills during the validation period. Based on this experience, we provide recommendations for the
improvement and/or application of this methodology and individual steps to other sites.

Keywords: forecast; flood; local; hydrodynamic modelling; metamodelling; Gâvres; SWASH; Gaus-
sian process; random forest

1. Introduction

Approximately 600 million people live in coastal plain areas (i.e., coastal regions less
than 10 m above mean sea level; [1]), which are broadly recognised as “at-risk” territories
that could be subjected to significant hazards in the future, particularly with the increasing
risk of coastal flooding due to sea-level rise. The flooding risk of low-lying coasts is expected
to increase significantly by the end of this century (with very high confidence) in the absence
of major additional adaptation efforts [2]. As highlighted by [3], effectively adapting to
this rising flood risk requires a diversified approach of interventions, which may include
structural flood protection measures, risk-informed land planning, nature-based solutions,
social protection, risk financing instruments, and forecast and early warning systems (FEWSs).
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Past flood events (e.g., Hurricane Katrina, which struck the USA in 2005, and Storm
Xynthia, which impacted France in 2010) illustrate the complexity of coastal systems and
the limits of traditional FEWSs and flood risk analyses. Indeed, coastal flooding is the conse-
quence of a variety of processes (e.g., atmospheric circulations, waves, atmospheric surges,
tides, river discharges) that are generated at and interact on different spatio-temporal scales;
in general, local flooding, especially in urban areas, results from processes occurring at high
spatial and temporal resolutions. Floods can be induced by overflow (when the total water
level, including the wave setup, exceeds the coastal defence crests) and wave overtopping.
Owing to the significant progress achieved in numerical hydrodynamic models (especially
phase-resolving models, e.g., Simulating Waves till Shore (SWASH), [4]), it is now possible
to precisely reproduce floods, even in the case of wave overtopping (see, e.g., [5–7]).

Focusing on coastal flood FEWSs, one of the main issues (in addition to the model skill
and input data quality) of advanced flood models is the computational time. Indeed, the
modelling of coastal flooding at the proper resolution (metric) to predict floods in urban
areas and account precisely for processes such as wave overtopping is so time consuming
(i.e., the computation time is hardly smaller than the real time) that forecasting efforts
are greatly hindered. Four solutions are generally considered for this issue: (S1) high-
performance computing (HPC), (S2) modelling with reduced process complexity, (S3) pre-
calculated flooding scenarios, and (S4) expert judgement. For example, numerous FEWSs
do not model floods and instead rely on expert judgement. Ref. [8] provides an example of
such an approach. In France, the national FEWS (the Vigilance Vague Submersion (VVS)
system operated by Météo-France) provides warnings at a department scale, relying on
coastal hydrodynamic forecasts of different sources and a threshold decision matrix (wave
height and still water level) calibrated on past flooding events (solution S4). However, this
approach has limits when facing conditions that have never occurred or have never been
observed and could lead to a significant number of false alarms, which could reduce the
confidence in and reactivity to warnings if they are triggered too frequently (colloquially
known as “crying wolf”). Even if 100% of all warnings are accurately predicted, such a
system does not provide inland flood information, and whether a particular asset will still
be operational or accessible during a flood event cannot be predicted.

In contrast, FEWSs relying on solutions S1, S2, or S3 provide model-based flooding
information. For instance, the Coastal and Inland Flooding Observation and Warning
(CI-FLOW) demonstration project for coastal North Carolina relies on models using the
shallow-water equations [9]; nevertheless, while this approach is well-suited to overflow
events, it is not adequate for overtopping. In the UK, employing some simplifications and
expecting that HPC will allow their integration into operational systems, developments
have allowed flood predictions to account for both overflow and overtopping [10]. In the
Netherlands, the issuance of warnings by the operational FEWS is based on forecasted
nearshore conditions (as in other FEWSs); in the case of a warning, the flood is estimated
using a database of pre-calculated flooding scenarios for a pre-defined set of dike breach
locations and water levels with a model resolution of approximately 10 m (personal
communication). One of the limits of this approach is that it is limited to pre-defined
scenarios. Furthermore, even in such advanced systems, the complexity of flooding
processes and the variety of possible events are not fully taken into account. Other FEWSs
predict flood-related information (e.g., the occurrence of overtopping events) but do not
truly provide predictions for inland floods (see, e.g., [11,12] for overtopping forecasts).
However, these FEWSs operate by modelling overtopping phenomena on cross-shore
profiles; while this approach may be sufficient for warnings, it cannot deduce the spatial
characteristics of inland floods, especially along non-uniform coasts, where the location of
the modelled profile is critical when predicting inland floods.

At the same time, significant progress has been achieved in the use of artificial intel-
ligence for flood prediction. For instance, data-driven machine learning techniques are
widely used for continental flood prediction [13–16]. These approaches rely on observa-
tional datasets (typically from water-level sensors installed in rivers and others channels)
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that are relatively large (for instance, comprising hourly measurements at several locations
over several months or years). However, the characteristics of coastal domains are quite
different: inland sensors are typically lacking, with the exception of smart cities such as
Macao [17], and while tide gauges are occasionally available, these types of measurements
are not sufficient to deduce coastal flood information (e.g., the flood extent or inland water
depth), especially on sites subject to wave overtopping. The alternative is to rely on hy-
drodynamic models to build learning datasets. However, the computation time of such
models significantly limits the number of runs/scenarios; as a result, the statistical method
being used must be adapted to the scarcity of the dataset. In recent years, metamodelling
techniques have been explored for coastal hydrodynamics and coastal water level predic-
tions and have shown promising results (e.g., [18,19]). Metamodels (also called surrogate
or response models; for an introduction, see [20]) are functions that aim to reproduce
the behaviour of a “true” model (e.g., a numerical hydrodynamic model) for given input
variables (for instance, offshore conditions). In addition, as highlighted by [21], FEWSs
should be user-centred and not designed following the linear paradigm of model-based
FEWSs (i.e., a linear set of connections from observations to the generation of warnings
and their transmission to users).

To better explore the potential of metamodelling techniques for coastal flood FEWSs,
the ANR RISCOPE project was initiated in 2017 with the aim of establishing a user-centred
FEWS by relying on metamodelling techniques. This project led to the development
and exploration of metamodels and their ability to predict information regarding inland
floods [22–24]. Within this project, Ref. [25] provided a preliminary overview of the FEWS
setup methodology, from the identification of user needs to the FEWS interface.

Building on the results of these previous investigations, the present manuscript de-
scribes the establishment of a local FEWS that can predict coastal floods up to 3 days in
advance while relying on the metamodelling solution whose goal is to directly predict
the information of interest for local users. The novelty of the present work is to tackle the
entire process, from the identification of user needs to the deployment of the fast-running
FEWS and its validation. A side objective is to investigate whether the needed elements
(data, models, etc.) are adequately mature to allow the prediction of local floods with good
confidence. The FEWS is developed in Gâvres, France. We first describe the materials and
methods (site, indicators, numerical model, metamodel, and FEWS elements). Then, we
present and discuss the results (learning dataset, metamodel skills, and FEWS skills). Finally,
we discuss future challenges and provide some recommendations. All the abbreviations and
acronyms used in the present manuscript are listed in Acronyms and Abbreviations.

2. Materials and Methods
2.1. Site Description: Physical Setting, User Practices and Needs

The site of Gâvres, located on the French Atlantic coast (Figure 1a), was selected as
the demonstration site for the following reasons. First, this site experienced 5 significant
past flood events since 1900 (see [7] for a detailed analysis over the period 1900–2010). The
last major flood occurred on 10 March 2008 (Windstorm Johanna). This implies that the
local actors in coastal flood risk management have a minimum level of risk awareness,
knowledge, and practice. During this last major flooding event, approximately 120 houses
were flooded (Appendix A, Figure A1, purple dots). This flood was mainly related to
wave overtopping processes [5,26]. Keeping in mind that the precise modelling of wave
overtopping is more complex and computationally time consuming than that of overflow,
Gâvres makes for a very challenging demonstration site but is representative of all the
towns presently subject to wave overtopping. Finally, Gâvres (with a surface area of only
2 km2) is a small territory; hence, within our exploratory work, the interactions with the
potential users of the FEWS are more manageable, and coastal flood modelling can account
for wave overtopping phenomena (see Section 4.2 for further details).

In brief, Gâvres is located in a macro-tidal environment (mean spring tidal range:
4.2 m) and is subject to significant infragravity waves [27]. The coastal waves in this region
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are affected by the presence of an offshore island (Groix) located west of the study site
(Figure 1a); as a consequence, the offshore wave conditions between the site and Groix
are strongly non-uniform. Some wave modelling tests (not shown) show that the local
non-uniform wave conditions result mainly from the propagation of wave conditions
observed south of Groix (Figure 1a, grey star).

Figure 1. Location and topo-bathymetry of the study site (a,b) and computational domains of the models (WW3 and
SWASH) in the modelling chain (a). The star indicates the location of the offshore wave forcing. Panel (b) is adapted from
Idier et al. (2020c) and updated (the local DEM, DEM2008, was replaced by DEM2015–2018, see Section 2.4).

To identify the local practices and user needs, two user workshops were organised in
2017 and 2019 for representatives of the municipality of Gâvres, the emergency services of
the department (SDIS56), the Lorient Agglomeration to which Gâvres belongs, and the De-
partmental Directorate of Territories and the Sea (DDTM56). The workshops indicated that
the local practice is to (1) rely on official flood warnings (i.e., the VVS warnings issued by
Météo-France at the department scale) and (2) conduct a local survey at 5 locations as soon
as forecasted storms originating from the southwest coincide with a high spring tide. One
of the participants also used wind, wave, and water level forecasts provided by the windguru
(https://www.windguru.cz/, accessed on 15 July 2021) and Modelling and Analysis for Coast
Research (MARC)-Physical and Space Oceanography Laboratory (Laboratoire d’Océanographie
Physique et Spatiale, LOPS) (https://marc.ifremer.fr/, accessed on 25 July 2021) platforms.
Table 1 lists the main local needs (identified during the workshops) that our FEWS prototype
aims to address.

Table 1. Selected user needs and associated indicators.

Needs Indicator Ij j

• Flood event or not
• Flood intensity, e.g., whether a flood is larger than

the one induced by Johanna
Flood intensity

1

• Ensure the safety of Gâvres municipality and
emergency service employees during flood
survey operations

• Trigger surveys by Gâvres municipality and
emergency services

Human risk at survey point GP1 2

Human risk at survey point GP2 3

Human risk at survey point GP3 4

Human risk at survey point GP4 5

Human risk at survey point G1 6

• Knowing how many and which type of relevant
pumping engines to bring to the territory

Mean water discharge 7

Maximal water discharge 8

https://www.windguru.cz/
https://marc.ifremer.fr/
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Table 1. Cont.

Needs Indicator Ij j

• Accessibility and functioning of crisis management buildings
Water height in front of the town hall 9

Water height in front of the gymnasium 10

• Practicability of roads (yes or no) for passenger car
and rescue vehicles

• Emergency operation triggering

Practicability of road portion 1 11

Practicability of road portion 2 12

Practicability of road portion 3 13

• Rescue operation triggering (e.g., as soon as the water
depth exceeds 0.1 m in residential areas, emergency
services must intervene)

• Houses whose inhabitants should be evacuated

Water height in hundreds of
pre-selected locations 14

2.2. Methodology

The FEWS prototype aims to provide flood information for the next 6 tides by focusing on
what happens between 3 h before and 3 h after each high tide. A longer lead time (e.g., 5 days)
would exhibit significantly larger uncertainties because the quality of meteorological forecasts
significantly decreases for lead times exceeding 3 days (see, e.g., [28]).

Based on our knowledge of the local needs (Table 1), the methodology we used to
build this FEWS relies on the following steps:

• Define the indicators (Ij, with j = 1:N) (Section 2.3);
• Set up the process-based model that will be used to build the learning dataset for the

metamodels (Section 2.4);
• Build (and validate) the metamodels Yi = fi(X) (with i = 1:M) that are needed to

estimate the indicators Ij (j = 1:N) (Section 2.5);
• Implement the post-processing of the metamodel outputs (including the computation

of Zk indicators) to estimate the indicators Ij (Section 2.6); and
• Deploy the FEWS, which downloads the forecasted conditions X and returns the

indicators Ij (j = 1:N) for the next 6 tides (Section 2.7).

2.3. Indicators and Classes

Table 1 shows the conversion of the user needs into 14 indicators Ij, with j = 1:14. Other
indicators may have been considered, such as the trafficability on every road or the water
depth at each building. However, in the present research work, we first aim to test the skills
of the entire process in predicting different types of information. Thus, we focus on the
most critical indicators for each type of need (e.g., for the roads, the parts affecting crisis
management buildings; for the buildings, only the crisis management buildings). In the list
of Table 1, some indicators have no units, and others are physical quantities. Regardless
of the type of indicator, one important issue when building an FEWS is that the provided
information can be directly interpreted. Thus, even for indicators referring to physical
quantities, instead of providing a quantitative value, we provide the class in which the
indicator falls. These classes are defined in different ways depending on the indicators.
Figures 2 and 3 show the locations of the physical quantities on which each indicator is
based and the associated classes, respectively.
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Figure 2. Localisation of the predicted physical quantities Yi (listed in Table 2) used to estimate the
indicators Ij (listed in Table 1).

Figure 3. Colour scale for each indicator Ij. For each indicator, the number of classes differs, ranging
from 1 to 4, 1 to 5, or 1 to 6, depending on the indicator.
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Table 2. Computed quantities Yi, intermediate variables Zk, and correspondence with the indicators Ij. The input column
indicates that the inputs of the metamodels are either scalar (S), i.e., steady, or functional (F), i.e., unsteady.

I Significance of Yi Unit Input Zk = f(Yi)

No. j of the Indicator Ij for Which

Zi Is the
Main Input

Zi Is a
Secondary Input

1 Volume of water entering inland
over 15 min m3 S Z1 = Maxt(Y1) N.C. 1 to 13

2

Maximal water height over the
cluster of points GP1, GP2, GP3,

GP4, and
G1 over 15 min

m S

Z2 = Maxt(Y2) 2

3 Z3 = Maxt(Y3) 3

4 Z4 = Maxt(Y4) 4

5 Z5 = Maxt(Y5) 5

6 Z6 = Maxt(Y6) 6

7 Maximal flooded surface m2 F Z7 = Y7 1 10, 11, 13

8 Mean (Y8) and maximal (Y9)
water discharge
entering inland

m3/h F
Z8 = Y8 7

9 Z9 = Y9 8

10 Maximal water height over the
event in front of the town hall
(Y10) and the gymnasium (Y10)

m F
Z10 = Y10 9

11 Z11 = Y11 10

12

For each road, Sections 1–3: total
head (as defined in [29]) for the
entire road (Y12,14,16) and the

highest track of the road
(Y13,15,17)

m F
For

k = 12,13,14Zk(Yk = 0) = 0,
else Zk(Yk+1 < hE11) =

1Zk(hE1 < Yk+1 &#; hE2)
= 2Zk (hE2 < Yk+1) = 3

11
13

14
12

15

16
13

17

18 Maximal water height in NP
locations (NP = 989) m F Z15 (n = 1:NP) =

Y18 (n = 1:NP) 14

Most of the classes (denoted C) of the indicators have been defined beforehand based
on the literature, national recommendations, and local specific requests. For instance, for
the human risk at survey points (I2–I6), we rely on studies of the loss of human stability
as a function of the water depth and velocity (see, e.g., [30]); moreover, as these survey
points are located either on coastal defences or on the upper beach, we assume that the
velocity is greater than 1 m/s when water is present. This assumption is confirmed by
analysing the results obtained with the numerical model presented in the next section.
For the classes of the maximal water height (I14) over the tide, at the 989 points, we rely
mainly on the national flood hazard recommendations [31], and we include the 0.1 m
class, as this threshold of 0.1 m is important for emergency services. This approach allows
us to provide information with which the users are familiar, as they are used to seeing
flood hazard maps. For the water discharge (I7 and I8), the classes are built based on the
capacities of the available pumping engines of the emergency service (SDIS56, which is
located outside Gâvres) to help them plan which types of engines they should bring to the
site before the flood. For the intensity (I1), 6 classes are defined based on thresholds of the
flooded surface (percentage of the area: 5%, 10%, 30%), thereby ensuring that the Johanna-
induced flood (10 March 2008), the last major flooding event to affect the demonstrate
site (see Figure A1 in Appendix A), falls in the high-intensity class. An additional class
is included to distinguish events where only few waves overtopped the coastal defences
from real flood events. It is important to note that the colour scale in Figure 3 is indicator
specific, i.e., that just because indicator I2 would fall in the higher (purple) class does not
mean that the other indicators should fall in their higher classes. Indeed, I2–I6 focus on
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human risks, while the water discharge classes are designed based on the pumping engine
capacities, and I1 focuses on the intensity of the flood over the entire territory.

Finally, to compute each indicator, we rely on the computation of quantities (called Yi,
with i = 1:N) predicted with metamodels. Table 2 provides a list of these metamodels and
for which indicator Ij they are used. Metamodels Y7 to Y18 are designed to use functional
inputs (i.e., time-varying forcing conditions), while metamodels Y1 to Y6 use scalar inputs
(i.e., steady forcing conditions). Indeed, metamodels Y1 to Y6 aim mainly to predict
whether water will enter inland (Y1) or to predict the water depth on the upper part of the
beach/coastal defence (Y2 to Y6); hence, we can use these metamodels to make quasi-steady
computations, i.e., discretise the time window of interest (here, (HT − 3 h:HT + 3 h), with
HT referring to high tide) in smaller windows and perform computations with steady
forcing conditions in each sub-window. For the road practicability (I11–I13), a decision tree
is used, where the threshold is defined by the fording depths of the considered cars (e.g.,
0.3 m for passenger cars and 0.6 m for emergency vehicles; [29]).

2.4. Process-Based Model Setup and Validation

In the present study, the model has to account for both wave overtopping and wave
overflow processes. Several coastal flood modelling approaches have been developed
to include such processes (for a review, see [32]). One approach is to use empirical (e.g.,
Eurotop; [33]) formulas to estimate the wave overtopping volume along 1D cross-shore
profiles based on the water level and wave conditions at the toe of the coastal defence and
to use these volumes as the forcing conditions for the shallow-water models, for instance,
to compute the inland flood propagation. However, these formulas have some limits,
including the fact that they were designed for specific hard defences and thus are not
adapted to the natural environment or nonclassical coastal defences [33]. In these cases,
one solution is to use phase-resolving wave models (see, e.g., [4,34]) to compute the wave
overtopping volumes along a limited number of 1D cross-shore profiles (see, e.g., [35]).
However, this approach is sensitive to the locations of the profiles along which the wave
overtopping discharges/volumes are computed. An alternative, albeit one that is much
more computationally intensive but better accounts for the complexity of the processes
(especially at a site such as Gâvres, which is not uniform in the alongshore direction), is to
use the same type of phase-revolving models in 2D or 3D mode on a spatial grid covering
the nearshore and inland domains (e.g., the domain illustrated in Figure 1b).

In the framework of the present study, we follow the last approach mentioned above
and use the non-hydrostatic phase-resolving model SWASH [4,36] to model floods at the
study site (Figure 1b). The modelling chain was previously set up by [6,7]. We briefly
summarise the key elements here. First, the wave conditions off the shore of Groix (the
significant wave height Hs, peak period Tp, and peak direction Dp) are downscaled to the
boundaries of the SWASH model (Figure 1b) using the WW3 spectral wave model [37]
by adopting the Jonswap wave spectrum with a directional spread of 30◦ and taking
into account the local wind (wind intensity U and wind direction Du) and still water
level (SWL; including the mean sea level (MSL), tide (T), and atmospheric surge (S)).
The WW3 computation domain is shown in Figure 1a (in black). SWASH is run with
non-uniform wave boundary conditions and spatially uniform still water levels (spatially
uniform mean sea level, tides, and atmospheric surges) and local wind. The spatial and
temporal resolutions of SWASH are 3 m and >10 Hz, respectively. In the vertical direction,
a discretisation of two layers is used. This model chain has been validated in terms of
the flooded area during the 10 March 2008 event [6]; for this validation, the model was
run for a DEM representative of the 2008 period (denoted DEM2008). Appendix A shows
the reasonable agreement between the modelled maximal inland water depth during the
event and the observed flood extent (flooded houses). In addition, a validation of the
simulated nearshore high-frequency (f > 1 Hz) water levels has been performed under
more moderate conditions, showing good agreement with in situ measurements for both
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gravity and infragravity bands [27]. The spatial changes in the bottom roughness (related
to land use) are also taken into account following the same approach as in [5].

For the present study, as the topo-bathymetry has significantly changed since 2008
due to the heightening of some coastal defences. We use the above-mentioned model
chain, but we include a DEM that is as representative of the present-day configuration
as possible. From the available bathymetric surveys (SHOM, DHI), lidar data (the public
RGE ALTI IGN product and limited access data of the Lorient Agglomeration), and Global
Positioning System (GPS) survey of the coastal defences, we have constructed a DEM
(denoted DEM2015–2018) that is representative of the 2015 bathymetry (winter) and 2018
coastal defences.

In addition, Ref. [6] highlights the significant effect of the stochastic character of waves
on floods at the study site, i.e., that the same offshore wave spectrum leads to different
instantaneous waves and to different volumes of water entering inland. This effect is
shown to be important, especially under conditions close to overflow or for events leading
only to minor floods. This implies that in an FEWS where we aim not only to provide
inland flood information but also to detect flood events (i.e., to distinguish floods from
non-flood events) and estimate human risks on the upper beach (the survey points), it
is crucial to account for this stochastic character of waves. For a given still water level,
in the SWASH model, the generation of instantaneous (i.e., high-frequency) water level
time series from a single wave spectrum is based on the modification of the phases of the
components in the Fourier space; this is feasible owing to the user parameter named seed.
Replicating simulations with different seed values allows the generation of different time
series. Thus, it is possible to account for the effects of the stochastic character of waves
on floods by randomly selecting the seed number in each simulation and repeating this
simulation several times. However, accounting for this effect in metamodels (1) leads to
an exponential increase in the number of numerical simulations and (2) requires some
specific techniques. Thus, to tackle this issue, two types of metamodels are built: (1) one
accounting for the effects of this stochastic character of waves (this concerns Y1–Y6) and
(2) another focused more on estimating the inland impact. To support the learning of
these two types of metamodels, two types of numerical simulations are performed: (Sim1)
simulations on 15 min (+spin up) with scalar (i.e., steady) forcing conditions X that are
repeated 20 times each with randomly selected seed values and (Sim2) simulations on 6 h
(+spin up) with functional (i.e., unsteady) forcing conditions X and a constant seed value.
These two types of simulations are performed for hundreds of scenarios (see Section 2.5.2).
Then, the numerical results (spatio-temporal fields of the water height and velocity) are
post-processed to provide the Yi values. It should be noted that except for Y2–Y6, which
are computed using a 1 s sampling (numerical) model output, all the other Yi values are
computed based on 1 min sampling outputs.

2.5. Metamodels
2.5.1. Principles of Metamodelling

Metamodels (also called surrogate or response models; for an introduction, see [20])
are functions that aim to reproduce the behaviour of a “true” model function f of a vector
X of input variables (for instance, offshore conditions). In the present case, the “true”
model is the numerical hydrodynamic model. Figure 4 illustrates the main steps involved
in the construction of a metamodel. When constructing a metamodel function, first, a
set of input vectors X1, . . . , Xn (a design of experiments) is obtained. Second, the corre-
sponding set of output values f (X1), . . . , f (Xn) is computed. The second step requires
the “true” model to be evaluated n times, so n may be limited to a small value (10 to
100, for instance). Finally, the metamodel is a function f̂ of X defined on the input space
covered by X1, . . . , Xn and learns from f (X1), . . . , f (Xn). There are many standard meth-
ods for constructing a metamodel, such as linear or polynomial regression, polynomial
chaos expansion [38], Gaussian processes (GPs) [39], random forests (RFs) [40], and kernel
smoothing [41]. The common desirable feature among these methods is that evaluating
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f̂ (X) does not require calling the “true” model and has a negligible computational cost
(within a few minutes). Hence, analyses that would be too costly to apply directly to
the “true” model (for instance, the Monte Carlo propagation of uncertainty studies or the
estimation of sensitivity indices, both of which typically require thousands of function calls
to yield meaningful results) may be applied to the metamodel function instead.

Figure 4. Three main steps in the construction of a metamodel. Here, the “true” model is a function f of the input
vector X = (x1,x2). First, a design of experiments is created, consisting of 12 pairs of input values (left plot). Second, the
corresponding 12 computations of the “true” model are carried out (centre plot), providing the 12 input/output pairs
constituting the data points needed to construct the metamodel (third plot from the left). Third, the metamodel is a function
of the full input domain (here, a square) that interpolates (or approximates) the 12 input/output pairs (right plot).

2.5.2. Design of Experiments

We start by selecting a limited number n = 100 of offshore meteo-oceanic scalar
conditions X = (SWL, Hs, Tp, Dp, U, Du), as was performed by [22]. This selection (S1)
is designed by applying the clustering procedure described by [42] to a large dataset of
extreme conditions (here, ≈150,000). This database is constructed through a combination
of Monte Carlo random sampling and multivariate extreme value analysis performed on
the database of hindcast conditions constructed by [7] over the period 1900–2016. This
approach ensures that the selected X input conditions are sufficiently extreme to lead to
flooding but are also realistic.

Then, using this first selection S1 (n = 100) and the 1900–2016 hydro-meteorological
dataset [7], a probabilistic classifier is used to locate the time instants of these maximum
values (based on quadratic discriminant analysis; [43]), and a multivariate Gaussian Monte
Carlo-based sampling procedure is applied to generate 94 time series (S2), i.e., functional
inputs X = (NMR(t), T(t), S(t), Hs(t), Tp(t), Dp(t), U(t), Du(t)) over 6 h, with 10-minute
time steps. This functional input dataset is complete with 21 historical events (9 flood
events and 12 non-flood events; see [7], for more details on the historical floods) and
16 scenarios simulated from small variations of the 9 historical flood events. Thus, the final
grid experiment of time-varying forcing conditions contains 174 scenarios.

Regarding the scenarios of the offshore meteo-oceanic scalar conditions, the initial
S1 selection is complete with 44 high tide conditions extracted from the S2 selection such
that the design of experiments for the steady forcing conditions (i.e., the scalar inputs
for simulation type Sim1) now contains n = 144 offshore meteo-oceanic scalar conditions
X = (SWL, Hs, Tp, Dp, U, Du).

2.5.3. Metamodelling Technique

In principle, many approaches can be utilised to set up a metamodel (for an overview,
see [40]), including GPs, neural networks, or support vector regression. For the present
work, we select GP metamodels because they have shown very high predictive capabilities
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in previous applications for coastal flood assessments (among others, see [44], for appli-
cations to overflow-induced marine flooding; see [19,45], for applications to hurricanes;
and see [46], for an application to San Francisco Bay). In particular, high performance was
shown by the extensive comparison exercise conducted by [47]. The authors benchmarked
GPs, neural networks, and support vector regression and showed that the GP outperforms
the alternatives because of its lower sensitivity to the training set size. From an operational
perspective, the advantage of the GP is that it acts as an exact interpolator of the simulation
results and provides an estimate of the metamodel error; moreover, the GP method is
parameterised by a covariance function (or kernel), which makes it flexible and allows the
exploitation of expert knowledge related to the physical processes.

In the present work, for the scalar inputs, we follow the approach of [22]. A GP-based
metamodel is used to predict Y1–Y6. To improve the prediction of the cases without flooding
(i.e., Y1 = 0), the GP-based metamodel (see, e.g., [39]) is combined with a classification RF
model [48], which aims at predicting the probability of flooding Pf (i.e., Y1 > 0). When Pf
is predicted to be below 50%, the predicted value of Y1 is set to zero. Further details are
provided by [22], who applied this approach using the same numerical modelling chain
but with a different grid experiment and DEM2008 instead of DEM2015–2018.

A GP-based metamodel is also used for metamodels forced by functional inputs but
provide scalar outputs (i.e., Y7–Y18). To reduce both the memory and the processing require-
ments of the metamodel, we implement the B-spline [49] and principal component analysis
(PCA) [50] dimension reduction techniques, as thoroughly explained in [23], who tested this
method using a simplified flood model (relying on the use of an overtopping formula over
a single cross-shore profile). Compared to alternative dimension reduction approaches such
as the polynomial or Fourier bases of functions, one advantage is that the basis functions
from PCA are orthogonal, and those from B-splines have many zero scalar products, which
can be beneficial for least square procedures when the decomposition dimension is large. In
many studies, the structural characteristics of the metamodels are chosen beforehand (e.g.,
PCA decomposition in [51], B-spline decomposition in [52], the Matérn 5/2 covariance
function in [53]) without a specific sensitivity analysis or benchmarking. In the present
work, we use the ant colony-based optimisation algorithm ACO-Gp proposed in [54] to
fix several structural characteristics of each metamodel, such as the set of inputs to use for
prediction and the type of kernel function of the model. This algorithm helps to efficiently
explore the space of potential metamodel configurations while optimising the prediction
quality. Implementations for functional input GP-based metamodelling and structural opti-
misation supported on ACO-Gp are available through the R [55] funGp package [56], which
is freely accessible from CRAN at https://cran.r-project.org/package=funGp and GitHub
at https://github.com/djbetancourt-gh/funGp, accessed on 25 July 2021. Alternatives
to ant colony-based optimisation could be other methods for combinatorial optimisation,
such as simulated annealing or genetic algorithms. Here, ant colony-based optimisation
is adapted to the tree structure of the decision space (see [54]). For instance, whether a
functional input is active affects the dimension of the rest of the decision parameter to
be selected. This tree structure is naturally exploitable with the pheromone paths of ant
colony-based optimisation, whereas it is much less clear how to exploit this tree structure
with simulated annealing or genetic algorithms.

Finally, to account for spatial outputs (as for metamodel Y18), we rely on the work
of [24], the method of which is summarised as follows. Y(X,s) depends on both hydro-
meteorological conditions (functional inputs) X and spatial coordinates s = (longitude,
latitude). For the GP-based metamodel, we place a (zero-mean) GP prior on Y, where (1) the
covariance function k is given by the separable kernel k((X,s), (X′,s′)) = kX(X,X′)ks(s,s′)
and (2) the sub-kernels kX and ks evaluate the correlation between the functional inputs
(X,X′) and that between the spatial coordinates (s,s′), respectively. Since k is attenuated
by the spatial correlation, nearby values X and X’ can result in small correlations for
distant values of s and s′, and vice versa. As Y is GP-distributed, the predictions can be
performed then for classical GP-based metamodels (see, e.g., [39]). Furthermore, using a

https://cran.r-project.org/package=funGp
https://github.com/djbetancourt-gh/funGp
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separable kernel considerably eases the implementation. As shown by [24], the resulting
GP model can also be written as a multi-output model where the outputs are driven by
a given set of functions. Implementations in both Python and R are freely available at
https://github.com/anfelopera/spatfGPs, accessed on 25 July 2021. In the present work,
we use 1003 spatially designed points. Those points are selected based on a dedicated
k-means-based methodology accounting for both the spatial locations (i.e., longitude,
latitude) and the flood ratios (see Section 3.1 and [24], for a further discussion). For a
comparison with the more classic multi-output GP method based on linear models of
coregionalisation, see also [24].

2.6. Requirements, Combination Rules of the Metamodel-Based Predictions, Optimisation, and
Validation Procedure

The main requirements of the flood forecasts and warnings in our FEWS are that the
system properly detects/predicts the major flooding events and minimises false alarms
(i.e., properly discriminates between flood and non-flood events).

In this work, two complementary metamodelling approaches are used: one based
on classification (and accounting for the effect of the stochastic character of waves) and
the other based on GPs. Such a strategy allows the advantages of both approaches to
be combined, especially in tackling the problem encountered by GP metamodels close
to 0 (they hardly capture exact 0 values; see, e.g., [57]). Thus, to predict the indicators,
the classification-based Y1 metamodel is used to force the indicators relying on the GP-
based metamodels to 0 (i.e., class 1) when Z1 = 0, with Z1 being the maximum of Y1 over
the tide. In addition, Z1 is used to discriminate between events at the flood limit (i.e.,
few wave overtopping events may occur; Z1 < V1) and events corresponding to minor
flooding (Z1 ≥ V1) such that if Z1 < V1, then the intensity (I1) falls in the second class
(Figure 3). At this stage, the threshold V1 is not defined; this is accomplished by optimising
the numbers of true and false alarms (Section 3.3). For this optimisation step, we employ a
damage database covering the period 1900–2010 together with the oceanographic forcing
database [7]. These corrections can be seen as hierarchical constraints (Figure 5). In
addition, some physically logical constraints are considered. For instance, the locations
of indicators I9 (town hall), I10 (gymnasium), and I12 (road2) are such that they cannot be
flooded if the intensity of the flood is too small (typically for Z7 < S1 with S1 = 29,200 m2,
S1 corresponding to the upper limit of class no. 3 of intensity indicator I1, Figure 3).
This has been checked by analysing the numerical model results for the grid experiment
(see Section 3.1). Thus, an additional constraint based on Z7 is imposed to improve the
prediction of indicators I9, I10, and I12. For I9 and I10, an additional constraint is imposed:
if Z10 < H1 (with H1 = 0.01 m), then C(I9) = 1 considering that 1 cm of water is included in
the model uncertainties. We also have knowledge of some physical relationships between
a few indicators. This knowledge is taken into account, again relying on the reliability of
Z1 (Figure 5, bottom-left insert). Finally, in terms of visualisation in the FEWS, indicators I7,
I8, and I14 are shown only if the flood intensity triggers a flood alarm, i.e., only if C(I1) ≥ 3.
The predicted indicators Ij are validated for the period from September 2019 to March 2021
(Section 3.4).

https://github.com/anfelopera/spatfGPs
https://github.com/anfelopera/spatfGPs
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Figure 5. Logic tree to combine the different metamodel outputs Zk and construct the indicators Ij,
with C corresponding to the classification shown in Figure 3. The star symbol (*) indicates that a
post-processing based on logical quantitative relations (see the box bottom left) is applied.

2.7. Implementation in an FEWS

The main objective of an FEWS is to provide flood information on specific targets
in the area (i.e., the classes in which each indicator Ii falls) over the next six tides. This
requires the use of forecasted data X. The FEWS relies on the X forecasted data pro-
vided by the MARC (https://marc.ifremer.fr/, accessed on 15 July 2021) and DATASHOM
(https://data.shom.fr/, accessed on 15 July 2021) platforms. These X data are pre-processed
by extracting the data at the location of interest (Figure 1a), harmonising the time steps
between the different variables originating from the data suppliers (the tide T, atmospheric
surge S, wave height Hs, wave peak period Tp, wave direction Dp, wind speed U, and wind
direction Du). A unified time step of 10 min is used to properly account for the tide-induced
sea-level variations. In a second step, the automatic detection of high tides is performed on
the dataset, and then, the X data are extracted over the 6 h windows centred on the high
tides for the 6 next tides. Then, the metamodels (Yi,i=1:18) are run, providing the 18 outputs
for each tide. These outputs are post-processed (providing Zi,i=1:15) and aggregated into
the specific indicators (Ii,1:14). Finally, the Ii indicators are published through the FEWS.

Another related objective was to provide simple figures and outputs through the
FEWS. This ambition is fulfilled not only by showing the classes in which each indicator
falls rather than the indicator values but also by designing an interface as simple as possible
(based on user feedback).

From a technical point of view, the FEWS relies on open-source technologies, while
the predictions and complementary information are provided through a website (Figure 6).
The background of the FEWS is based on big data technologies that allow the storage
of a large amount of data and increase the speed at which data can be visualised. More
precisely, the FEWS relies on the Elasticsearch engine [58], which is a highly scalable open-
source full-text search and analytics engine that allows the rapid and near-real-time storage,
search, and analysis of large volumes of data. The computational aspect of the FEWS
relies on Python and R (the metamodels are built using R), and R Shiny [59] is utilised
to visualise the predictions. Finally, the Lyxea© software suite supports the FEWS web
platform. To guarantee the scalability and shareability of the system, dedicated application
programming interfaces (APIs) have been developed for the data processing chain. Finally,
the accessibility of the FEWS is restricted to the members of the consortium and the final
beneficiaries (the local user group) via secured access.

https://marc.ifremer.fr/
https://data.shom.fr/
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Figure 6. Simplified backend architecture of the FEWS. The MARC (https://marc.ifremer.fr/, ac-
cessed on 15 July 2021) and DATASHOM (https://data.shom.fr/, accessed on 15 July 2021) platforms
provide the X forecasted data.

3. Results
3.1. Grid Experiment and Numerical Modelling Results: Preliminary Analysis

Figure 7 illustrates the scenarios (learning dataset) that were run with the numerical
model to build the scalar input metamodels (panel a) and the functional input metamodels
(panel b) in comparison with the distribution of the continuous time series of X over
1900–2016 (panel c). This comparison illustrates how the grid experiment covers the X
input space, which covers the distribution of the 1900–2016 X hindcast and includes past
extreme events. Figure 7 further shows that the learning dataset effectively incorporates
more extreme events than those observed.

Figure 7. X dataset: (a) learning dataset used for the scalar input metamodels (i is the scenario index from 1 to 144),
(b) learning dataset used for the functional input metamodels (174 curves for the 174 scenarios), and (c) distribution of
the data from the historical hydro-meteorological database (1900–2016, data from [7]). ξ IGN69 (top panel) is the water
level resulting from the mean sea level, tide, and atmospheric storm surge referenced to the IGN69 vertical datum. The
horizontal dotted red line (top panel) indicates the threshold for which land is flooded only under the action of the mean
sea level, tide, and atmospheric storm surge.

https://marc.ifremer.fr/
https://data.shom.fr/
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From the numerical modelling, the “Y” values are extracted (denoted YNum for the
Y values extracted directly from the numerical results, i.e., to avoid misunderstanding
with the Y metamodels); these are the (X,YNum) datasets used to build the metamodels.
The cross-validation figures provided in the next section illustrate the domain covered by
YNum in comparison with the defined indicator classes. As a preliminary analysis of the
numerical results, for the scalar (functional) input grid experiments Sim1 and Sim2 defined
in Section 2.5.2, numerical modelling indicates that floods occur (i.e., water enters into
the inland domain of analysis) in 105 (155) scenarios out of the total number of scenarios,
i.e., 144 (174). Thus, the functional inputs include fewer cases without floods than the
scalar inputs. Regarding the numerical results obtained from the functional input grid
experiment, the ratio of the number of scenarios where the pixel is flooded to the total
number of scenarios is mapped (Figure 8), illustrating the range of flood events (in terms
of the flooded area) covered by the numerical simulations: from non-flood events to severe
flooding (with a computed maximal flooded surface area of 312 309 m2, i.e., 55% of the
studied area).

Figure 8. Ratio of the number of scenarios where the pixel is flooded to the total number of scenarios
for the functional input grid experiment.

3.2. Metamodel Cross-Validation

The predictive capabilities of the different metamodels are assessed by applying the
cross-validation procedure [40].

For the metamodels with scalar inputs (Y1 to Y6), the widely used 10-fold cross-
validation method is performed (see [40]). Figure 9 provides a comparison between the
observations (the numerically calculated Ynum values) and the predictions of the GP-
based metamodels; their agreement reflects a highly satisfactory prediction quality. This
consistency is further confirmed by the high coefficient of determination Q2 calculated
using the residuals derived from the cross-validation procedure. The closer Q2 is to one, the
more satisfactory the capability of the GP-based metamodel to predict the considered Y. In
our case, Q2 is not lower than 95%, and hence, it is considered satisfactory. The predictive
capability of the RF model for Y1 is measured by the accuracy of the classification (denoted
ACC), which is defined as the ratio of the number of events correctly classified by the
RF model to the total number of events. In our case, ACC reaches 92%, which can be
considered satisfactory.
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Figure 9. Cross-validation of the Y1 to Y6 metamodels: comparison between the observations (the numerically calculated
Ynum values) and the predictions of the GP-based metamodels. The predictive capability is measured by the coefficient
of determination Q2 (the closer Q2 is to one, the higher the prediction quality) and the accuracy (ACC) for the classifier
associated with Y1 (see Section 2.5.3 for details) The colour scales in panels (a,b) correspond to the colour scales of indicators
I1 (classes 1 and 2) and indicators I2 through I6, respectively.

The functional input, scalar output metamodels (for the prediction of Y7–Y17), are
validated using a leave-one-out (LOO) cross-validation procedure. Here, using LOO cross-
validation enables us to benefit from explicit virtual LOO formulas (Bachoc et al., 2013;
Zhang and Wang, 2010). Figure 10 illustrates the performance of the metamodels on the
prediction of the maximal flooded surface (Y7). The metamodelling quality is assessed by
comparing the LOO predictions with the values obtained by the numerical model. As in
the case of the scalar input metamodels, the results show a satisfactory prediction quality,
which is further supported by a fairly high Q2 value. In addition, the class is correctly
predicted for the vast majority of the points (white dots). However, at this stage, we note
that Y7num values equal to 0 are overestimated. Appendix B presents the validation plots
for the metamodels for the prediction of Y8 to Y17.
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Figure 10. Cross-validation of the Y7 metamodel: comparison between the observations (numerically
calculated Ynum values) and the predictions of the GP-based metamodels. The predictive capability
is measured by Q2 (the closer Q2 is to one, the higher the prediction quality). The colour scale
corresponds to the colour scale of indicator I1 (except that there is no “blue” class here). White dots
indicate a correct class prediction; the remaining points are coloured according to the predicted class.

To assess the predictability of the spatial GP-based model, we again perform LOO
cross-validation where each flood scenario from the dataset is predicted using data from the
other scenarios. First, we compute the root mean square error (RMSE) for the 1003 designed
points, i.e., the RMSE over the 174 LOO predictions. For the purposes of our FEWS, we
remove the points for which the RMSE is larger than 0.3 m, leading to the removal of
14 points from the 1003 initial points. Figure 11 shows the RMSE values obtained for the
remaining 989 points. Using the colour scale in Figure 3, Figure 11b shows the predictions
for scenarios 50, 42, and 10. The model globally captures the category of those scenarios.
One must note that a misclassification between consecutive flood categories (e.g., between
the green and blue categories) results mainly from overestimation or underestimation
around the given threshold that defines the limit between the two categories. Appendix C
shows additional figures regarding the cross-validation for learning scenarios 50, 42, and
10 together with their confidence intervals, revealing non-negligible confidence intervals
(e.g., ±40 cm) in comparison with the water height classes (Figure 3).
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Figure 11. Cross-validation of the Y18 metamodel. (a) RMSE over the 174 scenarios of the learning dataset computed by LOO
cross-validation. (b) Y18 “predictions” obtained with the metamodel for three of the 174 scenarios by LOO cross-validation
compared with the “observations” Ynum obtained directly from the numerical model outputs. The colour scale in panel
(b) corresponds to the colour scale of indicator I14.

3.3. Indicator Predictions: Raw Results, Optimisation, Hindcast, and Reinforced Hindcast

To estimate the quality of the metamodel predictions, we consider the period 1900–2010.
From the analysis of historical information, five major flooding events occurred during this
period, while another four events led to a sparse number of overtopping phenomena [7].
We do not have knowledge of the historical values of each indicator, but we do know
whether each scenario was a non-flood, minor flooding (few instances of overtopping,
equivalent of the class-2 intensity indicator), or major flooding event. We also attribute a
confidence index to each event within the damage event database [7]. Indeed, for some of
the damage events, it is not possible to be fully certain that either there was no flood or
there were few instances of wave overtopping. In addition, it is important to note that the
territory of Gâvres is now more protected from floods than it was during 1900–2010. This
implies that the predicted indicators following our method can be considered satisfactory
if they fulfil the following conditions: (1) if the historical database indicates no submersion,
then the prediction should be a non-flood event; (2) if the historical database indicates
minor flooding, then the prediction should provide either a minor flooding or a non-flood
event; and (3) if the historical database indicates major flooding, then the prediction should
provide at least a minor flooding event.

Our main calibration parameter is V1 (threshold of the water volume entering inland
in 15 min; see Section 2.6). Thus, we optimise the V1 values to minimise (maximise)
the number of false (true) alarms over the 48 events within the damage events database.
Figure 12 shows the Z1 predictions over the continuous forcing conditions from 1900 to
2010 and the 48 damage events, together with the optimisation curve of V1, leading to
V1 = 62 m3. With this value, considering that 0 < Z1 < V1 leads to a simple warning and
Z1 ≥ V1 leads to a real flood alarm, we obtain four true flood event alarms and two false
alarms. Over the entire 110-year period, this threshold leads to the prediction of only
nine flood events and 102 “warning” events, implying that for DEM2015–2018, there is
an empirical probability of 1 “warning” (few instances of overtopping) per year and 1
“alarm” per decade. Regarding the two false alarms (1948 and 1957), it should be noted
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that for both events, the confidence level of the classification between no flooding and
minor flooding is moderate [7] such that it is possible that minor flooding did not occur on
either date. The 1904 event is classified with moderate confidence as a major flood from
an analysis of the historical information [7] such that this event may have been a minor
flood instead of a major flood, but we are sure that there was a flood. Thus, the number
of false alarms (i.e., two) should be considered as the upper limit of the real number of
false alarms. Finally, two events are not clearly identified in the damage event database:
those on 18 December 1945 and 19 December 1945. However, after [60], strong erosive
events may have occurred in December 1945. Focusing on the four remaining flood events
of the damage database, (1) consistent with our validation assumption, Z1 = 0 for two past
minor flooding events and 0 < Z1 < V1 for one past major flooding event (considering the
less protective topo-bathymetry during the studied period), and (2) Z1 = 0 for the past
major flooding event on 10 January 2001. The result for this last event is not inconsistent.
Indeed, in comparison to the other major flooding events, the water level, wave, and wind
conditions are not exceptional (with a joint exceedance return period of the water level
and significant wave height of less than 1 year); in fact, this event was caused by a coastal
defence failure, which led to significant flooding [7]. The failure of coastal defences is not
accounted for in our method/FEWS (see Section 4.1 for a more detailed discussion).

Figure 12. Prediction of Z1 over the period 1900–2010 (a) and the numbers of true and false alarms over the 48 damage
database events versus the V1 threshold on Z1 (b). In (a,b), the dashed line indicates the selected threshold after optimisation
(V1 = 62 m3). In (a), the bolded dates correspond to highly confident information in the damage event database, while
italicised dates correspond to moderately confident information in the damage event database, i.e., meaning that there is
damage but that we are not fully certain of our classification. In (b), a true (false) alarm corresponds to case where Z1 ≥ V1
(Z1 < V1) and a (no) historical flood has been reported.

Applying the optimised value V1 = 62 m3 and the constraint scheme shown in Figure 5,
we obtain predictions for all the indicators Ij over the period 1900–2010. Figure 13 shows
the results only for the events where Z1 > 0 (i.e., the intensity indicator I1 falling in a class
larger or equal to 2) or Z1 > V1 (i.e., such that C(I1) ≥ 3) for the sake of readability. First,
we note the consistency of the predictions between the indicators: only minor flooding
events are predicted, while neither the roads nor the crisis management buildings are
flooded (I9 to I13). The predictions indicate that the riskiest survey points are GP4 (I5) and
G1 (I6). This is consistent with Figure 8 and with local knowledge, which indicates that
the preferential pathway of flooding is in front of the cemetery (i.e., GP4). Furthermore,
significant human risk (C(I5) and C(I6) reaching up to 4, in red) is predicted for these survey
clusters (corresponding to I5 and I6), while the intensity (I1) is small (C(I1) = 2 most of the
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time, in blue). This can physically be explained by the fact that both survey clusters are
located in areas more subject to wave overtopping, i.e., locations where individual waves
overtop the defences. Due to the stochastic behaviour of waves, in the (HT − 3 h:HT + 3 h)
time window, only a single wave (or a few waves) may overtop the defences, leading to a
local instantaneous water depth of a few tens of centimetres (i.e., C(I5) or C(I6) = 3 (0.1 to
0.25 m, in orange) or 4 (0.25 to 0.5 m, in red)), but they may move only a limited volume
of water onto land (e.g., <V1, with V1 = 62 m3); consequently, the flood intensity remains
small (C(I1) = 2, blue class, Figure 3).

To compare the skills of the more inland indicators (I1, I7 through I13), numerical
simulations are performed for the nine events where the predicted class of indicator
I1 is larger than or equal to 3 (Figure 14). The comparison with the predicted values
(Figure 13) shows that our predictions are relatively coherent with the “truth” (here, the
direct numerical results Ynum), even for these “on the edge” events, i.e., events that are
difficult to properly predict with metamodels. For this hindcast, there are no cases where
the intensity I1 is large enough to fulfil the visualisation conditions of the I14 indicator.

However, we note that we would produce many more predicted flood events using a
less protective bathymetry. The methods used to construct the scalar input metamodels
have previously been used with a smaller learning dataset and with numerical modelling
relying on a topo-bathymetry representative of 2008 (i.e., DEM2008, less protective). These
metamodels exhibit good prediction skills compared to the historical flood events over
1900–2016 and yield much larger predicted quantities than those obtained with the (more
protective) 2015–2018 topo-bathymetry.

Figure 13. Hindcasts of indicators I1 to I13 for cases where (a) there are at least a few instances of overtopping (i.e.,
C(I1) ≥ 2) and (b) the flood is at least of minor intensity (i.e., C(I1) ≥ 3). The colour bars correspond to the colour code
defined for each indicator (see Figure 3). The dates corresponding to events 1 through 9 in panel (b) are (in order)
2 February 1904, 9 January 1924, 18 December 1945, 19 December 1945, 27 January 1948, 29 January 1948, 15 February 1957,
10 March 2008, and 28 February 2010.
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Figure 14. Results from the numerical simulations of the nine events identified in Figure 13b (such that C(I1) ≥ 3 based
on the meta-models and post-processing outputs). (a) Indicators directly computed from the numerical hydrodynamic
simulations without any post-processing; (b) maximal water height (m) computed from the numerical output over 6 h with
a time step of 1 min. The respective flood surface areas (m2) in panel (b) are 5589, 12,006, 13,860, 3465, 8208, 2070, 2088, 4167,
and 1215.

3.4. FEWS: Operational Use of the FEWS and First Feedbacks

Appendix D provides screen captures of the FEWS web interface, which allows the
visualisation of all the indicators for the next six high tides, except indicators I7, I8, and I14,
which are provided only when a flood event (alarm) is predicted (C(I1) ≥ 3). In addition,
for I14, the cross-validation reveals a non-negligible confidence interval (e.g., ±40 cm,
Figure A4 in Appendix C); in comparison with the water height classes (Figure 3), we
stipulate that the I14 predictions are of low confidence. Access to the FEWS interface was
provided to the local users in December 2020. According to the users’ first feedback, they
found it very easy to use and to understand.

Even though access to the FEWS was given to the local users in December 2020,
the FEWS existed (i.e., was in development) beforehand, as forecasted forcing data were
downloaded since September 2019. This allows us to evaluate the prediction quality from
September 2019 until March 2021 (Table 3). During this period, the town hall did not
report any flooding in the study area. It may happen that the events with only a few wave
overtopping episodes were not observed (as overtopping is a highly local phenomenon
in time and space), which implies that during the study period, the maximum value of
C(I1) should be 2. Over the study period, the FEWS predicts C(I1) = 1 most of the time.
Table 3 lists all the events for which either the FEWS predicted C(I1) > 1 or an official VVS
warning was issued by Meteo-France at the department scale. With XMARC (XDATASHOM),
the FEWS predicts eight (1) events “close to flood” (C(I1) = 2); i.e., the FEWS issued only
warnings but no alarms for flooding events. Such predictions (i.e., usually C(I1) = 1, a
few cases with C(I1) = 2, and no cases where C(I1) > 2) are in fair agreement with the
information provided by the town hall. To complement the town hall information, photos
were gathered on the internet. For the events for which we found photos (Table 3), they
allowed the identification of high water levels in the study area and a few instances of
overtopping events either within or near the study area. These photos confirm the good
agreement between the predictions and observations. The only “discrepancy” is discovered
for the last event (30 January 2021), where few instances of overtopping were captured in
a photograph, while the FEWS predicts C(I1) = 1. As the numerical modelling with the
XMARC input provides C(I1) = 2, this finding implies that improved metamodels for such
types of events could lead to C(I1) = 2.
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Table 3. C(I1) values (the colour scale is in accordance with Figure 3: green for “nothing to report” and blue for “close
to flood”) for the events where either the FEWS predicts C(I1) ≥ 2 or a regional official warning was emitted (VVS) from
December 2018 to March 2021. NTR: Nothing to report. *: sources of photos: https://www.ouest-france.fr/bretagne/gavres-
56680/gavres-avec-la-forte-houle-les-engins-ont-du-etre-deplaces-6544164 (accessed on 25 July 2021), https://observatoire-
littoral-morbihan.fr/coastsnap-morbihan-2-2/ (accessed on 25 July 2021), https://hanslucas.com/vbelloni/photo/42304
(accessed on 25 July 2021).

Date

I1 Prediction
with X=, N Days in

Advance (1 to 3)

I1 from the Numerical
Modelling with X=,

One Day in Advance
VVS

Warnings

Observations
[Town Hall Information; Photos]→

Evaluation of I1Xmarc Xdatashom Xmarc Xdatashom

1 2 3 1 2 3 1 1

29 September
2019

2 2 2 1 1 2 2 1 NTR

30 September
2019

2 2 2 1 1 1 2 1 NTR

[NTR; wave overtopping on the
tombolo but outside the study area *]

→ 1 to 2

14 January 2020 1 1 1 1 1 1 1 1 Orange

10 February
2020

2 2 2 1 1 1 2 1 Orange
[NTR; water level close to the coastal

defence crests at GP4 *]→ 1 to 2

11 March 2020 2 2 2 1 1 1 2 1 NTR [NTR; No photo]→ 1 to 2

9 April 2020 2 2 2 1 1 1 1 1 NTR [NTR; No photo]→ 1 to 2

17 October 2020 2 1 1 1 1 1 NTR [NTR; No photo]→ 1 to 2

15 November
2020

2 2 1 1 2 1 NTR [NTR; No photo]→ 1 to 2

16 December
2020

2 2 2 1 1 1 2 2 NTR [NTR; No photo]→ 1 to 2

30 January 2021 1 1 1 1 1 1 2 1 Orange
[small overtopping/overflow on the
tombolo, but outside the study area;

small overtopping *]→ 2

Regarding the sensitivity to the time horizon (1, 2, or 3 days), the FEWS predictions
are not very sensitive (the prediction of I1 performed 3 days in advance is, for most events,
equal to that performed 1 day in advance); consequently, we can trust the predictions
obtained 3 days in advance for the validation period. Table 3 also includes the VVS
warnings over the study period. The FEWS issues more warnings than the VVS, albeit
with a lower level (blue level, “close to flood” events) than those issued by the VVS
(orange level). The VVS has four warning levels (in increasing severity: green, yellow,
orange, red). The recommendation associated with the orange level is that dangerous
phenomena are expected and that the population should be very vigilant, stay up to date
with developments, and follow the safety advice issued by authorities. Thus, our FEWS
predictions seem closer to what happens locally (either nothing or only a few instances of
overtopping), at least over the investigated time span from September 2019 to March 2021.

Finally, it should be noted that in the FEWS version provided to the local users, by
default, the XMARC data are used; if these data are not available, the XDATASHOM (which are
always available) are used. This allows a small security margin to be adopted but still limits
the number of false alarms (as highlighted in the validation for the period 2019–2021 where
the FEWS, even with the XMARC data, provided no alarms and only a few blue warnings).

4. Discussion and Recommendations
4.1. Discussion

The FEWS prototype exhibits good prediction skills and relies on a simple interface
satisfying the local users. However, we report two main issues.

First, regarding the prediction skills of the metamodels, to address the lower skills of
the GP-based metamodels (Y7:18) close to 0, we adopt a pragmatic approach of using the

https://www.ouest-france.fr/bretagne/gavres-56680/gavres-avec-la-forte-houle-les-engins-ont-du-etre-deplaces-6544164
https://www.ouest-france.fr/bretagne/gavres-56680/gavres-avec-la-forte-houle-les-engins-ont-du-etre-deplaces-6544164
https://observatoire-littoral-morbihan.fr/coastsnap-morbihan-2-2/
https://observatoire-littoral-morbihan.fr/coastsnap-morbihan-2-2/
https://hanslucas.com/vbelloni/photo/42304
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classification metamodel (Y1) outputs and combining them with the GP-based metamodel
outputs. However, from a theoretical point of view, this is not fully satisfactory. One way
to improve the indicators relying on the GP-based metamodels close to 0 is to increase the
number of learning scenarios providing Y = 0 values. We tested this strategy by adding
40 non-flood event scenarios to the existing 174 scenarios used in the learning dataset; no
significant improvement was found. A more promising perspective of improvement is
to use refinements of GP models that are tailored for modelling positive functions and
may provide more accurate metamodel predictions of output values close to zero. Two
main examples of these refinements are truncated GP models [57] and constrained GP
models [61,62]. If metamodels other than GPs are considered, then it would also be possible
to have an interaction between the classification problem of zero outputs and the regression
problem of non-zero outputs. Possibilities that would warrant investigation are to tailor
the loss function for metamodels relying on empirical risk minimisation (see [40]) or to
use nearest-neighbour methods. In the latter case, the rationale is that the averages of the
observed outputs are non-negative and are exactly zero when all outputs are zero.

Building such an FEWS requires considerable amounts of human and computational
effort (thousands of hours of computation). The FEWS discussed herein was built for a
given topo-bathymetry (DEM). If the beach morphology changes or coastal defences are
modified (or damaged, as was the case during the 10 January 2001 flood event), then the
prediction skills of the FEWS are expected to decrease. In the case of significant changes,
we may need to redo all the steps (numerical modelling, metamodelling, validation of
metamodel outputs and indicators, and update) to re-establish the FEWS. A more flexible
approach would be to add one level of complexity to the metamodels by allowing them
to account for the topo-bathymetry as spatial (functional) inputs of the metamodels them-
selves. This would require methodological and mathematical developments together with
the optimisation of the numerical computation. Relevant starting points for adding the
topo-bathymetry as an input to the GP-based metamodels are the developments of [52,63],
which address functional inputs and positive map inputs, respectively. Other promising
approaches have also been investigated, such as stochastic partial differential equations
combined with integrated nested Laplace approximation, as described by [64], for handling
complex spatially varying inputs for tsunamis.

In this paper, by combining historical data, extreme value analysis, advanced numeri-
cal modelling, metamodelling, and pragmatic post-processing, we show how it is possible
to predict coastal flood information (including the prediction of inland flooding) with
fair quality and negligible computation times (typically within 1 min for one scenario).
This methodology may have several potential implications in flood management and/or
decision processes that are not limited to the improvement of FEWSs and to raising aware-
ness. For instance, the rapid models developed in our approach may be able to directly
contribute to the real estimation of coastal risks; in theory, the risk estimate should be based
on a fully probabilistic analysis in which all possible scenarios and their consequences are
included [65] and not on a limited number of scenarios. This approach also provides fresh
perspective with regard to preparing for climate change and sea-level rise. For instance,
the metamodel providing the water volumes entering inland may be used to estimate the
present-day and future probabilities of exceedance while accounting for uncertainties in
future sea-level rise and thus to identify when (at the earliest and latest) tipping points may
be reached [66]. Finally, our methodology may be of indirect use for the design of coastal
defences (structural measures to reduce flood risks). Indeed, additional developments in
metamodelling techniques to allow treating the DEM as an input variable (see the discus-
sion above) would allow us to investigate a large number of coastal defence configurations,
estimate the associated flood risks, and define the most acceptable coastal defence plan
that minimises the risk (see [67] for an example of optimising floodgate operations for river
flood management).

Model-based FEWSs may also benefit from citizen science. Within the CoastSnap
global citizen science project, which aims to capture changing coastlines [68], a station was
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recently installed at the Gâvres site. Even if this station was not designed for coastal flood
purposes, it still captures the coastal defences in front of the cemetery (the preferential
water pathway) and thus may provide very valuable information in terms of validating
our coastal FEWS. From a broader perspective, citizen science (e.g., through crowdsourced
observations, [69]) can deliver a level of spatial granularity often not possible with con-
ventional research [70] such that it is also used in crisis management (see, e.g., [71,72]).
As an example, the Virtual Operations Support Team (VOST or VISOV for the French
speaking part) inspired by the American model of utilising social media in emergency
management helps operational emergency organisations by collecting information on
social networks and by quickly providing analysed and verified information from the field.
During crises, such crowdsourced information may be of use, for instance, to better qualify
forecasted data.

4.2. Recommendations

The presented method, which has been developed and tested at the Gâvres study
site, presents real potential for many other locales subject to marine flooding. However,
the proposed method requires both on-site knowledge and numerical modelling methods
that need to be adapted to each considered site. Indeed, the choice of the model used
depends on the size of the site and on the flooding process. For the FEWS prototype at
Gâvres, the SWASH model was chosen to precisely model the wave overtopping pro-
cesses and the resulting flood. The entire modelling chain (WW3-SWASH) requires a
significant computation time (3 days to model 6 h on 48 cores, with SWASH representing
97% of the computation), so the use of metamodelling is a relevant solution to tackle the
excessive computation time. However, this may not always be the case depending on
the site dimensions and characteristics. For instance, if a particular site is not affected
by wave overtopping, other process-based models instead of a phase-resolving model
such as SWASH may be chosen to compute the flood by relying, for instance, on mass
conservation schemes (e.g., LISFLOOD-FP, [73]) and simple inertial formulations of the
shallow-water equations (e.g., [74]); other alternatives include hydrodynamic models such
as TELEMAC2D or MIKE FLOOD, which solve the full 2D shallow-water equations. Such
models have much smaller computation times, and thus, their use may be fully compatible
with requirements of FEWSs; in this case, then, there would be no need to implement
metamodelling techniques. To adapt the proposed methodology to a new site, local knowl-
edge also needs to be acquired, including the identification of past flood events at the site
and their forcing hydro-meteorological conditions. Recent efforts to build historical flood
databases at national scales (see, e.g., [75,76]) may support this work. In addition, users’
needs and the selected targets have to be defined together with local stakeholders even if
there are similarities with the Gâvres site.

Once a model is chosen according to the previously mentioned parameters (the site
dimensions and flooding processes), the model can be fed the DEM of the area (including
the coastal defences) and validated on at least one reference flooding event. A key issue
is the availability of sufficiently precise topo-bathymetric data; moreover, especially if
significant coastal changes have recently occurred, these data should be relatively fresh. At
least for the topography, the vertical precision should be on the order of a few centimetres,
especially if high local prediction skills are to be expected. Such precision can be reached,
for instance, by using lidar technologies or performing differential GPS (DGPS) surveys.
Then, the numerical model can be set up and validated, preferably via comparisons with
past flood events.

If the computation time of the hydrodynamic model chain is too long for forecast pur-
poses, then a metamodel should be established. To construct the metamodel, the maximum
number of possible numerical simulations should be estimated regarding the available
computational resources. As a recommendation, rather than directly defining all the sce-
narios X, we advise designing the scenarios in a stepwise (iterative) fashion: define the
first set of scenarios (smaller than the maximum number of possible simulations), analyse
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the numerical results, set up the metamodels, and validate; then, identify the X domain
of lower skills and define a new set of scenarios, perform the complementary numerical
simulations, and rebuild the metamodel. This step could benefit from advances in the
sequential design of computer experiments (e.g., [77]). Using the resulting metamodels,
the metamodel must be validated once again against the numerical model; in addition,
the historical and contemporary events must be compared (i.e., to truly assess the FEWS
output quality). Depending on the metamodel skills, the pragmatic approach we used
for Gâvres of combining the metamodels (Figure 5) may be of use to compute the final
indicators of interest for the site.

Thus, the adaptation of the method we applied at Gâvres to construct the FEWS
prototype would require skills in history, statistics, modelling, computing, and decision
making and would require both a significant number of staff members and considerable
computational efforts depending on the existing knowledge, data, and local flood processes.

5. Conclusions

In the present work, we establish an FEWS prototype to predict local coastal flooding
using the metamodelling approach to tackle the excessive computation time required by
numerical models. We show that both numerical models and metamodels are sufficiently
mature to provide fresh perspectives for forecasting local coastal flooding, even in locations
where wave overtopping is the main flood driver. The pragmatic approach of correcting
the metamodel outputs allows the weaknesses of some of the metamodels (mainly those
with functional inputs) to be overcome. Even if metamodel developments are still needed,
we demonstrate that metamodelling techniques (some being available in the literature and
others specifically dedicated to handling functional inputs/outputs) can be employed to
forecast coastal floods at local complex sites given that the predictions are carefully vali-
dated. One of the key future challenges is probably to develop metamodelling techniques
that allow the topo-bathymetry to be treated as an input variable while maintaining good
prediction skills. This would drastically ease the requirement for the users to update the
FEWS themselves.
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Acronyms and Abbreviations

ACO-Gp
Ant colony-based algorithm for the structural optimisation of Gaussian
process models with scalar and/or functional inputs

CRAN Comprehensive R Archive Network

DDTM56
Direction Départementale des Territoires et de la Mer (translation:
Departmental Directorate of Territories and the Sea) of French department
56 (Morbihan)

DEM Digital elevation model
DGPS Differential Global Positioning System
DHI Danish Hydraulic Institute
FEWS Forecast and early warning system
GP Gaussian process
HT High tide
HPC High-performance computing

IGN
Institut National de l’Information Géographique et Forestière (translation:
National Institute of Geographic and Forestry Information)

LOO Leave one out

LOPS
Laboratoire d’Océanographie Physique et Spatiale (translation: Physical and
Space Oceanography Laboratory)

MARC
Modélisation et Analyse pour la Recherche Côtière (translation: Modelling
and Analysis for Coastal Research)

MEDDTL
Ministère de l’Écologie, du Développement Durable des Transports et du
Logement (translation: Ministry of Ecology, Sustainable Development,
Transport and Housing)

MIKE21

software package for the 2D modelling of hydrodynamics, waves, sediment
dynamics, water quality and ecology; for more details, see
https://www.mikepoweredbydhi.com/products/mike-21-3, accessed on
25 July 2021

PCA Principal component analysis
RF Random forest
RGE Référentiel à grande echelle (translation: large-scale reference system)

TELEMAC2D

module of the TELEMAC system for solving the Saint-Venant equations
using The finite-element or finite-volume method and a computational mesh
of triangular elements; for more details, see http://www.opentelemac.org,
accessed on 25 July 2021

SDIS56
Service Départemental d’Incendie et de Secours (translation: Departmental
Fire and Rescue Service) of French department 56 (Morbihan)

SHOM
Service Hydrographique et Océanographique de la Marine (translation:
French Navy Hydrographic and Oceanographic Service)

SWASH

Simulating Waves till Shore. SWASH is a general-purpose numerical tool for
simulating unsteady, non-hydrostatic, free-surface, rotational flow and
transport phenomena in coastal waters driven by waves, tides, buoyancy
and wind forces. It provides a general basis for describing wave
transformations from deep water to a beach, port, or harbour, complex
changes to rapidly varied flows, and density-driven flows in coastal seas,
estuaries, lakes and rivers. For more details, see
https://swash.sourceforge.io/, accessed on 25 July 2021

VISOV
Volontaires Internationaux et Soutien Opérationnel Virtuel (translation:
International Volunteers and Virtual Operational Support)

VOST Virtual Operations Support Team
VVS Vigilance Vague Submersion (translation: wave-flood warning)

WW3
WAVEWATCH III®, a community wave modelling framework that includes
the latest scientific advancements in the field of wind-wave modelling
and dynamics

https://www.mikepoweredbydhi.com/products/mike-21-3
http://www.opentelemac.org
https://swash.sourceforge.io/
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Appendix A. The Flood Event on 10 March 2008 (Observations and Model Results)

To validate the modelling chain for the 10 March 2008 flood event, the chain was run
for 6 h centred on the high tide using the following forcing conditions: the still water level
modelled in Le Roy et al. (2015), the wave conditions coming from Norgasug [78], and the
wind extracted from the Climate Forecast System Reanalysis (CFSR) hindcast [79]. For the
time series of forcing conditions, see [6].

Figure A1. Model validation: maximal simulated water depth and observed flooded houses during
the Johanna event. Source: [6].

Appendix B. Cross-Validation Plots for Metamodels Y8 to Y13

This appendix is a complement for Figure 10, showing the validation plots for the
remaining functional input, scalar output metamodels. Note that panels (d) to (f) present
confusion plots instead of regular calibration plots since these plots correspond to the
categorical trafficability of the three main roads. For each observed class (i.e., each column
of the figure), we provide both the percentage of points correctly classified and the percent-
age of those classified in wrong classes. The overall performance of each metamodel is
satisfactory, with high Q2 values for the continuous outputs and a high percentage of hits
for the categorical outputs.
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Figure A2. Cross-validation of the Y8–Y11 metamodels: comparison between the observations (the numerically calculated Y
values) and the predictions of the GP-based metamodels. The colour scales correspond to the colour scales of the indicators
using these metamodels (see Figure 3 and Table 1).
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Figure A3. Cross-validation of the Y12–Y17 metamodels: comparison between the observations (the numerically calculated Y
values) and the predictions of the GP-based metamodels. The colour scales correspond to the colour scales of the indicators
using these metamodels (see Figure 3 and Table 1).

Appendix C. Cross-Validation Plots for Metamodel YI8

This appendix completes Figure 11 regarding the cross-validation for learning flood
scenarios 50, 42, and 10. The figure shows the predicted and observed values of the
(maximal) water height level at the 889 spatial design points used in Figure 10 together
with two standard-deviation confidence intervals.
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Figure A4. Cross-validation of the maximal water heights predicted by metamodel Y18 and provided
by the numerical model for scenarios 50, 42, and 10 among the 174 learning scenarios. Xi is the
index of the spatial points (from 1 to 889, sorted in increasing order using the numerical results for
each scenario). The panels show the RMSE, Q2, and CA (coverage accuracy) indicators. The CA
indicator quantifies how many test points are contained in the two standard-deviation (denoted σ)
confidence interval.
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Appendix D. Screen Captures of the FEWS User Interface

Figure A5. Screen capture of the FEWS webpage synthesising predictions for the six next high tides. The left panel shows
the results of the I1 indicator (shown in green here, as no flood is predicted).

Figure A6. Screen capture of the FEWS webpage showing indicators I1 to I6 and I9 to I13. The other indicators are shown
only when C(I1) > 2, which is not the case for the present prediction.
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Figure A7. Screen capture of the FEWS webpage showing the forcing conditions X (here, X = XMARC). The forcing conditions
in orange correspond to the last major flooding event (10 March 2008, Windstorm Johanna).
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