
HAL Id: hal-03207171
https://brgm.hal.science/hal-03207171

Preprint submitted on 24 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An efficient 3d/2d-covariant formulation of the spherical
shallow water equations: well balanced DG

approximation and application to tsunami and storm
surge

Luca Arpaia, Mario Ricchiuto, Andrea Gilberto Filippini, Rodrigo Pedreros

To cite this version:
Luca Arpaia, Mario Ricchiuto, Andrea Gilberto Filippini, Rodrigo Pedreros. An efficient 3d/2d-
covariant formulation of the spherical shallow water equations: well balanced DG approximation and
application to tsunami and storm surge. 2021. �hal-03207171�

https://brgm.hal.science/hal-03207171
https://hal.archives-ouvertes.fr


An efficient 3d/2d-covariant formulation of the spherical shallow water
equations: well balanced DG approximation and application to tsunami

and storm surge

Luca Arpaia1, Mario Ricchiuto2, Andrea Gilberto Filippini1 and Rodrigo Pedreros1

Coastal Risk and Climate Change, French Geological Survey
3 Av. C. Guillermin 45060 Orléans Cedex 2, France
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Abstract

In this work we consider an efficient discretization of the Shallow Water Equations in spherical geometry

for oceanographic applications. Instead of classical 2d-covariant or 3d-Cartesian approaches, we focus

on the mixed 3d/2d form of [Bernard et al., JCP 2009] which evolves the 2d momentum tangential to

the sphere by projecting the 3d-Cartesian right-hand side on the sphere surface. First, by considering

a covariant representation of the sphere instead of the finite element one, we show a simplification of

the Discontinuous Galerkin scheme: local mass matrix goes back to the standard block-diagonal form,

Riemann Problem do not imply tensor/vector rotation. Second we consider well-balancing corrections

related to relevant equilibrium states for tsunami and storm surge simulations. These corrections are

zero for the exact solution, and otherwise of the order of the quadrature formulas used. We show that

their addition to the scheme is equivalent to resorting to the strong form the integral of the hydrostatic

pressure term. The method proposed is validated on academic benchmarks involving both smooth and

discontinuous solutions, and applied to realistic tsunami and an historical storm surge simulation.

Keywords: shallow water equations, spherical geometry, discontinuous galerkin, well-balanced schemes,

tsunami, storm surge

1. Introduction1

Coastal flooding is mainly caused by meteorological and telluric phenomena which may occur at the2

scale of the oceanic basin. The numerical simulation of such events requires to solve the governing equations3
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in a spherical geometry. In this work we consider the Shallow Water Equations (SWEs) which provide4

satisfactory results for long wave phenomena such as tide/storm surge and tsunami.5

The literature devoted to discrete formulation of the SWEs on the sphere is quite large. Two methods6

have emerged in the past to deal with the Earth curvature. A common approach among contemporary7

ocean models consists in a two-dimensional parametrization of the sphere through a proper curvilinear8

coordinate system. Then the primitive or shallow water equations are written directly on the curved9

manifold meaning that all the differential operators are transformed in curvilinear coordinates. A metric10

source term arises from the space variation of the curvilinear vectors basis. The underlying equations11

in curvilinear coordinates are typically discretized on regular grids with finite differences/finite volume12

schemes. Regional models uses the traditional latitude-longitude parametrization. Unfortunately for13

global ocean models, the latitude-longitude coordinate system has a singular point in the Arctic Ocean at14

the North Pole, where the meridians converge on water. The Jacobian of the coordinate transformation is15

not defined and moreover the singularity imposes a severe restriction on the maximum time step allowed16

for stability. Nowadays the pole problem is considered merely as an economical one [1]. In particular,17

meteorologists have used a variety of fixes to circumvent the singularity and all of such fixes employ18

multiple curvilinear coordinates defined on different patches covering the whole sphere, [2, 3]. Then a19

specific treatment of the flux term at the edges dividing the patches, where the tangent basis changes,20

is deployed: a rotation of momentum vector [4] or an orthonormalization of the Riemann Problem [5, 6]21

assure a common reference system at the edge and local conservation. To bypass the pole problem ocean22

modelers have used instead ad hoc curvilinear coordinates conceived to place the singularity point on lands,23

see for example the tripolar grid of [7]. Finally, for Finite Volume methods, some authors [6] claimed that24

extra care should be taken in the resolution of the Riemann Problem in curvilinear coordinates.25

A second approach consists instead in resolving the governing PDEs in a three-dimensional Cartesian26

framework and then adding a constraint to force the currents to remain tangent to the sphere [8][9]. With27

this approach, it is more common to represent the sphere approximately through a local finite element28

map for each element. Thanks to the local map, no special treatment is required in polar regions to29

preserve accuracy and to conserve global mass.30

A third approach seems to combine the advantages of both methods [10]: momentum time derivative is31

written with respect to 2d components while the right-hand side is first expressed in 3d and then projected32

back onto the sphere surface by a simple scalar product with respect to the tangent basis. The advantage33

is that the number of unknown is kept at a minimum (water depth and two momentum components)34

and, at the same time, the right-hand side mantains Cartesian form, thus it is independent from the35
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parametrization of the sphere, and moreover there is no need to transform differential operators. For36

example, in tsunami applications this could be laborious for depth averaged non-hydrostatic models with37

dispersive terms that involve mixed high order derivatives. If requested, Riemann solvers are formulated38

easily in 3d Cartesian framework, and then projected on the sphere surface along with the right-hand side.39

In [10], to threat the case of generic manifolds, the authors employed an approximate high order40

finite element representation of the geometry. Here we present some improvements of the original work41

of [10] applied to spherical geometry. First we use an exact representation of the sphere by means of a42

2d covariant parametrization. This cancels the geometrical error related to the sphere curvature and the43

need of a high order representation of the spherical elements for a high order solution. We use the classical44

latitude longitude transformation for which simple expression of the transformation, covariant vector basis45

and their derivatives are available. Due to the orthogonality of covariant vector basis, the mass-matrix46

reduces to block diagonal form as in the plane case. Riemann solvers also simplify thanks to continuity47

of the sphere at the elements edges.48

Second, within a Discontinuous Galerkin discretization (DG), we look to the discrete preservation49

of some steady states which are of particular interest for tsunami and storm surge computations. We50

show that the weak DG form (with one integration by parts) [11] is unable to preserve equilibria due to51

inexactness of quadrature formula with non-polynomial metric. As shown in [12], the so-called strong form52

(with double integration by parts) is more suited to retain general well-balanced states on the sphere. In53

this work we proceed in a slightly different manner and add well-balancing corrections related to relevant54

equilibrium states for tsunami and storm surge simulations. These corrections are zero for the exact55

solution and for exact integration, and otherwise of the order of the quadrature formulas used, at least56

when the solutions are smooth. We show that their addition to the scheme is equivalent to resorting to57

the strong form the integral of the hydrostatic pressure term.58

The paper is organized as follows. In section 2 we introduce the notation for the spherical geometry.59

In section 3 we introduce the SWEs in the 3d-2d covariant formulation. In section 4 we discuss their60

Well-Balanced DG approximation. In section 5 we details computational aspects such as pole treatement61

and shock-capturing. In section 6 we evaluate the proposed methods on standard global benchmarks for62

the shallow water equations on the sphere and on regional realistic tsunami/storm surge computations.63
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2. Spherical map64

We consider a sphere S2 with radius R described by curvilinear coordinates {X1, X2} and orthogonal65

but not orthonormal covariant basis {g1, g2}. The coordinate vector x then writes:66

x = xiei ≡ x1e1 + x2e2 + x3e3 (1)

= Xαgα ≡ X1g1 +X2g2 (2)

Note that in the above definitions and in the following repeated indices imply summation. In particular,

Latin indices are used for the components of vectors in Cartesian coordinates (from 1 to 3), while Greek

indices are used for vectors in local curvilinear coordinates (from 1 to 2). The spherical transformation

x = G(X) has an inverse X = G−1(x), a Jacobian or transformation tensor:

JG =
∂x

∂X
(3)

with components J iαG and an inverse Jacobian:

J−1G =
∂X

∂x
(4)

with components (J−1G )αi. The covariant vectors define the tangent plane to the sphere. They can be67

obtained by differentiation as the columns of the Jacobian gi = ∂x
∂Xi . It is useful to normalize the basis:68

g∗i =
gi
||gi||

(5)

in order that g∗i · g∗j = δij .69

Although {X1, X2} could be any available parametrization of the sphere, in this work we have used a70

latitude-longitude parametrization, thus for us, X1 will be the longitude and X2 the latitude. This allows71

to evolve momentum directly in physical relevant quantities (northward and eastward components). As72

already mentioned, this introduce a singularity that will be discussed in section 4.1.73

3. Shallow Water Equations in spherical geometry74

We consider the SWEs in spherical geometry with uneven bathymetry and in presence of earth rotation.75

We express them in a generic vector form:76

∂h

∂t
+∇ · hu = 0 (6)

∂hu

∂t
+∇ · T = S (7)
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with h the fluid depth, hu the discharge/momentum vector, and having denoted the momentum flux77

tensor by T . The source S includes the effects of bathymetry, Coriolis force, and meteorological forcing:78

S = gh∇b+ Ωk × hu +
gh

ρ0
∇patm + fw (8)

The the formula above b(x) denoted the bathymetry/topography, Ω the Earth rotation rate and k the79

Earth rotation axis. patm is the atmospheric pressure, ρ0 is the water density and fw represents wind80

forcing. The expression for nabla ∇·, vector hu and tensor T depends on the coordinate system in which81

they are expressed. As mentioned in the introduction, the most common representations used for the82

shallow water equations are wither 3d Cartesian coordinates or curvilinear coordinates. The momentum83

vector hu can be expressed in both systems as:84

hu = huiei ≡ hu1e1 + hu2e2 + hu3e3 (9)

= huαgα ≡ huα1g1 + huα2g2 (10)

We remark that, for curvilinear coordinates, momentum components are not defined in a unitary basis.85

It may be convenient expressing momentum in a unitary basis:86

hu = huα||gα||
gα
||gα||

(11)

= hu∗αg∗α (12)

The relationship between the velocity components written in the two basis is:87

ui = J iαG uα, ui = J∗,iαG u∗α (13)

where J∗,iαG = J iαG /||gα|| (standard summation does not apply here) is the Jacobian (3) normalized by88

columns. Similarly the second order flux tensor T can be expressed in both coordinate systems as:89

T = T ijeiej (14)

= Tαβgαgβ (15)

with Cartesian components T ij = huuij + Pδij and curvilinear components Tαβ = huuαβ + GP . The90

hydrostatic pressure is defined as P = gh2/2, and G is the determinant of the metric tensor constructed91

from the Jacobian matrix as G = JTGJG.92

3.1. Equilibrium states93

For coastal flows, an important role is played by the so-called lake at rest state which, denoting the94

free surface level η = h+ b, is the particular steady solution characterized by the two invariants [13]:95

hu = 0, K = η = const = K0 (16)
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In presence of atmospheric pressure forcing, a relevant state is the inverted barometer balance that is an96

exact solution of the SWEs in case of full adjustment of sea level to changes in barometric pressure [14]:97

hu = 0, K = η + patm
gρ0

= const = K1 (17)

Full adjustment is never reached since the pressure field is unsteady patm(x, t), thus one may question if this98

is really a relevant equilibrium, but it is interesting to be able to handle this possibility numerically. In [15]99

they showed that, at least in deep water, the free surface response is almost isostatic and characterized by100

small perturbations around the inverted barometer balance. In light of these findings and for completeness,101

we have investigated the more general balance (17).102

A numerical method approximating (6)(7) is said to be Well-Balanced if (16) or (17) are also exact103

solutions of the discrete equations. In other words, Well-balanced schemes provide a discrete analog of the104

balance between hydrostatic pressure and the forces exerted by the bottom (and by atmospheric pressure)105

∇ · PI = −gh∇
(
b+

patm
gρ0

)
(18)

3.2. Fully diagonal mixed 3d/2d-covariant formulation106

We present a modified 3d/2d form of the original [10] with a 2d-covariant parametrization. We project107

momentum equation (7), with the right-hand side expressed in 3d Cartesian framework, on the tangent108

plane. We have seen that, for the sphere, simple analytical expressions exist for the for tangent vector109

basis gα = ∂x
∂Xα . It is better to project onto the normalized tangent basis (5):110

∂

∂t
(hu · g∗α) + (∇ · T ) · g∗α = S · g∗α (19)

or by components α:111

∂

∂t
(hu∗α) +

∂T jk

∂xk
g∗jα = Sjg∗jα

e.g. (α = 1)
∂

∂t
(hu1 g∗1 · g∗1︸ ︷︷ ︸

=1

+hu2 g∗2 · g∗1︸ ︷︷ ︸
=0

) +

(
∂T 11

∂x1
+
∂T 12

∂x2
+
∂T 13

∂x3

)
g∗11

aaaaaaaaaaaaaaaaaaaaaaa+

(
∂T 21

∂x1
+
∂T 22

∂x2
+
∂T 23

∂x3

)
g∗21

aaaaaaaaaaaaaaaaaaaaaaa+

(
∂T 31

∂x1
+
∂T 32

∂x2
+
∂T 33

∂x3

)
g∗31 = Sjg∗j1

One advantage of this formulation with respect to full 3d equations is that the number of unknowns is112

kept minimum (h, hu1, hu2). Another attractive feature is that the flux function is in 3d form and does113

not depend on a particular transformation. This means that line integrals are defined intrinsically and114
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mass/momentum is easily conserved circumventing implementation issue related to the use of composite115

meshes in the 2d approach. The drawback is complexity: for each momentum equation 9 components of116

the fluxes has to be evaluated instead of three. Compared to [10] the main difference here is that we will117

not project the sphere onto a finite element approximation, but use the exact parametrization as well as118

use the exact covariant basis also in the finite element discretization. This allows to take advantage of the119

orthogonality of the covariant basis and work with a fully diagonal system.120

4. Well balanced discontinuous finite element discretization121

We consider a discretization of S2 composed by non overlapping triangular elements K. To each

element K we can associate an element defined in the parametric space, which we denote by K. For a

given mesh, we label by the roman h the characteristic mesh size measured in physical space. Following a

high order DG Galerkin procedure, we project the vector of conserved variables and the bathymetry into

the finite dimensional space:

V ph = {ϕ : ϕ(x) ∈ LpK ,x ∈ K} (20)

where LpK are Lagrange polynomials of degree p defined on each parametric element K. We obtain the

weak formulation multiplying (19) by a smooth test function ϕi that belongs to the same space (20) and

integrating it on a spherical triangle K:

∂

∂t

∫
K
huh · g∗αϕi dx +

∫
∂K

Tg
h g
∗
αϕi · n ds−

∫
K
T h : ∇ (g∗αϕi) dx =

∫
K
Sh · g∗αϕi dx (21)

As noted in [10], if we regroup g∗αϕi = vα, then (21) corresponds to consider a vectorial test function122

for each momentum equation. Tg
h denotes the numerical flux evaluated at the elements boundaries. The123

symbol : is the scalar product between second order tensors A : B = AijBji.124

Several aspects need to be clarified. First of all the mapping required to define the quadrature formulas,125

which will involve non-algebraic transformations. Secondly, the well-balancedness w.r.t the equilibria126

presented earlier is not trivial in this formulation as exact quadrature is impossible due to the mapping127

adopted. These aspects are covered in the next sections.128

4.1. Reference element mapping for quadrature129

In practice all the integrals are computed on the standard reference triangle K0. The transformation

which map a reference triangle to a spherical triangle is denoted by

A : K0 → K, x = A(X0) (22)
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with Jacobian

JA =
∂x

∂X0
, JA = detJA (23)

Differently form [10] we do not employ a finite element approximation for A. Instead we keep an exact130

geometrical representation of the sphere by expressing A as:131

x =
R

||
∑NDofs
j=1 ϕj(X0)xj ||

NDofs∑
j=1

ϕj(X0)xj

:= R
F (X0)

||F (X0)||

where F is the P1 finite element transformation from the reference element to the 3d element. The above

transformation has a smooth Jacobian everywhere which can be computed as:

∂xk

∂Xβ
0

=
R

||F ||

NDofs∑
j=1

∂ϕj

∂Xβ
0

xkj −
R
∑NDofs
j=1 ϕj(X0)xkj
||F ||2

∂||F ||
∂Xβ

0

Then the gradient operator can be transformed with respect to the reference curvilinear coordinates:132

∂

∂xk
=

∂

∂Xβ
0

∂Xβ
0

∂xk
=

∂

∂Xβ
0

(J−1A )βk

where the inverse Jacobian of the transformation is intended as the pseudo-inverse J−1A = G−1A JTA with133

G = JTAJA the metric tensor.134

For the evaluation of the surface integrals we need the transformation of the area differential:135

dx = JA dX0

the determinant of the Jacobian is computed through the metric tensor determinant JA =
√

detG.136

Finally the variation of the tangent basis can be also expressed in a form which is easy to compute.137

In fact using chain rule and the definition (4):138

∂g∗jα
∂xk

=
∂g∗jα
∂Xβ

∂Xβ

∂xk
=
∂g∗jα
∂Xβ

(J−1G )βk (24)

where we have to compute vector basis derivatives
∂g∗jα
∂Xβ

(for the sphere it’s easy). All these relationships139

can be plugged in (26)(25) and then integrals are performed by quadrature on the reference element K0.140

For example the momentum flux integral becomes141 ∫
K
T h : ∇ (g∗αϕi) dx =

∫
K
T kjh

∂

∂xk
(
g∗jα ϕi

)
dx

=

∫
K
T kjh ϕi

∂g∗jα
∂xk

dx +

∫
K
T kjh g∗jα

∂ϕi
∂xk

dx (25)
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The first term is the standard DG volume term. A second term, related to the space variation of the

tangent covariant vectors, appears and it closely resembles the metric source term of the curvilinear 2d

approach [16]. More interestingly, the time derivative term can be written as

∂

∂t

∫
K
huh · g∗αϕi dx =

∑
j∈DOFs

∫
K
ϕiϕj dx

∂hu∗αj
∂t

(26)

Since time derivative in momentum equation is uncoupled, differently from [10] the mass matrix remains142

block-diagonal which is the main advantage of the formulation proposed here. Please note also that this143

algorithm evolves physical components of momentum hu∗α (in m2/s eastward (α = 1) and northward144

α = 2) at the degrees of freedom.145

146

Differently from two-dimensional formulations, the right-hand side appears in Cartesian form and it147

is well-posed on the whole sphere. However the tangent basis in (21) is not well defined at the poles, for148

the latitude-longitude parametrization that we have chosen. For this reason, only to evaluate the tangent149

basis and its derivatives, a polar cap defined by a limiting latitude zlim, is deployed. Elements are flagged150

according to the baricenter position: if zKG > zlim we use a rotated spherical transformation replacing151

(x1, x2, x3) → (x1, x3,−x2) in (1). Jacobian (3), inverse Jacobian (4) and basis vectors (5) are modified152

accordingly. We found that the DG framework is well suited to handle such discontinuity at the elements153

edges since no communication between elements is needed, which in turn means that no modification must154

be done to the algorithm. In particular:155

• each element updates the momentum components hu∗α in its own reference system, thus zonal/meridional156

components in standard elements and rotated components in polar cap elements.157

• in a DG method, communication between elements is needed only for evaluating numerical fluxes.158

Since they are computed in a 3d framework (and independent from the local coordinate system) no159

specific treatment is necessary at the edges separating the polar cap.160

In practice we have set zlim = 0.9R, however this value has no impact on the numerical results.161

4.2. Well balanced correction and relation with inexact quadrature162

We study now the well-balanced nature of the scheme. We will first consider the lake at rest case. The

effect of the atmospheric pressure is added introducing an apparent topography [17] b → B = b + patm
gρ0

.

Imposing the lake at rest, the momentum components of the DG method reduce to:∫
∂K
Pg
h Ig∗αϕi · n ds−

∫
K
PhI : ∇ (g∗αϕi) dx = −

∫
K
ghh∇b · g∗αϕi dx (27)
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One drawback of the mixed formulation emerges: well-balancing is lost because of the projection on the

tangent basis, an operation that involves the evaluation of non-algebraic functions in all of the three

integrals of (27). Indeed even with constant bathymetry, and constant pressure, in general we cannot

remove the geometrical integration error

εKP0
= P0

[∫
K
I : ∇ (g∗αϕi) dx−

∫
∂K

Ig∗αϕi · n ds
]

(28)

This is an issue already encoutered on curved finite element (polynomial) meshes [18], and is even more

critical for the non-polynomial approximation used here. We remark that this was also highlighted in

[12] when in the context of the study of the well-balancing of a fully 3d DG shallow water approximation

on the sphere. As observed in the last reference, a more suitable form to guarantee the well -balanced

character of the method is the strong form. We obtain a similar result here, but we proceed in a different

manner, and only focus on the pressure, the convective part of the flux playing no role for the equilibria

we are interested in.

Essentially, our idea is to explicitly re-inject into the scheme the integration by part error

εKP =

∫
K
PhI : ∇ (g∗αϕi) dx−

∫
∂K
PhIg

∗
αϕi · n ds+

∫
K

(∇ · PhI) · g∗αϕi dx (29)

which of course reduced to (28) if the pressure is constant. The above term can be trivially shown to be163

bounded by the maximum between the approximation error and the quadrature error, thus within the164

truncation of the scheme. The variational form used in practice is thus given by165

∂

∂t

∫
K
hhϕi dx +

∫
∂K
hug

h ϕi · n ds−
∫
K
huh · ∇ϕi dx = 0 (30)

∂

∂t

∫
K
huh · g∗αϕi dx +

∫
∂K

Tg
h g
∗
αϕi · n ds−

∫
K
T h : ∇ (g∗αϕi) dx =

∫
K
Sh · g∗αϕi dx + εKP (31)

where inexact quadrature is used for all integrals. Now for the lake at rest state we obtain∫
∂K

(
Pg
h − Ph

)
Ig∗αϕi · n ds+

∫
K

(∇ · PhI) · g∗αϕi dx = −
∫
K
ghh∇b · g∗αϕi dx

For a proper choice of the numerical flux function verifying Pg
h = Ph in the lake at rest case, the boundary

penalization term vanishes. Moreover, for any order hh, bh ∈ V ph on can show that if hi + bi = η0 =const

we have:

∇ · PhI + ghh∇bh = ∇
(
∑
j ϕjhj)

2

2
+ ghh∇bh (32)

and well-balanced property is recovered. In practice, we use the quadrature order necessary for exact166

integration of the hydrostatic term in the plane case as in [11]. Note that the scheme is considerably167

different from the one of [12], as here we do not use the strong form of the equations but add a hydrostatic168
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correction to the weak form, and moreover we use here a mixed 3d/2d-covariant form of the problem on169

the true sphere, while a full 3d approximation on a finite element projection of the sphere is used in the170

reference.171

4.3. Numerical fluxes: mass conservation and well balanced172

For the mixed 3d/2d formulation, all geometrical quantities are uniquely and objectively defined in173

3d, so we can use practically any Riemann solver in 3d Cartesian coordinates, that is:174 ∫
∂K

Tg
h · g∗αϕi · n ds =

∫
∂K

Tg
h · n︸ ︷︷ ︸
F 2

·g∗αϕi ds (33)

where F 2 ∈ R3 is a specified numerical flux F 2(uL, uR). In practice we use Lax-Friederich flux.175

We remark that the problem of using a common framework between the left and right state in the176

original [10] is no longer necessary since the normals are continuous at the edges. Only a change of basis177

is needed at this point to compute 3d velocities because they are only available from momentum update,178

in 2d. This is done with the right relationship in (13) and the definition of the sphere Jacobian (3). The179

important consequence of this is that the method proposed conserves mass exactly without any special180

treatment of the normals on element boundaries.181

To recover also the well balanced property in presence of discontinuous data besides the addition of182

the hydrostatic correction in (31), as in [11] we evaluate the numerical flux at a reconstructed state u>183

and add a high order correction term [19]. The resulting mass/momentum numerical flux reads:184

F1(uL, uR) = F1(u>L , u
>
R) (34)

F 2(uL, uR) = F 2(u>L , u
>
R) +

g

2

(
h2L − (h>L )2

)
n (35)

for the definition of the reconstructed state (h>, h>u∗α) please refer to [19]. In real applications, discon-185

tinuous data bh, patm arise, for example, when the correspondent fields are computed at the degrees of186

freedom from a local minimization problem. For the bathymetry this can be beneficial to avoid Gibbs187

phonomena when data is nearly discontinuous on one cell and the polynomial order is p > 1. For the188

atmospheric pressure field we assume that it is continuously interpolated at the degrees of freedom. In this189

case the well-balanced correction related to the inverted barometer (first line is mass correction, second190

line is momentum correction):191

+
1

2

1

gρ0

 αLF

g
h∗
R+h∗

L

2 n

 (patm,L − patm,R) (36)
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is identically zero, being patm,L = patm,R.192

Proposition. The mixed 3d/2d-covariant DG method (30)(31) with numerical fluxes (35) is well193

balanced in the sense that it preserves exactly initial data verifying the balance (16) or (17) in each cell.194

Proof. similarly to [11], the proof is based on the fact that, in the lake at rest or inverted barometer case,195

the numerical flux in momentum equation reduces to F 2(uL, uR) = Ph(hL)I · n. Then the penalization196

term cancels out and right hand side is zero thanks to (32) �.197

5. Computational details198

5.1. Shock capturing199

The applications considered in this work may involve the formation of discontinuous solutions during

the computation. For tsunami simulations, wave breaking occurring in shallow areas can cause the linear

DG method to develop unphysical oscillations that eventually grow in time. We cope with the possibility

of non-smooth solutions with an entropy viscosity approach [20, 21] which consists in adding a diffusion-

like term to the right-hand side of (6),(7). Here we discuss the details related to the implementation of

the diffusive term in a spherical geometry. We consider only momentum equation since mass equation is a

particular case. Given a diffusive flux tensor G = µ∇hu, the DG discretization in the mixed formulation

of section 3.2 writes:

Iµ :=

∫
K
∇ ·Gh · g∗αϕi dx =

∫
∂K

Gh · n · ϕig∗α ds−
∫
K
Gh : ∇ (g∗αϕi) dx (37)

To stabilize the shocks only the volume integral is retained in practice and moreover we neglect the

variation of the tangent basis so that integral (37) simplifies to:

Iµ = −
∫
K
Gkjh g

∗j
α

∂ϕi
∂xk

dx (38)

Note that Gkjg∗jα = Gαk is a diffusive flux tensor projected on the tangent plane. As for the advective

flux, since we evolve momentum in the tangent basis, we do not have access directly to Gkj in Cartesian

basis. However diffusive tensor components are easily recovered from relationships (13) and (24):

Gkj = µ
∂huj

∂xk
= µ

∂

∂xk

(
J∗,jβG hu∗β

)
= µhu∗β

∂g∗jβ
∂xk

+ µJ∗,jβG

∂hu∗β

∂xk

Near discontinuities the viscosity coefficient µ should be of order hK in order to kill oscillations while in200

smooth regions it is expected to be below the approximation order. To this end, we follow the principles201

originally proposed e.g. in [20, 21] and define this coefficient starting from the total energy residual. We202

refer to the last references for the formulation, and to [22] and references therein for its parametrization.203
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5.2. Time stepping204

High order temporal accuracy is achieved, as it is standard, with a SSPRK method [23]. The time

step is computed according to:

∆t = CFL
minK ρK

2 maxf∈Th αLF f

with ρK the elemental inscribed circle radius and αLF f the Lax-Friederich parameter at face f . For205

linear stability reason one should use CFL = 1
2p+1 (being k the polynomial order of the approximation),206

but for practical use in this work we always set CFL = 0.5.207

6. Results208

In all computations presented hereafter we have set, unless otherwise stated, R = 6371.22 × 103m,209

g = 9.80616m2s−1, Ω = 7.295× 10−5 s−1 and ρ0 = 1025 kg/m3. Simulations have been carried out with210

linear (P 1), quadratic (P 2) and cubic polynomials (P 3).211

6.1. Global atmospheric tests212

In this paragraph we test the DG scheme on some classical benchmarks taken from the test suite of213

Williamson et al. (W92) [24] and [25].214

Global Steady-State Nonlinear Zonal Geostrophic Flow. W92 Case #2 is an exact steady geostrophic215

equilibrium allowing to measure the order of accuracy in presence of Earth rotation. The velocity and216

height fields are initially given by:217

h(x, 0) = h0 −
1

g

(
ΩRu0 +

u20
2

)
(− cosλ cosϕ sinα+ sinλ cosα)

2

u∗1(x, 0) = u0 (cosλ cosα+ cosϕ sinλ sinα) (39)

u∗2(x, 0) = −u0 sinϕ sinα

with gh0 = 2.94×104m2s−2 and u0 = 2πR
12days and α = 0. Grid convergence studies gave been conducted on218

5 icosahedral grids, from level 1 (hK = 3571 km) to level 5 (hK = 223 km). Relative errors are evaluated219

following [24]:220

ep =
||e||Lp
||hex||Lp

(40)

with e = h − hex and hex the exact solution. The errors obtained at day 5 are reported on table 1221

below. Convergence curves are compared in figure 1 against the results of the original [10]. To make222

the comparison effective, only for this experiment, we we have tried to stick to their same scheme, DG223
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Figure 1: Global Steady-State Nonlinear Zonal Geostrophic Flow. Left: mesh convergence for L1 and L2 error norm. Right:

mesh convergence for L2 error and comparison with [10].

in the weak-form (21) with Lax-Friederich flux. We have remarked that the use of the well-balanced224

momentum form (31) has almost no impact on the errors. At every order, theoretical order of convergence225

has been obtained, with smaller errors with respect to the reference. We explain this improvement by the226

cancellation of the geometrical error in the sphere representation. As it is customary we report on figure227

2 the error maps after 5 days of simulation on the fourth grid (hK = 446 km).228

grid # (α = 0) e1 − P 1 e2 − P 1 e1 − P 2 e2 − P 2 e1 − P 3 e2 − P 3

1 4.6261e-02 5.1549e-02 2.7469e-03 3.8020e-03 3.4459e-04 4.8972e-04

2 8.5532e-03 9.8352e-03 2.2773e-04 2.9368e-04 1.4836e-05 2.1296e-05

3 1.4574e-03 1.7889e-03 2.2788e-05 2.8277e-05 8.1059e-07 1.0731e-06

4 2.8337e-04 3.6591e-04 2.5750e-06 3.1282e-06 4.7899e-08 6.3057e-08

5 6.2480e-05 8.2598e-05 3.0803e-07 3.7606e-07 2.9741e-09 3.9206e-09

Order 2.3980 2.3319 3.2711 3.3160 4.1919 4.2260

Table 1: Global Steady-State Nonlinear Zonal Geostrophic Flow. L1,L2 error norm and convergence rate.

Zonal Flow over an Isolated Mountain. W92 Case #5 is a perturbation of the previous test. The initial

velocity and height fields are equal to (39) with α = 0, h0 = 5960m and u0 = 20m/s. An isolated

14



Figure 2: Global Steady-State Nonlinear Zonal Geostrophic Flow. Error plot. Top: P 1. Bottom: P 3. Note that color scale

change of one order of magnitude for each plot.
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mountain is added:

b = b0

(
1− r

R

)
(41)

with b0 = 2000m, R = π/9, r2 = min(R2, (ϕ − ϕ0)2 + (λ − λ0)2) and with the center of the cone in

(ϕ0, λ0) = (3/2π, π/6). Simulations are performed on the fourth icosahedral grid (hK = 446 km). Figure

3 provides height contour lines for P 1,P 2 and P 3 computations after 15 days of physical time. For this

case one typically checks the conservation of total mass and energy

E = h

(
1

2
||u||2 + g

h

2
+ gb

)
(42)

Mass error should be only related to round-off errors. Regarding the energy, the proposed scheme have no229

provable energy conservation properties, which makes the definition of the actual discrete evaluation of230

the energy somewhat arbitrary. In practice, here the energy is computed directly from nodal quantities,231

and then integrated using the high order finite element approximation. After 15 days mass is conserved232

within a relative error of 1e − 13. Relative energy conservation error is reported on the right column in233

figure 3: it is comparable to or better than those typically reported in literature. In the same figure we234

compare with a second order residual distribution scheme proposed by the authors [16], with a third order235

FV scheme on a cubed sphere [5] and with the high resolution results by the German Weather Service236

(DWD) http://icon.enes.org/swm/stswm/node5.html.237

Unstable Jet. The last global test taken from [25] consists of a geostrophically balanced mid-latitude jet,238

to which a small perturbation is added to initiate the instability. We use this test to confirm that the polar239

treatment has no impact on the numerical solution and on its derivatives. We look to the vorticity field240

for P 1, P 2 and P 3 solutions but with two different zlim, the one used in other experiments zlim = 0.9R241

and zlim = 0.75R for which the polar cap interface falls exactly into the jet. Mesh convergence has been242

carried on two successive icosahedral grids (level 5 and 6, respectively 223 km and 111 km), see figures 4,243

5. At both mesh level, P 1 solution is insufficient to support the vortex evolutions. Increasing the order,244

P 2, P 3 computations at mesh level 5 provide the correct dynamics but the vorticity contours are a little245

bit jagged. At level 6 much of the jaggedness disappears.246

6.2. Small amplitude barotropic waves247

With this test we look to the impact of the well balancing correction for classical oceanic applications

such as tidal and surge waves. We have taken a basin spanning from 0◦ to 25◦E and from 35◦N to 55◦N .

The bathymetry is a smooth Gaussian hump mimicking a continental shelf and an isolated mountain:

b = max
(
b0 exp{−r20/R}, b1 (1− r1/R)

)
16

http://icon.enes.org/swm/stswm/node5.html


Figure 3: Zonal flow over an isolated mountain. Left: Snapshot at day 15 (depth contour levels from 5050m to 5950m-

intervals of 50m). Right: relative energy error (results from [5, 16] and from the DWD reported for comparison where

relevant)
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Figure 4: Unstable Jet. Coarse resolution hK = 223 km. Dark grey area represents a circle with radius R
√

1 −
( zlim

R

)2
(polar cap region). Contour levels from −1.1e− 4 to 1.5e+ 4.
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Figure 5: Unstable Jet. Fine resolution hK = 111 km. Dark grey area represents a circle with radius R
√

1 −
( zlim

R

)2
(polar

cap region). Contour levels from −1.1e− 4 to 1.5e+ 4.
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with b0 = 2000m, R0 = π/12, r20 = 8.5(ϕ − ϕ0)2 + (λ − λ0)2, (ϕ0, λ0) = (0, π/4) and b1 = 4000m,

R1 = 5π/180, r21 = (ϕ − ϕ1)2 + (λ − λ1)2, (ϕ1, λ1) = (10π/180, 48π/180). The mesh is an unstructured

triangulation with topology shown in the top of figure (6) and constant mesh size hK = 100 km. For a

lake at rest state with initial level η0 = 5000m the well balanced spherical formulation (31) exhibits a

maximum perturbation of the velocity norm in the range 1e− 12 to 1e− 13 depending on the polynomial

order. After this well-balancing test, a small amplitude tidal signal η0 +A sin( 2π
T t) is imposed at the north

boundary (A = 0.01m, T = 12.42hrs). The eastern boundary is a wall to let a southward propagating

barotropic Kelvin wave develop. We compare (31) against the non-well balanced scheme based on the weak

formulation (21). In the left block of figure (6) two snapshots of upwelling/downwelling at the lateral wall

show that the P1 solution of the non well-balanced scheme is affected by small wiggles. The perturbation

tend to disappear, as expected, with mesh resolution (see right block) and with polynomial order (not

shown). A second test has been carried by forcing a surge wave with a small amplitude atmospheric

depression:

patm(x, t) = p0 −∆p exp

(
r(x, t)

σ2

)
with r the distance from the center of the storm which is translating southward at constant speed U . The248

parameters are set to p0 = 101 kPa, ∆p = 0.3 kPa, σ = 350 km and U =
√

100g. In figure (7) we show the249

impact of the well-balanced correction. Again, at the coarse resolution (left block), the small-amplitude250

gravity waves that propagates faster then the storm are much wiggled in the non well-balanced case.251

Increasing mesh resolution (see right block) and polynomial order (not shown) makes again such wiggles252

negligible.253

6.3. Circular hump centered at the equator254

This is a test proposed in [6]. The initial condition is a circular depth disturbance at the equator:255

h(x, 0) =

 2 if arccos(cos(x1) cos(x2)) ≤ 0.2

0.2 otherwise
, u(x, 0) = 0 (43)

This initial condition is symmetric about the point (x1, x2) = (0◦, 0◦), and should remain symmetric in256

absence of rotation. Shock capturing is necessary to well represent the discontinuity. We run computations257

on two half sphere meshes generated with gmsh: a coarse one with 2436 points; a fine one with 9187 points.258

In figure 8 we compare the solution contours obtained with P1/P2 on the coarse mesh against a P1 solution259

on the fine mesh. We observe mesh/order convergence for this non-smooth case. At t = 0.9 the P2 solution260

on the coarse mesh is of the same order of accuracy of the P1 solution on the fine mesh.261

20



Figure 6: Small amplitude tidal wave. Coarse hK = 100 km (left block) and fine hK = 50 km (right block) simulation. Top:

mesh and bathymetry. Middle and bottom: snapshot of the free surface at t = 18h and 23h. Left: well balanced scheme.

Right: non-well balanced scheme. Contour levels are from −0.02m to 0.02m in intervals of 0.002m.
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Figure 7: Small amplitude surge wave. Coarse hK = 100 km (left block) and fine hK = 50 km (right block) simulation. Top:

mesh and bathymetry. Middle and bottom: snapshot of the free surface at t = 4h and 16h. Left: well balanced scheme.

Right: non-well balanced scheme. Contour levels are from −0.02m to 0.02m in intervals of 0.002m.
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Figure 8: Circular Hump. Contour levels at t = 0.9 from 0.04m to 0.5m in intervals of 0.045m. Bottom: cut along the the

equator
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Figure 9: Circular Hump with rotation. Contour levels at t = 1.2 from 0.04m to 0.5m in intervals of 0.045m. Bottom: cut

along the the equator

We repeat the same test adding rotation effects. We set the dimensionless rotation rate to Ω = 5. In262

figure 9 we report depth contour lines at t = 1.2. As in the previous case, we observe the higher resolution263

obtained with P2 scheme both in smooth and discontinuous regions.264

6.4. Realistic external gravity waves simulations265

Finally, to show the potential of this method, we perform two realistic simulations in the Caribbean Sea.266

The computational domain, the bathymetry and the mesh were specified by the consortium of the project267

Interreg Carib-Coast (https://www.interreg-caraibes.fr/carib-coast). The domain in figure 10 spans from268

50◦W to 84.7◦W and from 8.4◦N to 22.1◦N . The bathymetry at the degrees of freedom is computed from269

GEBCO (www.gebco.net) and from SHOM for the French west indies (https://data.shom.fr/donnees).270

To avoid wetting/drying of cells near the coastline, we have filtered the bathymetry at land masses271
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contained in the computational domain with bfilt = min(b,−1). Even if, during the computation, we have272

observed wetting/drying at some cells, the filter assures that all the cells are wet for the initial condition,273

avoiding well-balancing problems for partly dry cells, not addressed in the present study. The mesh274

has variable mesh size ranging from hK,max in deep ocean to hK,min at the coast in correspondence of275

Martinique, Guadaloupe and Saint Martin islands, which represent some interest sites of the Carib-Coast276

project. A fine and a coarse mesh have been generated, respectively with hK,min = 300m, hK,max = 10 km277

and hK,min = 600m, hK,max = 20 km. A Manning friction term, with n = 0.025 has been added to the278

system.279

6.4.1. Tsunami in Carribean Sea280

The initial tsunami waveform is associated with a random rupture of the Lesser Antilles subduction281

zone. We use the fault configuration proposed by Feuillet et al. characterized by a magnitude Mw = 8.4282

(for the fault parameters see [26]). Randomness is associated to the heterogeneity of the fault slip which283

is computed by a Karuhnen-Loeve expansion [27]. Then, the initial waveform is the solution of the Okada284

linear model. We have equipped the domain with several gauges placed in the near and far-field. In the285

near-field we distinguish coastal gauges in bays or harbours (Point-a-Pitre, Fort-de-France) and nearshore286

gauges on the continental shelf (Martinique NE, Martinique W). At far-field we have placed the gauges287

in the Carribean sea (Kingston) and close to east boundary (Atlantic) in order to look both to tsunami288

propagation after the wave has passed the Antillean Arch and free propagation in deep ocean. In figure289

12 we report the sea surface height recorded at the gauge stations for P1/P2 simulations on the coarse290

mesh and we compare them with the P1 simulation on the fine mesh. The coarse P2 solution has roughly291

the same accuracy of the fine P1 solution in the near-field and it is superior for far-field propagation. For292

the near-field gauges the P1 solution captures sufficiently well the incoming, trapped and reflected wave293

train, even if the leading wave peak is slightly underestimated with respect to P2 (40 cm at Point-a-Pitre).294

For far-field gauges P1 solution is very diffusive, probably due to the simple Lax-Friederich flux employed295

in this study. Similar results emerge from the snapshot of the sea surface height at t = 5400 s 11. In296

figure 12, beyond mesh and order convergence we have validated the simulation against the structured297

high order FV code FUNWAVE-TVD [28] on a regular grid with ∆x = 800m (which has roughly the same298

degrees of freedom of the P2 coarse simulation). The comparison is valid for the first two hours (after299

FUNWAVE-TVD solution is polluted by wave reflection from the boundary, see the gauge Atlantic Ocean300

close the western boundary).301
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Figure 10: Realistic simulations in Caribbean Sea. Top: Full fine mesh. Bottom: Zoom of the fine mesh in correspondence

of Martinique and Guadalupe island.
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Figure 11: Tsunami in the Carribean Sea. Color map of sea surface height η after 5400 s. Numbers (1) to (6) in the

top picture show the position of the six stations considered in Figure 12, which corresponds to: (1) Pointe-a-Pitre, (2)

Fort-de-France, (3) Martinique W, (4) Kingston, (5) Atlantic Ocean, (6) Martinique NE.
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Figure 12: Tsunami in the Carribean Sea. Water height recorded at the gauge stations located at Point-a-Pitre (top-

left), Fort-de-France (top-right), Martinique W (middle-left), Kingston (middle-right), Atlantic Ocean (bottom-left) and

Martinique NE (bottom-right)
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6.4.2. Irma hurricane302

We perform the simulation of the atmospheric surge produced by the passage of hurricane Irma in the

Caribbean sea (from 30th August 2017 to 14th September 2017). As known, such phenomena link up great

depressions and strong winds, leading to sea level rise and flooding risk at the coast. In order to account

for atmospheric forcing, the source term of the shallow water equations has to be modified as shown in

(3), with the wind force fw defined by:

fw = cD
ρair
ρ0
|u10|u10 (44)

where ρair is the air density, u10 is the wind velocity field ten meters above the ground and cD is the303

wind stress coefficient as proposed by Charnock [29] with Charnock parameter set to 0.022 [30]. To304

construct the hurricane pressure and wind fields, we used information issued from the NOAA IBTRACKS305

[31] database and we applied the Holland parametric model [32] Computed hurricane winds are, then,306

converted to surface winds and averaged over 10 minutes. After that, cyclonic wind and pressure fields are307

finally merged with data from CFSR model [33] in order to represent large-scale atmospheric conditions in308

the whole computational domain. Our simulations run from 05th September 2017 to 08th September 2017,309

simulating the hurricane strike on Caribbean French islands, Virgin islands and Puerto Rico. Figure 13310

shows the hurricane surge propagation, simulated by the P1 coarse mesh. Indistinguishable results, at this311

scale, are obtained using the P2 coarse mesh, thus they are not reported here. Several NOAA/NOS and312

SHOM tide-gauges are available in the area, allowing to validate our simulations against real observations.313

Measured sea level is the result of several components: the tide, a seasonal adjustment due to baroclinicity314

[34], the setup due to breaking waves and, finally, the atmospheric surge due to wind and pressure. The first315

three components cannot be reproduced by our model. Therefore, before comparison, we processed raw316

signals such as to remove the tide and we applied a mean sea level offset to account for baroclinicity [35].317

In this way, we were able to produce the pictures of figure 14, comparing simulations and observations at318

four gauges located close to the hurricane track. We can appreciate a global agreement between computed319

water levels by both P1 and P2 simulations and historical data. The use of P2 approximations, in this320

case, leads to very few improvements in the results, only noticeable on the pick representation at the321

location closest to the hurricane track: Saint Martin and Lameshur. Discrepancies in the results may be322

due to different factors, such as the parametric reconstruction of hurricane pressure and wind fields. Figure323

15 compares air pressure forcing to available observed data at Charlotte Amalie and Culebra stations.324

Clearly, the depression pick is quite well reproduced at Charlotte Amalie, closer to the cyclone track,325

while it is greatly underestimated at Culebra, the farest station. This is probably the primary cause of326
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the surge underestimation sketched in Figure 14. Other source of discrepancies may be due to wave setup327

contribution to observed water level, and/or the coarse representation of the insular shelf (> 1km) in the328

computational mesh of the Carib-Coast project. Further investigations could improved the results, but329

this is beyond the purposes of this work and they are not performed here.330

7. Conclusion331

In this work we have discussed an efficient and accurate formulation of the spherical Shallow Wa-332

ter equations in the form originally proposed in [10] which implies a mixed 3d/2d treatment: the time333

derivative is expressed in 2d form while the right hand side is formulated in 3d Cartesian form. We have334

shown that using, for the 2d part, covariant vector basis, the implementation simplifies and the accu-335

racy increases. In this work we have opted for a Discontinuous Galerkin discretization but the mixed336

3d/2d-covariant form is in principle also more amenable to a continuous Finite Elements discretization337

w.r.t to the original [10]. In particular local mass matrix goes back to the standard block-diagonal form,338

line integrals or Riemann Problem do not imply tensor/vector rotation thanks to the continuity of the339

normals at the edges. We have also discussed a Well-Balanced form of the resulting DG scheme resorting340

the hydrostatic pressure term to the strong form. Finally with a realistic tsunami and an historical storm341

surge simulation we have validated the method for two different oceanographic applications.342

Ongoing work is devoted to extension of the discretization of the 3d/2d-covariant Shallow Water343

equations to stabilized continuous Finite Element (SUPG or Continuous Interior Penalty see e.g. [36] and344

references therein), and to one to one comparison with the current implementation.345
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Figure 13: Hurricane Irma. Color map of simulated surge at 02am on 06th September 2017 (top), at 2pm on 06th September
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Figure 14: Hurricane Irma. Comparison of simulated sea surface height signals (scale in meters) at a selection of gauge
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right).

32



Figure 15: Hurricane Irma. Computed air pressure field is compared against observations (scale in Pa) at Charlotte Amalie

(left) and Culebra (right) stations.

[2] A. Kageyama, T. Sato, ”Yin-Yang grid”: An overset grid in spherical geometry, Geochem. Geophys.355

Geosyst. 5 (2004) Q09005.356

[3] C. Ronchi, R. Iacono, P. S. Paolucci, The ”cubed sphere”: A new method for the solution of partial357

differential equations in spherical geometry, J. Comput. Phys. 124 (1996) 93–114.358

[4] R. D. Nair, S. J. Thomas, R. D. Loft, A discontinuous galerkin transport scheme on the cubed sphere,359

Monthly Weather Review 133 (2004) 814–828.360

[5] P. A. Ullrich, C. Jablonowksi, B. Van-Leer, High-order finite-volume methods for the shallow water361

equations on the sphere, J. Comput. Phys. 229 (2010) 6104–6134.362

[6] J. A. Rossmanith, A wave propagation method for hyperbolic systems on the sphere, J. Comput.363

Phys. 213 (2006) 629–658.364

[7] G. Madec, M. Imbard, A global ocean mesh to overcome the north pole singularity, Climate Dynamics365

12 (1996) 381–388.366
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