

Projet gestion multi-usages de l'hydrosystème karstique du Lez -Synthèse des connaissances récentes et passées -Rapport final.

Herve Jourde, Nathalie Dörfliger, Jean-Christophe Maréchal, C.

Batiot-Guilhe, Clement Bouvier, Gabriel Courrioux, Jean-François Desprats, Thomas Fullgraf, Bernard Ladouche, Véronique Léonardi, et al.

▶ To cite this version:

Herve Jourde, Nathalie Dörfliger, Jean-Christophe Maréchal, C. Batiot-Guilhe, Clement Bouvier, et al.. Projet gestion multi-usages de l'hydrosystème karstique du Lez -Synthèse des connaissances récentes et passées - Rapport final.. [Rapport de recherche] BRGM (Bureau de recherches géologiques et minières); Hydrosciences Montpellier; G-eau; Agence de l'eau Rhône-Méditerranée-Corse; Montpe. 2011. hal-03143770

HAL Id: hal-03143770 https://brgm.hal.science/hal-03143770v1

Submitted on 17 Feb 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

HydroSciences Montpellier

Projet gestion multi-usages de l'hydrosystème karstique du Lez -Synthèse des connaissances récentes et passées

Rapport final

BRGM/RP-60041-FR

Décembre 2011

H. Jourde, N. Dörfliger, JC. Maréchal, C. Batiot-Guilhe, C. Bouvier, G. Courrioux, JF. Desprats, T. Fullgraf, B. Ladouche, V. Leonardi, PO. Malaterre, V.Prié, JL. Seidel.

Vérificateur :

Nom : C. Lamotte

Date : 5/12/2011

Signature :

Approbateur :

Nom : M. Audibert

Date : 21/12/2011

Signature :

En l'absence de signature, notamment pour les rapports diffusés en version numérique, l'original signé est disponible aux Archives du BRGM.

Le système de management de la qualité du BRGM est certifié AFAQ ISO 9001:2008.

Montpellier

Mots clés : système karstique, source du Lez, eau souterraine, gestion, changement climatique, pompage, Hérault

En bibliographie, ce rapport sera cité de la façon suivante :

Jourde H., Dörfliger N., Maréchal JC., Batiot-Guilhe C., Bouvier C., Courrioux G., Desprats JF., Fullgraf T., Ladouche B., Leonardi V., Malaterre PO., Prié V., Seidel J.L. (2011) Projet gestion multi-usages de l'hydrosystème karstique du Lez - Synthèse des connaissances récentes et passées, Rapport RP-60041-FR, 355 pp, 5 ann.

© BRGM, 2011, ce document ne peut être reproduit en totalité ou en partie sans l'autorisation expresse du BRGM.

Synthèse

Le présent rapport fait état des connaissances existantes et des nouvelles connaissances acquises durant le projet de recherche « Gestion multi-usages des aquifères karstiques méditerranéens, le Lez, son bassin versant et son bassin d'alimentation associé au système karstique du Lez ». Il constitue le livrable principal de l'atelier AT1 sur l'amélioration des connaissances hydrologiques, hydrogéologiques, hydrauliques et écologiques de l'hydrosystème du Lez, qui sera complété par un rapport succinct résumant l'ensemble des informations encore en cours d'acquisition (traçages reportés du fait de conditions hydrologiques défavorables, hydrodynamique et géologie des nouveaux forages) qui apporteront des précisions quant aux limites du bassin d'alimentation de la source du Lez.

La méthodologie de cet atelier repose sur la mutualisation des données dont disposent les différents partenaires, la collecte de données complémentaires existantes, et l'acquisition de nouvelles données supplémentaires dans les domaines de l'hydrologie, l'hydraulique et l'hydrogéologie au sens large. L'interprétation et la synthèse de ces différentes données permet de proposer des modèles conceptuels concernant l'hydrogéologie du système karstique du Lez et l'hydrologie du bassin versant du Lez dans son ensemble, préalable nécessaire à la mise en place de modèles numériques.

Après une synthèse de l'histoire géodynamique du territoire englobant l'hydrosystème du Lez, la réalisation de huit coupes géologiques, transversales et longitudinales à cet hydrosystème, a mis en exergue la complexité des formations géologiques. Elles ont été intégrées au sein d'un modèle géologique qui permet de visualiser en trois dimensions la structure complexe de l'aquifère du Lez. Des limites supposées imperméables certains compartiments de l'hydrosystème s'avèrent entre potentiellement perméables, notamment à la faveur de grands accidents qui s'enracinent parfois jusqu'au socle. De nouvelles connaissances hydrochimiques et la réalisation de traçages ont d'ailleurs permis de corroborer ces connexions. Parallèlement à cela, en replaçant l'hydrosystème dans son contexte géodynamique global, un historique des phases principales de karstification a été proposé. De cette étude, il ressort une compétition du contrôle de la karstification entre, d'une part, le gradient hydraulique général N-S et la fracturation préexistante NS (et EW), et d'autre part, les accidents majeurs d'origine tectonique (notamment les failles NE-SW) ayant un rôle de conduit/barrière. Malgré le contexte méditerranéen de cet hydrosystème, le Messinien n'est pas la période prépondérante en terme de karstification des carbonates. En effet, les périodes précoces de karstification prédéterminent les directions d'écoulements souterrains qui vont ensuite perdurer jusqu'à l'actuel. Toutefois, la karstification associée à la crise messinienne demeure importante, notamment en profondeur, mais elle est guidée par les réseaux karstigues précoces du Crétacé jusqu'à l'Eocène.

Afin de mieux contraindre les modèles hydrogéologiques et hydrologiques, des mesures de la perméabilité des sols ont été mises en place sur le bassin versant hydrogéologique de la Source du Lez. Ces mesures ont permis de proposer une cartographie de cette perméabilité, une base de données ayant été constituée à partir de la carte géologique harmonisée des départements du Gard et de l'Hérault, des données pédologiques de la BD Sols, et enfin de la carte d'occupation du sol produite par SIG-LR. La synthèse statistique des mesures de perméabilité a permis d'attribuer un niveau moyen de perméabilité à chacune des formations pédo-paysagères présentes sur le bassin versant. Les mesures de perméabilité réalisées à l'aide du système de Guelph ont montré une forte variabilité selon les formations géologiques observées, cette perméabilité variant entre 12mm/h et 33mm/h pour les colluvions, conglomérats, calcaires argileux et alluvions, jusqu'à 97mm/h pour les grès et 180mm/h pour les calcaires. Les valeurs de conductivité hydraulique à saturation (Ks) obtenues par les mesures d'infiltration sont sensiblement différentes de celles obtenues à l'aide du système de Guelph, ces différences pouvant atteindre un ordre de grandeur mais étant vraisemblablement la conséquence d'incertitudes.

En vue de la modélisation hydraulique du Lez, un bilan des diverses sources de données disponibles concernant la géométrie des lits (mineur, moyen, majeur) du Lez (de sa source à la mer), de certains de ses affluents (Lirou, Terrieu, Yorgues), ainsi que des ouvrages frontaux et latéraux a été réalisé. Une analyse des données provenant de différentes méthodes de mesures a permis de valider l'utilisation de la BD Topo IGN au pas de 5 m pour extraire 29 profils en travers pour le lit majeur, complétés par 6 profils de lit majeur à partir du MNT LIDAR 1m. Des coupes (profils en travers perpendiculaires à la direction d'écoulement par exemple) ont également été extraites de mesures réalisées au moyen d'un scanner laser terrestre 3D. Une méthodologie de traitement des données du nuage de points 3D est en cours afin d'affiner l'extraction des profils en travers de ces zones qui seront comparées aux relevés traditionnels au théodolite laser. Ces études seront poursuivies au-delà du projet en cours. Les données topologiques et géométriques, analysées et vérifiées ont été introduites dans le logiciel hydraulique SIC pour la validation du modèle sur le tronçon Lavalette - Garigliano - 3ème Ecluse. Sur les 21 crues simulées, certaines sont très bien reproduites, même sans étude ni prise en compte des apports intermédiaires ; d'autres, par contre, doivent être améliorées par reconstitution des apports intermédiaires, importants dans certains cas. Ces aspects seront étudiés dans la suite du projet.

Une méthodologie a été développée afin de reconstituer les débits naturels de la source du Lez, sans influence du pompage, en considérant d'une part les données disponibles de hauteur d'eau à la vasque pour différentes périodes considérant une courbe de tarage établie de manière théorique par GINGER et d'autre part des données de débit à la station de jaugeage de la DIREN entre 1987 et 2007, des données de prélèvements pour l'AEP connues de manière partielle entre 1960 et 2010 et des éléments de la DUP de 1981, concernant le débit réservé notamment. La méthode est composée d'une reconstitution du débit naturel en considérant une transformation de hauteur d'eau à la vasque en débit et en y additionnant le débit de débordement et le débit prélevé pour les périodes disposant de données ; après construction de modèles de transfert sur différentes périodes, calés et validés, le débit

est simulé sur l'ensemble de la période de 1960 à 2010 à l'aide des données météorologiques et des prélèvements. Ces modèles sont calés sur les périodes de hautes eaux pour les périodes entre 1980 et 2010 et sur la totalité des données de débit lorsque cela est possible. Il y a une certaine incertitude sur les débits naturels reconstitués selon cette méthodologie, en particulier pour les périodes de basses eaux.

Les cycles de pompages annuels ont été interprétés de facon à déterminer les paramètres hydrodynamiques du système karstique. L'analyse des rabattements mesurés à la vasque montre que les écoulements d'eau souterraine sont principalement radiaux vers le réseau de conduits karstiques pompé. L'interprétation de la variation des niveaux d'eau, à l'échelle saisonnière, au moyen du modèle de Theis permet d'estimer une transmissivité globale oscillant entre 0.006 et 0.007 m²/s selon le cycle hydrologique, valeur très élevée suite à la forte karstification du réservoir. A l'échelle pluri-journalière, l'historique de pompage et les variations des niveaux d'eau à la fois à la source du Lez et dans les puits situés à 5 km de la source du Lez, ont été considérés pour une estimation de la transmissivité effective par les méthodes "pulse test" et "superposition". Les transmissivités estimées sont un ordre de grandeur en dessous de celles estimées par la méthode de Theis, pour un emmagasinement S un ordre de grandeur au-dessus de celui estimé par la méthode de Theis. Les valeurs de diffusivité (rapport entre transmissivité et emmagasinement) de l'aquifère karstique obtenues avec ces modèles sont par conséquent sensiblement équivalentes à celles obtenues au moyen du modèle de Theis, ce qui montre la cohérence entre les différentes méthodes d'estimation de la perméabilité. A noter toutefois que les niveaux d'eau de l'aquifère ainsi que le degré de connectivité entre le puits d'observation et le réseau de drainage principal contrôlent l'estimation de la transmissivité de l'aquifère lors de l'interprétation des pompages.

Afin de parfaire les connaissances sur les limites de l'hydrosystème, plusieurs tracage ont été réalisés. Le premier traçage, correspondant à une injection à l'aven de la Fausse Monnaie, a permis de mettre en évidence les relations entre cet aven et les sources du Lez et du Lirou. La source des Fontanilles, au contraire, ne semble pas reliée à ce réseau karstique. Cet essai a permis d'estimer des vitesses movennes de transit de l'ordre de 15 m/h en période de moyennes eaux, pour un transfert intégrant une faible épaisseur de zone non saturée. Pour un transfert dans la zone saturée, les vitesses sont bien plus importantes, de l'ordre de 70 m/h pour des conditions hydrologiques humides (période de hautes eaux). Ces ordres de grandeur de vitesse sont des informations importantes à prendre en compte dans le cas de l'étude de la vulnérabilité de l'aquifère. Ce tracage a permis de confirmer que la limite du bassin d'alimentation de l'aquifère du Lez se situe au-delà de l'anticlinal de Viols le Fort, dans la partie nord de cet anticlinal ; il a en outre permis de placer la limite ouest du bassin hydrogéologique du Lez au Nord-Ouest de l'anticlinal localisé sur le flanc sud du Pic Saint Loup, alors que cet anticlinal était considéré jusqu'à présent comme une limite imperméable. Afin de préciser cette limite du côté de Viols le Fort, où l'anticlinal permet l'affleurement de terrains moins perméables, un autre tracage (injection à l'aven Roussières) a été réalisé au printemps 2011. Cette opération de traçage a été fortement perturbée par l'évènement pluvieux de mars 2011, ce qui implique la mise en place d'autres opérations de traçage dans un futur proche (printemps-été 2012).

Concernant le bon état de la masse d'eau d'un point de vue quantitatif, les volumes prélevés annuellement sont inférieurs à la recharge annuelle. Les réserves sollicitées par les pompages en période de basses eaux sont reconstituées dès les premières pluies automnales aussi bien à l'exutoire principal que sur les piézomètres d'observation. Enfin, il n'y a pas d'intrusion saline liée à l'exploitation par pompage. Dans ce contexte, trois des quatre conditions pour le bon état quantitatif de la masse d'eau souterraine au sens de la DCE sont remplies. L'étude des volumes prélevables menée pour le Syble permettra d'indiquer si la dernière condition, à savoir, l'absence d'impact négatif sur les eaux de surface associées, est remplie.

Les écosystèmes souterrains peuvent être divisés en deux grands types : aériens (troglo-) et aquatiques (stygo-). Les écosystèmes aquatiques du karst du Lez ont été très étudiés par les naturalistes montpelliérains au XIX° siècle et plusieurs espèces de mollusques stygobies ont été décrites, celles-ci étant réparties actuellement en trois familles : les Moitessieriidae, seule famille ne comportant que des espèces souterraines ; les Hydrobiidae, famille qui regroupe beaucoup d'espèces mais dont la monophylie (l'intégrité, « l'unité » systématique) est remise en cause; les Amnicolidae, dont seules les Bythinelles (genre Bythinella) ont des représentants en Languedoc-Roussillon. Une étude de terrain réalisée entre 2008 et 2010 a permis une analyse biogéographique, montrant d'une part la pérennité des faunes dans le temps et d'autre part leur homogénéité au sein d'une même masse d'eau. De là, une première signature taxonomique des aquifères a pu être proposée. Par ailleurs, la morphométrie fine des coquilles a montré qu'on pouvait distinguer différentes populations au sein d'une même espèce, la présence de différences significatives entre les formes semblant indiquer un isolement des eaux (exemple du causse de l'Hortus). Enfin, malgré les difficultés rencontrées pour échantillonner des animaux vivants et pour les les séquences obtenues ont montré une forte structuration séquencer. biogéographique. Une première cartographie des masses d'eau a ainsi pu être proposée en regroupant entre elles les zones hydrographiques présentant une faune identique. L'échantillonnage mis en place a permis de caractériser les grandes masses d'eau des bassins du Lez et de l'Hérault à partir de leur signature taxonomique (assemblages d'espèces). Toutefois, cette signature étant trop grossière pour apporter des données nouvelles sur l'alimentation de la source du Lez en elle-même, une seconde approche a été développée sur la base de la morphométrie fine des coquilles au sein d'une même espèce ; celle-ci a permis d'accroitre la résolution, notamment pour la zone hydrologique du Causse de l'Hortus, puisque les écoulements vers le nord-est (Vidourle) ont pu être distingués des écoulements vers le sud-ouest (Lamalou - Hérault). Pour tenter de collecter des données supplémentaires sur les espèces présentes dans les eaux de la source du Lez, une approche par l'ADN environnemental vient d'être mise en place afin de reconstituer la signature taxonomique des eaux à partir des traces d'ADN laissées par les organismes qui y vivent. Cette approche beaucoup plus puissante devrait permettre d'augmenter considérablement le nombre de marqueurs en prenant en compte non seulement les mollusques, mais potentiellement toute source de vie souterraine. Elle sera présentée dans le rapport de l'AT2 de la présenté étude.

La caractérisation hydrogéochimique des eaux souterraines et des eaux de surface sur le bassin du Lez comprend à la fois un bilan des connaissances actuelles et une investigation approfondie par le biais de prélèvements et suivis in situ, avec analyses en laboratoire. Les résultats obtenus ont ainsi été confrontés aux réponses hydrodynamiques de l'aquifère, la finalité étant notamment de combiner la caractérisation hydrochimique et écologique avec la caractérisation hydrogéologique / hydrologique et / hydraulique à l'échelle du bassin d'alimentation. Ces analyses hydrochimiques ont notamment permis de préciser certaines limites et relations avec les aquifères voisins (Karst du Haut Vidourle notamment). Les premiers résultats ont mis en évidence des phénomènes d'infiltration rapide à l'aide du Carbone Organique Total (COT) aux sources du Lez et du Lirou. Ce dernier draine un compartiment plus superficiel de l'aquifère (« pôle infiltration rapide ») alors qu'en période de crue, des eaux présentant une minéralisation anormalement élevée (chlorures et certains éléments en trace) s'écoulent à la source du Lez. Celle-ci présente d'ailleurs des concentrations en chlorures systématiquement plus élevées que les autres points échantillonnés. Cette minéralisation peut avoir une origine peu profonde depuis le compartiment du sol/épikarst avec lequel l'eau a interagi, ou alors une origine profonde. Les différentes analyses hydrochimiques montrent que la forte minéralisation identifiée à la source du Lez est vraisemblablement associée aux eaux souterraines issues de compartiments profonds et qui circulent au travers d'accidents majeurs. La participation de ce pôle fortement minéralisé augmente notablement lors des premières pluies de l'automne, quand la charge hydraulique au sein du système karstique est suffisante pour mobiliser les eaux profondes et à long temps de résidence. De facon générale, les sources (Lez, Restinclières et Fleurette) présentent des variations isotopiques faibles comparées à celles des pluies, ce qui atteste de l'existence d'une importante capacité de stockage au sein de l'aquifère. Cependant, des eaux très récemment infiltrées dans le système participent à l'écoulement aux exutoires et des circulations très rapides ont été identifiées de façon récurrente à l'aide de la turbidité, de la bactériologie (coliformes totaux et fécaux) et de la fluorescence de la Matière Organique Dissoute. Ces circulations rapides sont vraisemblablement rattachées aux flux d'eau de surface qui s'infiltrent dans l'aquifère karstique lors des crues.

Sur la base de ces différentes analyses, un modèle conceptuel de fonctionnement a été proposé. Celui-ci tient compte des proportions variables des différents types d'eaux s'écoulant à la source du Lez: (1) circulations peu profondes au sein de l'aquifère supérieur (calcaires du Jurassique supérieur et du Berriasien), (2) interactions avec les eaux de surface et influence des eaux ayant été en contact avec les marno-calcaires du Valanginien, (3) circulations profondes des eaux, probablement facilitées par la présence d'importantes failles mettant en contact l'aquifère supérieur avec les réservoirs carbonatés du Jurassique moyen et inférieur et (4) venue de fluides d'origine plus profonde (en provenance du Trias, voire du socle paléozoïque sous-jacent) lors de précipitations importantes. La contribution des pôles profonds (3 et/ou 4), se manifeste graduellement lors des périodes estivales et de manière très significative lors des premières crues automnales, par une augmentation de la température et de la minéralisation des eaux du Lez indiquant que ces eaux ont bien évolué en profondeur, en milieu fermé. L'origine du pôle profond (3 et/ou 4) qui contribue au fonctionnement hydrodynamique du Lez reste encore à préciser. En particulier, nous devrons vérifier si l'eau profonde mobilisée provient d'un réservoir « tampon » situé dans le jurassique supérieur ou des calcaires jurassigues moyens et inférieurs situés sous les marnocalcaires du Callovien-Oxfordien.

Projet Lez – GMU : synthèse des connaissances

Sommaire

1.	Introduction	
2.	Constitution d'une base de données	29
3.	Amélioration des connaissances géologiques	33
	3.1. INTRODUCTION	33
	3.2. RAPPEL DU CONTEXTE GEOLOGIQUE ET RECONSTITUTION DE L'HISTOIRE GEOLOGIQUE DU BASSIN DU SUD-EST ET DE LA ZONE LANGUEDOCIENNE	33
	3.3. ELABORATION ET INTERPRETATION DE COUPES GEOLOGIQUES	49
	3.3.1.Les concepts et les choix géologiques 3.3.2.Description détaillée et interprétation des coupes géologiques	49 56
	3.4. MODELISATION GEOLOGIQUE 3D	64
	3.4.2. Méthodes	65
	3.4.3. Résultats	69 87
	3.5. TECTONIQUE ET EVOLUTION DES DRAINS KARSTIQUES 3.5.1. Introduction	88
	3.5.2. Principe et méthodes	88
	3.5.4. Discussion et conclusion	
4.	Amélioration des connaissances hydrologiques et hydrauliques	95
	4.1. CARACTERISATION DU STOCK HYDRIQUE DES FORMATIONS SUPERFICIELLES ET DE LA PERMEABILITE DES SOLS	
	4.1.1. Introduction	
	4.1.2.Mesures de perméabilité (Guelph)	
	4.1.3. Mesures d'infiltration (infiltromètre à membrane)	
	4.1.4. Résultats	99
	4.1.5. Cartographie de la perméabilité	102
	4.2. HYDRAULIQUE DU FLEUVE LEZ	105
	4.2.1. Introduction	105

	4.2.2. Données aux ouvrages en travers	106
	4.2.3. Données géométriques pour les lits d'écoulement	108
	4.2.4. Test de relevé par scanner laser terrestre 3D	113
	4.2.5. Données hydrométriques	116
	4.2.6. Modélisation dans le logiciel SIC	117
	4.2.7. Simulation des crues dans le logiciel SIC	120
	4.2.8. Conclusion et perspective	123
	4.3. RECONSTITUTION DU DEBIT NATUREL DE LA SOURCE DU LEZ	125
	4.3.1. Bilan des données disponibles à la source du Lez et perspective de valorisation	125
	4.3.2. Procédures pour reconstituer les débits naturels de la source du Lez	
	(périodes de basses eaux, périodes de lacune de données)	138
	4.3.3. Estimation des débits naturels de la source du Lez	148
	4.3.4. Conclusion	155
5.	Amélioration des connaissances hydrogéologiques	157
	5.1. INTRODUCTION	157
	5.2. CYCLES DE POMPAGES	162
	5.2.1. Introduction	162
	5.2.2. Interprétation des pompages à l'échelle saisonnière	163
	5.2.3. Interprétation des pompages à l'échelle pluri-journalière	166
	5.2.4. Conclusion	169
	5.3. TRAÇAGES ARTIFICIELS	170
	5.3.1.Introduction	170
	5.3.2. Opération de traçage sur l'aven de la Fausse Monnaie, en avril-juin 2010	171
	5.3.3. Opération de traçage sur l'aven Roussière et au niveau de la perte du	
	Mas Martin, en février 2011	179
	5.3.4. Conclusion	182
	5.4. BON ETATQUANTITATIF DE LA MASSE D'EAU SOUTERRAINE	183
	5.4.1. Définition du bon état du point de vue quantitatif	183
	5.4.2. Données utilisées	184
	5.4.3. Analyse des données et interprétation	186
	5.4.4. Conclusion	193
	5.5. CONCLUSION	194
6.	Amélioration des connaissances hydrochimiques	196

	6.1. INTRODUCTION	. 196
	6.2. BILAN DES DONNEES HYDROCHIMIQUES DISPONIBLES A L'ECHELLE REGIONALE LORS DU DEMARRAGE DU PROJET	. 196
	 6.3. BILAN DES CONNAISSANCES ACTUELLES SUR LE FONCTIONNEMENT DE L'AQUIFERE DU LEZ	. 198 . 198 . 201 . 205
	6.4. PROTOCOLE D'ECHANTILLONNAGE ET SUIVIS MIS EN PLACE DANS LE CADRE DU PROJET	. 206
	6.5. ACTIONS EN COURS DE PROJET	. 209
	6.6. CONCLUSION	. 211
7.	Amélioration des connaissances écologiques	. 212
	7.1. INTRODUCTION	. 212
	7.2. SYNTHESE DES CONNAISSANCES ECOLOGIQUES DU SYSTEME KARSTIQUE DU LEZ	. 214
	7.2.1. Historique des travaux concernant la faune souterraine du bassin-versant du Lez	. 214
	7.2.2. Présentation des mollusques souterrains du bassin versant du Lez	. 217
	7.3. DONNEES NOUVELLES ACQUISES	. 220
	7.3.1. Association de taxons – approche combinatoire	. 221
	7.3.2. Approche morphometrique 7.3.3. Approche génétique	. 230 . 232
	7.4. SENSIBILITE ET PERTURBATIONS	. 234
	7.5. CONCLUSION - PERSPECTIVES	. 236
8.	Synthèse des connaissances	. 237
	8.1. GEOLOGIE	. 237
	8.2. TECTONIQUE ET KARSTIFICATION	. 239
	8.3. HYDROLOGIE ET HYDRAULIQUE	. 240
	8.3.1. Caractérisation de la perméabilité des sols	. 240
	8.3.2. Hydraulique du fleuve Lez	. 241

	8.3.3. Données de débits à la source du Lez	242
	8.4. HYDROGEOLOGIE	247
	8.4.1. Estimation des propriétés hydrodynamiques de l'aquifère	247
	8.4.2. Traçages artificiels	249
	8.4.3.Bon état de la masse d'eau souterraine	250
	8.4.4. Synthèse hydrogéologique	250
	8.5. HYDROCHIMIE	251
	8.5.1. Données hydrochimiques et modélisation conceptuelle de l'aquifère du lez	252
	8.5.2. Caractérisation de l'origine des eaux très minéralisées s'écoulant à la source du Lez	255
	8.5.3.Caractérisation des processus de recharge et de la vulnérabilité de l'hydrosystème karstique	255
	8.6. ECOLOGIE	255
	8.7. ASSEMBLAGE DES NOUVELLES CONNAISSANCES	258
9.	Conclusion et perspectives	261
10). Bibliographie	265

Liste des illustrations

Figure 1. Schéma structural du bassin mésozoïque du Sud-Est (Baudrimont et Dubois, 1977)	34
Figure 2 : Schéma de la série stratigraphique (Baudrimont et Dubois, 1977)	35
Figure 3. Dépôts sédimentaires (Rubino, 2002 ; Rubino, 2005)	36
Figure 4. Carte d'isopaques et d'environnement sédimentaire du Trias (Baudrimont et Dubois, 1977)	37
Figure 5. Puissance et faciès des dépôts de l'Hettangien (Debrand-Passard et Courbouleix, 1984)	38
Figure 6 : Carte d'isopaques et d'environnement sédimentaire du Lias calcaire (Lias moyen à supérieur) (Baudrimont et Dubois, 1977)	39
Figure 7 : Jurassique moyen, faciès du Bathonien (Debrand-Passard et Courbouleix, 1984)	40
Figure 8. Evolution des dépôts du Lias supérieur au Dogger (Dubois et al., 1975)	41
Figure 9.Carte d'isopaques du faciès Terres Noires du Jurassique (Baudrimont et Dubois, 1977)	42

Figure 10. Carte d'isopaques et environnement du faciès calcaire (Jurassique supérieur) (Baudrimont et Dubois, 1977)	43
Figure 11. Carte d'isopaques et environnement sédimentaire au Néocomien supérieur (Baudrimont et Dubois, 1977).	44
Figure 12. Carte d'isopaques et environnement sédimentaire du Crétacé moyen post- Urgonien (Baudrimont et Dubois, 1977)	45
Figure 13. Carte d'isopaques et environnement sédimentaire du Crétacé supérieur anté-Campanien (Baudrimont et Dubois, 1977).	46
Figure 14. Schéma structural de la zone languedocienne	47
Figure 15 : Série stratigraphique [P. Bérard, 1983]	50
Figure 16 : Tableau lithostratigraphique [P. Bérard, 1983]	50
Figure 17 : Extrait des cartes géologiques de Montpellier et de Marseille au 250000e (édition BRGM)	51
Figure 18 : Extrait de la carte géologique et structurale, 2003 (édition BRGM)	51
Figure 19 : Schéma général du Languedoc avant le Crétacé moyen, Bodeur inédit et modifié 2010	52
Figure 20 : Extrait de la carte paléogéographique du faciès du sommet des séries du Portlandien supérieur (BRGM éditions)	53
Figure 21 : Coupe interprétative de la carte géologique de Montpellier au 50000 ^e	54
Figure 22 : Profils sismiques du bassin de l'Hérault interprétés par Maerten	55
Figure 23: Schéma explicatif des synclinaux sur rampe (Bénédicto, 1996)	56
Figure 24 : Carte de localisation des coupes sériées	57
Figure 25 : Carte géologique simplifiée de la zone d'étude avec le réseau de failles, les unités stratigraphiques qui ont été utilisées pour la modélisation 3D et la position des coupes c1-c8 de Cordonnier (2010)	65
Figure 26 : La base de données pour la modélisation 3D avec les forages et les données structurales	66
Figure 27 : La pile stratigraphique qui a été retenue pour la modélisation 3D avec les relations des unités supérieures aux unités dans une position inférieure.	67
Figure 28 : Réseau de failles utilisé pour la modélisation 3D - Jaune : système de failles normales des Cévennes; vert: système de failles liée à la formation des demi-grabens; bleu : failles inverses ; rouge: relation avec failles des Cévennes ou demi-graben	
(incertain)	70
Figure 29 : Les unités stratigraphiques avec leurs propriétés hydrogéologiques	72
Figure 30 : Présentation de l'interface inférieure du Trias (pas de description dans le texte)	74
Figure 31: Présentation de l'interface inférieure du Lias	75
Figure 32 : Présentation de l'interface inférieure du Dogger	76
Figure 33 : Présentation de l'interface inférieure du Malm	77
Figure 34 : Présentation de l'interface inférieure du Crétacé	78

Figure 35 : Présentation de l'interface inférieure de l'Eocène	79
Figure 36 : Présentation de l'interface inférieure de l'Oligocène	80
Figure 37 : Présentation de l'interface inférieure du Miocène	81
Figure 38 : Présentation de l'interface inférieure du Pliocène	82
Figure 39 : Modèle 3D de la zone d'étude avec toutes les unités géologiques – Trias (violet), Lias (bleu foncé), Dogger (brun), Malm (bleu clair), Crétacé (vert foncé), Eocène (orange), Oligocène (rose), Miocène (jaune), Pliocène (beige)	83
Figure 40 : Modèle 3D de la zone d'étude - Trias (violet), Lias (bleu foncé), Dogger (brun), Malm (bleu clair), Crétacé (vert foncé), Eocène (orange), Oligocène (rose)	83
Figure 41 : Modèle 3D de la zone d'étude sans les unités cénozoiques et quaternaires - Trias (violet), Lias (bleu foncé), Dogger (brun), Malm (bleu clair) et Crétacé (vert foncé)	84
Figure 42 : Modèle 3D de la zone d'étude - Trias (violet), Lias (bleu foncé), Dogger (brun) et Malm (bleu clair)	84
Figure 43 : Modèle 3D de la zone d'étude – Trias (violet), Lias (bleu foncé) et Dogger (brun)	85
Figure 44 : Modèle 3D de la zone d'étude – Trias (violet) et Lias (bleu foncé)	85
Figure 45 : Modèle 3D de la zone d'étude – Trias (violet)	86
Figure 46 : Modèle 3D de la zone d'étude - Trias et Lias avec les coupes 3, 4, 5	86
Figure 47 : Blog diagramme de l'aquifère du Lez (1) et analyses statistiques de la fracturation à l'échelle 250.000ème (2), à l'échelle 25.000ème (3), in situ sur le site du Terrieu (4) ; ainsi que de la karstification en zone non saturée (5). Les analyses statistiques sont réalisées en longueur cumulée (a) ou en fréquence (b)	89
Figure 48 :A) Courbes de rabattement (en m) associées à un pompage au puits W (site expérimental du Terrieu). – B) Isopièzes (en m) à la fin de la période d'étiage associées au pompage à la source du Lez (valeurs du 08/09/2006)	92
Figure 49 : Localisation des mesures de perméabilité réalisées sur la carte géologique (formations calcaires masquées)	96
Figure 50 : Localisation des mesures d'infiltration et formations géologiques (limites correspondant au bassin versant du Lez à Lavalette)	97
Figure 51 : Description des sites	98
Figure 52: Perméabilité moyenne par formation géologique (mm)	99
Figure 53 : Perméabilité moyenne par classe combinant géologie et occupation du sol (mm)	102
Figure 54: Carte de la perméabilité moyenne (mm) issue des mesures d'infiltration en surface	103
Figure 55: Carte de la perméabilité moyenne (mm) – secteur des Matelles	104
Figure 56 : Ouvrages le long du Lez	107
Figure 57: Répartition des 25 singularités (18 seuils, 3 écluses, 3 passerelles, 1 déversoir latéral)	108
Figure 58 : Données géométriques disponibles sur la zone Lez	111

Figure 59: Comparaison d'une section lit majeur à partir de diverses sources	111
Figure 60: Profils BRL (2009)	112
Figure 61 : Position des profils en travers relevés (2011)	114
Figure 62 : Aperçu du nuage de points relevé par scanner 3D	115
Figure 63 : Coupe (profil en travers) extrait à partir du nuage de points relevé par scanner 3D, en amont du seuil du Moulin du Parc (partie au-dessus de la ligne d'eau)	115
Figure 64 : Stations disponibles sur le Lez (Banque Hydro)	116
Figure 65 : Interface de SIC pour les données topologiques du Lez de Lavalette à la 3ème écluse	118
Figure 66 : Interface de SIC avec, au premier plan, les données géométriques du Lez entre Lavalette et la 3ème écluse	119
Figure 67 : Interface de SIC avec, au premier plan, les données hydrauliques des seuils	120
Figure 68 : Interface de SIC avec, au premier plan, les résultats des simulations hydrauliques des crues	121
Figure 69 : Crue de Novembre 1999, à Garigliano	122
Figure 70 : Crue de Septembre 2003, à Garigliano	123
Figure 71 : Crue d'Octobre 2008 à la 3 ^{ème} Ecluse	123
Figure 72 : Palmérisation du logiciel SIC et couplage	124
Figure 73 : modalités des conditions de captage depuis 1951	127
Figure 74 : (a) Exemple d'évolution du débit mesuré à la station de jaugeage (Y3204020, Banque Hydro) située 300 m environ du déversoir de la source du Lez (1997-2005). (b) Evolution du débit prélevé et restitué au Lez (Photo 3) lorsque la source ne déborde pas. (c) Evolution de la piézométrie mesurée dans le drain karstique au niveau du puits n°4 de la chambre de captage. La piézométrie à Mas de Martin et Claret Brissac est également reportée.	130
Figure 75 : Evolution des débits moyens annuels de débordement de la source du Lez (débordements de la vasque en périodes de hautes eaux) estimés à partir des différentes courbes de tarage (voir texte)	131
Figure 76 : Evolution des débits de débordement de la source du Lez (débordements de la vasque en périodes de hautes eaux) estimés à partir de la courbe théorique de tarage (Ginger0.38) et de débit mesurée à la station hydrométrique (Y3204020) située à environ 300 m à l'aval de la source. La piézométrie mesurée dans le drain karstique est également présentée. Des valeurs inférieures à 64.98 m NGF sont mesurées lorsque la source ne déborde plus.	132
Figure 77 :Synthèse des conditions de captage de la source du Lez jusqu'en 1982	135
Figure 78. Evolution des débits moyens annuels de prélèvements depuis 1974 (valeurs estimées avant 1974) et évolution du nombre de jours de débordement de la vasque depuis 1951	136
Figure 79. Evolution du cumul de pluie (mensuels et annuels) de la fonction d'entrée utilisée dans cette étude pour caractériser le fonctionnement de l'hydrosysème du Lez	141
Figure 80. Exemples de reconstitutions de débit naturels obtenus à l'aide des modèles de transfert qualifiés par differents temps de régulation (compris entre 128 j et 366j)	143

Figure 81. Réponses impulsionnelles des composantes lentes des modèles de transfert (ModHE_0.38Ging_128j ; ModHE_0.38Ging_256j ; ModHE_0.38Ging_366j) utilisés pour reconstituer les débits naturels du Lez en période de basses eaux	43
Figure 82. Réponses impulsionnelles des composantes rapides des modèles de transfert (ModHE_0.38Ging_128j ; ModHE_0.38Ging_256j ; ModHE_0.38Ging_366j) utilisés pour reconstituer les débits naturels du Lez en période de basses eaux	44
Figure 83 : Exemple de reconstitution de débits naturels obtenus à l'aide de la chronique de débit moyen (QmoyMODQ38, période 1978-1982) et comparaison aux débits naturels reconstitués en période de hautes eaux14	45
Figure 84 : Exemple de reconstitution de débits naturels obtenus à l'aide de la chronique de débit moyen (QmoyMODQ38) et comparaisons aux débits naturels estimés (QnatDirenHE) en période de hautes eaux à partir des données de la station hydrométrique de la Diren	46
Figure 85. Débits d'étiages de la source du Lez avant 1979 selon les auteurs	47
Figure 86 : Débits moyens annuels de la source du Lez avant 1973 selon les auteurs	47
Figure 87 : Débits moyens inter-annuels de la source du Lez période [1966-1971] selon les auteurs	47
Figure 88 : Débits naturalisés de la source du Lez, valeurs moyennes mensuelles et annuelles en l/s14	49
Figure 89 : Statistiques descriptives des débits naturalisés de la source du Lez (valeurs en l/s). Les bornes inférieure (Q0.34) et superieure (Q0.42) sont remportées	50
Figure 90 : Statistiques descriptives des débits naturalisés de la source du Lez (valeurs par mois en l/s)15	51
Figure 91 : Evolution temporelle des débits moyens mensuels naturels (estimé) de la source du Lez (les bornes inférieure [Q0.34] et supérieure[Q0.38] sont reportées)15	52
Figure 92 : Evolutions annuelles des quantiles calculées sur les périodes 1974-1982 : Débit naturel estimé, piézométrie, débit de prélèvement et de débordement à la vasque1	53
Figure 93. Evolutions annuelles des quantiles calculées sur les périodes 1982-208 : Débit naturel estimé, piézométrie dans le drain karstique, débit de prélèvement et de débordement à la vasque1	54
Figure 94. Synthèse de la méthodologie pour reconstituer les données manquantes et l'établissement des chroniques de débits naturels de la source du Lez.	56
Figure 95 : Schéma hydrodynamique du système aquifère de la source du Lez (Bérard, 1983) sur la base du quel ont été définies les limites de l'unité hydrogéologique de l'aquifère du Lez (bassin d'alimentation de la source du Lez influencé par les pompages)	58
Figure 96 : Réseau de surveillance piézométrique suivi par VEOLIA pour la Communauté d'Agglomération de Montpellier (CAM) et localisation des forages et points d'injection des traçages réalisés dans le cadre de ce projet	59
Figure 97 : Niveaux piézométriques moyens (Période 2001-2009) et classification des piézomètres suivi par VEOLIA pour la Communauté d'Agglomération de Montpellier (CAM) en fonction de leur réponse hydrodynamique (d'après Bicalho, 2010)16	60

Figure 98 : classification du comportement des piézomètres du Lez en période de sollicitation des réserves (période de tarissement de la source) – mofifié d'après Conroux (2007)	162
Figure 99 : exemple d'interprétation du cycle de pompage de 2002	164
Figure 100 : tableau de synthèse des paramètres hydrodynamiques estimés au moyen du modèle de Theis appliqué à la source du Lez	165
Figure 101: niveaux piézométriques dans les piézomètres d'observation du Lez pendant l'année 2003	165
Figure 102 : tableau de synthèse des paramètres hydrodynamiques estimés dans les piézomètres d'observation	166
Figure 103: (a) Localisation de la source du Lez et du site expérimental du Terrieu à l'échelle régionale ; (b) Photo aérienne de la fracturation à l'échelle du site expérimental ; (c) Localisation des puits sur le site expérimental du Terrieu	166
Figure 104 : Réponse hydrodynamique aux impulsions de pompage (pulse) à la source du Lez, mesurée sur les puits d'observation du site expérimental du Terrieu. Trois types de réponse hydrodynamique (Type A, B, C ont été identifiée)	167
Figure 105: Résultat de l'interprétation à l'aide de la méthode de superposition multi- débit, pour une interprétation sur le puits P11 pour un pompage à la source du Lez. En noir la piézométrie mesurée, en rouge le calage obtenu à l'aide de la méthode de superposition multi-débit.	168
Figure 106 : tableau de synthèse des paramètres hydrodynamiques estimés dans les piézomètres d'observation P8, P5, P10 et P11 du site expérimental du Terrieu	168
Figure 107 : Localisation des différents points d'injection (avens ou pertes) et des sources suivies durant les traçages ; les connections hydrauliques confirmées par traçages sont en trait plein	170
Figure 108: Injection de la fluoréscéine par D. Caumont, à 60m, au fond de l'aven de la Fausse Monnaie (20 avril 2010, 12h)	171
Figure 109 : Restitution du traceur à la source du Lirou (Mai 2010)	173
Figure 110 : Restitution du traceur à la source du Lez (Mai 2010)	173
Figure 111 : La source du Lirou, lors du maximum de restitution du traceur (fluorescéine), le 18 mai 2010	174
Figure 112 : Intensité du signal du fluorimètre à la source des Fontanilles	175
Figure 113 : Débits et flux massique restitué à la source du Lez (A) et à la source du Lirou (B)	176
Figure 114 : fiche synthétique de la restitution à la source du Lez	179
Figure 115 : Injection de sulforhodamine dans la perte située en amont du Mas Martin, le 03/02/2011	180
Figure 116 : Enregistrement des fluorimètres installés aux sources de Fontbonne, du Lez et du Lirou en mars-avril 2011	182
Figure 117 : Carte de localisation des opérations de traçage réalisées en 2010 et 2011 (sur fond topographique de l'IGN). Injection 1 : Aven de la Fausse Monnaie le 20/04/10 ; Injection 2 : Perte du Mas Martin le 03/02/11 ; Injection 3 : Aven Roussière le 17/02/11. Les flèches en trait continu correspondent aux tracages assurés, les flèches	

en trait pointillé correspondent aux tracages réalisés mais sans assurance de sortie du traceur. Les flèches vertes correspondent aux tracages réalisés par fluoresceine, en rouge au tracage réalisé par sulforhodamine	183
Figure 118 : carte des actions relatives au bon état du point de vue quantitatif des masses d'eau souterraine du bassin RMC (document du SDAGE)	184
Figure 119 : Localisation du réseau piézométrique à l'échelle de la masse d'eau FRDG113	185
Figure 120 : Tableau des caractéristiques des piézomètres suivis en continu sur le réseau du système karstique du Lez, réseau élargi à des piézomètres situés en-dehors du système sensus stricto mais apportant une information pertinente	186
Figure 121 : Graphique représentant les volumes d'eau de précipitations efficaces rechargeant la masse d'eau FRDG113 et les volumes prélevés au niveau de la source du Lez (en rouge) et totaux au niveau de la masse d'eau (en bleu)	187
Figure 122 : Graphique de la piézométrie mesurée dans le forage d'observation (données journalières) sur plus de vingt années, suite à la mise en exploitation par gestion active de la source du Lez, au niveau du captage	188
Figure 123 : Graphique de la piézométrie mesurée au niveau d'une sélection de piézomètres situés au sein de la masse d'eau souterraine FRDG113	188
Figure 124. Evolution temporelle des débits moyens mensuels naturels (estimé) de la source du Lez et des précipitations en mm.	190
Figure 125 : Débits de prélèvement de la source du Lez pour les périodes 1974-1982 et 1983-2008	191
Figure 126 : Débit de débordement de la source du Lez pour les périodes 1974-1982 et 1983-2008	191
Figure 127. Evolution du volume de pluie précipité annuellement sur l'impluvium du système karstique de la source du Lez (S = 112 km ²) depuis 1974. Les volumes prélevés ainsi que les volumes écoulés à la vasque (débordement de la vasque) sont également reportés. La somme du volume écoulé à la vasque et du volume prélévé ainsi que le volume naturel (estimé par modélisation) qui se serait écoulé en absence de pompage sont également présentés.	192
Figure 128 : Statistiques descriptives des débits naturalisés de la source du Lez (valeurs en l/s)	193
Figure 129 : Unités hydrogéologiques et schéma hydrodynamique de l'aquifère karstique des Garrigues Nord Montpelliéraines influencé par les pompages à la source du Lez (Yann Conroux, 2007 ; issu de S. Bosser, 2009)	197
Figure 130 : Relation (Mg/Ca)-COT pour le système karstique du Lez (Lafare, 2007)	198
Figure 131 : Na ⁺ versus Cl ⁻ , en meq/L. Sources Lez et Lirou (Lafare, 2007)	198
Figure 132 : Pluie moyenne journalière sur le BV (mm), piézométrie à la source, CE (Conductivité Electrique) mesurée sur le terrain (HSM) et en continu (CAM/Veolia).Variations en Cl, SO ₄ et Mg (Bicalho et al., 2009)	199
Figure 133 : Concentrations en Na et CI au sein du système Lez (Bicalho et al., 2011, modifié)	200
Figure 134 : Pluie (pluviomètres de Montpellier, Viols le Fort et Sauteyrargues); Conductivité électrique (EC) ; d180 (‰); et excès en Deutérium pour les différentes sources du Système Lez (Lez, Lirou, Fleurette et Restinclières)	202

Figure 135 : Variations temporelles de Cl, SO ₄ , Mg, Sr, COT, NO ₃ , indice de saturation de la Calcite, coliformes totaux/fécaux (Colony Forming Units : CFU pour 100 ml) et Turbidité (TU). Pluie journalière moyenne calculée pour les stations de Prades, St Martin de Londres et Valflaunès. Niveau piézométrique à la station de pompage de la source du Lez. T et CE mesurées à la source du Lez (CAM/Veolia) et CE mesurée sur le terrain (HSM). (Bicalho et al., 2011 a.)	204
Figure 136 : Modèle conceptuel de fonctionnement de l'aquifère du Lez (Bicalho et al. 2011c)	205
Figure 137 : Planning des prélèvements effectués dans le cadre du projet (Août 2009- Août 2011)	207
Figure 138 : ⁸⁷ Sr/ ⁸⁶ Sr en fonction du rapport Cl/Sr	210
Figure 139 : Distribution de la biodiversité souterraine du bassin versant du Lez. Les crustacés constituent l'essentiel des espèces, les mollusques sont le second groupe. Planaires et Annélides sont représentés de manière marginale	215
Figure 140 : Echantillonnage issu de la base de données Pascalis (en bleu : le bassin versant du Lez)	215
Figure 141 : Liste des espèces stygobies recensées sur le bassin versant du Lez	217
Figure 142 : Tableau : Mollusques stygobies décrits dans le système karstique du Lez	217
Figure 143: Les 3 genres de Moitessieries, de gauche à droite : Moitessieria, Spiralix et Henrigirardia. Echelle : 2 mm	218
Figure 144: Les deux genres de Bythiospées, de gauche à droite Bythiospeum et Paladilhia (à droite). Echelle : 2 mm.	219
Figure 145 : Les Globhydrobies ont des coquilles très rondes, les Planhydrobies ont des coquilles presque plates. Mais il existe beaucoup de variabilité au sein des premières : ici, exemple de variation morphologique au sein de la globhydrobie de l'Ardèche, Islamia bomangiana	219
Figure 146: Bythinelle cévenole, forme souterraine (à gauche) et forme épigée (à droite). Deux formes bien distinctes, une seule et même espèce biologique	220
Figure 147 : Traitement du sédiment. A : les lots sont laissés quelques jours à décanter pour rechercher des animaux vivants. B : Le sédiment est ensuite séché au soleil. C : Immersion du sédiment sec et D : récolte du surnageant. Les coquilles sont conceptrées dans de petits volumes (E) puis triées sous la loupe (E)	224
Figure 148 : Résultats des échantillonnages successifs pour une même zone hydrographique	227
Figure 149 : Assemblages faunistiques correspondant à chacune des masses d'eau identifiées par leur signature taxonomique (au centre de la figure, le bassin hydrologique du Lez à Lavalette est en rouge)	228
Figure 150 : Schéma d'écoulement des eaux proposé par Boinet (2002). Cette hypothèse a été testée en réalisant la morphométrie fine d'un des marqueurs, Moitessieria rolandiana, collecté sur les différents sous-ensembles proposés par Boinet, soit les populations du Lirou, de la Foux de Pompignan et de l'aven du Rouet	230
Figure 151: résultat des mesures effectuées sous forme de boxplots. Les différentes populations se distinguent sans équivoque par la morphométrie des coquilles	231

Figure 152 : Résultats de l'ACP réalisée sur l'ensemble des mesures prises sur les coquilles de Moitessieria rolandiana montrant la séparation des différentes populations échantillonnées.	232
Figure 153 : Arbre phylogénétique figurant la position des taxons vivant sur le bassin versant du Lez	233
Figure 154 : Arbre phylogénétique obtenu pour les échantillons de Heraultiella exilis et Islamia cf. moquiniana montrant respectivement les divergences entre les populations du Lirou et de l'Hérault ; et celles du Vidourle, de la Cadoule et du Lirou.	234
Figure 155 : Résultat de l'échantillonnage du sous-écoulement en amont et en aval du rejet de la STEP des Matelles. Pour chaque site, 5 réplicats ont été prélevés à environ 1m de profondeur. Deux espèces dominent largement le peuplement : Moitessieria rolandiana et Heraulteilla exilis. Le rejet de la STEP, situé entre les stations 2 et 3, ne semble pas avoir d'influence significative sur l'abondance des coquilles récoltées.	235
Figure 156 : Perméabilité moyenne par classe combinant géologie et occupation du sol (mm/h)	241
Figure 157 : A) Courbes de rabattement (en m) associées à un pompage au puits W (site expérimental du Terrieu). – B) Isopièzes (en m) pendant pompage à la source du Lez (valeurs du 08/09/2006)	247
Figure 158 : Carte de localisation des opérations de traçage réalisées en 2010 et 2011 (sur fond topographique de l'IGN). Injection 1 : Aven de la Fausse Monnaie le 20/04/10 ; Injection 2 : Perte du Mas Martin le 03/02/11 ; Injection 3 : Aven Roussière le 17/02/11. Les flèches en trait continue correspondent aux tracages assurés, les flèches en trait pointillés correspondent aux tracages réalisés mais sans assurance de sortie du traceur. Les flèches vertes correspondent aux tracages réalisés par fluoresceine, en rouge au tracage réalisé par sulforhodamine.	249
Figure 159 : Unités hydrogéologiques et schéma hydrodynamique de l'aquifère karstique des Garrigues Nord Montpelliéraines (Yann Conroux, 2007 ; issu de S. Bosser, 2009)	252
Figure 160 : Modèle conceptuel actuel de fonctionnement de l'aquifère du Lez (Bicalho et al. 2011c).	254
Figure 161 : Assemblages faunistiques correspondant à chacune des masses d'eau identifiées par leur signature taxonomique.	257

Liste des annexes

Annexe 4 Détail de la procédure de reconstitution des débits naturels de la sour	ce du 321
Annexe 5 Tableau des traçages historiques (période 1956- 1977) réalisés sur le système karstique du Lez avant cette étude	

1. Introduction

Les aquifères karstiques constituent des réservoirs d'eau souterraine importants pour faire face aux besoins croissants en eau, liés notamment à l'augmentation démographique de la région Languedoc Roussillon, tout particulièrement sur le littoral et au sein de ses métropoles. Une « gestion active » permet d'exploiter de manière optimale la ressource en eau de ces systèmes, en s'affranchissant des effets négatifs des fortes variations de débit des sources. Il s'agit de pomper, en saison sèche, à un débit très supérieur au débit d'étiage, afin de solliciter les réserves que renferment ces aquifères. Celles-ci se reconstituent ensuite au cours de la saison des pluies suivante avec, pour conséquence une diminution de l'intensité des crues au début de la saison des pluies. Une gestion multi-usages de tels aquifères est donc susceptible de répondre de manière intégrée à ces problématiques en apparence antagonistes : besoins supplémentaires en eau pour l'AEP, réduction des risques d'inondation et contribution à la préservation des milieux aquatiques.

L'hydrosystème du Lez, fleuve côtier dont la source d'origine karstique est exploitée par une gestion active depuis 1981 par la ville de Montpellier puis l'Agglomération de Montpellier, constitue donc un site de référence pour étudier, dans le cadre d'un projet d'étude pluridisciplinaire (géologie, hydrogéologie, hydrologie, hydraulique, biologie et économie), les possibilités d'une gestion multi-usages.

Le projet de recherche « Gestion multi-usages des aquifères karstiques méditerranéens – Le Lez, son bassin versant et son bassin d'alimentation » regroupe un partenariat scientifique et technique constitué par le BRGM, les UMR HydroSciences Montpellier (HSM), G-EAU, TETIS, le CERFACS et BIOTOPE. Les objectifs généraux de ce projet sont de :

- parfaire la connaissance du milieu karstique d'un point de vue géologique et du point de vue de ses propriétés hydrodynamiques à l'échelle de l'ensemble de son bassin d'alimentation (aspect multi-échelle);
- réévaluer la ressource en eau exploitable au sein de l'aquifère et caractériser les impacts éventuels de nouveaux scénarios d'exploitation ;
- évaluer la vulnérabilité de l'aquifère karstique à partir des analyses hydrochimiques (traceurs émergents) et proposer sur cette base des recommandations en termes d'aménagement du territoire ;
- caractériser le régime hydrologique du fleuve côtier Le Lez et mieux évaluer d'une part l'aléa inondation associé aux hautes eaux et d'autre part la qualité du milieu hydrologique, notamment en basses eaux ;
- produire un inventaire et un état des lieux de la biodiversité souterraine de l'aquifère du Lez, cartographier les espèces de mollusques stygobies
- déterminer des bio-indicateurs basés sur la qualité de l'eau des eaux de surface et des eaux souterraines et sur la microfaune des eaux souterraines et du sousécoulement ;

- étudier les effets de la gestion active actuellement menée sur la diminution des crues et simuler ce qu'elle pourrait être dans le futur à partir de modèles hydrauliques, hydrologiques et hydrogéologiques; ce point est plus particulièrement détaillé dans le cadre du rapport relatif à l'AT4.
- analyser du point de vue économique l'intérêt et la faisabilité d'une gestion multiusages de cet aquifère karstique, ce qui sera également principalement abordé dans le cadre de l'AT4.

Le projet se décline sous la forme de sept ateliers (AT0 à AT6) dont les objectifs et les coordinateurs sont mentionnés ci-après.

Le présent rapport décrit les nouvelles connaissances acquises dans le cadre de ce projet et constitue le document de synthèse de l'atelier 1 (livrable L1.5) qui vise à améliorer l'état des connaissances géologiques, hydrologiques, hydrogéologiques et hydrauliques de l'hydrosystème karstique du Lez; ce rapport sera complété par un rapport succinct résumant l'ensemble des informations encore en cours d'acquisition (traçages reportés du fait de conditions hydrologiques défavorables, hydrodynamique et géologie des nouveaux forages).

Les objectifs de l'atelier 1 sont de :

- 1. Constituer une base de données et métadonnées relative à l'hydrosystème du Lez dans son ensemble (géologie, surface, souterrain, climat, qualité de l'eau, écologie)
- 2. Acquérir des données complémentaires au niveau du système karstique
- 3. Interpréter les données, établir un ou plusieurs modèles conceptuels concernant les hydrosystèmes de surface et souterrain vis-à-vis de l'hydrologie, l'hydraulique, l'hydrogéologie et l'écologie

Ces objectifs ont été définis de façon à répondre aux besoins identifiés par le passé : Lors des études antérieures dont celles menées dans le cadre de l'IFR ILEE, des informations concernant la géologie, l'hydrologie, l'hydraulique, l'hydrogéologie et l'hydrochimie ont été collectées par différents intervenants. Il est alors apparu qu'une mutualisation des données sur une base commune à accès limité aux partenaires était nécessaire au bon déroulement du projet. Il a été convenu que cette base de données comprendrait des documents (rapports au format pdf, articles), des métadonnées (concernant la localisation des données accessibles, telles que les données radar, les données de la Banque de données du sous-sol du BRGM), des données (spatiales, temporelles, ponctuelles) concernant les cartes géologiques, les chroniques limnigraphiques sur le Lez et certains affluents, les données de qualité des eaux (hydrochimie), etc... Cette BD contiendra également les suivis piézométriques en continu des 15 piézomètres de contrôle du bassin d'alimentation de la source du Lez, gérés par l'Agglomération de Montpellier.

Des incohérences ou des doutes existant quant à l'hydrodynamique de la partie ouest du système (à l'ouest de la faille des Matelles) ainsi que dans les parties captives de l'aquifère, il est apparu qu'une meilleure compréhension de l'hydrodynamique du Lez passait par la mise en place de forages profonds au niveau du causse de Viols le Fort / Cazevielles (manque de données), et au niveau de la couverture valanginienne entre les Matelles et la source du Lez pour identifier le comportement hydrodynamique de l'aquifère dans sa zone captive. De nouveaux forages ont été implantés (chapitre 5) pour répondre à ces questions. Leur réponse hydrodynamique (en cours d'acquisition) aux précipitations et aux pompages à la source du Lez sera présentée dans le rapport complémentaire avenir.

Les effets associés à l'échelle de caractérisation (locale ou régionale) des propriétés hydrodynamiques ayant également été observés lors de la sollicitation par pompage du système à l'échelle régionale ou à l'échelle locale, il a été convenu de caractériser les propriétés hydrodynamiques et hydrodispersives du système karstique aux différentes échelles d'observation disponibles (chapitre 5).

Le comportement hydrodynamique de l'aquifère de la source du Lez devait également être précisé à partir des données disponibles, couplant l'approche géochimique (chapitre 6 et 7). Des premières informations en termes de structure et de fonctionnement ont permis de distinguer une signature d'eaux de la zone d'infiltration de celle d'eaux de la zone noyée. Lors de crues importantes, des compartiments de la zone noyée peu sollicités peuvent participer aux écoulements. Les relations entre eaux de surface et eaux souterraines nécessitent une meilleure caractérisation (au niveau des zones de boulidous, de pertes, ...) en fonction des conditions hydrologiques, notamment par approche géochimique.

L'étude du comportement hydrologique et hydraulique du Lez (écoulement de surface) nécessitait par ailleurs l'acquisition de données complémentaires (chapitre 4) : profils de section, étalonnage des stations de jaugeage existantes et/ou récemment installées, installation de stations complémentaires.

Le présent rapport est structuré sur le mode d'organisation des tâches au sein de l'AT1, chaque chapitre du rapport correspondant à l'une des tâches de l'atelier.

2. Constitution d'une base de données

La base de données constituée dans le cadre de ce projet s'appuie sur la base de données de l'observatoire MEDYCYSS_Observatoire Multi Echelle de la DYnamique des Crues et de l'hYdrodynamique Souterraine en milieu karStique (www.medycyss.org) qui couvre un territoire plus vaste que l'hydrosystème Lez.

Cette base de données s'appuie sur :

- Une carte sous Arc GIS de l'observatoire, recensant l'ensemble des points instrumentés et métadonnées associées, les cours d'eau, la carte géologique et le MNT de la région.
- 2) Des fichiers KML pour chaque réseau de mesures (Hydrométrie, Pluviométrie, Piézométrie, Humidité du sol, Chimie des eaux souterraines, Chimie des eaux superficielles) qui permettent la visualisation de l'ensemble des points de mesure sous Google Earth.

Métadonnées : Toute l'instrumentation présente sur le territoire de l'observatoire MEDYCYSS a été recensée dans un tableau, avec pour chaque point, son code de station, ses coordonnées, le bassin hydrographique associé, l'organisme qui tient à disposition les données, le lien où on peut les récupérer et si possible, la date de disponibilité de la mesure (données hydrométriques, pluviométriques, piézométriques,

d'humidité du sol, de chimie des eaux souterraines et superficielles...). Recensement également de l'ensemble des forages pétroliers de grande profondeur (avec log stratigraphique disponible) qui nous apportent des renseignements sur la géologie.

Source des données : Hydroscience Montpellier, BRGM/ONEMA, Agglomération de Montpellier/Veolia, Conseil général de l'Hérault, Service de Prévision des Crues, Direction Régionale de l'Environnement de l'Aménagement et du Logement, CNRS, Météo France, ADES, Bassin Rhône Méditerranée, Banque HYDRO...

Dernières avancées concernant l'interface SIG :

- Ajout des forages pétroliers.
- Création (à partir de la BD Carthage, du MNT, et du raster d'accumulation des écoulements issu du MNT) des différents bassins hydrographiques de la zone d'étude.
- Définition de l'appartenance de chaque point instrumenté aux différents bassins hydrographiques pour permettre les recherches par bassin.
- Ajout des couches permettant de se repérer dans l'espace (Fond IGN, Via Michelin ou Google Map).
- Ajout des cartes d'occupation des sols.
- Mise en forme de la carte et des légendes correspondantes aux tables attributaires de chaque point.
- Ajout des liens vers les données d'autres organismes (autres que celles acquises dans le cadre de ce projet).
- Campagne de terrain avec GPS cinématique pour préciser les coordonnées de l'ensemble des points de mesures gérés par HydroScience Montpellier. Au cours de la même sortie, prise de photos de chaque station pour le site internet de la base de données.

Coursha	Source	Sustàna d-	lien	Poncoignoment-
Coucne	Source	système de coordonnées	Lien	Kenseignements fournis
INSTRUMENTATION				
Chimie des eaux souterraines	Informations tirées des différents gestionnaires/producteurs	WGS_1984		Code de la station, nom de la
Chimie des eaux superficielles	Informations tirées des différents gestionnaires/producteurs	WGS_1984		station, type de mesures,
Humidité du sol	Informations tirées des différents gestionnaires/producteurs	WGS_1984		latitude, longitude, gestionnaire
Hydrométrie	Informations tirées des différents gestionnaires/producteurs	WGS_1984		ou producteur, type à appareil, nériode des mesures
Hydrométrie et pluviométrie	Informations tirées des différents gestionnaires/producteurs	WGS_1984		commentaires
Piézométrie	Informations tirées des différents gestionnaires/producteurs	WGS_1984		
Forrages pétroliers	Informations tirées des différents gestionnaires/producteurs	WGS_1984		
Pluviométrie	Informations tirées des différents gestionnaires/producteurs	WGS_1984		
Limite_départements				
Départements	Produit IGN : GEOFL [®] Départements contient la description des départements de la France métropolitaine et des DOM : - Noms et limites de départements - Coordonnées, altitude et statut de la préfecture Supportient et population du département	WG5_1984	http://professionnels.ign.tr /42/produits- gratuits/produits-gratuits-a- telecharger.htm	
	- Code INSEE			
DOCUMENTS HSM				
Principaux cours d'eau_Polyline	Document crée par HSM	WGS_1984		
Principaux cours d'eau et	Document crée par HSM	WGS_1984		
étangs_Polygone				
Formations hydrogeologiques entre Herault et Vidourle	Document cree par HSM a partir de la "Carte hydrogeologique du Languedoc et du Roussillon - MONTPELLIER" (Document CERGA 1978 en collaboration avec le Dr Paloc (BRGM))	WG5_1984		
Villes principales	Document crée par HSM	WGS_1984		
Villes	Document crée par HSM	WGS_1984		
COURS D'EAU_CARTHAGE				
Réseau hydrographique complet	BD CARTHAGE® du Service d'administration nationale des	WGS_1984	http://sandre.eaufrance.fr/	
BASSINS VERSANTS	données et référentiels sur l'éau (Sandre)		article.pnp3?ld_article=15	
Principaux bassins hydrographiques	Bassins versants topographiques généraux, calculés avec ArcGIG à partir du SRTM 90m, version 4 ("NASA Shuttle Radar Topographic Mission"), traité par l'USGS ("United States Geological Survey") et distribué par le CGIAR-CSI ("CGIAR - Consortium for Spatial Information")	WGS_1984		
BASSINS VERSANTS STATIONS				
Bassins hydrographiques (station hydrométriques)	Bassins versants topographique pour chaque stations hydrométrtiques, calculés avec ArcGIG à partir du SRTM 90m, version 4 ("NASA Shuttle Radar Topographic Mission"), traité par l'USGS ("United States Geological Survey") et distribué par le CGIAR-CSI ("CGIAR - Consortium for Spatial Information")	WGS_1984		
OCCUPATION DES SOLS				
Occupation_des_sols_1990	Couche tirée de la base de donnée de l'agence européenne de l'environnement (European Environment Agency (EEA)). "Corine land cover 1990 (CLC1990) 100m - version 12 / 2009"	WGS_1984	http://www.eea.europa.eu/ data-and-maps/data/corine- land-cover-clc1990-100-m- version-12-2009	
Occupation_des_sols_2000	Couche tirée de la base de donnée de l'agence européenne de l'environnement (European Environment Agency (EEA)). "Corine land cover 2000 (CLC2000) 100m - version 12 / 2009"	WGS_1984	http://www.eea.europa.eu/ data-and-maps/data/corine- land-cover-2000-clc2000- 100-m-version-12-2009	
Occupation_des_sols_2006	Couche tirée de la base de donnée de l'agence européenne de l'environnement (European Environment Agency (EEA)). "Corine land cover 2006 (CLC2006) 100m - version 12 / 2009"	WGS_1984	http://www.eea.europa.eu/ data-and-maps/data/corine- land-cover-2006-clc2006- 100-m-version-12-2009	
CONTOUR MER				
Trait de côte	Produit IGN : Laisse des plus hautes mers astronomiques de coefficient 120, avec des conditions météorologiques normales	WGS_1984	http://professionnels.ign.fr /42/produits- gratuits/produits-gratuits-a- telecharger.htm	
SRTM			the Hard State of State	
medhycfinal	SRTM 90m découpé, version 4 ("NASA Shuttle Radar Topographic Mission"), traité par l'USGS ("United States Geological Survey") et distribué par le CGIAR-CSI ("CGIAR - Consortium for Spatial Information")	WGS_1984	http://srtm.csi.cgiar.org/	
flowdirfinal	Direction des flux calculé avec ArcGIS à partir du SRTM 90m découpé, version 4 ("NASA Shuttle Radar Topographic Mission"), traité par l'USGS ("United States Geological Survey") et distribué par le CGIAR-CSI ("CGIAR - Consortium for Spatial Information")	WGS_1984		
Serveur Geosignal	Accès libre WMS de GEOSIGNAL. Afficher les métadonnées du service Géosignal : http://wms.geosignal.fr/	WGS_1984	http://wms.geosignal.fr/	
Pamaraua: La tarritaira da	l'observatoire MEDVCVSS s'étand de l'Hérault s	u Vidourlo		

Architecture de la base de donnée MEDYCYSS :

Remarque: Le territoire de l'observatoire MEDYCYSS s'étend de l'Hérault au Vidourle

3. Amélioration des connaissances géologiques

3.1. INTRODUCTION

Dans le cadre de l'atelier AT1, l'effort a été porté sur l'élaboration de coupes géologiques au niveau de la zone d'étude, afin d'élaborer un modèle géologique 3D. Avant de présenter la démarche utilisée pour réaliser ces coupes ainsi que leur interprétation, un rappel du contexte géologique et de l'évolution du bassin du Sud Est et de la zone languedocienne est effectué. Ensuite, huit coupes géologiques sont décrites ainsi que leurs caractéristiques hydrogéologiques. Finalement, un modèle géologique 3D est présenté.

3.2. RAPPEL DU CONTEXTE GEOLOGIQUE ET RECONSTITUTION DE L'HISTOIRE GEOLOGIQUE DU BASSIN DU SUD-EST ET DE LA ZONE LANGUEDOCIENNE

Cette reconstitution de l'histoire géologique concerne les ères du Secondaire au Quaternaire, en mettant l'accent sur l'évolution des bassins sédimentaires au sein desquels se forment les calcaires et marnes, qui constituent les formations aquifères et aquitards (imperméables) du système karstique du Lez.

SECONDAIRE

Un grand bassin sédimentaire se développe sur le socle érodé, du Trias au Crétacé supérieur. Ce bassin de forme triangulaire (Figure 1) est délimité par des accidents hérités du Paléozoïque : les faisceaux cévenols et ardéchois à l'Ouest de direction NE-SW, les faisceaux duranciens de direction NW-SE et au Sud par une zone continentale élevée (zone haute méridionale) de direction W-E, au niveau de l'actuel Golfe du Lion (Bénédicto, 1996). La zone languedocienne, où se situe notre zone d'étude, est délimitée par la faille des Cévennes et la faille de Nîmes.

Une coupe composite schématique (Figure 2) présente l'ensemble de la série sédimentaire, distinguant les principales unités lithostratigraphiques reconnues sur les bordures et dans le centre du bassin (Baudrimont et Dubois, 1977). Il s'agit d'une série stratigraphique pratiquement continue du Trias à la fin du Crétacé de 160 Ma. La puissance des dépôts dépasse 10 000 m dans les zones les plus subsidentes du bassin et se réduit à 2 500 – 3 000 m sur les bordures. La sédimentation est de type plate-forme – bassin avec des phases d'émersion au niveau de la plate-forme, souvent absentes dans le bassin profond.

La distribution des variations eustatiques est telle qu'elle varie entre 0 m et 220 m du Trias au Sénonien, c'est-à-dire dans la partie transgressive du cycle alpin et de +220 m à -1500 m du Sénonien au Messinien dans la partie régressive du même cycle alpin. La genèse des karsts qui est essentiellement fonction de l'évolution du niveau de base dispose donc d'une « fenêtre à karsts » qui se positionne entre les niveaux de base -1500 m et +220 m NGF sur le seul critère eustatique. Par ailleurs il est clair que les karsts se sont formés pendant les périodes de chute du niveau de base et ont été fossilisés pendant les périodes de montée du niveau de base. La « fenêtre à karst », sur le seul critère eustatique, représente la somme des accommodations karstiques créées dans une série sédimentaire. Elle peut bien sûr évoluer notamment en fonction du paramètre structural qui peut enfouir ou surélever les séries sédimentaires.

Figure 1. Schéma structural du bassin mésozoïque du Sud-Est (Baudrimont et Dubois, 1977) BRGM/RP-60041-FR – Rapport final

Figure 2 : Schéma de la série stratigraphique (Baudrimont et Dubois, 1977)

Par ailleurs, les dépôts de sédiments s'effectuent avec une vergence vers le Nord en ce qui concerne la sédimentation téthysienne (soit du Trias au Crétacé supérieur), témoignant d'un continent au Sud et d'un approfondissement du bassin vers le Nord (Rubino, 2002). Par contre, en ce qui concerne le paléogène, le néogène et le quaternaire, la tendance s'inverse avec cette fois une vergence vers le Sud qui accompagne l'ouverture du Golfe du Lion (Figure 3).

Figure 3. Dépôts sédimentaires (Rubino, 2002 ; Rubino, 2005)

Trias (-250 à -203 Ma)

Régionalement la transgression de la mer triasique sur la pénéplaine anté-triasique vient de l'Est. Il y a une reprise de la sédimentation au Trias moyen (le Trias inférieur manque régionalement) et supérieur en discordance sur le Permien. Le point haut se situe au Sud (Figure 4).

Figure 4. Carte d'isopaques et d'environnement sédimentaire du Trias (Baudrimont et Dubois, 1977)

La présence de roches volcaniques (ophites du Trias pyrénéen) témoigne de la mise en place d'un rift avorté au Trias (point haut au Sud). Un haut-fond existe donc dès le Trias au Sud. Pendant tout le Permien et le Trias inférieur, le niveau marin est relativement constant compris entre 0 et + 50 m. Cette évolution caractérisée ainsi par une stabilité relative du niveau de base se traduit par une absence d'érosion sur le continent et le développement d'altérites sous l'action du climat associées à la création de paléosurfaces. Les dépôts dans le bassin dit sub-alpin sont essentiellement des argilites sulfatées et des sulfates de calcium. Il existe également une couche carbonatée déposée au Trias moyen, appelée barre carbonatée médiane. Du fait de l'absence de variations importantes de la bathymétrie et du faible dépôt de roche calcaire, le Trias se caractérise par un faible développement de karsts. Toutefois une karstification s'est mise en place sur les roches carbonatées anté-triasiques (cambriennes) au niveau du haut-fond des Malines situé au Sud des Cévennes. Par ailleurs, les dépôts d'argilites constituent une couche d'épaisseur assez constante comprise entre 100 et 300 m sur les bordures, pour atteindre rapidement 500 à 600 m et dépasser 1000 m dans le centre du bassin (Figure 4). Ces roches sédimentaires imperméables sont propices aux décollements structuraux et servent de « couches savons » lors des grandes phases structurales pyrénéennes ou alpines.

Jurassique (-200 à -135 Ma)

Durant tout le Jurassique, la forte subsidence du bassin permet l'accumulation de dépôts sédimentaires, installant dans le centre du bassin plus de 12 km de roches sédimentaires alors qu'elles sont évaluées à 1,5 km d'épaisseur sur la plate-forme languedocienne.

Lias

A l'Hettangien, la partie sud du bassin est circonscrite par un haut-fond. La phase transgressive se poursuit lentement, la mer recouvre tout le bassin. On assiste aux dépôts de dolomie et de marnes à anhydrite (Figure 5), sous une faible bathymétrie. Du fait d'une grande homogénéité des épaisseurs de cette formation dolomitique à l'échelle de la plate-forme languedocienne, on peut parler pour cette période d'une phase de subsidence thermique. L'épaisseur de ces sédiments peut atteindre 300 m. Généralement elle évolue entre 200 et 250 mètres.

Figure 5. Puissance et faciès des dépôts de l'Hettangien (Debrand-Passard et Courbouleix, 1984)

De l'Hettangien au Sinémurien, la transgression continue, passant d'un domaine de plateforme interne à un domaine plus ouvert avec des tranches d'eau plus importantes. En bordure de bassin, plusieurs phases d'émersion se succèdent suite à des régressions mineures. On assiste au développement d'une karstification dite superficielle associée à des dépôts minéralisés (Pb, Zn, ...) sur les bordures (Pérrissol, 1990). Aussi des remontées d'eaux thermales provenant des roches de socle s'effectuent au niveau des failles. Les minéralisations se déposent dans les karsts dits pelliculaires situés sur les hauts fonds. Le continent au Sud s'efface à la fin du Sinémurien suite à la crise lotharingienne responsable de l'approfondissement du bassin, en raison d'une subsidence tectonique. A partir du Sinémurien, la sédimentation est marine franche. Les dépôts sont caractérisés par la présence de calcaires, de calcaires argileux et de marnes (Figure 6).

Figure 6 : Carte d'isopaques et d'environnement sédimentaire du Lias calcaire (Lias moyen à supérieur) (Baudrimont et Dubois, 1977)

Dogger

La plate-forme se reconstitue au Dogger et on retrouve le continent au Sud. Une sédimentation de type calcaires et dolomies se met en place sur la plate-forme. Dans le bassin profond, on assiste à des dépôts de marnes et argiles (« Terres noires ») (Figure 7). Au Bajocien-Bathonien des phases d'émersions se produisent au niveau des haut-fonds. Elles sont accompagnées de karstifications intenses associées à des remplissages sédimentaires fortement minéralisés. Au Callovo-oxfordien, une nouvelle émersion est localisée sur le haut-fond occidental, au niveau du seuil Caussenard.

Figure 7 : Jurassique moyen, faciès du Bathonien (Debrand-Passard et Courbouleix, 1984)

Entre le Lias et le Dogger et plus particulièrement au Bathonien moyen, la zone localisée au voisinage de l'actuelle faille des Cévennes est marquée par une phase de distension liée au rifting de la Téthys (Giot et al., 1991). La bordure Cévenole est ainsi nommée « seuil caussenard » ou seuil cévenol au niveau de Madières et de sa ride sédimentaire (Gottis 1957). Elle est caractérisée par une morphologie particulière dissymétrique très caractéristique (Figure 8). Du Lias supérieur au Jurassique moyen la sédimentation est caractérisée par des domaines sédimentaires très différenciés (Dubois et al. 1975) :

- le domaine de bassin (situé au niveau de l'actuelle faille de Nîmes) est caractérisé par la très forte épaisseur des dépôts et des successions de séquences régressives marnes – calcaires marneux ;
- le domaine plate-forme externe, avec des épaisseurs plus réduites, présente des séquences de même type ;
- le seuil cévenol se marque par une forte dénivellation, assurée par le jeu des failles de la Bordure cévenole. En position haute, ce seuil présente des érosions du Lias inférieur, la lacune du Lias supérieur et la forte réduction du Dogger ;
- en arrière du seuil Cévenol, le bassin des Causses présente un Lias inférieur bien développé et de type marin ouvert.

Figure 8. Evolution des dépôts du Lias supérieur au Dogger (Dubois et al., 1975)

<u>Malm</u>

La base du Jurassique supérieur (Oxfordien inférieur) est constituée, dans le bassin, de marnes (faciès Terres Noires) pouvant atteindre des épaisseurs considérables de plus de 2 000 m au cœur du bassin alpin (Figure 9). Cette période a été en effet accompagnée d'une forte subsidence tectonique. A l'Oxfordien moyen, la subsidence tectonique évolue vers une subsidence thermique. La sédimentation est alors de type plate-forme avec des calcaires, marno-calcaires et des calcaires argileux. Les épaisseurs sont également conséquentes

Figure 10).

La régression à l'Oxfordien, entraîne des émersions locales et de la karstification sur le hautfond au niveau du seuil Caussenard et également sur le haut-fond Sud. A la fin du Dogger on souligne la présence d'une oolithe ferrugineuse associée à une dalle nacrée.

Le Jurassique supérieur se caractérise, notamment au Tithonien, par la présence d'un récif corallien qui se développe sur tout le pourtour du bassin sub-alpin. Il souligne ainsi toutes les structures de haut-fond existantes à la périphérie du bassin, notamment au Sud, sur l'emplacement actuel du Golfe du Lion.

Figure 9.Carte d'isopaques du faciès Terres Noires du Jurassique (Baudrimont et Dubois, 1977)

Figure 10. Carte d'isopaques et environnement du faciès calcaire (Jurassique supérieur) (Baudrimont et Dubois, 1977)

Crétacé (-135 à -65 Ma)

Au Crétacé inférieur, la position du bassin est modifiée. Il y a un passage du bassin Sub-Alpin au bassin dit Vocontien. Ce dernier s'individualise suite à un approfondissement, et à un début de réduction du bassin du Sud-Est. En Languedoc, la sédimentation est en aggradation verticale caractérisée par des faciès calcaires et calcaréo-marneux alternant sous une bathymétrie n'excédant pas 150 m (hauteur de la dune hydraulique de l'Hortus au Valanginien). La région des Causses (située en position de plateforme interne au Jurassique) est désormais pratiquement aérienne, avec les premières bauxites dans la région de Bédarieux. Il s'agit d'une période calme, le niveau marin est constant. Il n'y a pas d'incision majeure sur le continent. On assiste à la formation d'altérites à partir des roches du crétacé inférieur, notamment au niveau de Bédarieux.

Dans le bassin profond, les séries argilo-calcaires peu épaisses s'empilent (inférieure à 500 m). Le domaine de plate-forme externe est constitué à la base des niveaux argileux et au sommet de calcaires.

La zone située à l'Ouest de Montpellier (vallée de l'Hérault, Villeveyrac) pourrait être émergée. Elle présente une lacune sédimentaire (érosion ou non dépôt). Cette région est ainsi marquée dès le Crétacé inférieur par une lacune de roches sédimentaires. La karstification des calcaires jurassiques dans cette zone est ainsi rendue possible dès le Crétacé. Des karsts avec remplissage de bauxite attribués à un intervalle stratigraphique entre l'Albien et le Cénomanien ont été retrouvés notamment au niveau du bassin de Villeveyrac où ces remplissages de bauxite ont été préservés de l'érosion grâce aux dépôts de sédiments postérieurs dans le bassin continental.

Figure 11. Carte d'isopaques et environnement sédimentaire au Néocomien supérieur (Baudrimont et Dubois, 1977).

Au Crétacé moyen, l'ouverture du Golfe de Gascogne engendre la rotation du bloc Ibérique vers l'Est. Cette rotation se fait grâce à un décrochement sénestre le long de la faille nord-pyrénéenne de 200 à 400 km d'amplitude (Olivet et al., 1984 ; Olivet et al., 1992). Elle est accompagnée d'un amincissement crustal important le long de la faille nord-pyrénéenne, ce qui a conduit au développement de bassins et de rides d'orientation est-ouest. La formation de ces rides à la fin du Néocomien a conduit à l'émersion de « l'Isthme durancien » sous un climat aride, propice au piégeage de bauxites développées aux dépens d'altérites formées dès la fin du Jurassique. On retrouve une période aggradante (le Crétacé inférieur), significative d'une période de non incision avec création d'une paléosurface (la surface des causses) et la genèse d'altérites associées à l'évolution du climat de l'époque. Cet isthme durancien de

direction est-ouest s'étend depuis l'ancien haut-fond du moyen Verdon jusqu'au haut-fond Occitan et même plus loin encore vers l'Ouest jusqu'en Ariège.

Figure 12. Carte d'isopaques et environnement sédimentaire du Crétacé moyen post-Urgonien (Baudrimont et Dubois, 1977)

La région est ainsi constituée de deux zones de type « bassin » séparées par l'Isthme durancien émergé : au Sud, la zone sud-provençale et au Nord, la zone vocontienne (Figure 12). L'épaisseur des dépôts est faible dans les deux secteurs (moins de 600 m). La sédimentation est de type carbonatée dans la zone de plate-forme externe et argileuse dans le bassin. A la fin du Crétacé « moyen », on assiste à un relèvement de la marge méridionale interrompant la sédimentation de type marin ouvert dans la zone sud-provençale. Le domaine marin persiste dans la zone Vocontienne.

Le Crétacé supérieur est marqué par le début de la phase pyrénéenne. Elle fait suite à la collision entre l'Espagne et l'Europe. On assiste alors à l'émersion du domaine pyrénéen (situé au Sud). Durant tout le Crétacé supérieur, la partie Sud de la zone languedocienne est émergée (région Nîmes-Montpellier) permettant l'érosion et la karstification des roches sédimentaires du Jurassique et du Crétacé. Une importante sédimentation se poursuit dans le bassin vocontien. La partie Nord de la zone Languedocienne est concernée. Plus de 1 500 m de dépôts de milieu de plate-forme externe et de bordure littorale sont piégés. Une

sédimentation continentale se produit au niveau des bassins syn-orogéniques (bassin de Villeveyrac et synclinal de l'Arc). Ces bassins (notamment celui de Villeveyrac) se remplissent de sédiments du Rognacien de type conglomérats et cônes alluviaux provenant de l'érosion de la zone pyrénéenne au Sud.

Figure 13. Carte d'isopaques et environnement sédimentaire du Crétacé supérieur anté-Campanien (Baudrimont et Dubois, 1977).

Le bassin vocontien au Crétacé supérieur apparaît comme un bassin en cours de tectonogenèse dont la phase de paroxysme au Bartonien en Languedoc entraîne l'émersion définitive. Au Sénonien l'eustatisme est à son plus haut niveau soit + 220 à + 250 m NGF. Le toit du Causse présente des « restites » du Sénonien, attestant ainsi que la position du toit du Causse à cette époque était au moins à cette altitude. Cette remarque est importante quand on sait qu'actuellement la surface des Causses évolue entre + 700 et + 900 m NGF.

TERTIAIRE (-65 à -2 Ma)

L'ère tertiaire contrairement à l'ère secondaire va subir de grands bouleversements tectoniques associés à la structuration des Pyrénées, des Alpes et à l'ouverture du Golfe du Lion. Par ailleurs, cette période s'accompagne d'une diminution constante du niveau marin qui passe de + 220 m NGF à la fin du Crétacé aux environs de 0 m NGF à la fin du Tertiaire. Par

ailleurs au cours de cette ère, la crise messinienne prend place avec pour conséquence la chute du niveau de base à -1500 m. Au cours des périodes glaciaires, le niveau de base va chuter à plusieurs reprises à -120m NGF.

A partir du Paléocène, toute la zone est émergée, les sédimentations sont de type continental. L'érosion et la karstification de l'ensemble de la zone languedocienne sont donc possibles.

L'Eocène est marqué au niveau régional par le « chevauchement dit de Montpellier » (décollement au niveau des sédiments du Trias), et par la formation de plis d'axe Est-Ouest. La faille des Cévennes joue également à cette époque (jeu éocène-oligocène moyen Bodeur, 1976). La tectonique compressive accompagnée de la diminution du niveau marin est responsable de l'accroissement du potentiel de karstification sur cette région, en particulier au niveau de la zone pyrénéenne.

Figure 14. Schéma structural de la zone languedocienne.

L'Oligocène se caractérise par l'ouverture du Golfe du Lion. Il s'agit d'une phase extensive (rifting). Les failles compressives de l'Eocène rejouent en failles listriques. Cette phase de rifting engendre la création de bassins adjacents aux accidents majeurs (bassin de l'Hérault, plaine de la Vistrenque). Le remplissage des bassins s'effectue en même temps qu'ils subsident sous l'action de la tectonique et du poids des sédiments (= remplissage synrift). La subsidence tectonique laisse ensuite place à une subsidence thermique. La plaine de la Vistrenque est ainsi constituée de 7 000 m de remplissages sédimentaires déposés sous faible tranche d'eau.

A l'Oligo-Miocène, il existe sur la bordure du Causse un « Uplift » qui a pour conséquence la remontée des Causses passant de + 250 m NGF (Crétacé supérieur) à + 400 m NGF à la fin du Miocène moyen. Cette estimation est calculée en retirant à l'altitude actuelle des Causses (+700 à +900 m NGF) la valeur correspondant à l'uplift de la phase tortonienne soit 300 m (Ambert, 1984).

L'évènement eustatique majeur du Miocène en matière de karstification et d'évolution du niveau de base est la crise de salinité du Messinien. Elle est liée à la fermeture structurale du détroit entre l'Atlantique et la Méditerranée, suite à la remontée de la plaque Africaine, le détroit de Gibraltar. L'apport des fleuves au bassin méditerranéen étant inférieur à l'évaporation du plan d'eau, l'isolement de la Méditerranée a conduit ainsi à son assèchement.

Ceci s'est traduit par une chute du niveau marin supérieur à 1 500 m (Ryan, 1976 ; Clauzon, 1982). La communication avec l'Atlantique est rétablie 500 000 ans plus tard, grâce à la réouverture du détroit de Gibraltar. La durée de cet épisode et les conditions climatiques de l'époque étaient favorables au développement de la karstification. L'abaissement de plus de 1 500 m a ainsi créé un potentiel de karstification phénoménal qui non seulement a créé des réseaux karstiques mais a aussi réactivé tous les réseaux karstiques développés dans les calcaires téthysiens depuis le Trias voire le Paléozoïque. Cette crise est ainsi responsable du creusement de canyons, des changements d'orientation des drains et des galeries et des creusements de réseaux verticaux profonds dans le karst (Blanc, 1995). La zone languedocienne a ainsi été soumise à cet énorme potentiel de karstification. Les calcaires jurassiques et crétacés ont donc pu être karstifiés à d'importantes profondeurs et jusqu'à des distances en mer très éloignées du rivage actuel. La remontée de la Méditerranée à la fin de la crise conduit tout d'abord à l'ennoiement de certains réseaux et également à leur colmatage partiel.

Enfin, on assiste, en Languedoc, aussi au poinçonnement de la couverture sédimentaire mésozoïque par le massif des Cévennes au Miocène supérieur (décalage de la paléosurface fondamentale) et à un uplift généralisé évalué entre 200 et 300 m selon les endroits (Ambert 1984).

QUATERNAIRE

Le Quaternaire est marqué par des chutes eustatiques pouvant atteindre – 120 m NGF. Egalement conséquentes, elles permettront la mise en place de karstifications récentes ou la réactivation de réseaux profonds hérités de la crise messiniene.

En résumé

Du Trias au Jurassique, la zone Languedocienne est entièrement submergée. Les variations eustatiques sont faibles et la région connaît une période tectonique calme essentiellement subsidente. Les dépôts d'argilites sulfatées et à sulfate de calcium du Trias moyen et supérieur interviennent en discordance sur le Permien. Leur épaisseur est comprise entre 100 et 300 m sur les bordures et dépassent 1 000 m au cœur du bassin sub-alpin. Au Jurassique les dépôts sont de type calcaire, dolomie et calcaire argileux au niveau de la plate-forme et marneux dans le bassin profond. La forte subsidence permet l'accumulation de plus de 12000 m de sédiments au cœur du bassin. Du Trias au Jurassique, les variations eustatiques sont de faible amplitude ; seules les zones proches des hauts-fonds sont affectées par des émersions lors des régressions marines (de faibles amplitudes). Il s'ensuit une érosion et une karstification sur ces zones. Elles restent faiblement développées spatialement.

Au Crétacé, la position du bassin est modifiée, on passe du bassin sub-alpin au bassin dit Vocontien. La sédimentation est de type argilo-calcaire. Les zones des Causses et sudlanguedocienne sont émergées. Il se produit alors de l'érosion et un développement de la karstification sur ces zones. Des bassins continentaux se mettent également en place au Crétacé supérieur. Dans le bassin, la sédimentation se poursuit. On assiste à une migration vers le nord du bassin au Crétacé supérieur. La région nîmoise est ainsi submergée au Crétacé inférieur puis émergée au Crétacé supérieur, permettant ainsi le développement de la karstification des calcaires du Crétacé dès cette période. A la fin du Crétacé le bassin est totalement émergé. Le Tertiaire est caractérisé par de grands bouleversements tectoniques, avec d'abord à l'Eocène une phase compressive associée à la structuration des Pyrénées. Elle aura pour conséquence d'abord la formation de reliefs et ensuite le développement de la karstification des roches jurassiques et crétacées. Il s'ensuit une phase de rifting à l'Oligocène liée à l'ouverture du Golfe du Lion, durant laquelle les bassins sédimentaires se remplissent.

Au Miocène, suite aux événements tectoniques alpins et à la crise de salinité du Messinien, le potentiel de karstification atteint son paroxysme. Il laisse entrevoir la formation de karsts très profonds sous le niveau de la mer actuel et sur toute la région jusque probablement très loin du rivage actuel.

Enfin, au Quaternaire, les variations eustatiques liées aux glaciations, ont également permis le développement de la karstification de cette région. Cette dynamique réactive sans aucun doute les anciens réseaux karstiques, notamment ceux hérités de l'événement messinien.

3.3. ELABORATION ET INTERPRETATION DE COUPES GEOLOGIQUES

3.3.1. Les concepts et les choix géologiques

La réalisation de huit coupes traversant la zone d'étude, autour de l'aquifère karstique du Lez se base sur de nombreux documents bibliographiques. Les principaux documents utilisés sont en premier lieu les cartes géologiques et logs lithostratigraphiques existants, les cartes paléogéographiques du Trias au Crétacé inférieur (cf chapitre 3.2. ci-dessus), les données de la banque du sous-sol (B.S.S.) gérée par le BRGM (avec les logs de forages en particulier et les niveaux piézométriques) et des documents inédits disponibles au BRGM.

Dans les paragraphes suivants, les principaux éléments utilisés pour l'élaboration des coupes géologiques sont présentés :

• Le log stratigraphique réalisé par P. Bérard en 1983

Ce log stratigraphique associé au tableau ci-dessous résume l'attribution stratigraphique, les faciès lithologiques ainsi que les épaisseurs respectives des formations de la quasi-totalité de la couverture sédimentaire comprise entre le Lias et le Quaternaire. Cette couverture sédimentaire débute par une épaisse série considérée comme imperméable (évaporites) déposée au Trias, qui est surmontée par les premiers dépôts calcaires de l'Hettangien jusqu'au Carixien (Lias calcaire), eux-mêmes surmontés par des dépôts, imperméables, relativement importants rattachés au Lias supérieur (soit Lias marneux). Le réservoir principal du système karstique de la source du Lez est constitué des calcaires et dolomies du Jurassique moyen (Aalénien sup. à Bathonien) ainsi que des calcaires argileux et calcaires massifs du Jurassique supérieur (Argovien à Tithonien). Ces deux formations aquifères sont séparées par la série callovo-oxfordienne considérée comme imperméable, mais pouvant permettre une relation hydraulique entre les deux par drainance, voire à la faveur de discontinuités (failles).

Les dépôts, dits du « mur imperméable », (Lias marneux à Aalénien sup.) sont d'épaisseurs considérables (100 à 400 m) et constituent la base de l'aquifère du Jurassique. Des connexions entre l'aquifère inférieur qui se développe dans les formations calcaires du Lias pourront être envisagées en analysant la géométrie des aquifères, le rôle des accidents structuraux pouvant mettre en relation les aquifères, ainsi qu'à l'aide d'éléments géochimiques. Le « toit imperméable » de l'aquifère du Jurassique est constitué par l'épaisse série du Valanginien inférieur (200 à 800 m) constituée de marnes et de marno-calcaires. De petits aquifères, dits « secondaires » existent dans les séries postérieures au Valanginien inférieur jusqu'au Lutétien.

Les cartes géologiques de Montpellier et de Marseille au 25 000 ème

Figure 17 : Extrait des cartes géologiques de Montpellier et de Marseille au 250000e (édition BRGM)

Associée aux cartes géologiques au 50000^e et à d'autres documents (coupes, bibliographie, B.S.S., etc..), ces cartes constituent un outil essentiel afin de mettre en évidence la géométrie des grands ensembles sédimentaires à l'affleurement, ainsi que des structures, et de prendre en considération les jeux des grands accidents structuraux dans la mise en place des formations sédimentaires.

• Carte géologique et structurale au 1000000^e éditée en 2003, puis interprétée

Figure 18 : Extrait de la carte géologique et structurale, 2003 (édition BRGM)

Les principaux accidents structuraux qui affectent le sud de la France sont reportés sur cette carte (Figure 18). La zone d'intérêt se situe entre la faille de Nîmes et la faille des Cévennes, au nord du « Pli de Montpellier ». Ce pli se compose de plusieurs fronts qui s'appuient les uns sur les autres. Le premier front du pli de Montpellier est très bien cartographié, le second correspondant sensiblement à l'actuel trait de côte. De plus, le poinçonnement, au Tortonien, de la couverture sédimentaire par le socle au niveau des Cévennes et de la Montagne Noire est bien mis en évidence.

• La coupe schématique du Languedoc montpelliérain avant le Crétacé moyen, réalisée par Y. Bodeur et modifiée en 2010

Figure 19 : Schéma général du Languedoc avant le Crétacé moyen, Bodeur inédit et modifié 2010

Ce schéma indique la géométrie du récif tithonien. Les dépôts du Dogger viennent sceller les structures antérieures. La formation du récif, initiée au Kimméridgien supérieur et prolongée au Tithonien, se positionne sur le seuil Caussenard à l'aplomb de la faille des Cévennes. Les calcaires déposés en agradation-progradation d'une épaisseur importante (jusqu'à 700m) constituent la cible pour le développement de la karstification. L'aquifère principal de la source du Lez se développe au sein de ces formations du Jurassique moyen et supérieur. La paléo-topographie jurassique est acquise au Kimméridgien supérieur avec la mise en place d'une tectonique gravitaire. Les formations du Berriasien et du Valanginien reposent en « on-lap » sur les formations du Jurassique supérieur.

Au sommet du Roc blanc (Montagne de la Séranne) une bute témoin de Valanginien est présente sur les cartes géologiques, ce qui prouve que toute l'accommodation acquise à la fin du Jurassique est comblée et que les sédiments crétacés envahissent légèrement l'ancienne plate-forme interne.

Plusieurs structures sédimentaires, comme les turbidites, les chenaux ou encore les slumps, sont des témoins de dépôts gravitaires sur pente.

Les dépôts de l'Hauterivien viennent, au niveau de la faille des Matelles-Corconne, former une dune hydraulique en aggradation verticale.

Après ces derniers dépôts crétacés une longue période de non érosion prend place, avec une paléo-surface associée.

• La carte paléogéographique du Tithonien supérieur, réalisée Y. Bodeur et al. en1984

Figure 20 : Extrait de la carte paléogéographique du faciès du sommet des séries du Portlandien supérieur (BRGM éditions)

De toutes les cartes paléogéographiques étudiées pour cartographier et connaître la nature des sédiments de la couverture sédimentaire, celle-ci est probablement la plus importante (Figure 20) car elle a permis de cartographier assez précisément la position actuelle de la langue du récif déposé au Tithonien supérieur. Sa forme en « banane » (en jaune sur la figure ci-dessus), débute au nord par une direction N 20 puis se courbe autour d'un point qui se situe presque au niveau de la source du Lez pour finir avec une direction quasiment N 90. Les calcaires subrécifaux alors déposés, ont de par leur nature, un grand potentiel de karstification.

Les dépôts de plate-forme interne subiront une dolomitisation secondaire et seront, dans une moindre mesure, eux aussi karstifiables. Les calcaires plus fins déposés sur la plate-forme externe et dans le bassin sont eux aussi moins karstifiables que les dépôts subrécifaux. Cependant, cet ensemble reste l'un des dépôts calcaires de la région, et constituent avec l'aquifère du Jurassique moyen, l'aquifère principal de la source du Lez.

On remarque au NW de la carte, le jeu de la faille des Cévennes, qui décale, en décrochement senestre au cours de la phase pyrénéo-alpine, cet ensemble de dépôts sédimentaires. Suite à l'examen de cette faille sur les cartes géologiques, on peut noter la présence de formations du Trias intercalées au niveau de la faille, qui pourrait jouer le rôle de barrière imperméable entre les deux blocs.

• La coupe de la carte géologique de Montpellier au 50000^e.

Au centre de la coupe (Figure 21), la structure du « Pli de Montpellier » est bien visible. Ce pli a permis le décollement de la couverture sédimentaire au niveau du Lias. Sa flèche grâce au sondage de Murviel-les-Montpellier a été mesurée à au moins 6 km. Ainsi, il est possible d'observer que la série Triasique (évaporitique) a encaissé les déformations, s'épaississant par endroit et s'amincissant à d'autres. Des déformations du même type se retrouvent au niveau des séries du Lias marneux au niveau de Viols-le-Fort ainsi qu'au sondage de Murvielles-Montpellier où ces séries sont plus épaisses. On peut évoquer le possible redoublement de séries. D'autres structures de déformations dues à l'évènement compressif pyrénéo-alpin sont également bien représentées : le Causse de Viols-le-Fort, même si les séries au NW de la faille ne sont pas très verticales, et le horst de la Gardiole en duplex. De plus, on peut également observer sur cette coupe, l'enracinement dans le socle des grands accidents structuraux comme les failles principales. La grande faille au centre de la coupe a joué au cours de l'évènement distensif au moment de la formation du golfe du Lion. Il est possible de penser que certaines failles au jeu inverse au moment de la compression pyrénéenne ont été réactivées en failles normales au moment de la formation du golfe du Lion.

Figure 21 : Coupe interprétative de la carte géologique de Montpellier au 50000^e

Les profils sismiques du bassin de l'Hérault interprétés par Maerten L.

Figure 22 : Profils sismiques du bassin de l'Hérault interprétés par Maerten

Ces profils sismiques (Figure 22) qui ont été interprétés par L. Maerten ont permis de comprendre la structure du bassin de l'Hérault. Au NW de chacune des coupes, les marches de socle associées à de nombreuses failles s'enracinant dans le Trias ou le Lias marneux ont permis l'effondrement de la couverture sédimentaire. Au SE, c'est l'évènement compressif qui est le mieux représenté structuralement. Effectivement, de nombreuses failles inverses de chevauchement permettent l'empilement de plusieurs blocs les uns sur les autres.

• L'interprétation des bassins d'effondrements d'après A. Benedicto

Les travaux de Bénédicto ont permis de comprendre la mise en place du point de vue structural des bassins d'effondrement présents sur la zone d'étude, comme le bassin des Matelles situé au Nord de la source du Lez.

Les nombreuses coupes réalisées par Bénédicto sont essentielles à la compréhension, comme celle présentée ci-dessous, pour laquelle l'hypothèse formulée par l'auteur, est que certains de ces bassins, au droit de failles majeures, se comportent comme des synclinaux sur rampes. Ainsi, au paroxysme de l'effondrement, une partie de la couverture du bloc immobile se détache et tombe dans la partie gravitée jusqu'à la combler.

Figure 23: Schéma explicatif des synclinaux sur rampe (Bénédicto, 1996)

Sur ces coupes, la partie coiffant le bloc NW se détache et s'effondre dans le bloc basculé. Ce phénomène est vérifié, par des analyses de terrains : dans le bassin des Matelles plusieurs petits bassins sont empilés les uns sur les autres ; ils sont composés de séries qui se retrouvent en profondeur, comme dans le cas d'un chevauchement classique.

3.3.2. Description détaillée et interprétation des coupes géologiques

Huit coupes interprétatives de toute la couverture sédimentaire Secondaire, Tertiaire et Quaternaire reposant sur le socle d'âge Primaire ont été réalisées ; elles sont reportées sur la figure ci-dessous (Figure 24). Ces coupes sont sériées afin de rendre compte du mieux possible les objets géologiques, de tous types et de toutes tailles, dans les trois dimensions spatiales. Cinq coupes recoupent la zone transversalement et sont de direction NW-SE. Elles mesurent chacune entre 30 et 60 kilomètres de long. Trois sont longitudinales à la zone de direction SW-NE et mesurent entre 50 et 60 kilomètres.

Ces coupes ont été réalisées en prenant en considération l'ensemble des éléments méthodologiques présentés ci-dessus. Elles tentent de traduire les géométries créées au cours de l'histoire tectono-sédimentaire de la région du Languedoc.

Pour chacune des huit coupes présentées, le lien entre structures géologiques et hydrogéologie à l'échelle considérée est rappelé, ainsi que les conséquences de la géologie sur la vulnérabilité de l'aquifère ; les illustrations sont données en annexe sur 8 planches distinctes.

Figure 24 : Carte de localisation des coupes sériées

Coupe interprétative AB, de direction NW-SE, entre la ville de Sète et le village d'Adissan (cf. Planche 1)

Sur la partie SE de la coupe, sur tout le bloc chevauchant, on remarque, l'ampleur considérable du pli de Montpellier du point de vue tectonique. Alors que le chevauchement se poursuit dans le golfe du Lion, il s'étale ici déjà sur près de 30 kilomètres. Il est formé de plusieurs lignes de chevauchements profitant de failles, plus ou moins listriques à grande échelle, bien ancrées dans le socle. On distingue, grâce à la structure actuelle, d'une part les effets de l'évènement compressif qui ont amené toute la couverture sédimentaire à ce chevauchement dans le sens de la poussée pyrénéo-alpine et d'autre part la période d'effondrement qui a permis le démantèlement de cette couverture lors de l'ouverture du golfe du Lion.

Sur le premier chevauchement de socle, au SE, on devine un léger dépôt en on-lap des séries du Lias calcaire sur le socle à cette époque lié probablement au profil de dépôt créé par la zone haute méridionale.

La montagne de Sète se trouve à la limite d'un duplex affectant, ici, les séries du Jurassique supérieur.

Au centre, on distingue un bassin de sédiments lacustres déposés au Maastrichien. Ce bassin abritant aujourd'hui l'étang de Thau, s'est formé dans un grand synclinal datant du début de la phase pyrénéenne qui s'est plissé au cours de l'évolution de la poussée. C'est ce plissement qui peut être à l'origine de l'éffondrement des sédiments, ce qui explique l'épaisse série de

Crétacé supérieur assez inhabituelle dans la région et en désaccord avec les épaisseurs d'autres bassins d'âge Maastrichien à proximité.

Au niveau du bassin de l'Hérault, on devine légèrement l'évènement compressif qui est, en quelque sorte, masqué par l'épisode méditerranéen. Cet évènement a permis, à plusieurs gros blocs de s'effondrer grâce à de grandes failles normales induites ou simplement réactivées par des marches de socle, en glissant sur l'épaisse série triasique ; ces blocs viennent se pincer contre le pli de Montpellier. Certaines grandes failles normales normales viennent s'ancrer dans la série basale évaporitique. C'est l'épaisseur considérable et la compétence de ce matériel qui a permis à ces failles de venir s'enraciner à ce niveau sans trop affecter le socle.

Contrairement aux coupes de Maerten, sur cette coupe interprétative, les blocs chevauchants du bassin de l'Hérault ne font pas partie intégrante du pli de Montpellier ; ils n'en sont que les conséquences. En effet, d'après le tracé cartographique précis de ce pli, les coupes des cartes géologiques de Montpellier et de Saint-Chinian (édition BRGM), et les cartes inédites du rapport Géotherma, on constate que ces chevauchements sont situés loin de la limite du front du pli de Montpellier. Ainsi, nous avons pensé qu'il était préférable d'imaginer cette structure complexe, comme étant le bord du bloc non chevauché, légèrement déformé par la compression mais ne faisant pas partie intégrante du bloc chevauchant. Cette hypothèse reste cependant à être vérifiée.

A l'extrême NW de ce bassin, sur les piémonts cévenols, c'est l'évènement tortonien qui aurait permis au socle de poinçonner la couverture, la série triasique ayant servi de couche de décollement.

Le remplissage tertiaire a permis aux sédiments continentaux voir lacustres de combler les zones basses, comme c'est le cas des bassins de l'Hérault et de Thau. Ces zones basses résultent à la fois de l'évènement compressif et de l'évènement distensif qui ont affecté la région. Le remplissage a permis un aplanissement de la topographie en scellant certaines limites tectoniques et certaines failles.

Hydrogéologie :

Sur cette coupe la seule partie aquifère en liaison probable avec le système du Lez se trouve dans les séries karstiques jurassiques du bassin de l'Hérault. Elles peuvent s'enfoncer jusqu'à presque 2000 mètres de profondeur.

Coupe interprétative CD, de direction NW-SE, entre le village de Montpeyroux et le village de Villeneuve-les-Maguelones (cf. Planche 2)

Cette coupe interprétative, de direction NW-SE, se situe entre le bassin de l'Hérault et la bordure nord du massif de la Gardiole.

On retrouve la même structure que sur la coupe précédente, au niveau du bassin de l'Hérault et du poinçonnement des Cévennes. Les failles s'enracinent aussi dans le Trias et les blocs chevauchés au SE ne font pas partie du bloc chevauchant. Ce dernier, composé du front du pli de Montpellier, du bassin de Montbazin et du massif de la Gardiole rend bien compte de l'histoire géologique complexe qui a affecté la région, aussi bien au niveau de l'évènement compressif que distensif, et des différentes périodes de dépôts. Les redoublements de séries dans le Toarcien et le Domérien sont, eux, typiques de la période de formation de la chaîne des Pyrénées. Ils sont, entre autre, responsables de l'affleurement des dépôts aaléniens.

Dans le bassin de l'Hérault, les séries du Crétacé supérieur et de l'Eocène sont déposées de manière syntectonique à la formation des Pyrénées. Puis ce sont des dépôts plus importants entre l'Oligocène et la fin du Tertiaire qui ont comblé totalement le bassin.

La grande faille listrique correspond à l'accident majeur du front du pli de Montpellier. Elle découpe la couverture sédimentaire et forme une épaisse semelle de décollement constituée par tous les débris sédimentaires sur le plan de chevauchement. Sur cette coupe, cette semelle se retrouve à l'affleurement.

Le bassin de Montbazin a été créé par l'action de deux failles normales donnant lieu à un grand vide immédiatement comblé par des sédiments tertiaires.

<u>Hydrogéologie :</u>

Au nord et au sud du pli de Montpellier, on retrouve les mêmes formations aquifères que celles associées au système karstique du Lez, à l'affleurement ou sous couverture miocène comme dans le cas du bassin de Montbazin. Peu de connections hydrauliques sont supposées entre la partie Nord du pli de Montpellier et sa partie sud ; toutefois, des travaux récents à l'échelle de l'hydrosystème karstique localisé entre l'hérault et le Vidourle (Mazzilli, 2011) ont montré qu'il était nécessaire de considérer un flux moyen de l'ordre de 500l /s au niveau du pli ouest de Montpellier pour pouvoir expliquer l'évolution temporelle de la piézométrie et des flux au nord du pli de Montpellier.

Coupe interprétative EF, de direction NW-SE, entre le village de St Maurice-Navacelles et le village de Lattes (cf. Planche 3)

Cette coupe fait une première intrusion à travers les calcaires affleurants, constitutifs du système karstique du Lez. Elle est située au niveau de la bordure sud des garrigues nord-montpelliéraines.

Les accidents sont plus nombreux. On en retrouve dans le socle, mais certains n'affectent que la couverture. A l'extrémité NW, l'épaisse série de calcaires massifs du Jurassique supérieur forme un relief topographique appelé la montagne de la Séranne. Ce relief est séparé du reste par une langue de Trias mise en surface par de nombreux accidents et à cause de l'évènement tortonien. Sur la carte géologique au 250000^e, cette langue de Trias n'a pas grande raison d'exister à cet endroit précis, mis à part si elle est liée à la surrection des terrains d'âge primaire plus au SW.

Plus au SE, après la montagne de la Celette, l'importante faille a permis au cours de son jeu inverse la formation de cet anticlinal au niveau du village de Viols-le-Fort. Des forages ont permis de mettre en évidence les redoublements de séries toarciennes et domériennes. Cet anticlinal déversé vers le NW et faillé permet aujourd'hui aux terrains du bloc chevauché d'être, localement, en position verticale. La variation latérale d'épaisseur des séries du Dogger qui au niveau du village de Viols-le-Fort peuvent atteindre plus de 800 mètres, est bien visible à cet endroit de la coupe.

Au centre de la coupe, on remarque l'épaisseur considérable des séries triasiques. Elles se situent au niveau de l'ancien dépôt-centre comprenant jusqu'à 900 mètres de matériel. Par la suite, cette épaisse série, peu compétente, a permis d'encaisser de nombreuses déformations et l'ancrage de nombreuses failles. On retrouve des redoublements de séries dans les horizons toarciens et domériens.

Au niveau du bassin de Saint-Gély-du-Fesc, les formations aquifères passent sous couverture. Le bassin, grâce à l'important jeu de faille, est comblé par des sédiments

tertiaires. Comme les nombreux bassins qui l'entourent, le jeu des failles responsables du remplissage tertiaire a donné lieu à des bassins dissymétriques, se remplissant à l'accommodation, et donc de façon plus importante au bord des failles.

Puis toujours sous couverture, on retrouve le chevauchement du pli de Montpellier. Les blocs chevauchants encore en position compressive ont permis l'accumulation de dépôts syntectoniques du Crétacé inférieur au droit des failles inverses. Ils sont caractérisés par des dépôts plissés sur les blocs effondrés.

L'événement distensif est peu exprimé au niveau de cette coupe. Cependant, on peut penser que le jeu des failles lors de l'orogenèse pyrénéenne a été bien supérieur à celui qui a pris place lors de la réactivation de ces dernières permettant l'effondrement de la chaîne pyrénéenne. Les chevauchements affectent toute la série et s'ancrent dans le socle comme sur les coupes précédentes. Sur le gros bloc SE, l'épaisseur du Dogger est très importante ; elle dépasse pratiquement les 1000 mètres. A noter que ces terrains du fait de leur position ne sont pas en relation avec le système aquifère du Lez.

Hydrogéologie :

Les formations aquifères associées au système karstique du Lez sont représentées principalement sur la partie NW de la coupe avec l'épaisse série des calcaires dolomitiques du Dogger et les calcaires massifs du Tithonien. Peu de connections hydrauliques supposées avec le Lias calcaire sont visibles sur cette coupe, mis à part au niveau de la faille n°2, dont le jeu aurait potentiellement permis la connexion directe des deux horizons aquifères.

Coupe interprétative GH, de direction NW-SE, entre le village de St Etienne d'Issansac et le village de Marot (cf. Planche 4)

Au NW de cette coupe, on voit bien la variation latérale d'épaisseur des séries du Jurassique supérieur, induite par le paléo-profil de dépôt. Au niveau de l'ancienne crête récifale les calcaires massifs peuvent dépasser les 700 mètres d'épaisseur. De part et d'autre, les dépôts sont moins importants, au NW ils correspondent aux dépôts de plate-forme interne et au SE aux dépôts de plate-forme externe de pente puis de bassin. Plus en profondeur la série de calcaires dolomitiques du Bathonien diminue selon une direction NW-SE. A partir du bassin de Saint-Martin-de-Londres, le Dogger ne dépasse pas les 500 mètres d'épaisseur.

Ce bassin a été créé suite au chevauchement des séries du SE donnant lieu à un anticlinal déversé vers le NW et permettant l'accumulation dans cette zone de matériel secondaire et tertiaire.

Le Pic Saint-Loup correspond à la prolongation de l'anticlinal de Viols-le-Fort. On retrouve la grande faille (n°13) ancrée dans le socle, les séries plissées, déversées et presque verticales. Cependant au niveau de la combe de Mortiès, la déformation a été telle que les séries liasiques affleurent. Sur le terrain, on peut observer des marnes liasiques, et par endroit, de petits affleurements calcaires correspondant au séries hettangiennes et sinémuriennes du Lias calcaire.

Plus au SE, on retrouve la géométrie du bassin de Saint-Gély-du-Fesc, ainsi que de petits bassins d'effondrement, au droit des failles correspondant aux accidents de la source du Lez et de la source du Lirou (cf. Vailhauquès). La faille responsable de la formation du bassin de Saint-Gély-du-Fesc s'enracine dans le Trias alors que celles des sources précédemment citées ne dépassent pas les séries marneuses callovo-oxfordiennes.

A ce niveau de la coupe, entre les accidents n°13 et n°14 on observe une importante série de Trias pouvant encaisser les déformations. A l'inverse, les terrains aquifères sont peu représentés avec une épaisseur de Dogger ne dépassant pas les 500 mètres et les dépôts, de type bassin, du Portlandien, de faible épaisseur. Les terrains du Lias calcaire peuvent être en relation directe avec les terrains dolomitiques au NW de la grande faille du Pic Saint-Loup.

Enfin, avant l'épais pli de Montpellier (n°5) un autre bassin d'effondrement, le bassin de Montpellier, de taille un peu plus importante prend place. Comme les nombreux bassins d'effondrements de la zone d'étude, il a été imaginé, d'après A. Bénédicto (1996) comme un synclinal sur rampe.

Le recouvrement fin secondaire et tertiaire des terrains aquifères a profité des zones basses, dites « pièges à sédiments », créées lors de l'orogène pyrénéenne et lors de la période d'effondrement.

Hydrogéologie :

On peut observer sur cette coupe, que la source du Lez n'est pas située à l'aplomb de l'ancienne zone de récif qui se situe à une dizaine de kilomètres au NW. Cependant, elle se trouve au niveau d'une zone caractérisée par une importante déformation, au vue du nombre de failles présentes, et par des terrains aquifères, notamment du Jurassique supérieur.

Coupe interprétative IJ, de direction NW-SE, entre la Montagne des Cagnasses et le village de Lansargues (cf. Planche 5)

Cette coupe est celle qui recoupe le plus grand nombre de bassins d'effondrement de la zone, liés aux importantes marches de socle et aux failles normales qui s'enracinent dans le Trias.

La quasi-totalité des horizons aquifères se trouvent sous couverture à l'exception du secteur du bois de Monnier.

Le bois de Monnier est formé par l'épaisse série récifale du Jurassique supérieur. Il recoupe la partie nord de la paléogéographie de cette zone de récif (de direction N20) alors que la partie sud (de direction N90) est recoupée par la partie chevauchante du pli de Montpellier. Entre les deux se trouvent des dépôts portlandiens, de type plate-forme externe voir de bassin. Ces derniers sont évidemment moins épais que ceux du récif. La variation latérale d'épaisseur des formations du Dogger rend bien compte des valeurs données sur les cartes paléogéographiques.

Au NW, se trouve le massif du Thaurac. Ce dernier peut correspondre à un « pied de poussée gravitaire ». Cette structure est à relier à l'évènement tortonien : le poinçonnement du socle, au NW, a permis à la couverture de graviter vers le SE, en glissant sur l'épaisse série évaporitique. L'effondrement a été bloqué et la partie écrasée a subi d'intenses déformations accompagnées de failles permettant au « bloc du Thaurac » de se soulever sensiblement comme un horst.

On remarque le dépôt en on-lap des séries du Crétacé inférieur (Berriasien, Valanginien, Hauterivien) sur la paléo-topographie acquise au Jurassique supérieur.

Le remplissage tertiaire a été plus important dans les bassins de Saint-Drézery et de Sommières, probablement parce qu'à l'époque, les failles responsables avaient un jeu normal plus important que les autres failles.

Hydrogéologie :

Les formations aquifères sont pratiquement entièrement sous couverture, à l'exception des calcaires massifs affleurant sur le bois de Monnier. Les accidents des bassins d'effondrement permettent probablement de mettre en contact direct les séries du Jurassique supérieur avec celles du Bathonien dolomitisé et de la même façon ces dernières avec les horizons du Lias calcaire.

Coupe interprétative KL, de direction SW-NE, entre le Mas de Vedel et le village de Gailhan (cf. Planche 6)

On retrouve, au SW, la géométrie du pli de Montpellier avec ses multiples lignes de chevauchement profitant de chevauchements de socle et de grandes failles plus ou moins listriques. En avant de ce pli, les failles deviennent plus nombreuses et ne s'enracinent plus forcément dans le socle.

Ensuite, plus au NE, on traverse la bordure orientale du bassin de Vailhauquès, la partie centrale du bassin de Saint-Gély-du-Fesc et la source du Lez. Sous le bassin de Saint-Gélydu-Fesc, l'épaisse série de calcaires massifs Portlandien est présente. Du bassin de St-Gélydu-Fesc jusqu'à l'extrémité NE de la coupe, la couverture comprenant les horizons aquifères se trouvent quasi exclusivement sous couverture néocomienne et cénozoïque, mise à part quelques endroits où, en bordure de faille, des affleurements du Jurassique supérieur apparaissent.

A partir du bassin d'Assas, on retrouve les bassins dissymétriques, caractéristiques de la période de distension. Comme sur la coupe de la Planche 5, les failles responsables de la formation de ces bassins viennent s'enraciner dans l'épaisse série du Trias. En revanche, la série du Jurassique moyen, ne présente qu'une faible épaisseur, d'environ 400 mètres de matériel. De plus, aucune variation latérale d'épaisseur n'est représentée. Le tracé de la coupe, se trouve sur une ancienne « zone haute » où les sédiments se sont peu accumulés.

Hydrogéologie :

On voit, contrairement à la coupe EF, que la source du Lez est associée à un aquifère important en termes de puissance des formations. La zone où se sont accumulés près de 700 mètres de calcaires massifs Portlandien, correspond à la zone aquifère associée à la source du Lez. D'autre part, on peut supposer que les jeux de failles normales favorisent les connections entre les trois horizons aquifères que sont le Jurassique supérieur, le Dogger dolomitique et le Lias calcaire.

Coupe interprétative MN, de direction SW-NE, entre le village de Pouzols et le village de Fausargues-les-bains (cf. Planche 7)

On retrouve des structures traversées par les différentes coupes précédentes, comme l'anticlinal déversé de Viols-le-Fort, le bassin de Saint-Martin-de-Londres ou encore le bassin de l'Hérault. Ces structures sont recoupées perpendiculairement aux interprétations précédentes, et permettent une autre approche spatiale des géométries.

Le bassin de l'Hérault paraît, cette fois, beaucoup moins affecté par l'histoire tectonique qui a affecté la région. Les évènements compressifs et distensifs auraient plutôt joué selon une direction nord-sud.

On retrouve, au niveau de l'anticlinal de Viols-le-Fort, les terrains dolomitiques du Dogger, à l'affleurement, et les couches du NE de cet anticlinal en position verticale. De la même façon, les redoublements de série des couches toarciennes et domériennes sont également représentés. Les failles recoupant cet anticlinal traversent le Trias pour venir s'enraciner dans le socle.

Le bassin de Saint-Martin-de-Londres présente aussi la même structure que sur la coupe de la Planche 4 avec le remplissage du Crétacé inférieur déposé avant l'orogène pyrénéen et caractérisé par la présence du matériel tertiaire syntectonique.

Hydrogéologie :

On traverse, le long de cette coupe, une épaisseur considérable de Dogger et donc de Bathonien dolomitique. La puissance totale du Dogger est de 800 mètres sur la carte paléogéographique correspondante. L'emprise de la zone de récif au Tithonien passe à proximité de Viols-le-Fort, mais seule la formation de cet imposant anticlinal a permis une érosion de ces terrains aquifères, comme en témoignent les affleurements des séries dolomitiques.

Il est difficile d'imaginer, au droit des accidents structuraux, des connections directes entre les différentes couches aquifères.

Coupe interprétative OP, de direction SW-NE, entre le village de Balaruc-les-Usines et le village de Vérargues (cf. Planche 8)

On retrouve la géométrie du massif de la Gardiole, qui est bien représenté sur toute sa longueur. Le dépôt en on-lap des séries du Lias calcaire sur le socle est visible, du fait de l'ancienne « zone haute méridionale ». Les redoublements de séries dans le Dogger provoquent un bombement de tout cet étage et permettent leur affleurement.

Les nombreuses lignes de chevauchement, créées par des chevauchements de socle et les plissements importants à l'origine de l'avancée du pli de Montpellier, sont visibles sur cette coupe.

A l'Est de Montpellier, lors de la période d'effondrement de la chaîne pyrénéenne, un large bassin s'est formé grâce à quelques failles normales. Les données de plusieurs forages permettent d'attribuer un âge pliocène voir miocène supérieur à ces dépôts. Soit il résulte d'un remplissage lors de l'invasion de la mer au Pliocène, soit il s'est rempli avant, entre l'Eocène et l'Oligocène; ces dépôts auraient alors été érodés au cours de l'évènement Messinien, et le bassin aurait été comblé lors de l'invasion de la mer Pliocène. Cependant, ce dernier scénario paraît assez complexe, sans retrouver des traces de matériel entre les terrains pliocènes et les terrains du Jurassique supérieur. Une dernière hypothèse, plus plausible, serait que l'effondrement de ce bassin a été assez tardif, au Pliocène. Il se serait formé vers la fin du Miocène, possiblement lors de l'évènement Tortonien.

Hydrogéologie :

Cette coupe ne traverse pas réellement l'aquifère karstique de la source du Lez, excepté au niveau du bassin de Sommières. Les terrains néanmoins aquifères du massif de la Gardiole et

sous le bassin de Montpellier ne sont pas en relation avec le système karstique du Lez, à cause de la présence du pli de Montpellier.

En résumé

Ces huit coupes sériées sur la zone du système karstique du Lez traduisent une géométrie structurale complexe. La structure actuelle est le reflet de l'importante histoire géologique qui a affecté la région d'étude. La géométrie des coupes permettra de construire un modèle 3D, utile pour visualiser les formations aquifères et affiner le modèle conceptuel de l'aquifère karstique du Lez.

Des structures assez atypiques comme par exemple des synclinaux sur rampes ou des pieds de poussée gravitaire sont présents. De nombreux accidents tectoniques affectent la couverture et/ou le socle, et ont contribué soit pendant la phase compressive, soit pendant la phase distensive à faire évoluer cette géométrie.

On peut aussi appréhender, en étudiant ces coupes, l'histoire sédimentaire de la région à partir des dépôts évaporitiques du Trias. On remarque, d'un point de vue général, que les dépôts-centres ont évolué géographiquement au cours de cette histoire et que certaines séries comme le Portlandien ont des profils de dépôts faisant varier de plusieurs centaines de mètres les épaisseurs de ces formations selon leur localisation.

D'un point de vue hydrogéologique, des connections directes entre les aquifères reconnus du Jurassique supérieur, du Bathonien et du Lias calcaire sont possibles au droit de grands accidents.

La couverture tertiaire, à part quelques horizons calcaires, contribue à cause de sa nature plutôt marneuse, à mettre les horizons aquifères en position captive. A l'inverse là où elle n'est pas présente, par un manque de dépôt ou du fait de l'érosion les formations aquifères affleurent, l'aquifère est ainsi qualifié de libre.

3.4. MODELISATION GEOLOGIQUE 3D

3.4.1. Introduction

L'objectif de ce travail est de présenter un modèle 3D de la géologie et des structures régionales afin de pouvoir mieux appréhender l'hydrogéologie du système karstique du Lez. Ce modèle constitue un essai préliminaire de modélisation 3D de la géologie autour du Lez., sur la base de la carte géologique de la feuille de Montpellier 1 : 250.000 (Alabouvette et al., 2003), de huit coupes géologiques transverses sur la zone d'étude, entre Hérault et Vidourle, entre failles des Cévennes et Vidourle et entre Sauve et Montpellier (Cordonnier, 2010) et des sondages du BSS du BRGM. Neuf interfaces géologiques illustrent l'occurrence des unités du Trias au Pliocène et leur géométrie dans l'espace. Compte tenu de zones d'incertitudes dans le modèle, des conclusions hydrogéologiques « poussées » devraient être faites sur la base d'un modèle plus détaillé et validé par l'expertise d'un géologue connaissant bien la région. Le modèle actuel devrait donc servir de version « 0 » servant à être critiquée puis améliorée.

3.4.2. Méthodes

Base de données

Carte géologique

Pour la modélisation 3D, une carte géologique simplifiée de la zone d'étude a été dessinée qui s'est basée sur la carte géologique 1 :250.000 de Montpellier (Albavouette, 2003) (Figure 25). Cette carte regroupe la géologie de la zone en 11 unités distinctes : Trias, Lias, Dogger, Malm, Crétacé, Eocène/Paléocène, Miocène, Oligocène, Pliocène. Le réseau de failles et chevauchements plats a été également réduit aux structures principales qui se trouvent dans les coupes du rapport de T. Cordonnier (2010). Une zone plus large (690000-746900^E; 1828090-1887900^N) a été définie pour la modélisation 3D afin de prendre en compte l'influence de la géologie autour de la zone d'étude (700000-740000^E; 1845000- 1877000^N) sur le modèle 3D (Figure 26). La Figure 27 montre la pile stratigraphique retenue pour le modèle.

Figure 1 : La carte géologique simplifiée de la zone d'étude avec le réseau de failles, les unités stratigraphiques qui ont été utilisé pour la modélisation 3D et la position des coupes c1-c8 de Cordonnier (2010)

Figure 25 : Carte géologique simplifiée de la zone d'étude avec le réseau de failles, les unités stratigraphiques qui ont été utilisées pour la modélisation 3D et la position des coupes c1-c8 de Cordonnier (2010)

Figure 26 : La base de données pour la modélisation 3D avec les forages et les données structurales.

Figure 27 : La pile stratigraphique qui a été retenue pour la modélisation 3D avec les relations des unités supérieures aux unités dans une position inférieure.

Coupes géologiques

Huit coupes ont été fournies comme base pour la modélisation (Cordonnier, 2010). Or, l'analyse de ces coupes a révélé de nombreuses incohérences à travers et entre les coupes. Le géoréférencement des coupes n'a pas été possible à cause des décalages géographiques latéraux et verticaux non-systématiques. Nous avons donc décidé d'intégrer ces coupes « au mieux » d'une façon conceptuelle dans le modèle et de contraindre surtout par la carte géologique, les données des forages, et les données structurales.

Forages

Les logs des 635 forages proviennent de la base sous-sol du BRGM (BSS). La plupart des sondages atteignent une profondeur entre 0 et 500 m (613) tandis que 20 sondages atteignent des profondeurs comprises entre 500-4200 m dont la majorité en-dehors de la zone d'étude (Table 1 et Figure 26). En conséquence, le modèle 3D reste pour des niveaux plus profonds que 500m en général peu contraint. Pour être utilisable, la stratigraphie des logs a été simplifiée et harmonisée selon la pile stratigraphique du modèle.

Nombre	Profondeur
613	0-500 m
7	500-1000 m
7	1000-2000 m
6	2000-4200 m

Tableau 1: La statistique des sondages dans la zone d'étude

Données structurales

La base de données structurales comprend deux sous-ensembles: la majorité des données n'indique que la direction du plan de stratification (l'azimuth) tandis que le deuxième ensemble de données donne des informations complètes (pendage et azimuth). Par contre, aucune information sur l'orientation et les mouvements relatifs des failles et des cisaillements inverses n'est disponible.

Modélisation 3D

Principe

La modélisation géologique est réalisée à l'aide du logiciel GeoModèleler 3D (copyright BRGM Intrepid Geophysics). Ce logiciel permet de reconstruire en 3D la géologie en prenant en compte les observations terrains ou/et les données cartographiques. La méthode d'interpolation permet de prendre en compte simultanément (1) des points de passage d'interface géologiques connus en certains endroits (2) des données d'orientation (directions et pendages des couches) connues indépendamment des interfaces géologiques (3) des données sur les failles (les failles sont modélisées sous forme de surfaces et imposent une discontinuité à l'interpolation. Les fondements de la méthode d'interpolation (basée sur le cokrigeage d'un champ de potentiel et de ses dérivées) sont décrits dans Lajaunie et al., 1997. L'utilisation de cette méthode pour la modélisation géologique est illustrée dans Calcagno et al., 2008.

Préparation des données

Classiquement, une succession de tâches sont à réaliser pour pouvoir utiliser les données. Notamment, leur hiérarchisation, la prise en compte des géométries des structures et des indicateurs permettant de les renseigner, ainsi que la gestion des intersections entre les horizons:

- La création de la pile à modéliser. Identification des principales unités, choix des niveaux repères et discontinuités,
- L'intégration des données d'affleurements numérisés, des données de forage profond, des données contenues dans la Base de données du Sous-Sol, des contours de la carte géologique, coupes, ...
- L'Intégration du Modèle Numérique de Terrain,

- La résolution des incohérences 3D,
- L'homogénéisation des données en fonction de l'échelle de modélisation choisie.

Réalisation du modèle 3D

Le contexte tectonique de la région implique la méthodologie suivante pour obtenir un modèle géologiquement valide :

- Hiérarchisation des discontinuités (failles) et détermination de leurs relations géométriques,
- Détermination de l'extension des failles,
- Modélisation du réseau de failles,
- Modélisation des unités géologiques en prenant en compte les discontinuités,
- Recherche des paramètres d'interpolation les mieux adaptés,
- Test de plusieurs hypothèses sur ces paramètres,
- Analyse de l'impact du réseau de failles sur la géométrie des unités,
- Critique du modèle au vu de cette analyse,
- Réinterprétation du réseau de failles jusqu'à obtention d'un modèle cinématiquement acceptable (compatible en 3 dimensions avec les contraintes de déplacement le long des failles et chevauchement et les plissements associés).

3.4.3. Résultats

Réseau de failles

Les failles utilisées pour la modélisation sont reportées sur la Figure 28, la numérotation adoptée par Cordonnier (2010) étant utilisée. Les failles ont été soit étendues (4, 6, 22, 23), ou fusionnées (3 -> 14, 21 -> 20), ou supprimées (8) parce que non indispensables pour la modélisation et n'apparaissant pas sur la carte géologique 1:250.000. En revanche, un certain nombre de failles ont été ajoutées dans la partie nord de la zone d'étude qui apparaissent sur la carte géologique, mais pas dans les coupes de Cordonnier (11, 12, 17, 18, 19, 25-31). Ces dernières sont liées au système de la faille des Cévennes, structure importante active au cours de l'orogenèse Varisque, du rifting Thethyan (Lias) et de la compression Pyrénéenne (Paléocène à Oligocène) (Sanchis & Seranne, 2000). Le réseau résultant est montré dans la Figure 28.

Figure 28 : Réseau de failles utilisé pour la modélisation 3D - Jaune : système de failles normales des Cévennes; vert: système de failles liée à la formation des demi-grabens; bleu : failles inverses ; rouge: relation avec failles des Cévennes ou demi-graben (incertain)

Trois principaux types d'accidents ont été distingués dans notre modèle. Le premier groupe (structures 5 et 13) est caractérisé par des chevauchements faiblement pentés à vergence nord. Le chevauchement 5 représente dans le modèle de Cordonnier (2010) un important décollement Est-Ouest au nord de Montpellier. Les coupes de l'auteur indiquent que l'accident a été réactivé ultérieurement lors de la tectonique en extension liée à l'ouverture du Golfe du Lion. Cependant, ce concept a été appliqué par l'auteur seulement sur quelques-unes des coupes et ne parait pas justifiée par la carte géologique au 1:250.000 où le Jurassique repose

avec un contact de charriage sur les formations Eocène / Oligocène alors que les sédiments Paléocène recouvrent cet accident en discordance angulaire. Par conséquent, dans notre modèle, cette structure a été modélisée comme un chevauchement. L'âge des structures est contraint entre e5C (Lutétien) et g (Oligocène) et celles-ci sont clairement liées à la tectonique de compression de l'orogenèse Pyrénéenne.

Le deuxième groupe comprend des failles normales assez peu pentées, courbes qui, selon le modèle de Cordonnier (2010) montrent une géométrie listrique. Toutefois, en l'absence de données structurales et sismiques, ce modèle reste conceptuel. La tendance de ces failles varie principalement de N-S à NE-SO et seulement quelques failles sont orientées dans une direction E-O (par exemple structure 26). Il est intéressant de noter qu'un certain nombre de ces failles dans la partie sud de la zone d'étude sont subparallèles (10, 30, 16, 2, 20, 14, 4 et 6) et semblent être liées à la formation de demi-grabens d'âge Oligocène.

Dans la partie NO de la zone d'étude, les failles normales du système Cévennes limitent également les sédiments Oligocène et contraignent donc l'âge maximal de la tectonique d'extension. La carte géologique montre que les chevauchements plats inverses du groupe 1 sont limités par des failles normales. Cependant, les sédiments syn-tectoniques d'un âge e5C se trouvent surtout dans les demi-graben au nord du décollement. Cela suggère que ces structures ont été formées principalement avant la tectonique compressive et que les failles qui les limitent peuvent avoir été réactivées lors de l'ouverture du Golfe du Lion.

Enfin, la faille 7 pourrait éventuellement représenter un cisaillement inverse plat qui aurait été réactivé en faille normale. Elle représente la continuation du cisaillement plat inverse 13, mais juxtapose les sédiments du Miocène (m) contre la dolomite d'âge Oxfordien (J4-6).

Pour la modélisation hydrogéologique, les failles du deuxième groupe peuvent avoir des conséquences importantes en terme d'hydrogéologie, car pouvant potentiellement connecter ou déconnecter des unités lithologiques.

Le modèle 3D donne un aperçu de la géométrie de failles ainsi que la relation à proximité des unités géologiques. Il ne faut pas oublier que cette géométrie reste largement imprécise et interprétée.

Unités lithologiques

La pile lithologique du modèle actuel est plutôt basée sur la distinction stratigraphique que sur les propriétés hydrogéologiques (Figure 29). Un système de base du Trias est recouvert par la série on-lap LDMC qui combine le Malm, le Dogger et le Lias avec les périodes du Crétacé. Les séries supérieures de l'Eocène à Pliocène, ont été traitées comme des séries distinctes érosives sur les unités sous-jacentes

Ere géologique	Stratigraphie	Perméable	Imperméable		
Tertiaire	pM Pliocène marneux pC/pT Pliocène calcaire m Miocène mC Miocène calcaire g_Oligocène e7(g) Eocène/Oligocène e6 Eocène supérieur e5 Eocène moyen e3-4 Eocène inférieur e1-2 Vitrollien				
Crétacé	C6-7 Maastrichien n3 Hauterivien n2 Valanginien n1 Berriasien				
Malm	J8-9 Tithonien Séquanien Argovien/Rauracien J5_Oxfordien				
Dogger	Jurassique moyen				
Lias	Toarcien Domérien Carixien I2 Sinémurien I1 Hettangien				
Trias	Trias				
Primaire	Socle				
Eruptif	Basalte				

Figure 29 : Les unités stratigraphiques avec leurs propriétés hydrogéologiques

Un modèle mettant l'accent sur les propriétés hydrogéologiques devrait distinguer les unités perméables et imperméables, comme indiqué dans la Figure 29. Cependant, le Lias basal (I1-2) qui potentiellement présente un deuxième aquifère important affleure rarement dans la zone d'étude et l'information spatiale est surtut limitée aux sondages hors de cette zone

(Figure 26). D'autre part l'aquifère e5 unité (Eocène moyen) représente l'unité prédominante dans le Paléogène inférieur alors que les unités imperméables e1-e4 (Paléocène - Eocène inférieur) sont de proportion très minime. Par conséquent, l'éocène qui, dans notre modèle combine ces unités représente un aquifère.

Les isohypses de la base des unités individuelles sont présentées de la Figure 30 à la Figure 31; l'échelle des couleurs (différente pour chaque figure) indique l'altitude. Les vues 3D sont présentées sur les figures comprises entre la Figure 39 et la Figure 46.

Base du Trias

Les sédiments du Trias se trouvent dans toute la zone d'étude. Comme pour les autres unités mésozoïques on observe une baisse générale de l'altitude du NO vers le SE à l'exception de deux maxima locaux au niveau du chevauchement du Pic St Loup et de Mauguio. L'effet du système de failles normales (demi-grabens) est moins visible sur la géométrie de la base du Trias. Ceci est dû au fait que les failles ne s'enracinent pas dans le socle, mains au contraire s'initient à l'interface socle Trias. On observe donc un amortissement de ces structures au niveau du Trias. Une forte remontée de la base Trias est visible dans le compartiment Nord-Ouest de la faille des Cévennes. Les données disponibles n'ont pas permis de modéliser plus en détail la géométrie dans ce secteur, probablement plus complexe.

Base Trias

Figure 30 : Présentation de l'interface inférieure du Trias (pas de description dans le texte)

Base du Lias

Les sédiments du Lias se trouvent dans toute la zone d'étude, sauf pour deux petits domaines dans le quadrant nord-ouest où le Trias et les roches du socle forment des horsts tectoniques (Figure 31). L'altitude moyenne est de -1426 m avec une déviation standard 2 sigma de 373 m. On observe une baisse générale de l'altitude du NO ver le SE à l'exception d'un maximum local marqué entre le Pic St Loup et Le Tradeau, lié à la tectonique en chevauchement (structure 13). Le domaine au centre du triangle Montamaud-Serdan-Mauguio est caractérisé par la présence de quatre demi-graben qui sont alignés selon une direction SO-NE. Dans chaque demi-graben, la base du Lias s'approfondit du SE au NO alors que les demi-grabens deviennent systématiquement plus profonds d'Ouest en Est. Enfin, dans la partie méridionale

de la zone d'étude, la base du Lias est de nouveau soulevée sur une rampe (chevauchement 5) par la tectonique compressive.

Figure 31: Présentation de l'interface inférieure du Lias

Base du Dogger

Le Dogger est caractérisé par la même structuration que le Lias à laquelle il est sub-parallèle (Figure 32). L'altitude moyenne est de -856 m avec une déviation standard 2 sigma de la base variant de 388 m. La partie la plus profonde de l'interface se trouve dans les demi-grabens au nord de Montpellier et près de Galargues. La zone charriée sur le chevauchement 5 est ellemême marquée par un gradient de profondeur d'Ouest en Est.

Base Dogger

Figure 32 : Présentation de l'interface inférieure du Dogger

Base du Malm

Le Malm montre une structuration similaire à celle-ci du Dogger et du Lias (Figure 33). L'altitude moyenne est de -414 m avec une déviation standard 2 sigma de 364 m. La partie la plus élevée se trouve de nouveau dans le NO alors que la profondeur maximale de - 800 m est atteinte dans les demi-grabens entre Montpellier et Galargue. A cause de son niveau structural et stratigraphique plus haut, l'unité est érodée dans la partie nord-ouest, dans la zone entre Pic St Loup et Tréviers et dans la partie méridionale de la zone d'étude.

Base Malm

Figure 33 : Présentation de l'interface inférieure du Malm

Base du Crétacé

Les roches du Crétacé sont conservées dans la partie orientale de la zone d'étude au sein de demi-grabens et dans la zone entre le système de failles des Cévennes et ces demi-grabens (Figure 34). L'altitude moyenne de l'unité est de -200m avec une déviation standard 2 sigma de 240 m. L'unité s'approfondit de nouveau de NO à SE. La partie la plus profonde se trouve dans le demi-graben à l'est de la ligne Galargues – Montpellier.

Base Crétacé

Figure 34 : Présentation de l'interface inférieure du Crétacé

Base de l'Eocène

Un changement majeur dans la sédimentation a eu lieu entre le Crétacé et l'Eocène (Figure 35). L'Eocène remplit à nouveau des demi-grabens mais les sédiments ont été déposés à l'Ouest du Montamaud dans un bassin en ouverture et dans un autre près de Mauguio. L'altitude moyenne de l'unité est de -164 m avec une déviation standard 2 sigma de 197 m. Le modèle suggère que partie la plus profonde se trouve dans les nouveaux bassins, mais cela demanderait à être confirmé par des études plus détaillées, car on dispose en fait de de très peu de données.

Base Eocène

Figure 35 : Présentation de l'interface inférieure de l'Eocène

Base de l'Oligocène

Les sédiments Oligocène sont seulement localement conservés dans les parties les plus profondes des demi-grabens à l'ouest de Mauguio et dans une zone faillée qui est reliée au développement de la faille de Cévennes (Figure 36). L'altitude moyenne de l'unité est de -60 m avec une déviation standard 2 sigma de 180 m.

L'absence presque complète de ces sédiments dans le bassin Crétacé-Eocène à l'ouest de Montarnaud peut être purement artificielle en raison de l'absence de données. Egalement, la géométrie et la profondeur du bassin à l'ouest de Maugio précédant l'ouverture du Golfe du Lion ne sont pas contraintes par des sondages et donc conceptuelles.

Base Oligocène

Figure 36 : Présentation de l'interface inférieure de l'Oligocène

Base du Miocène

Les sédiments du Miocène se sont déposés dans le bassin du Golfe du Lion (Figure 37). L'altitude moyenne de l'unité est de - 82 m avec une déviation standard 2 sigma de 107 m. La géométrie de l'interface suggère le développement d'un delta au nord du Mauguio. Un deuxième bassin est présent 10 km à l'ouest de Montamaud près de la bordure de la zone d'étude.

Base Miocene

Figure 37 : Présentation de l'interface inférieure du Miocène

Base du Pliocène

L'ouverture progressive du Golfe du Lion pendant cette période est marquée par le déplacement vers le sud de la bordure du bassin. L'altitude moyenne de l'unité (Figure 38) est de - 102 m avec une déviation standard 2 sigma de 92 m. Encore ici, l'absence presque totale de forages dans ce secteur induit un modèle plutôt conceptuel. Ailleurs, les sédiments du Pliocène n'apparaissent pas.

Base Pliocène

Figure 38 : Présentation de l'interface inférieure du Pliocène

Vues 3D

Figure 39 : Modèle 3D de la zone d'étude avec toutes les unités géologiques – Trias (violet), Lias (bleu foncé), Dogger (brun), Malm (bleu clair), Crétacé (vert foncé), Eocène (orange), Oligocène (rose), Miocène (jaune), Pliocène (beige)

Figure 40 : Modèle 3D de la zone d'étude - Trias (violet), Lias (bleu foncé), Dogger (brun), Malm (bleu clair), Crétacé (vert foncé), Eocène (orange), Oligocène (rose)

Figure 41 : Modèle 3D de la zone d'étude sans les unités cénozoiques et quaternaires - Trias (violet), Lias (bleu foncé), Dogger (brun), Malm (bleu clair) et Crétacé (vert foncé)

Figure 42 : Modèle 3D de la zone d'étude - Trias (violet), Lias (bleu foncé), Dogger (brun) et Malm (bleu clair)

Figure 43 : Modèle 3D de la zone d'étude – Trias (violet), Lias (bleu foncé) et Dogger (brun)

Figure 44 : Modèle 3D de la zone d'étude – Trias (violet) et Lias (bleu foncé)

Figure 45 : Modèle 3D de la zone d'étude - Trias (violet)

Figure 46 : Modèle 3D de la zone d'étude - Trias et Lias avec les coupes 3, 4, 5

3.4.4. Conclusion et perspectives

Cette étude est une première ébauche de modélisation 3D de la géologie autour de l'aquifère du Lez (région de Montpellier). Les données utilisées ont permis de réaliser un modèle d'échelle régionale. Les problèmes de cohérence, précision, et localisation des coupes utilisées lors de la modélisation nous conduisent à suggérer que des conclusions hydrogéologiques poussées devraient être faites sur la base d'un modèle plus détaillé et validé par l'expertise d'un géologue connaissant bien la région. Le modèle actuel devrait donc servir de version 0 servant à être critiquée puis améliorée.

Au sujet du fonctionnement de l'aquifère karstique du Lez dans l'espace, nous ne pouvons, aujourd'hui, formuler que des hypothèses. En effet, en milieu karstique, les hétérogénéités lithologiques et les discontinuités structurales sont à l'origine du cloisonnement et de la compartimentation des réservoirs, aussi bien sur le plan vertical qu'horizontal. C'est l'existence de ces deux types de discontinuités qui est à l'origine de la compartimentation de l'aquifère karstique en plusieurs unités hydrogéologiques qui sont plus ou moins indépendantes les unes des autres.

Le système karstique du Lez est donc schématiquement représenté par un ensemble de blocs séparés, considérés comme homogènes et reliés entre eux par des discontinuités aboutissant au réseau karstique. Les relations entre chacune des unités à l'intérieur du réservoir vont dépendre du rôle hydrogéologique des accidents majeurs et de la capacité de drainage des fractures et des fissures qui aboutissent au réseau.

La synthèse géologique de la zone autour de Lez (Cordonnier, 2010) apporte de nouvelles informations sur les géométries structurales et sédimentaires des formations qui composent cet ensemble.

- Dans un premier temps il ressort que les différentes couches qui composent la couverture sédimentaire ne sont pas uniformément de même épaisseur. Des épaisseurs importantes de sédiments se retrouvent en particulier au niveau des zones basses. Ces pièges à sédiments n'ont cessé d'évoluer géographiquement et ont permis un empilement complexe de ces différents dépôts. A l'inverse des nombreux modèles isopaques, finalement, parfois très loin de la réalité, comme l'atteste parfois des informations obtenues au niveau des forages profonds.
- Dans un second temps, il s'est dégagé naturellement que de nombreux accidents acquis lors de l'orogenèse pyrénéenne, ont été réactivés lors de l'effondrement de cette chaîne et de l'ouverture du golfe du Lion. Des grands accidents de socle (marches ou chevauchements de socle) sont le plus souvent à l'origine de ces structures affectant la couverture. Certains, comme le pli de Montpellier, la faille des Matelles-Corconne ou la faille des Cévennes paraissent être plus importants que d'autres. Ils jouent un rôle hydraulique prépondérant dans le système du Lez.
- Le remplissage Crétacé-Tertiaire, plutôt marneux, a permis aux calcaires karstifiés, devenus aquifères, d'être localement sous couverture imperméable. Au niveau de leur surface, plus de la moitié de l'aquifère du Lez est un aquifère captif.

3.5. TECTONIQUE ET EVOLUTION DES DRAINS KARSTIQUES

3.5.1. Introduction

Sur le pourtour méditerranéen, les aquifères karstiques constituent la majorité des ressources en eau souterraine participant à l'alimentation des populations locales (MARGAT, 2008). La difficulté majeure liée à l'exploitation de ces aquifères consiste à localiser les drains karstiques principaux, leur organisation étant la résultante d'une histoire génétique complexe.

Dans le Sud-Est de la France, les aquifères karstiques se caractérisent par la surimposition de nombreuses phases de karstification (BLANC 1995 ; CAMUS 2003 ; DURAND et al. 2009). Parmi les phases de karstification les plus anciennes affectant les carbonates de la région montpelliéraine, certaines ont été fossilisées par des dépôts sédimentaires permettant de dater celles-ci. Ainsi, au Crétacé moyen, lors de l'ouverture de l'isthme durancien, des bauxites provenant de l'érosion du Massif central fossilisent des réseaux karstiques développés dans des calcaires du Jurassique supérieur et du Crétacé inférieur (BARBARAND et al. 2001, COMBES & BARDOSSY 1994). Du Crétacé supérieur à l'Eocène, le bombement lithosphérique lié au front pyrénéen (BARBARAND et al. 2001), génère une émersion des terrains carbonatés favorisant leur karstification. Des surfaces paléokarstiques sont observées dans ces formations carbonatées du Sud de la France (PEYBERNES & COMBES 1999), certaines comprenant des remplissages sédimentaires datés du Paléocène (HUSSON 2010). Pendant cette période, le gradient hydraulique est successivement orienté du sud vers le nord, puis du nord au sud, participant à la karstification de ces massifs crétacé et jurassique (DUBOIS & DELFAUD 1989).

Lors de la crise messinienne (Miocène), un approfondissement des réseaux karstiques et une réactivation de ces karsts développés depuis le Secondaire se produisent, du fait d'un abaissement de plus de 1500 m du niveau de la mer Méditerranée (CLAUZON et al. 2005, CAMUS 2003, AUDRA et al. 2004; MOCOCHAIN et al. 2006). Enfin, pendant le plioquaternaire, l'alternance de périodes glaciaires et interglaciaires, provoque la réactivation ou la mise en place de nouveaux karsts (CAMUS 2003).

Afin d'améliorer la connaissance de ces hydrosystèmes, il semble donc important d'identifier les principales phases de karstification à l'origine de la structuration actuelle du réseau karstique qui contrôle la direction des écoulements souterrains. Dans cette étude, une méthodologie est proposée, afin de caractériser le rôle et l'importance de chaque phase de karstification sur la structuration actuelle du réseau karstique et les directions d'écoulements préférentielles.

3.5.2. Principe et méthodes

De nombreux modèles théoriques de karstogenèse (GABROVSEK & DREYBRODT 2010, KAUFFMAN 2010, DREYBRODT & GABROVSEK 2003) ont permis de caractériser les différents facteurs prédominants dans les processus à l'origine de la karstification. Chacun de ces modèles montrent que l'élargissement des conduits n'est pas linéaire au cours du temps : initialement, l'ouverture millimétrique des fractures se traduit par un flux lent et donc une rapide saturation de l'eau en calcium, ce qui a pour conséquence d'arrêter le processus de

dissolution des carbonates à faible profondeur. Au-delà d'un certain degré d'élargissement des fractures, le flux augmente, ce qui induit un taux de dissolution plus important et donc une accélération du processus de karstification, ainsi qu'un développement en profondeur (GABROVSEK & DREYBRODT 2010, DREYBRODT ET GABROVSEK 2003). La fracturation du milieu va ainsi conditionner la mise en place de conduits en zone non saturée et saturée au sein de l'aquifère karstique, notamment durant les premières phases de dissolution qui vont contraindre les suivantes.

Dans la région nord-montpelliéraine, depuis le Jurassique jusqu'au Miocène, les phases de karstification sont toutes concomitantes avec des périodes d'activité tectonique majeures, à l'origine d'une importante fracturation des massifs carbonatés. Ces différentes phases tectoniques sont associées à des directions d'extension ou de compression qui vont permettre l'ouverture ou la fermeture de ces fractures. Afin d'identifier les fractures ayant permis des circulations d'eau à l'origine des premières dissolutions du massif carbonaté, des analyses statistiques de la fracturation et du réseau karstique actuel ont été réalisées. Parallèlement à cela, ont été caractérisées, pour chaque phase tectonique, les familles de fractures préférentiellement ouvertes.

Cette analyse statistique des réseaux de drain karstique, est basée sur 80 plans topographiques de cavités du Causse de Viols le Fort, présentant 532 drains karstiques de longueur cumulée de 8,75 km (Archives du Club Spéléologique CLPA Hérault). Concernant la fracturation, celle-ci a été analysée à différentes échelles : 1:250 000 sur carte géologique, 1:25 000 sur photographies aériennes, et in situ, sur le site expérimental du Terrieu (2500 m²).

Figure 47 : Blog diagramme de l'aquifère du Lez (1) et analyses statistiques de la fracturation à l'échelle 250.000ème (2), à l'échelle 25.000ème (3), in situ sur le site du Terrieu (4) ; ainsi que de la karstification

en zone non saturée (5). Les analyses statistiques sont réalisées en longueur cumulée (a) ou en fréquence (b).

Par ailleurs, les directions préférentielles d'écoulement ont été identifiées à deux échelles différentes :

A l'échelle locale, l'analyse des écoulements s'appuie sur des relevés piézométriques issus d'un réseau de 22 forages lors d'essais de puits sur le site expérimental du Terrieu. Le site experimental du Terrieu est l'un des sites hydrogéologiques du laboratoire Hydrosciences Montpellier (HSM). Ce site, localisé en contexte carbonaté fracturé et karstique, est situé à 15 kilomètres environ au nord de Montpellier (France) près du village de Saint-Mathieu-de-Tréviers (cf Figure 103) au sein de l'aquifère karstique du Lez. Ce secteur fait partie d'un monoclinal NE-SO légèrement plongeant (15-20 °) vers l'ONO, ce monoclinal est constitué de calcaires jurassigues (intensément karstifiés près de la surface) et de calcaire marneux du Crétacé inférieur. La majorité de vingt-deux forages qui constituent le site expérimental ont un diamètre de 0,22 ou 0,33 m et ne sont pas tubés. Les puits sont disposés en respectant un schéma régulier dans une zone de 25m x 25m avec une distance moyenne de cinq mètres entre les forages.

A l'échelle régionale, les directions d'écoulements préférentielles ont été déterminées à partir d'une carte piézométrique basée sur un réseau de 14 forages influencés par les pompages d'exploitation de la source du Lez.

3.5.3. Résultats

Fracturation

Echelle 1:250 000 (Carte géologique)

L'analyse en fréquence (% du nombre total de fractures) et en longueur cumulée (% de la longueur cumulée de l'ensemble des fractures) présente des résultats similaires (Figure 47-2).

La famille majoritaire présente une direction de N010 à N040, avec plus de 50% des fractures orientées dans cette direction. Deux familles mineures présentent des directions de N170 à N010 et N050 à N060.

Echelle 1:25 000 (Photographie aérienne)

Suivant le type d'analyse considéré (en fréquence ou en longueur cumulée), les directions majeures sont différentes (Figure 47-3). Cependant, les principales familles identifiables sur ces deux types d'analyse sont les directions N-S à champ large (N150 à N020); NE-SW et E-W. La famille N-S à champ large comprend deux faisceaux conjugués d'orientation N150-170 et N010-020, et est prépondérante dans le cas d'une analyse en fréquence (total 33%). La famille E-W, d'orientation N080 à N090, est également prépondérante en fréquence (total 12%).

Par contre, la famille NE-SW (N040 à N060) est majoritaire pour l'analyse en longueur cumulée (total de 31%).

Les fractures majoritaires en fréquence correspondent à des fractures de petites tailles, accommodant la déformation à l'intérieur de blocs délimités par les accidents majeurs. Celles, majoritaires en cumulée, sont associées à la direction des accidents majeurs, d'où leur continuité dans l'espace.

Echelle du terrain (Site du Terrieu, 2500 m2)

L'étude de la fracturation sur le site du Terrieu (2500 m²) permet d'identifier deux directions préférentielles, que ce soit en longueur cumulée, ou en fréquence (Figure 47-4). En longueur cumulée, la famille prépondérante est orientée N150-N010 et représente 38% de la population de fractures en analyse cumulée. Une direction secondaire de fourchette directionnelle N080-N110 est également observée ; elle présente 28% de la population des fractures, en analyse en fréquence. Pour ces deux directions l'ouverture moyenne des fractures est de 0.5 mm.

Quelle que soit l'échelle d'observation, ces analyses statistiques permettent de regrouper les fractures suivant trois familles de fracturation majeure :

- une famille N-S à champ large (N150 – N020), souvent représentée par deux familles conjuguées (N150-170 et N010-N020) ;

- une famille NE-SW (N040 à N060), représentée essentiellement par les accidents majeurs de la région.

- une famille E-W (N080 à N110).

Développement karstique

L'analyse fréquentielle du réseau de drains karstiques relevés sur le Causse de Viols le Fort en zone non saturée, met en évidence deux directions majeures (Figure 47) : N080-N090 (17.4%) et N160-N170 (17%). En regroupant l'ensemble des drains ayant une direction générale N-S (N160 à N020), 37% du réseau karstique s'est développé dans cette direction.

A proximité de grands accidents, telle que la faille des Matelles-Corconne, cette tendance se modifie puisque c'est la direction N045 qui devient alors nettement prédominante (27%), devant la direction N140 (16%). Cette direction majeure de karstification (N045) est parallèle à la direction de la faille des Matelles-Corconne, alors que la direction secondaire (N140) est parallèle au gradient hydraulique actuel (Figure 47-5).

Essais par Pompage

A l'échelle locale

Lors du pompage sur le puits noté W (Figure 48A) réalisé sur le site expérimental du Terrieu, les écoulements s'organisent suivant deux directions préférentielles: E-W (N080-N090) et N-S (N160-N170).

Figure 48 :A) Courbes de rabattement (en m) associées à un pompage au puits W (site expérimental du Terrieu). – B) Isopièzes (en m) à la fin de la période d'étiage associées au pompage à la source du Lez (valeurs du 08/09/2006).

Ces directions préférentielles correspondent également à celles obtenues à partir des analyses du réseau karstique (en zone non saturée) du Causse de Viols le Fort (voir cidessus). Loin des failles majeures, et quelle que soit l'échelle d'observation, les écoulements préférentiels semblent donc s'organiser selon les directions N-S et E-W, qui correspondent à deux familles majeures de fracturation.

A l'échelle régionale

Les pompages à la source du Lez influencent l'aquifère à grande échelle, jusqu'à plus de 30 km en amont de la source (Fig. 26B).

L'analyse des cartes piézométriques pendant pompage sur la source du Lez permet ainsi d'identifier les principales directions d'écoulement souterrain de l'aquifère du Lez à une échelle régionale : ainsi une direction majeure NE-SW, parallèlement à la faille des Matelles-Corconne, est clairement identifiable sur ces cartes (Fig. 26B).

3.5.4. Discussion et conclusion

Ces analyses statistiques, réalisées à différentes échelles, mettent en évidence que -i) le réseau de karstification s'oriente principalement selon les axes NS et EW dans les zones peu soumises aux déformations d'origine tectonique, tandis que -ii) près des accidents majeurs il s'oriente préférentiellement suivant la direction NE-SW.

La karstification EW a été initiée au Crétacé moyen par l'extension NS lors de l'ouverture de l'Isthme Durancien : cette direction d'extension a permis l'ouverture des fractures orientées EW, facilitant l'infiltration et la circulation d'eau dans celles-ci.

La karstification NS, clairement associée à un réseau de fractures conjuguées N150-170 et N010-020, a été initiée pendant l'orogenèse pyrénéenne. En effet, la compression NS associée à cette phase tectonique a engendré des fractures ouvertes conjuguées, favorisant ainsi les circulations suivant cette direction. Durant cette période, le gradient hydraulique régional étant successivement orienté SN puis NS, a favorisé également cette karstification dans ces réseaux de fractures suivant cette direction.

Les grands accidents, telle que la faille des Matelles-Corconne, ont joué pendant ces différentes périodes tectoniques. Lors de l'ouverture du golfe du Lion (Oligocène), cette faille joue en faille normale, permettant la mise en contact des terrains aquifères jurassiques avec les terrains imperméables du Crétacé Inférieur. La zone endommagée autour de cette faille (près de 200 m de large) présente de nombreuses fractures sub-parallèles à l'accident majeur, qui se sont ouvertes pendant l'Oligocène ; le paléo-gradient hydraulique était alors perpendiculaire à cet accident. La présence d'un réseau karstique sub-parallèle à la faille des Matelles-Corconne peut ainsi s'expliquer par le contexte tectonique oligocène qui bloque les circulations de direction N140 suivant le gradient hydraulique et contraint les écoulements suivant la direction de la faille, facilitant ainsi la dissolution N045 dans les fractures ouvertes.

La mise en place de ce réseau karstique est donc une conséquence de l'activité tectonique à l'Oligocène, ce réseau se développant orthogonalement au paléo-gradient hydraulique local. La considération des différentes périodes de karstification a permis d'identifier et d'expliquer l'origine des directions préférentielles d'écoulements actuels dans les drains karstiques.

Deux résultats majeurs ressortent de cette étude :

- i) Contrairement aux hypothèses classiquement admises, les directions préférentielles de dissolution ne sont pas nécessairement liées à la direction du gradient hydraulique. En effet, il est ici montré qu'à proximité d'un accident majeur, ce n'est plus le gradient hydraulique qui impose l'écoulement mais les conséquences d'une phase tectonique.

- ii) Contrairement à ce qui est largement admis en milieu méditerranéen, la période qui contraint essentiellement la karstification des carbonates n'est pas le Messinien. En effet, cette étude montre que les périodes précoces de karstification sont celles qui ont réellement un impact prépondérant sur la karstification, puisqu'elles vont prédéterminer les directions d'écoulements souterrains qui vont ensuite se succéder jusqu'à l'actuel. La karstification pendant la crise messinienne sera importante, notamment en profondeur, mais elle restera guidée par les réseaux karstiques précoces qui se sont initiés du Crétacé jusqu'à l'Eocène.

Cette étude, qui démontre l'importance de la mise en place des karsts précoces sur les directions principales d'écoulement actuel, pourrait être extrapolée à d'autres karsts périméditerranéens ayant subi les mêmes phases tectoniques et périodes de karstification.

4. Amélioration des connaissances hydrologiques et hydrauliques

4.1. CARACTERISATION DU STOCK HYDRIQUE DES FORMATIONS SUPERFICIELLES ET DE LA PERMEABILITE DES SOLS

4.1.1. Introduction

L'objectif de ce volet est la mesure de la perméabilité des sols sur le bassin versant hydrogéologique de la Source du Lez afin de mieux contraindre la modélisation hydrologique. Afin de cartographier cette perméabilité, une base de données est constituée à partir de la carte géologique harmonisée des départements du Gard et de l'Hérault, des données pédologiques de la BD Sols, et enfin de la carte d'occupation du sol produite par SIG-LR.

Les mesures d'infiltration et de perméabilité ont été réalisées à l'aide de deux systèmes :

- Le perméamétre de Guelph (BRGM) : la détermination in situ de la conductivité hydraulique à saturation à l'aide de ce type de perméamètre repose sur la mesure du débit d'infiltration à charge constante dans un puits cylindrique de dimensions réduites (principe de Mariotte). La conductivité hydraulique à saturation est déduite des débits mesurés par une méthode de calcul prenant en compte les écoulements latéraux, notamment par les faces du puits cylindrique. Cette démarche présente l'intérêt de supprimer l'hypothèse de l'écoulement vertical qui n'est en général pas facile à respecter en conditions de terrain. La charge hydraulique est constante dans le forage, pour une gamme de mesure allant de 10⁻⁴ (360 mm/h) et 10⁻⁸ m/s (0.036 mm/h).
- L'infiltromètre à membrane déportée (HSM) (de type SW 080 B commercialisé par SDEC) est un système opérant sous succion contrôlée. Le dispositif est constitué : 1) d'un tube principal, réservoir d'eau, 2) d'un tube secondaire de type vase de Mariotte, 3) d'une membrane fixée sur un disque circulaire de 20 cm de diamètre. Le débit d'infiltration est mesuré pour différents potentiels matriciels, et permet de calculer les conductivités hydrauliques associées à chacun de ces potentiels. La méthode de calcul utilisée est basée sur l'obtention d'un régime permanent (voir théorie en annexe).

4.1.2. Mesures de perméabilité (Guelph)

Soixante-neuf mesures de perméabilité ont été réalisées sur les formations pédo-géologiques majeures sur les bassins versants topographiques et hydrogéologiques du Lez (Figure 49). Les formations cartographiées en calcaire ont été délaissées, car leur perméabilité est totalement variable : infinie sur des zones présentant des avens, très faible sur des dolines avec accumulations de particules fines. De plus ces formations calcaires présentent pas ou peu de sols dans leur ensemble. Les deux unités principales sont les alluvions (21 sites) et les conglomérats (21 sites), suivies des grès (2), des colluvions (11) et des calcaires (14, dont 13 calcaires argileux).

La perméabilité moyenne observée sur les alluvions est de 33 mm/h, contre 18 mm/h sur les conglomérats, 12 mm/h sur les colluvions et 24 mm/h sur les calcaires argileux. Les valeurs sur les autres formations (grès et calcaire) ne sont pas représentatives du fait d'un nombre restreint de points de mesure.

En ce qui concerne l'occupation du sol, 27 points ont été faits sur les vignes, occupation la plus représentée sur les zones non calcaires. On trouve ensuite les cultures (12 sites) et les prairies (19 sites). Globalement, on constate que forêt et garrigues se retrouvent sur les formations calcaires, alors que les cultures et vignes sont présentes sur toutes les formations.

Figure 49 : Localisation des mesures de perméabilité réalisées sur la carte géologique (formations calcaires masquées)

4.1.3. Mesures d'infiltration (infiltromètre à membrane)

Des mesures d'infiltration ont été réalisées sur 4 sites, à proximité de Prades le Lez : Oliveraie à ND des Champs (NDC) le 09/08/09, Garrigue près du LIEN (LIEN) le 02/10/09, dépôt sédimentaire à St Gély du Fesc (SG) le 20/10/09, vigne au château de Restinclières (CR) le 29/10/09.

Les mesures d'infiltration ont été doublées sur chaque site, et réalisées en surface (SG, NDC) ou à des profondeurs différentes (LIEN, CR).

Des informations importantes ont parfois manqué : épaisseur réelle de la couche de sable entre la face inférieure du gabarit et la surface du sol (NDC, LIEN, SG), décalage vertical entre membrane et tube réservoir (NDC, LIEN), apparition de fuites (NDC, LIEN, SG).

La détermination des potentiels réels dépend à la fois du potentiel imposé dans le tube de Mariotte, mais aussi de la configuration de l'appareil, qui impose une charge de 2.7 mm, et surtout, de l'épaisseur réelle de sable et du décalage vertical entre le tube et la membrane déportée. Une incertitude de + ou - 5 mm sur les potentiels est probable. Cette incertitude peut avoir une forte incidence sur le calcul de la conductivité hydraulique à saturation Ks.

Figure 50 : Localisation des mesures d'infiltration et formations géologiques (limites correspondant au bassin versant du Lez à Lavalette).

Ces sites (Figure 50) représentent une bonne variété de conditions de sols et d'occupation des sols ainsi que de leurs teneurs en argile. Du point de vue de l'occupation des sols, chaque site est différent : vigne, oliveraie, terrain naturel, garrigue.

Sur ces quatre sites, des mesures de perméabilité ont également été réalisées à l'aide du perméamètre de Guelph.

Figure 51 : Description des sites

4.1.4. Résultats

Les mesures de perméabilité réalisées à l'aide du système de Guelph montrent une forte variabilité selon les formations géologiques observées.

Géologie	Perméabilité (mm)		
alluvions	33.4		
calcaire	180.3		
calcaire argileux	23.9		
colluvions	12.0		
conglomérat	18.4		
grès	96.9		
Moyenne pondérée	27.6		

Figure 52: Perméabilité moyenne par formation géologique (mm)

Les résultats sont aussi analysés en fonction de l'occupation du sol, afin de pouvoir attribuer à chaque unité paysagère (croisement des sols avec l'occupation du sol) un niveau de perméabilité.

L'intérêt d'une approche avec un double système de mesure réside dans le fait de pouvoir valider et calibrer ces niveaux de perméabilité.

Les sols les plus filtrants sont ceux de NDC, puis viennent ceux de St Gély, du Lien et enfin de Prades. Ces résultats devront être mis en regard avec les analyses granulométriques à venir. On indique dans ce qui suit les résultats obtenus par le BRGM à l'aide du perméamètre de Guelph, sur les mêmes sites.

Mesures d'infiltration – Notre Dame des Champs

- 2 mesures de surface
- Ks de 100 à 200 mm/h
- Incertitudes liées à la préparation du sol et au calage du dispositif
- Guelph : valeurs Ks faibles ~ moyenne 11 mm/h

Ce site présente les conductivités hydrauliques les plus élevées. Les valeurs à saturation sont de l'ordre de 100 à 200 mm/h. En admettant une surestimation des potentiels de 10 mm, les valeurs à saturation seraient de l'ordre de 40 à 120 mm/h. Les mesures sont possiblement surestimées, des mesures de contrôle doivent être faites.

Mesures d'infiltration – LIEN

- 1 mesure en surface, 1 mesure à 5-10 cm de profondeur
- Ks de 30 mm/h
- Fiabilité relativement bonne

On obtient ici une bonne cohérence des 2 mesures (NB : une incertitude sur le décalage vertical membrane/tube au cours de la mesure 2, 11 mm au début de l'expérience, 20 mm à la fin; la valeur de 11 mm a finalement été retenue). Les conductivités hydrauliques à saturation sont de l'ordre de 30 mm/h, en surface et à 5-10 cm de profondeur.

Mesures d'infiltration – Saint-Gély

- 2 mesures de surface
- Ks de 50-60 mm/h
- Fiabilité bonne
- Guelph : valeurs hétérogènes, 2 mesures à plus de 100 mm/h, 2 mesures à environ 30 mm/h

On obtient là aussi une bonne cohérence des mesures, et des conductivités hydrauliques de l'ordre de 50-60 mm/h. La configuration du terrain, assez plan, facilite la préparation du sol et la mise en place du dispositif. *Mesures d'infiltration – Vignes Restinclières*

- 1 mesure de surface, 1 mesure à 18 cm de profondeur
- Ks de 10 mm/h
- Fiabilité bonne
- Guelph : valeurs très faibles, 1 mm/h

Les conductivités hydrauliques à saturation sont de l'ordre de 10 mm/h. La configuration du terrain, assez plan, facilite la préparation du sol et la mise en place du dispositif. La fiabilité des mesures peut être considérée comme étant très bonne. Les conductivités à 20 cm sont supérieures à celles en surface, ce qui peut être dû au tassement du sol ou à la formation de croûtes en surface.

Les graphiques de l'illustration suivante permettent de synthétiser les niveaux de conductivité pour les 4 sites, aux deux profondeurs.

4.1.5. Cartographie de la perméabilité

La synthèse statistique des mesures de perméabilité permet à partir d'une extrapolation d'attribuer un niveau moyen à chacune des formations pédo-paysagères présentes sur le bassin versant.

	culture / syst cult.	eau	foret	garrigue	vigne / oliveraie	prairie	urbain
alluvions	38.3	-97	30	30	16	47.3	-96
basalte / bauxite / fer	-99	-97	-99 : pas de données			-99	-96
calcaire / brèches / blocs	-98	-97	-98 : perméabilité très fortement variable			-98	-96
calcaires argileux	19	-97	15	42.4	8	25.1	-96
colluvions		-97	idem alluvions		8.7		-96
conglomérat / grès	18.4	-97	18.4	18.4	20.5	17	-96

Figure 53 : Perméabilité moyenne par classe combinant géologie et occupation du sol (mm)

Figure 54: Carte de la perméabilité moyenne (mm) issue des mesures d'infiltration en surface

Figure 55: Carte de la perméabilité moyenne (mm) – secteur des Matelles

L'intérêt majeur de l'utilisation du perméamètre de Guelph est la capacité à reproduire les mesures, et donc atteindre pour les catégories principales un nombre significativement représentatif de résultats.

4.2. HYDRAULIQUE DU FLEUVE LEZ

4.2.1. Introduction

Les données nécessaires pour la modélisation hydraulique du Lez, tant pour la paramétrisation du ou des modèles, que pour la simulation des scénarios, dépendent du type de modèle retenu (ex.: modèle à base physique 1D, 2D, casiers, modèle de représentation entrées-sorties, etc.). Le type de modèle retenu dépend, quant à lui, des objectifs de la modélisation, et ... des données disponibles ou mobilisables. Ce choix s'est porté sur le logiciel SIC (développé au Cemagref Montpellier) basé sur les équations 1D de Saint-Venant, afin de pouvoir représenter les débits et les cotes (ainsi éventuellement que les vitesses, largeurs au miroir, Froude, etc.) en tout point du fleuve, mais également d'être capable de simuler des scénarios futurs d'aménagement et/ou de gestion et des épisodes futurs de crues ou d'étiages (par exemple en lien avec des scénarios de changement climatique et/ou de gestion du Karst). La modélisation hydraulique du Lez par un tel logiciel de simulation numérique nécessite notamment :

- les données géométriques des lits (ex.: mineur, moyen et majeur),
- les caractéristiques des ouvrages frontaux et latéraux,
- les conditions aux limites amont et aval,
- les apports intermédiaires,
- les coefficients de frottements sur le fond et sur les berges,
- les termes d'infiltration.

Une quantité relativement importante de données de géométrie des lits (mineur, moyen, majeur) du Lez (de sa source à la mer), parfois de certains de ses affluents (Lirou, Terrieu, Yorgues), ainsi que des ouvrages frontaux et latéraux, étaient disponibles. Par contre, nous n'avons pas trouvé de données géométriques sur les autres affluents (Lironde, Verdanson, Mosson) bien qu'il soit fort probable que certaines aient été collectées lors d'études antérieures. Dans tous les cas, ces données (lorsque disponibles) étaient détenues chez différents partenaires, provenaient de diverses études réalisées à des dates différentes, concernaient des zones limitées et avaient été peu comparées entre elles ou validées. On peut notamment citer les études réalisées au cours des années 2000 et notamment en 2002 (Magali Grier), 2003 (Céline Borgetto), 2004 (Agnès Chevrel et al.) et 2006, par le Cemagref et SupAgro avec les logiciels SIC ou HEC-RAS et une étude réalisée par BRL en 2009 avec le logiciel ISIS.

Notre premier travail a consisté à rechercher ces données, à les collecter, à les préciser et à les inter-comparer quand cela était possible (Bernardin et al., 2009), (Florian Mauris, 2010), (Sébastien Guillo, 2011) et (Naomi Monnier, 2011).
4.2.2. Données aux ouvrages en travers

En ce qui concerne la description des nombreux seuils en travers, passerelles et écluses (environ 25) le long du Lez, leur impact important sur la dynamique du fleuve, tant en étiage qu'en crue, a été confirmé. Cela a conduit à faire un relevé complet de ces seuils au GPSD (GPS différentiel), qui nous donne une précision en xyz de l'ordre du cm. Cela n'a pas été sans difficultés, compte tenu du couvert végétal qui rendait la précision du GPSD parfois insuffisante (compléments nécessaires réalisés au théodolite laser), ainsi que la longueur de la zone du Lez à prendre en compte qui nous a conduit à utiliser 4 implantations différentes pour la base du GPSD (un champs à Prades le Lez proche de la confluence Lez-Lirou, le toit de la Maison de la télédétection, le toit de la Clinique du Parc, le toit de l'Hôtel de Région). Nous indiquons dans la table ci-dessous les noms de ces ouvrages ainsi que la cote du radier principal (la cote du radier dont la longueur est la plus grande). Une description complète de la géométrie de ces ouvrages ainsi que des photos et croquis sont disponibles dans un document annexe (Cyril Dejean, Florian Mauris, Pierre-Olivier Malaterre. Etude des singularités sur le Lez (Montpellier et alentours). Fichier schéma seuils sur le Lez avec photos.ppt. 2010.).

Nom de la singularité	Remarque (ou cote principale en m						
Moulin du Près (2)	55.3						
Moulin du Parc (3)	44.59						
Moulin des Trépassés (4)	41.54						
Moulin de Boudet (5)	37.43						
Moulin de Gasconnet (6)	34.96						
Seuil de Lavalette (7)	33.25						
Moulin de Martinet (8)	30.3						
Moulin de Navitau (9)	28.92						
Moulin des Guilhems (10)	24.84						
Passerelle « Mont plaisir » (Etat en	20.83						
ruine et inutilisée aujourd'hui)							
Moulin de la Poudrière (11)	19.66						
Moulin de Bez ou du Rocher (12)	17.96						
Moulin du Sauret (13)	16.08						
Seuil du Pont de Garigliano (14)	13.54						
Moulin de l'Evêque (15)	Seuil mobile, 12.50 au max ?						
Passerelle Hôtel de Région 1	Radier à 7.4, Passerelle pleine de 9.30 à						
	9.70						
Passerelle Hôtel de Région 2	ldem à 170 m plus à l'aval						
Seuil aval Pont Juvénal (16)	Barrage mobile, 8.02						
Seuil Richter amont (17)	7.58 et 8.3 à 8.5 en lit moyen						
Seuil Richter (18)	6.86						
Seuil Richter aval (19)	6.07						
Ecluse 1 (20)	6.62						
Déversoir latéral Lattes	8.72 à 8.80, sur 150m de long en rive						
	gauche						
Ecluse 2 (21)	4.64						
Ecluse 3 (22)	2.70						

Figure 56 : Ouvrages le long du Lez

Figure 57: Répartition des 25 singularités (18 seuils, 3 écluses, 3 passerelles, 1 déversoir latéral)

4.2.3. Données géométriques pour les lits d'écoulement

A l'heure actuelle, diverses sources de données sont disponibles en ce qui concerne la géométrie du fleuve Lez, comme indiqué en introduction. Un projet de fin d'études d'ingénieur est actuellement en cours (Guillo 2011) afin d'évaluer la possibilité d'utilisation de chacune de ces données en vue de l'extraction de caractéristiques géométriques afin d'améliorer le modèle hydraulique existant.

Donnée	Date	Caractéristiques	Observations

Modèle Numérique de Surface LiDAR ¹	2002	Pas de 1 m Format raster GRID (ArcGIS) Acquisition 26 Juin 2002	Pas d'exploitation directe envisageable pour l'extraction de la géométrie
Modèle Numérique de terrain (MNT) LiDAR	2002	Pas de 1 m Format raster GRID (ArcGIS) Acquisition 26 Juin 2002	Utilisation envisageable pour des sections du lit mineur/moyen et du lit majeur Ne couvre pas l'intégralité du Lez, mais une toute petite partie allant de Lavalette à Montferrier-sur-Lez
MNT ASTER ²	2001	Pas de 30 m Format raster GRID (ArcGIS)	Ne permet pas d'avoir une définition géométrique correcte, même pour le lit majeur, sur une échelle aussi locale que celle du Lez
MNT IGN ³	2001	Pas de 50 m Format raster GRID (ArcGIS)	Bonne précision, mais densité trop faible des points
MNT IGN⁴	2001	Pas de 5 m Format raster GRID (ArcGIS)	Utilisation envisageable pour des sections du lit majeur. Des données plus récentes que 2001 sont peut être disponibles !? Mais ne couvre pas toute la zone, notamment au nord.
MNT SRTM⁵	2001	Pas de 75 m	Idem

- ⁴ IGN : Institut Géographique National
- ⁵ SRTM : Shuttle Radar Topography Mission

¹ LiDAR : Light Detection And Ranging

² ASTER : Advanced Spaceborne Thermal Emission and Reflexion

³ IGN : Institut Géographique National

		Format raster GRID (ArcGIS)	
MNT 34	2007	Pas de 30 m Format raster GRID (ArcGIS)	ldem
Profils en travers BRL affluents amont	2009	Format dessin DXF (AutoCAD) et fichier listing TXT pour abscisse/cote	Ne couvrent pas le Lez à proprement parler mais plutôt ses affluents amont et la confluence Lez-Lirou. Ces sections ont été positionnées sur un fond de carte IGN 25000 ^{ème}
Profils en travers BRL Lez aval	2009	3 Images au format pdf des sections sur fond de carte IGN 25000 ^{ème} et un fichier .doc (source Syble)	De la confluence Lez-Lirou à l'A9. Provient également de l'étude hydraulique réalisée par BRL en 2009 avec le logiciel ISIS. Nous allons récupérer cette étude et les données auprès de la DDTM34
Profils en travers du Lez	2003, 2008 et 2011	Format dessin DWG (AutoCAD) et XLS (MS Excel) pour abscisse/cote	Géométrie lit mineur sur des profils ponctuels
Relevé de 3 profils vers Lavalette	2011	Format XLS (MS Excel)	Trois profils mineur-moyen- majeur du Lez relevés par GPSD
Topographie Lit Majeur	1996	Format SHP (ArcGIS) et XLS (MS Excel)	Profils en travers du lit majeur sur l'ensemble du Lez
Plan topographique Lavalette	2009	Format DWG (AutoCAD)	
Plan de recollement DOE	2011	Format DWG (AutoCAD)	Plans topographiques et profils en travers (de la Languedocienne jusqu'aux étangs) suite aux travaux BEC avec dimensionnement EGIS

Relevé des	2009	Format XLS (MS Excel)	Ensemble des seuils du Lez
Seulis			

Figure 58 : Données géométriques disponibles sur la zone Lez

A titre d'information et d'évaluation des données, une comparaison de l'extraction d'un lit majeur à partir des différents MNT a été réalisée afin d'évaluer les écarts constatés entre ces différentes sources de données, dont voici un résultat graphique :

Comparaison extraction profil lit majeur

Figure 59: Comparaison d'une section lit majeur à partir de diverses sources

On remarque à l'aide de ce graphique que le profil GPS différentiel et celui extrait depuis le MNT IGN 5m sont très proches. Il en va de même pour le MNT LiDAR, même si un certain décalage semble être présent (probablement dû à un géo-référencement inexact que nous essayons de corriger). En ce qui concerne le MNT ASTER, on constate ainsi les limites de ce type de données qui sont très imprécises au niveau local. Enfin, pour le MNT SRTM, on constate que globalement la géométrie est bien représentée, mais localement elle semble lissée et ne permet pas de mettre en évidence certains reliefs particuliers présents sur le terrain.

Figure 60: Profils BRL (2009)

Au vu de cette analyse, la BD Topo IGN datant de 2001 au pas de 5m a été retenue pour extraire 29 profils en travers pour le lit majeur (Belaud 2001) complétés par 6 profils de lit majeur à partir du MNT LIDAR 1m.

4.2.4. Test de relevé par scanner laser terrestre 3D

La Maison de la Télédétection a récemment fait l'acquisition d'un scanner laser terrestre 3D (Riegl VZ-400). Afin d'évaluer la possibilité d'utilisation d'un tel matériel pour une meilleure définition géométrique du Lez, trois zones ont été relevés. Elles sont représentées en rouge sur la Figure 61, et se trouvent à des endroits où des profils ont été récemment levés par des moyens conventionnels (tachéométrie, GPS différentiel).

Figure 61 : Position des profils en travers relevés (2011)

Figure 62 : Aperçu du nuage de points relevé par scanner 3D

Il est ensuite possible d'extraire des coupes (profils en travers perpendiculaires à la direction d'écoulement par exemple) à partir du nuage de points 3D (ayant initialement quelques centaines de millions de points, Figure 62). Nous représentons à la Figure 63 un tel profil extrait à partir du nuage 3D pour une section situé à l'amont du Moulin du Parc.

Figure 63 : Coupe (profil en travers) extrait à partir du nuage de points relevé par scanner 3D, en amont du seuil du Moulin du Parc (partie au-dessus de la ligne d'eau)

Une méthodologie de traitement des données du nuage de points 3D est en cours de développement dans l'unité G-Eau afin d'affiner l'extraction des profils en travers de ces zones. Celle-ci permettra de comparer ces relevés aux relevés traditionnels actuellement utilisés, relevés au théodolite laser (ou plus rarement au GPSD lorsque le couvert végétal le permet). Si ce type d'acquisition de données est concluant, il pourrait permettre de relever la géométrie des berges, ouvrages et obstacles au dessus du niveau de l'eau (donc à faire à basses eaux pour avoir le maximum de berges visibles).

Les conclusions relatives à ce type d'acquisition seront exposées dans le rapport relatif à l'AT4.

Pour la partie immergée, des instruments de type ADCP (ex.: Qliner de OTT) peuvent compléter les mesures. Par ailleurs, il doit être possible d'extraire un indice représentatif de l'importance de la végétation sur les berges, que l'on pourrait relier au coefficient de frottement (Strickler). Ces études seront poursuivies, même si elles dépassent le cadre du projet en cours et objet de ce rapport. A terme, d'ici quelques années, on est persuadé qu'un cheminement le long du système hydraulique, avec un scanner terrestre 3D comme celui que nous avons utilisé, couplé à une centrale inertielle et un GPSD pour le recalage lorsque le couvert végétal le permet, deviendra un moyen efficace, précis et rapide d'acquisition des données géométriques des berges des lits mineurs et moyens et de leurs coefficients de rugosités. En ce qui concerne les lits majeurs, cela serait également possible mais des MNT comme celui de la BD Topo IGN au pas de 5m semblent dans notre cas suffisants.

4.2.5. Données hydrométriques

Les données topologiques et géométriques listées ci-dessus, analysées et vérifiées ont été introduites dans le logiciel hydraulique SIC. La partie qui nous intéresse pour la validation du modèle est le tronçon Lavalette – Garigliano – 3^{ème} Ecluse, puisque c'est à ces 3 points que nous disposons de mesures hydrométriques (Z, Q) archivées dans la banque Hydro.

↑ Code de la station ↓ <u>Tout décocher</u> / <u>cocher</u>	↑ Libellé de la station ↓	lace Département de localisation de la station $lacksquare$	Hauteurs Données disponibles	Débits Données disponibles
✓ Y3204010	Le Lez à Montferrier-sur-Lez [Lavalette]	Hérault (34)	1974 - 2011	<u> 1975 - 2011</u>
✓ Y3204020	Le Lez [source] à Saint-Clément-de-Rivière	Hérault (34)	1987 - 2011	1987 - 2011
✓ Y3204030	Le Lez à Montpellier [Pont Garigliano]	Hérault (34)	1998 - 2011	1998 - 2011
✓ Y3204040	Le Lez à Lattes [3ème écluse]	Hérault (34)	2008 - 2011	2008 - 2011
▼ Y3205010	Le Lez au Triadou [Pont du Lien]	Hérault (34)	2008 - 2011	2008 - 2010

Figure 64 : Stations disponibles sur le Lez (Banque Hydro)

Les crues retenues (critères : cumul de pluie sur l'épisode > 90 mm et Q de pointe à Lavalette > 40 m³/s) pour le modèle hydrologique (Bassin Versant à l'exutoire Lavalette) sont les 21 crues suivantes (date début, date fin, stations disponibles avec les codes suivants : L=Lavalette, G=Garigliano, E=3^{ème} Ecluse) :

	· · · · · · · · · · · · · · · · · · ·	
> Du 18/10/1994 06:00 au	26/10/1994 20:00	L
> Du 27/10/1994 06:00 au	11/11/1994 11:00	L
> Du 15/12/1995 06:00 au	25/12/1995 00:00	L
> Du 13/03/1996 06:00 au	22/03/1996 03:00	L
> Du 17/12/1996 06:00 au	28/12/1996 17:00	L
> Du 24/11/1997 06:00 au	04/12/1997 12:00	L
> Du 16/12/1997 06:00 au	27/12/1997 00:00	L
> Du 11/11/1999 06:00 au	23/11/1999 00:00	L, G
> Du 28/09/2000 06:00 au	03/10/2000 19:00	L, G

> Du 23/12/2000 06:00 au	31/12/2000 23:00	L
> Du 16/01/2001 06:00 au	24/01/2001 14:00	L, G
> Du 09/10/2001 06:00 au	14/10/2001 14:00	L, G
> Du 08/09/2002 06:00 au	12/09/2002 10:00	L, G
> Du 08/10/2002 06:00 au	14/10/2002 17:00	L, G
> DU 09/12/2002 06:00 au	21/12/2002 01:00	L, G
> Du 22/09/2003 06:00 au	25/09/2003 15:00	L, G
> Du 15/11/2003 06:00 au	20/11/2003 04:00	L, G
> Du 29/11/2003 06:00 au	10/12/2003 04:00	L, G
> Du 05/09/2005 06:00 au	07/09/2005 15:00	L
> Du 27/01/2006 06:00 au	07/02/2006 17:00	L
> Du 19/10/2008 06:00 au	25/10/2008 06:00	L, G, E

Mais parmi ces 21 crues, 1 seule (Du 19/10/2008 06:00 au 25/10/2008 06:00) présente des enregistrements aux 3 stations (Lavalette, Garigliano, 3^{ème} Ecluse), et 10 crues aux 2 stations (Lavalette, Garigliano). Nous utiliseront ces 11 crues pour valider le modèle, pour analyser diverses méthodes de couplage des modèles hydrologiques et hydrauliques et pour reconstituer des apports non mesurés des principaux affluents de cette zone (Lironde, Verdanson, autres apports urbains).

Deux modèles seront créés : un modèle antérieur aux aménagements liés aux travaux du tramway à l'aval de Castelnau le Lez et aux travaux d'endiguement de Lattes, et un modèle postérieur à ces aménagements. Sur les mêmes crues que retenues ci-dessus nous comparerons la réponse hydraulique du Lez avant et après aménagement.

4.2.6. Modélisation dans le logiciel SIC

La modélisation dans le logiciel SIC implique la saisie des données topologiques (Figure 65) et géométriques (Figure 66).

Figure 65 : Interface de SIC pour les données topologiques du Lez de Lavalette à la 3ème écluse

ele POM CD 22/03/10 - EdiSic			
er Edition Projet Affichage	Outils O	itions ?	
Géométri Géométri	e 🚹		
erche	86	Lirond	
Elément du réseau	Abscisse *	T T	
LEZ		T	
/n Lez Bief 3		<u>+</u>	
1 Lirond		***	
/section31 = section 215 (miner	10139	7	
/ section32	10361	+	
/section33	10562	Description du bief : Lez Bief 4 🛛 🗖 🔀	
🔥 Seuil 7 Lavalette	10712		
/s Aval - Seuil Lavalette	10712	Nom du bief Lez Bief 4	
/s section34	11017	Pas de calcul 200.00 m Longueur 115.00 V Affichage sections Homothétie : Y Z	
/s section35	11249		
section36 (mineur pr Noeud Ma	11556	Sections Afficher les sections de calcul	
🕺 Mart_M		Elément du réseau	
BI Lez Bief 4		Abscisse/Cote	
🎢 Mart_M		Aval - Moulin de Martinet = section36 11 556,00 Abscisse/Cote	
🛛 🛃 Seuil 8 Moulin de Martinet (mi	neur pr Mart_M)	/ section41 (mineur pr Noeud Mart_V) 11 671,00 Abscisse/Cote	
/s Aval - Moulin de Martinet = sec	11556	<u>Nouvelle</u> <u>LC</u> <u>Copier</u>	
/s section41 (mineur pr Noeud Ma	11671	🔯 Insérer 👘 Coller	
🐔 Mart_V		Supp V Confirmation avant	
/Bi Lez Bief 5		suppression	
🐔 Mart_V			
$/_{\rm S}$ section51 = section41 (mineur	11671	Profil de la section Description et photo de la section	
✓ _S mineur pr Courtadelles	11875.57		
/s section52	12029	Prédéfinie Abscisse Cote Section41 (mineur pr Noeud Mart_V)	
🕂 🕅 Navi_M		0 larger (Cote 0.00 32.07 +	
BI Lez Bief 6		e higher (cate 11,40 30,77	
🐔 Navi_M		■ ADSCISSE/COLE	
🔏 Seuil 9 Moulin de Navitau	12029	Ctrculaire 14,40 26,80	
/s Aval - Moulin de Navitau = sect	12029	Dalot 15,40 26,89 Copier	
/s section61	12582	Puissance 16,50 27,29 Coller	
🕺 Navi_V		© Rectangulaire 17,50 27,39	
J _{BI} Lez Bief 7		Trapézoïdale 20,00 27,39	
🕺 Navi_V		22,60 27,49 -	
s section71 = section61	12582		
Seuil 10 Moulin des Guilhems	12889		
S Aval - Moulin des Guilhems	12889	Homothetie : Y Z	
section72	13067		
Section Passerelle Mont plaisir	13189	Bief précédent 🗢 💌 Bief suivant 📝 Confirmation avant	
S Aval - Passerelle Mont plaisir	13189		
/s section73	13281	二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二	
/s section74	13486	in zone etude	
Seuil 11 Moulin de la Poudrière	13870		
/s Aval - Moulin de la Poudrière	13870	< III	
		Mar Web Te Belly	
nonier en cours la gaogez paomi patas	are (du.xini		ei
		22/06/2011	15:34:1
	Ed)	97 👼 📴 👘 🖓 🛱 🕼	15:3 22/06/

Figure 66 : Interface de SIC avec, au premier plan, les données géométriques du Lez entre Lavalette et la 3ème écluse

Les seuils sont quant-à-eux définis également par composition de divers éléments, et par la fourniture de leurs caractéristiques géométriques (Figure 67).

Figure 67 : Interface de SIC avec, au premier plan, les données hydrauliques des seuils

4.2.7. Simulation des crues dans le logiciel SIC

Les crues sélectionnées peuvent ensuite être simulées dans le logiciel SIC (Figure 68), puis comparées aux données de la banque hydro pour les stations aval (Figure 69, Figure 70, Figure 71)

Figure 68 : Interface de SIC avec, au premier plan, les résultats des simulations hydrauliques des crues

Figure 69 : Crue de Novembre 1999, à Garigliano

Gargliano crue sept03

débit troisième écluse oct08

Figure 71 : Crue d'Octobre 2008 à la 3^{ème} Ecluse

4.2.8. Conclusion et perspective

On voit que certaines crues sont très bien reproduites en simulation, même sans étude ni prise en compte des apports intermédiaires (Figure 69). D'autres peuvent être améliorées par reconstitution des apports intermédiaires qui sont certainement importants dans certains cas (Figure 70 pour Septembre 2003 et Figure 71 pour le second pic d'Octobre 2008). Ces aspects seront étudiés par modélisation des apports par un modèle hydrologique des affluents, ainsi que par assimilation de données. Le couplage du modèle hydrologique (Athys-Mercedes) et du modèle hydraulique (SIC) dans l'environnement PALM du Cerfacs a été fait dans le cadre de ce projet. Ces différents points seront précisés dans le rapport de l'AT4 du présent projet.

Figure 72 : Palmérisation du logiciel SIC et couplage

4.3. RECONSTITUTION DU DEBIT NATUREL DE LA SOURCE DU LEZ

4.3.1. Bilan des données disponibles à la source du Lez et perspective de valorisation

Synthèse des données disponibles (piézométrie, courbe de tarage)

La synthèse des données disponibles concernant la source du Lez est présentée dans le tableau 1 en annexe 3 (hauteur d'eau dans la vasque ou le forage n°4, débit de prélèvement, débit de débordement de la vasque). De toutes les variables collectées, c'est la variable piézométrique qui est la mieux renseignée sur la période d'investigation (1946-2009).

Les conditions d'exploitation à la source du Lez ont évolué dans le temps selon trois schémas principaux décrits à la Figure 73.

- Les données de piézométrie acquises avant 1951 ne peuvent pas être exploitées, car elles n'ont pas pu être rattachées à un repère connu. Entre 1951 et 1967, la piézométrie a été mesurée au niveau de la vasque et est exprimée par rapport à la cote du seuil déversoir (cote 64.92 m NGF jusqu'en 1967). Sur cette période le débit de débordement de la vasque peut être estimé à l'aide de la courbe de tarage présentée sur la Figure A 1 en annexe 3. Cette courbe de tarage repose sur des jaugeages réalisés entre 1962 et 1963 (données rassemblées par Bérard et Thiery, 1983).
- En juin 1967, le seuil déversoir de la source du Lez a été surélevé de 6 cm (cote du nouveau repère : 64.98 m NGF, Photo 2). Les cotes piézométriques mesurées avant 1967 ont été normalisées par rapport au nouveau repère (64.98 m NGF) dans un souci de simplicité. La courbe de tarage de 1962-1963 (Figure A 1 en annexe 3) ne peut plus être utilisée pour estimer les débits de débordement de la source du Lez après juin 1967. Entre juin1967 et décembre1982, le débit de débordement de la vasque peut être estimé à l'aide de la courbe de tarage présentée sur la Figure A 2 en annexe 3. Cette courbe de tarage repose sur des jaugeages réalisés entre 1969 et 1970 (données rassemblées par Bérard et Thiery, 1983).
- A partir de décembre 1982, la piézométrie est mesurée au niveau du forage 4 (cf. Photo 1) de la chambre de captage. Entre 1983 et 1984, la piézométrie a été mesurée de manière simultanée à la vasque et au forage. La confrontation des informations obtenues sur cette période ne permet pas d'établir une relation fiable de correspondance de charge entre la vasque et le forage (Figure A 3 en annexe 3). Le capteur de pression du forage n'a pas assez de précision (+/- 0.1 m) pour établir de manière précise la relation entre la charge mesurée à la vasque et le drain. La différence de charge entre la vasque et le forage (fonction du débit du système karstique). Entre 1982 et 1987, les débits de

débordement du karst ne peuvent donc pas être estimés de manière fiable à partir des données piézométriques acquises au forage.

A partir de 1987 et jusqu'en 2007, les débits de débordement de la source du Lez ont été estimés à l'aide de la station hydrométrique de la DREAL (Y3204020) située à environ 300 m en aval de la source. En période d'étiage, lorsque la source est tarie en raison des pompages, le canal de restitution permet la mesure du débit de soutien d'étiage imposé (**Q=160 I/s**, Photo 3, Figure 74).

Figure 73 : modalités des conditions de captage depuis 1951

Photo 1 : Forage n°4 de la chambre de captage de la source du Lez

Photo 2 : Déversoir de la source du Lez (photo Ginger environnement, 2010)

Photo 3 : Déversoir du débit restitué au Lez.

En août 2010, le bureau d'étude Ginger Environnement a relevé les cotes géométriques du seuil de la source du Lez (Photo 2) afin d'établir la courbe de tarage théorique du déversoir (loi du type « déversoir noyé » :

$$Q = KLH \sqrt{2gH}$$

Avec

K: le coefficient de débit compris entre 0.34 et 0.42 (bornes haute et basse correspondant à 10% de la valeur moyenne 0.38 afin de prendre en compte l'incertitude liée à l'estimation de ce coefficient) en fonction de la forme du seuil.

- L : longueur du seuil en m
- H : Charge au-dessus de la crête du seuil en m
- g: pesanteur

Trois courbes de tarage (Q0.38Ginger, Q0.34Ginger et Q0.42Ginger) ont pu être établies pour les trois coefficients de débits K = 0.38, K(-10%) = 0.34 et K(+10%) = 0.42. Les courbes de tarage théorique sont présentées dans l'annexe 3 (Figure A 4 ; Figure A 5 ; Figure A 6).

L'utilisation des courbes de tarage théoriques nécessite la mesure précise de la charge au-dessus de la crête du seuil. Un capteur de mesure présentant une résolution de 1 cm seulement peut conduire à de fortes imprécisions sur les débits de débordement (de 50 l/s à plus de 400 l/s selon que la charge au-dessus de la crête du seuil est de 2 cm ou de 50 cm, cf. Figure A 7 en annexe).

Figure 74 : (a) Exemple d'évolution du débit mesuré à la station de jaugeage (Y3204020, Banque Hydro) située 300 m environ du déversoir de la source du Lez (1997-2005). (b) Evolution du débit prélevé et restitué au Lez (Photo 3) lorsque la source ne déborde pas. (c) Evolution de la piézométrie mesurée dans le drain karstique au niveau du puits n°4 de la chambre de captage. La piézométrie à Mas de Martin et Claret Brissac est également reportée.

Estimation des débits de débordement et critique des résultats

Les évolutions des débits moyens annuels de débordement estimés à partir des différentes courbes de tarage précédemment décrites sont présentées sur la Figure 75. Pour chacune des courbes de tarage (1962-1963 et 1969-1970, **Figures A1 et A2 en Annexe 3**), nous avons calculé les bornes supérieures et inférieures de l'intervalle de confiance (noté + et – sur le graphique).

Pour la courbe théorique (Ginger, Q0.38_GingerV2), l'intervalle de confiance est donné à l'aide de courbes calculées avec les coefficients de débit K de 0.42 et 0.34 (cf Figures A4, A5 et A6 en Annexe 3).

Figure 75 : Evolution des débits moyens annuels de débordement de la source du Lez (débordements de la vasque en périodes de hautes eaux) estimés à partir des différentes courbes de tarage (voir texte)

Figure 76 : Evolution des débits de débordement de la source du Lez (débordements de la vasque en périodes de hautes eaux) estimés à partir de la courbe théorique de tarage (Ginger0.38) et de débit mesurée à la station hydrométrique (Y3204020) située à environ 300 m à l'aval de la source. La piézométrie mesurée dans le drain karstique est également présentée. Des valeurs inférieures à 64.98 m NGF sont mesurées lorsque la source ne déborde plus.

La courbe de tarage de 1962-1963 permet de calculer des débits de débordement comparables à ceux calculés par la courbe théorique (Q0.38_GingerV2). Les débits de débordement calculés par la courbe de tarage de 1969-1970 apparaissent globalement plus faibles que ceux calculés par la courbe théorique (Q0.38_GingerV2). Les débits de débordement déduits de la chronique de la station Y3204020 (courbe « Diren ») apparaissent sous-estimés (1993-1996) ou surestimés (1988 ; 1997 ; 2001) par rapport aux débits calculés par les courbes théoriques (Q034_GingerV2 ; Q038_GingerV2 ; Q042_GingerV2). La Figure 76 permet également de visualiser ces résultats au pas de temps journalier depuis 1987.

Sur la période 1982-actuel, les débits de débordement obtenus à l'aide de la courbe de tarage théorique (Q0.38_GingerV2) apparaissent globalement plus faibles que ceux obtenus à partir de la chronique de débit (QDiren, Y3204020) de la station hydrométrique (cf. Figure A 8 en annexe 3). Ce résultat est lié au problème de manque de sensibilité du capteur de mesure des niveaux d'eau du forage et des incertitudes de la fonction mathématique liant le niveau de la vasque à la piézométrie mesurée dans le forage (cf. Figure A 3 en annexe). Les débits de débordement théoriques (Qq0.38Ginger) calculés sur la période 1982-2010 à partir des mesures piézométrique disponibles au forage sont donc entachés d'importantes incertitudes.

En résumé, le tableau ci-dessous permet de récapituler les informations disponibles sur les débits de débordement de la source du Lez.

Période	Données disponibles	Débit de débordement de la source du Lez (l/s)
avant 1951	H vasque (non rattaché à une cote)	non connu
1951-1967	H vasque (seuil à 64.92 m NGF)	estimé à l'aide de la courbe de tarage 1962-1963 (cf. figure A1 en Annexe 3)
1968-1982	H vasque (seuil à 64.98 m NGF)	estimé à l'aide des courbes de tarage théorique de Ginger (cf. figures A4, A5 et A6 en Annexe 3)
1982-1987	H forage (puits n°4)	non connu (les estimations par calcul [courbe tarage] sont entachées d'incertitudes trop importantes)
1987-2007	H forage (puits n°4) Débit de la station Y3204020	estimé à l'aide de la chronique de débit de la station Y3204020
2007-2010	H forage (puits n°4)	non connu (les estimations par calcul [courbe tarage] sont entachées d'incertitudes trop importantes)

Débit de pompage et conditions de captage à la source (jusqu'en 1982)

Depuis 1951, date à partir de laquelle on dispose d'information à la source du Lez, jusqu'en 1982, trois périodes distinctes de gestion de la ressource peuvent être distinguées à la source du Lez (Figure 77 ; Figure 73) :

- Jusqu'en 1967, la source est exploitée de manière gravitaire au débit maximum de 400 l/s. Aucune donnée de prélèvements n'est disponible pour cette période. Nous supposerons que le débit de prélèvement est de 400 l/s.
- La période juin 1968- mai 1973 est caractérisée par le début des prélèvements par pompage à l'aide de 3 pompes de 420 l/s installées dans la vasque à une profondeur de 6.6 m sous le seuil du déversoir. Ce dispositif permet d'évacuer des débits de l'ordre de 600 l/s dans la conduite gravitaire de 1 m de diamètre. Aucune donnée de prélèvement n'est disponible pour cette période. Nous supposerons que le débit de prélèvement est de 600 l/s.
- La période mai 1973-décembre 1982 est caractérisée par la poursuite des prélèvements par pompage à l'aide de 3 pompes de 420 l/s. La mise en place de la conduite de 1.4 m de diamètre permet d'évacuer des volumes d'eau plus importants (jusqu'à 1100 l/s) notamment en période de hautes eaux (Figure 77). En période d'étiage, les débits de prélèvement sont moins élevés (compris entre 480 et 860 l/s). Les données de prélèvements de cette période sont connues.

Référence	Date	Débit (l/s)		Commentaire				
	1753 à 1765			Contruction de l'aqueduc par Henri Pitot qui amène l'eau de la s de Saint Clément jusqu'au réservoir du Peyrou. En 1854, prologement de l'aqueduc jusqu'à la source du Lez				e l'eau de la source ce du Lez
Paloc (1979) 79 SGN 319 LRO	1854 à 1879	Débit de (captage de 25 l/s					
Paloc (1979) 79 SGN 319 LRO	1879 à 1900	Débit de (captage de 125 l/s					
Paloc (1979) 79 SGN 319 LRO	1900 à 1931	Débit de (captage de 250 l/s	1931, mise en p (Qmax = 400 l/s	olace d'une o s)	onduite gr	avitaire de 1	m de diamètre
Paloc (1979) 79 SGN 319 LRO	1931 à 1968	Débit de (captage de 400 l/s					
	Sept 1965, es	saide pom	npage dans la vasqu	ue, Q=800 l/s				
	Juin 1967, seu	uil réhaussé de 7 cm (de 64.92 à 64.98 m NGF)						
	1968	3 pompes	immergées de 420) l/s sont installé	es dans la v	asque à la	côte 59.4 m	n NGF
Paloc (1979) 79 SGN 319 LRO	1968 à 1973	Débit de captage de 600 l/s						
	1969, essai de	ai de pompage dans la vasque, Q=1200 l/s						
Paloc (1979) 79 SGN 319 LBO	1073 à 1092 Pompage dans la vesque							
	1973, mise en place d'une conduite gravitaire de 1.4 m de diamètre							
	En dehors des périodes d'étiages							
	prélèvement 1	100 l/s	(600 l/s par la con	duite gravitaire d	e 1 m,			
			400 l/s par la conc 120 l/s environ par	luite de 1400 L'aqueduc ancie	n dit "Pitot")			
			120 h 3 chillion par		ir aic i itot j			
	En période d'	étiage						
	Le débit prélevé est fonction de la situation du plan d'eau par rapport au départ de la conduite gravitaire et par rapport aux 3 pompes de 420 l/s qui ont été mises en place en juillet 1968.							
	Dans ces cond	ditions, le	débit prélevé varie e	entre 480 et 860 l	/s (étiage 19	978)		
	1972	Pas de p	ompage, année exc	eptionnellement	humide			
	1973	Rabattement total de 5 m/seuil après 2 mois de pompage, durée H<64.98 m NGF => 147j (plus d'écoulement à la source), conduite gravitaire dénoyée pendant 120j						
	1974	durée H<	64.98 m NGF => 6	7j				
	1975	durée H<	64.98 m NGF=> 74	j				
	1976	durée H<	64.98 m NGF=>65j					
	1977	durée H<	64.98 m NGF => 60	Dj				
	1978	pompage	au débit de 700 à 8	360 I/s, rabattem	ent total de	5 m/seuil,	durée H<64.	98m NGF => 123j

Figure 77 :Synthèse des conditions de captage de la source du Lez jusqu'en 1982

Débit de pompage et conditions de captage par forages (à partir de décembre 1982)

Depuis le 09 décembre 1982, les pompages s'effectuent directement dans la galerie karstique en amont hydraulique de la vasque du Lez. La chambre de captage souterraine est constituée de quatre forages de 1.8 m de diamètre, dont trois sont équipés de pompes à la côte de 17 m NGF. Le forage n°4 (Photo 1) n'est pas équipé de pompe et est utilisé comme puits d'observation.

Le débit d'exploitation maximal autorisé par la DUP est de 1700 l/s, dont 160 l/s sont rejetés au Lez (débit réservé) lorsque la source ne déborde plus naturellement. Les débits pompés en périodes estivales (1200 à 1600 l/s) sont supérieurs aux débits prélevés en hiver (900 à 1000 l/s). Cette méthode de captage permet de mobiliser les réserves naturellement inaccessibles en étiage.

En synthèse, nous présentons sur la Figure 78 et l'évolution des débits prélevés à la source du Lez. Les débits de pompage avant 1974 sont estimés. Depuis la mise en place de la gestion active par forage (1982), le débit moyen interannuel prélevé est de 1113 l/s (\pm 56 l/s), soit environ 35 millions de m³/an (calculé sur la période 1983-2009).

Figure 78. Evolution des débits moyens annuels de prélèvements depuis 1974 (valeurs estimées avant 1974) et évolution du nombre de jours de débordement de la vasque depuis 1951

Conclusions en vue de l'estimation des débits naturels du Lez

Avant 1967, l'absence d'informations précises sur les débits gravitaires prélevés (prélèvement supposé constant à 400 l/s) ne permet pas de reconstituer avec précision les débits naturels de la source du Lez. La reconstitution du débit naturel d'avant 1967 est entachée d'une grande incertitude, notamment en étiage, car les débits sont supposés égaux à 400 l/s (cf. ci-dessous) ce qui ne correspond pas à la réalité.

La période 1968-1974 est qualifiée par le début de la gestion active par pompage dans la vasque. Aucune information précise sur les débits prélevés n'est disponible durant cette période. La reconstitution des débits naturels de la source est impossible à l'aide des données disponibles.

La période 1974-1982 est toujours qualifiée par la gestion active par pompage dans la vasque. Les données de prélèvements sont connues ce qui permet l'estimation des débits naturels de la source en période de débordement :

- En période de hautes eaux (HE), le débit de prélèvement (pompage) n'influence pas ou peu le niveau de la vasque car les débits prélevés sont globalement inférieurs aux débits de débordement. La mesure du niveau de la vasque permet d'estimer le débit de débordement (Qdébordement). La connaissance du débit prélevé (Qpompage) permet d'estimer le débit naturel qui se serait écoulé à la source en absence de pompage : Q naturel estimé (HE) = Qdébordement + Qpompage.
- En période de basses eaux lorsque la source ne déborde plus, le débit de prélèvement est supérieur au débit qui se serait naturellement écoulé. Les pompages provoquent une baisse du niveau piézométrique et une sollicitation des réserves du système. Au cours de ces périodes, le débit naturel ne peut pas être évalué, il ne correspond en aucun cas au débit prélevé.

La période 1982-actuelle est qualifiée par la gestion active par pompage dans les forages profonds qui recoupent le drain karstique en amont de la vasque. Les données de prélèvements sont connues.

Contrairement à la période 1974-1982, la mesure de la charge piézométrique qui est dorénavant réalisée au niveau du drain karstique (puits n°4) ne peut pas être utilisée pour estimer les débits de débordement de la vasque en raison d'une absence de précision de mesure (Figure A 3 en annexe 3).

Sur la période 1987-2007, les débits de débordement de la vasque ont été déduits de la chronique de débit du Lez mesurée à la station hydrométrique de la Diren (Y3204020) située à 300 m environ à l'aval du déversoir de la source du Lez. Sur cette période, les données de prélèvements sont connues ce qui permet l'estimation des débits naturels de la source en période de débordement : **Q naturel estimé (HE) = Qdébordement + Qpompage.**

En période de basses eaux lorsque la source ne déborde plus (source tarie), le débit de prélèvement est supérieur au débit qui se serait naturellement écoulé. Les

pompages provoquent une baisse du niveau piézométrique et une sollicitation des réserves du système karstique. Au cours de ces périodes, le débit naturel ne peut pas être évalué, il ne correspond en aucun cas au débit prélevé.

En résumé, le débit naturel de la source du Lez peut être estimé avec précision lors des hautes eaux (périodes de débordement de la source) pour les périodes suivantes (Figure 77) :

- D'août 1973 à décembre 1982 (1925 jours sur un total de 3287 jours)
- De décembre 1987 à mai 2007 (2728 jours sur un total de 7305 jours)

4.3.2. Procédures pour reconstituer les débits naturels de la source du Lez (périodes de basses eaux, périodes de lacune de données)

En période de basses eaux, lorsque la source ne déborde plus (source tarie), le débit de prélèvement (pompage) est supérieur au débit qui se serait naturellement écoulé en absence de pompage. Les pompages mobilisent les réserves en eau du système naturellement inaccessibles en étiage ce qui se traduit par une diminution de la charge piézométrique dans le drain karstique (Figure 76).

Le débit pompé lors des périodes d'étiage peut s'interpréter comme la somme du débit qui se serait naturellement écoulé en absence de pompage (Q naturel) et du débit de sollicitation des réserves (déstockage des drains karstiques et mobilisation de la matrice carbonatée dans laquelle s'est développé le réseau de drainage karstique). Ces deux variables ne sont pas connues à ce stade de l'étude et vont être estimées à l'aide de modèles mathématiques. La démarche adoptée est décrite ci-après et les détails de l'approche sont présentés en annexe 4.

Description de l'approche méthodologique mise en œuvre pour estimer les débits naturels de la source du Lez

L'approche de modélisation repose sur l'utilisation d'un modèle global (TEMPO) basé sur la détermination, par modélisation inverse, de fonctions de transferts qui permettent de décrire la réponse du système karstique aux sollicitations provoquées par les épisodes de pluies efficaces.

Dans cette étude, la caractérisation des fonctions de transfert du système karstique a été menée sur le débit naturel des périodes de hautes eaux des années 1974 à 1979 (période de calage) à l'aide d'un modèle paramétrique (Modèle de Samani et Ebrahimi, 1996). Ce modèle, par analogie avec l'approche de Mangin (1975), permet de décrire le fonctionnement du karst en période de hautes eaux par une fonction mathématique convoluant une fonction homographique et une fonction exponentielle décroissante. Les périodes de basses eaux ont été décrites par l'extrapolation des réponses impulsionnelles en supposant que les temps de régulation du système karstique sont compris en 128 jours et 366 jours (<u>étape 1</u>). Par analogie à ce qui a été observée sur les systèmes karstiques Nord-Montpellierains (Ladouche et al, 2002; 2005), on

suppose que ces temps de régulation permettent, d'encadrer à priori, l'ordre de grandeur des vitesses de vidange (coefficient de tarissement) de la zone noyée du système karstique du Lez.

Trois modèles de transfert (étape 1) ont été élaborés pour les temps de régulation suivants : 128 jours, 256 jours et 366 jours pour chacune des chroniques de débit estimés à partir des courbes de tarages théoriques (établis pour les 3 coefficients de débits suivants : 0.34 ; 0.38 et 0.42, cf. ci-dessus et annexes 4), soit au total 9 modèles⁶.

L'utilisation de ces 9 modèles de transfert a permis de reconstituer par modélisations les débits naturels du Lez sur la période 1962-2008. A partir des chroniques produites par chaque modèle, nous avons calculé la chronique « moyenne » et l'incertitude des 3 chroniques simulées pour les différents temps de régulation considérés (cf. annexe) :

QMoyMOD0.38=(ModHE_0.38Ging_128j ; ModHE_0.38Ging_256j ; ModHE_0.38Ging_366j)/3

QMoyMOD0.34=(ModHE_0.34Ging_128j ; ModHE_0.34Ging_256j ; ModHE_0.34Ging_366j)/3

QMoyMOD0.42=(ModHE_0.42Ging_128j ; ModHE_0.42Ging_256j ; ModHE_0.42Ging_366j)/3

Dans un second temps (Etape 2), nous avons confronté les données moyennes (QmoyMOD0.38 ; QmoyMOD0.34 ; QmoyMOD0.42) produites par les modélisations aux débits naturels estimés à partir de la chronique de la station de jaugeage de la Diren (période 1987-2007). Les données modélisées ont été jugées globalement fidèles aux débits naturels estimés en hautes eaux à partir de la chronique de la Diren. Les données de débits produites par modélisation ont été identifiées à la chronique des débits naturalisés estimés à partir de la chronique de débit de la station de jaugeage de la Diren (période 1987-2007) afin de combler les lacunes des périodes de basses eaux. L'exercice a été conduit trois fois à partir des trois chroniques moyennes précédemment produites (QmoyMOD0.38 ; QmoyMOD0.34 ; QmoyMOD0.42), puis trois nouveaux modèles de transfert ont donc été élaborés afin de constituer les débits pour la période antérieure à 1987. Ces nouveaux débits estimés par modélisation ont été ensuite comparés aux débits simulés par l'approche de l'étape 1.

La critique des données obtenues par les modélisations a ensuite été réalisée dans le but d'évaluer les incertitudes sur les débits naturels calculés.

⁶ Modèles :

ModHE_0.38Ging_128j ; ModHE_0.38Ging_256j ; ModHE_0.38Ging_366j ModHE_0.34Ging_128j ; ModHE_0.34Ging_256j ; ModHE_0.34Ging_366j ModHE_0.42Ging_128j ; ModHE_042Ging_256j ; ModHE_0.42Ging_366j

Données utilisées

Les variables hydroclimatiques utilisées dans la simulation sont les suivantes :

- variable climatique : Température moyenne mensuelle de la station de St-Martin de Londres (1960-2008). L'éloignement du site considéré n'est pas préjudiciable dans l'approche de modélisation utilisée car seules les variations relatives sont prises en compte dans les calculs (les variables d'entrées sont dites « centrées réduites »);
- variable pluie : Pluie à St-Martin-de-Londres (1962-2008) ; Montpellier Fréjorques (1962-2008); Valfaunes plaine (1960-2008) (données Météo France).

La première analyse a consisté à déterminer quels sont les sites pluviométriques qui permettent d'expliquer au mieux la variance des débits. Cette analyse a été menée à l'aide de l'option pondération des chroniques de pluie de Tempo qui consiste à établir le corrélogramme croisé « pluie-débit » à partir d'une optimisation d'une combinaison linéaire des poids associés à chaque chronique de pluie.

Les calculs ont été réalisés à partir de la chronique de débit de débordement estimée à partir de la courbe de tarage théorique du seuil déversoir de la source du Lez.

La chronique de pluie est la suivante :

Pluie_BV = 0.32*St-Martin-de-Londres + 0.56*Valfaunes + 0.13*Montpellier

Les cumuls annuels et mensuels sur la période janvier 1961-mai 2008 sont reportés dans le tableau ci-après (Figure 79). Sur la zone d'étude, le cumul moyen interannuel des précipitations est estimé à 924 mm, le minimum étant de 509 mm (1985) et le maximum de 1579 mm (1996).

Année	1	2	3	4	5	6	7	8	9	10	11	12	Total
1962	77	69	97	80	49	13	6	7	114	177	16 <mark>4</mark>	117	968
1963	<mark>1</mark> 54	161	26	148	49	98	101	106	297	161	127	133	1561
1964	68	316	137	67	94	17	42	87	236	81	105	101	1352
1965	94	55	78	3	18	31	17	18	174	339	38	71	<mark>93</mark> 5
1966	50	175	6	100	86	47	44	48	73	133	53	9	825
1967	130	170	53	3	67	11	7	50	35	33	60	8	627
1968	7	101	6	97	156	102	10	98	131	39	98	49	<mark>89</mark> 5
1969	143	185	191	139	62	52	19	94	110	283	102	86	1466
1970	<u>19</u> 9	19	59	28	73	11	17	82	29	132	34	60	744
1971	252	1	11 <mark>3</mark>	226	75	7 6	5 <mark>4</mark>	25	56	115	65	90	1147
1972	301	239	137	49	58	145	15	39	224	66	45	104	1522
1973	142	9	64	24	15	65	23	4	12	89	74	1 66	<mark>6</mark> 86
1974	98	126	184	81	52	66	30	89	234	8	40	1	1011
1975	42	74	72	16	111	63	14	124	93	26	50	130	816
1976	50	161	57	147	28	5	41	61	296	339	100	146	1430
1977	1 <mark>55</mark>	48	71	26	163	79	56	39	33	179	59	115	1025
1978	128	104	76	149	89	20	17	18	16	2	59	204	882
1979	252	19	53	38	45	20	9	14	32	454	9	32	976
1980	69	41	80	9 5	11 <mark>0</mark>	25	15	109	7	39	81	20	<mark>6</mark> 93
1981	25	71	105	22	69	125	22	5	85	44	0	167	738
1982	45	114	72	38	14	37	76	44	47	59	175	29	751
1983	0	117	29	82	22	29	2	120	37	56	32	69	5 95
1984	39	30	<mark>9</mark> 5	12	150	16	8	71	73	29	276	106	905
1985	22	30	32	49	97	46	18	30	0	100	15	68	509
1986	102	154	50	9 8	22	6	10	20	91	184	60	42	839
1987	61	188	39	60	27	23	102	62	17	283	1 <mark>31</mark>	156	1148
1988	20 0	7	12	125	79	40	15	61	31	107	<u>1</u> 31	13	820
1989	45	23	27	125	4	1	3	37	99	69	114	21	5 67
1990	27	48	13	104	56	42	44	51	40	224	32	53	734
1991	39	60	103	58	37	21	34	54	63	106	19	17	611
1992	43	48	23	13	191	130	36	28	148	99	6	64	830
1993	1	42	43	188	47	44	32	18	151	143	207	21	<mark>93</mark> 6
1994	29	175	2	51	36	38	14	21	293	291	1 <mark>37</mark>	42	1128
1995	27	15	9	43	31	2	6	26	18 <mark>0</mark>	240	125	19 3	<mark>89</mark> 8
1996	367	1 <mark>32</mark>	9 <mark>8</mark>	108	52	5 5	58	6 0	116	82	116	335	1580
1997	189	2	0	14	49	118	20	85	12	67	205	240	1002
1998	36	26	5	161	103	7	12	17	94	22	16	94	5 93
1999	54	1	84	70	140	27	21	67	101	204	152	14	934
2000	17	4	22	93	79	44	38	5 1	194	56	90	<u>1</u> 57	<mark>84</mark> 6
2001	20 <mark>8</mark>	20	131	28	61	37	84	31	114	25 <mark>8</mark>	33	5	1009
2002	30	61	57	75	76	72	25	108	139	168	<mark>1</mark> 33	370	1316
2003	26	77	19	88	33	3	4	34	282	102	303	289	1260
2004	51	62	114	<u>12</u> 6	16	39	3	115	133	1 <mark>90</mark>	24	65	<mark>93</mark> 6
2005	2	18	16	48	47	52	6	14	261	131	58	5	658
2006	231	6	33	4	8	2	10	28	214	76	61	30	703
2007	38	49	15	65	138	32	4	13	76	59	68	6	5 64
2008	97	43	29	96	193								457
Min	0	1	0	3	4	1	2	4	0	2	0	1	457
Max	367	316	191	226	193	145	102	124	297	454	303	370	1580
Moy	95	79	60	76	70	44	27	52	115	136	89	94	924
Médiane	54	55	53	70	58	38	18	46	97	107	67	69	895

Figure 79. Evolution du cumul de pluie (mensuels et annuels) de la fonction d'entrée utilisée dans cette étude pour caractériser le fonctionnement de l'hydrosysème du Lez.
Résultats de la première approche de modélisation (étape 1)

Dans cette première approche, la caractérisation des fonctions de transfert du système karstique a été menée sur le débit naturel des périodes de hautes eaux des années 1974 à 1979 (période de calage) à l'aide d'un modèle dont la composante lente de l'écoulement est décrite par un modèle paramétrique (Modèle de Samani et Ebrahimi, 1996). Les périodes de basses eaux ont été décrites par l'extrapolation des réponses impulsionnelles en supposant que les temps de régulation du système karstique sont compris en 128 jours et 366 jours.

Des exemples de résultats obtenus à l'aide des modèles pour différents temps de régulation sont présentés sur la Figure 80 (ModHE_0.38Ging_128j ; ModHE_0.38Ging_256j ; ModHE_0.38Ging_366j)⁷.

Les réponses impulsionnelles des composantes lentes des modèles sont présentées sur la Figure 81. L'allure des réponses impulsionnelles évoque, par analogie avec l'approche de Mangin (1975), une courbe de récession caractérisée par une fonction homographique et une fonction exponentielle décroissante au-delà du temps de fin d'infiltration, qui serait de l'ordre de 30-40 jours pour ces réponses impulsionnelles. Il est supposé que la part de la pluie efficace affectée à la réponse impulsionnelle lente permet de caractériser la recharge du système karstique.

Pour reproduire les périodes de crue, il faut introduire dans la modélisation une composante rapide qui dure 4 jours (Figure 82). Quel que soit le modèle de transfert considéré, les réponses impulsionnelles sont comparables, le pic est observé 2 jours après un épisode de pluie efficace. Il est supposé que la part de la pluie efficace affectée à la réponse impulsionnelle rapide ne permet pas de recharger le système karstique.

⁷ Modèles calées sur les débits naturels de hautes eaux (estimés à partir de la courbe de tarage théorique [K=0.38] et du débit prélevé [Qplvt] : QnatHE=Qdbt0.38+Qplvt) en considérant 3 temps de régulation différents : 128 jours ; 256 jours et 366 jours.

Figure 80. Exemples de reconstitutions de débit naturels obtenus à l'aide des modèles de transfert qualifiés par differents temps de régulation (compris entre 128 j et 366j).

Figure 81. Réponses impulsionnelles des composantes lentes des modèles de transfert (ModHE_0.38Ging_128j ; ModHE_0.38Ging_256j ; ModHE_0.38Ging_366j) utilisés pour reconstituer les débits naturels du Lez en période de basses eaux

Figure 82. Réponses impulsionnelles des composantes rapides des modèles de transfert (ModHE_0.38Ging_128j ; ModHE_0.38Ging_256j ; ModHE_0.38Ging_366j) utilisés pour reconstituer les débits naturels du Lez en période de basses eaux

Des tableaux de synthèse en annexe 4 (Table Ann. 1 à Table Ann. 9) présentent les débits moyens mensuels calculés à l'aide des 9 modèles de transfert construits⁸ pour les 3 courbes de tarages théoriques (K = 0.38, 0.34 et 0.42) et les 3 temps de régulation de 128j, 256j et 366j.

Les résultats produits par les modèles construits en considérant des réponses impulsionnelles de 128 jours (temps de régulation de 128 j) ne permettent pas, à priori, de bien décrire les tarissements car les débits calculés lors des longs étiages sont très faibles voire nuls. Les petites crues qui peuvent se produire lors des étiages sont parfois assez bien reproduites par ce modèle. Les débits calculés en période de crue apparaissent surestimés par rapport aux débits naturels reconstitués en hautes eaux.

Les résultats produits par les modèles construits en considérant des réponses impulsionnelles de 256 jours et 366 jours permettent de calculer des débits lors des longs étiages. Les petites crues qui peuvent se produire lors des étiages ne sont pas ou sont mal générées par ces modèles. En période de crue, les débits calculés en considérant des temps de régulation de 256 jours et 366 jours apparaissent sousestimés par rapport aux débits naturels reconstitués en hautes eaux.

⁸ Modèles :

ModHE_0.38Ging_128j ; ModHE_0.38Ging_256j ; ModHE_0.38Ging_366j ModHE_0.34Ging_128j ; ModHE_0.34Ging_256j ; ModHE_0.34Ging_366j Dans le but de mutualiser les avantages, tout en minimisant les inconvénients des différents modèles, nous avons calculé le débit moyen des 3 chroniques simulées pour les différents temps de régulation considérés⁹. Les tableaux de synthèse en annexe 4 (Table Ann. 10 à Table Ann. 12) présentent les débits moyens mensuels calculés sur la période 1962-2008. Les résultats obtenus à l'aide de la chronique « QMoyMODQ38 » sont présentés sur la Figure 83.

Résultats de la seconde approche de modélisation (étape 2)

Dans un second temps (étape 2), nous avons confronté les données moyennes (QmoyMOD0.38; QmoyMOD0.34; QmoyMOD0.42) produites par les modélisations aux débits naturels estimés à partir de la chronique de la station de jaugeage de la Diren (période 1987-2007). Un exemple des résultats obtenus est présenté sur la Figure 84.

⁹ QMoyMOD0.38=(ModHE_0.38Ging_128j ; ModHE_0.38Ging_256j ; ModHE_0.38Ging_366j)/3

QMoyMOD0.34=(ModHE_0.34Ging_128j ; ModHE_0.34Ging_256j ; ModHE_0.34Ging_366j)/3

QMoyMOD0.42=(ModHE_0.42Ging_128j ; ModHE_0.42Ging_256j ; ModHE_0.42Ging_366j)/3

Les données de débits moyens modélisés sont jugées globalement fidèles aux débits naturels estimés en hautes eaux à partir de la chronique de la Diren (Figure 84).

Les données de débits produites par les modélisations précédentes (étape 1) ont été combinées à la chronique des débits naturalisés estimés à partir du débit chronique de la station de jaugeage de la Diren (période 1987-2007) afin de combler les lacunes des périodes de basses eaux. L'exercice a été conduit à trois reprises à partir des trois chroniques moyennes précédemment produites (QmoyMOD0.38 ; QmoyMOD0.34 ; QmoyMOD0.42). Trois nouvelles chroniques ont donc été produites pour la période 1987-2007 (QDirenNat_Q0.34 ; QDirenNat_Q0.42 et QDirenNat_Q0.38) sur lesquelles des modèles de transfert ont été construits afin de simuler les débits naturels de la source pour la période antérieure à 1987. Des tableaux de synthèse en annexe (Table Ann. 13 à Table Ann. 15) présentent les débits moyens mensuels calculés à l'aide des 3 modèles de transfert construits¹⁰.

Figure 84 : Exemple de reconstitution de débits naturels obtenus à l'aide de la chronique de débit moyen (QmoyMODQ38) et comparaisons aux débits naturels estimés (QnatDirenHE) en période de hautes eaux à partir des données de la station hydrométrique de la Diren.

¹⁰ ModDirV2Q34Sa construit sur la base de la chronique QnatDirenHE (pour les hautes eaux) et QmoyMOD0.34 pour les basses eaux (chronique nommée QDirenNat_Q0.34)

ModDirV2Q38Sa construit sur la base de la chronique QnatDirenHE (pour les hautes eaux) et QmoyMOD0.38 pour les basses eaux (chronique nommée QDirenNat_Q0.38)

ModDirV2Q42Sa construit sur la base de la chronique QnatDirenHE (pour les hautes eaux) et QmoyMOD0.42 pour les basses eaux (chronique nommée QDirenNat_Q0.42)

La comparaison des débits simulés [1963-2008] par les modèles de transfert développés lors des étapes 1 et 2 (Figure A 10) indique que les débits simulés par l'approche 1 sont globalement supérieurs aux débits simulés par l'approche 2 lors des périodes de crue (cf. tableau en Annexe 4). Les tableaux de synthèse des analyses descriptives mensuelles permettent d'évaluer les différences. Par exemple, pour le mois d'août, les différences peuvent aller du simple (407 l/s) au double (868 l/s) pour le débit moyen et pour le décennal sec (150 l/s ; 323 l/s).

Compte tenu des informations anciennes disponibles dans la littérature concernant les débits de la source du Lez (Figure 85, Figure 86 et Figure 87), nous considérons que les débits simulés par la seconde approche (ModDirV2Q38Sa, ModDirV2Q34Sa et ModDirV2Q42Sa) sont globalement plus fidèle aux valeurs de débits anciens mentionnés par les auteurs.

Débits d'étiage		
Référence	Q (m3/s)	Commentaire
Paloc (1979)_79 SGN 319 LRO	Débits entre 0.5 et 0.4 m3/s	(étiages normaux)
Drogues et Plegat (1965)	Débits entre 0.35 et 0.2 m3/s	(étiages années sèches)

Figure 85.	Débits d'étiages de	e la	source du	ı Lez	avant	1979	selon	les	auteurs
	9								

Débits moyen annuel				Précipita	tion (mm)
Référence	Date	Q (l/s)	Commentaire	Montpellier	Valfaunes	St-martin L
Paloc (1979)_79 SGN 319 LRO	1952	1500	année très sèche			
Paloc (1979)_79 SGN 319 LRO	1962	2800	année très pluvieuse	799	937	1195
Paloc (1979)_79 SGN 319 LRO	1966	1750	année sèche	654	747	1141
Paloc (1979)_79 SGN 319 LRO	1967	1020	année exeptionnellement sèche	412	626	846
Paloc (1979)_79 SGN 319 LRO	1968	1410	année sèche	903	808	1047
Paloc (1979)_79 LRO 22 ER	1969	2710	année très pluvieuse	1131	1487	1761
Paloc (1979)_79 SGN 319 LRO	1970	1720	année pluvieuse	535	824	807
Paloc (1979)_79 SGN 319 LRO	1971	2330	année pluvieuse	966	1128	1365
Paloc (1979)_79 SGN 319 LRO	1973	1580	année sèche	530	697	822

Figure 86 : Débits moyens annuels de la source du Lez avant 1973 selon les auteurs

Débit moyen inter-annuel [1966-1971]						
Référence	Date	Q (m3/s) commentaire				
Paloc (1979)_79 SGN 319 LRO	1966-1971	2.2				

Figure 87 : Débits moyens inter-annuels de la source du Lez période [1966-1971] selon les auteurs

4.3.3. Estimation des débits naturels de la source du Lez

Pour la période antérieure à 1974, faute de données disponibles fiables concernant les débits prélevés à la source du Lez, nous avons considéré que les débits naturels de la source du lez pouvaient être estimés par modélisation à l'aide des trois modèles de transfert suivants : ModDirV2Q34Sa, ModDirV2Q38Sa et ModDirV2Q42Sa. Le premier modèle permet d'estimer les débits de la borne inférieure de la courbe de tarage théorique tandis que le dernier permet d'estimer les débits de la borne supérieure.

Pour la période de 1974 à 1982, les débits naturels de la source du Lez ont été estimés en période de hautes eaux à partir des mesures tandis que les débits de basses eaux ont été estimés par modélisation à l'aide des 3 modèles de transfert (ModDirV2Q34Sa, ModDirV2Q38Sa et ModDirV2Q42Sa)

Pour la période de 1982 à 1987, faute de données concernant les débits de hautes eaux, nous avons considéré que les débits naturels de la source du lez pouvaient être estimés par modélisation à l'aide des 3 modèles de transfert suivants : ModDirV2Q34Sa, ModDirV2Q38Sa et ModDirV2Q42Sa.

Pour la période 1987-2007, les débits naturels de la source du Lez ont été estimés en période de hautes eaux à partir des mesures réalisées à la station de la Diren tandis que les débits de basses eaux ont été estimés par modélisation à l'aide des 3 modèles de transfert (ModDirV2Q34Sa, ModDirV2Q38Sa et ModDirV2Q42Sa).

Depuis 2007, les débits naturels de la source du Lez sont estimés par modélisation à l'aide des 3 modèles de transfert (ModDirV2Q34Sa, ModDirV2Q38Sa et ModDirV2Q42Sa).

Les débits naturels moyens mensuels et annuels de la source du Lez sont reportés dans la Figure 88. Les débits naturels estimés des bornes inférieure et supérieure sont reportés en annexe 4 (Table Ann. 19).

Débitmoy	moyen mensuel de QLezNat_V2(QU.38_ctGingerV2)													
onnáo	MOIS		2	4	5	6	7	•	•	10	11	12	Mádiana	Movonn
annee		2	3	4	5	0	/	0	9	10	2567	1526	wediane	woyenn
1902	4070	4074	0017	2007	2462	2262	2445	1020	2264	1070	2307	2200	2262	2222
1903	4070	4671	2017	3007	2102	3203	4269	1929	3201	1979	4494	3306	3202	3233
1904	2270	4097	2064	4004	012	1100	590	222	1124	2724	2330	2497	2039	1709
1900	2370	2212	2964	1400	912	2005	1000	322	640	1520	2042	2223	1041	1790
1900	1000	3373	2472	2007	2015	2065	700	000	049	1539	000	004	1695	1790
1907	100	1531	1008	1835	2612	3512	2163	1604	1065	1257	200 1961	1035	19/9	1293
1060	2104	2242	5622	4512	2012	2516	1601	1470	1477	2249	2151	2214	2107	2027
1909	5104	3242	0100	4010	2000	1202	070	570	14/1	1005	074	2314	3127	4742
1970	22443	2623	2100	1073	2209	1202	0/0	5/6	704	1230	1004	1000	1219	1713
1971	5000	3502	5000	4052	0000	3230	2331	1402	731	1393	1204	1321	2/01	2500
1972	5932	6943	5338	3390	2608	3740	2351	1391	3292	2709	2247	2429	3001	3516
1973	3938	2190	1852	1681	1231	1//6	938	498	211	485	909	2076	1456	1480
1974	4318	5197	5415	4385	3295	2073	1781	1219	3593	2045	1474	1197	2684	2983
1975	1526	3519	3708	2235	1670	2748	1331	1847	1577	743	1004	2374	1/58	2013
1976	2018	4991	3499	3973	2561	1276	1119	1094	3006	5308	5423	3767	3252	3157
1977	5659	4375	4186	3056	4168	3274	2172	1385	753	2327	3184	4333	3229	3237
1978	4344	4566	4186	3492	4931	2715	1616	835	445	258	994	2852	2784	2594
1979	3983	2424	1910	2017	1486	1470	932	497	177	2514	2450	1673	1791	1792
1980	2133	1928	2620	2809	1906	1803	1211	1361	830	590	1114	637	1582	1576
1981	866	690	1814	2357	2080	1796	2137	956	624	631	339	2096	1376	1372
1982	2390	2981	1890	2517	1291	1309	796	831	380	243	1624	1431	1370	1461
1983	650	1255	2034	1721	1845	1092	692	421	359	197	258	1010	851	960
1984	965	1051	1546	1709	2590	2065	1031	865	718	940	3101	3868	1298	1705
1985	1928	1545	1340	1411	2416	1941	953	512	275	188	202	997	1168	1141
1986	1035	4045	2957	2740	1853	1001	568	453	390	1514	1110	1055	1082	1542
1987	1376	3765	2444	2370	1478	1094	1784	1232	793	1882	3681	5193	1833	2248
1988	5435	3117	1621	2962	3367	2094	1260	788	425	977	2737	1213	1857	2162
1989	1374	870	923	2024	1932	883	437	409	907	902	2050	1882	915	1216
1990	766	2541	963	2119	1625	1767	1013	768	420	1497	1148	2494	1322	1418
1991	2150	2530	3940	2783	2507	1312	703	768	553	582	761	559	1040	1591
1992	795	963	1252	802	2201	3950	2126	1257	1167	1195	898	1250	1222	1489
1993	702	813	1247	2091	3265	2049	1341	634	971	1499	4912	3069	1420	1885
1994	2606	4659	2463	1560	1720	1201	857	509	1303	3417	4587	2978	2092	2304
1995	1897	1372	813	872	1304	710	338	169	1072	2488	3086	4636	1188	1566
1996	6836	4704	4183	2958	3017	1863	1816	1055	1349	2119	2734	5970	2846	3220
1997	5636	2764	1544	1004	1289	2499	1640	989	422	595	2685	4586	1592	2138
1998	3799	2548	1225	2456	3368	2515	1390	571	348	264	237	363	1307	1585
1999	2291	1010	1060	1674	3487	1875	1087	620	377	1764	3531	1603	1639	1702
2000	964	619	502	1586	2295	1871	988	614	916	1855	2019	3803	1287	1506
2001	5606	3058	3772	2186	2121	1647	1681	916	845	3774	1476	705	1901	2318
2002	805	2530	2708	2358	1910	1995	1079	918	2647	3097	2882	5605	2444	2376
2003	2784	2197	2827	2160	1689	1423	706	248	1063	3071	4882	5482	2179	2379
2004	2464	2815	3449	3561	2919	2290	1062	966	1311	2489	2478	2117	2471	2323
2005	626	664	503	906	1315	1464	777	396	3212	1929	3195	1240	1073	1349
2006	3602	3393	1848	1160	616	357	261	265	1584	2867	2079	2403	1716	1693
2007	765	1194	1073	1603	2526	1931	912	491	468	607	900	892	906	1112
2008	2044	1420	1033	1992	3421									
Médiane	2221	2656	2276	2173	2235	1871	1087	831	830	1514	2050	2096	1695	1793
Movenne	2675	2763	2/00	2390	2365	10/13	1253	866	1150	1704	2153	2323	1830	2008

Figure 88 : Débits naturalisés de la source du Lez, valeurs moyennes mensuelles et annuelles en l/s

Information sur la variabilité interannuelle des débits naturels (estimés) de la source du Lez.

Sur la période 1963-2008, le débit moyen interannuel de la source du Lez est estimé à 2008 l/s [1918 - 2175 l/s]. Le débit moyen annuel minimum est estimé à 960 l/s (observé en 1983 [929 l/s-1094 l/s]). Le débit moyen annuel maximum est estimé à 3516 l/s (observé en 1972 [3483 l/s-3951 l/s]).

	QLezNatV2	QLezNatV2	QLezNatV2	Cumul de
	en l/s	en l/s	en l/s	pluie (en
Année	(Q0.38_ctGingerV2)	(Q0.34_ctGinger2)	(Q0.42_ctGinger2)	mm)
1963	3233	2997	3234	1561
1964	3102	3016	3499	1352
1965	1798	1880	2163	935
1966	1796	1685	2030	825
1967	1293	1269	1471	627
1968	1793	1536	1740	895
1969	3027	2881	3280	1466
1970	1713	1682	1972	744
1971	2500	2281	2650	1147
1972	3516	3483	3951	1522
1973	1480	1466	1765	686
1974	2983	2830	3402	1011
1975	2013	1969	2304	816
1976	3157	3072	3659	1430
1977	3237	3113	3726	1025
1978	2594	2471	3023	882
1979	1792	1691	2047	976
1980	1576	1517	1781	693
1981	1372	1139	1372	738
1982	1461	1394	1589	751
1983	960	929	1094	595
1984	1705	1787	1976	905
1985	1141	1089	1354	509
1986	1542	1576	1763	839
1987	2248	2072	2282	1148
1988	2162	2062	2246	820
1989	1216	1213	1322	567
1990	1418	1290	1481	734
1991	1591	1504	1621	611
1992	1489	1183	1369	830
1993	1885	1804	1962	936
1994	2304	2244	2412	1128
1995	1566	1602	1793	898
1996	3220	3120	3268	1580
1997	2138	1984	2233	1002
1998	1585	1557	1730	593
1999	1702	1659	1781	934
2000	1506	1413	1561	846
2001	2318	2111	2342	1009
2002	2376	2303	2377	1316
2003	2379	2281	2460	1260
2004	2323	2231	2420	936
2005	1349	1299	1425	658
2006	1693	1673	1792	703
2007	1112	955	1139	564
2008* (janv à Mai)	1989	2013	2179	457
Moy	2008	1919	2173	924

Figure 89 : Statistiques descriptives des débits naturalisés de la source du Lez (valeurs en l/s). Les bornes inférieure (Q0.34) et superieure (Q0.42) sont remportées.

QLezNat_V2(Q0.38_ct	GingerV2)											
	Janvier		Février		Mars		Avril		Mai		Juin	
Paramètres	QLezNat	±	QLezNat	±	QLezNat	±	QLezNat	±	QLezNat	±	QLezNat	±
Minimum	118		346		270		361		421		159	
Décile 0.1	582	68	748	56	843	107	1031	178	1105	304	939	338
Décile 0.2	788	85	1149	73	1117	124	1259	190	1375	321	1172	361
1er Quartile	948	84	1418	79	1271	126	1428	186	1494	323	1255	379
Médiane	2233	77	2366	98	2128	153	2123	189	2116	278	1762	411
3ème quartiles	3669	130	3718	271	3403	269	3108	222	3047	323	2414	385
Décile 0.8	4212	130	4135	318	3751	310	3386	285	3318	274	2643	361
Décile 0.9	5503	314	5232	573	4660	427	4174	409	3926	397	3247	468
Maximum	13408		12154		8265		6628		7864		6360	
nb valeurs journalières	1426		1300		1426		1380		1426		1350	
Moyenne	2675	124	2764	172	2499	203	2390	237	2365	329	1943	400
Ecart-type	2059		1787		1548		1242		1159		965	
	Juillet		Août		Septembre		Octobre		Novembre		Décembre	
Paramètres	QLezNat	±	QLezNat	±	QLezNat	±	QLezNat	±	QLezNat	±	QLezNat	±
Minimum	177		80		29		60		66		69	
Décile 0.1	541	270	323	224	264	207	243	213	361	146	543	122
Décile 0.2	705	301	445	253	349	232	390	216	701	173	721	164
1er Quartile	776	314	488	277	384	241	515	202	872	199	890	120
Médiane	1129	375	749	324	605	295	1250	202	1822	115	1862	191
3ème quartiles	1579	438	1142	463	1394	204	2349	148	3087	118	3239	162
Décile 0.8	1722	486	1269	515	1731	149	2785	164	3313	171	3573	160
Décile 0.9	2157	580	1572	512	2657	310	3961	358	4390	211	4529	363
Maximum	4477		4278		10043		8990		10459		16358	
nb valeurs journalières	1395		1395		1350		1395		1380		1426	
Moyenne	1253	384	866	348	1150	291	1704	225	2153	161	2323	185
-							-					

Figure 90 : Statistiques descriptives des débits naturalisés de la source du Lez (valeurs par mois en l/s)

Sur la période 1963-2008, le débit médian de la source au cours des mois de juillet à septembre est compris entre 1129 l/s [\pm 411 l/s] et 605 l/s [\pm 295 l/s] (débit naturel estimé). En contexte décennal sec, le débit moyen de la source au cours des mois de juillet à septembre est compris entre 541 l/s [\pm 270 l/s] et 264 l/s [\pm 207 l/s]. Les valeurs minimum reportées dans les tableaux n'ont pas de signification physique. Elles correspondent a du « bruit numérique » engendré par l'utilisation des modèles. La Figure 91 représente l'évolution temporelle des débits moyens mensuels sur la période 1963-2008. Sur la période considérée, le QMNA5 est estimé à 248 l/s (les bornes inférieures et supérieures sont respectivement de 181 l/s et 406 l/s).

Figure 91 : Evolution temporelle des débits moyens mensuels naturels (estimé) de la source du Lez (les bornes inférieure [Q0.34] et supérieure[Q0.38] sont reportées).

Figure 92 : Evolutions annuelles des quantiles calculées sur les périodes 1974-1982 : Débit naturel estimé, piézométrie, débit de prélèvement et de débordement à la vasque.

Figure 93. Evolutions annuelles des quantiles calculées sur les périodes 1982-208 : Débit naturel estimé, piézométrie dans le drain karstique, débit de prélèvement et de débordement à la vasque.

Information sur la variabilité interannuelle des débits naturels (estimés) de la source du Lez, des débits de débordement et des débits de prélèvement (1974-2008).

Les évolutions annuelles des différents quantiles (0.1 ;0.2 ;0.5 ;0.8 et 0.9) calculées sur les périodes 1974-1982 (pompage dans la vasque) et 1993-2008 (pompage dans le drain karstique) sont reportées sur la Figure 92 et la Figure 93.

Pour la période 1974-1982, les valeurs des quantiles des débits prélevés en période d'étiage apparaissent plus faibles (compris entre 700 et 1000 l/s environ) que celles de la période 1983-2008 (compris entre 800 et 1400 l/s environ).

En contexte hydrologique déficitaire en pluviométrie (quantile <0.5), les débits de prélèvements provoquent un tarissement de la source et une diminution (rabattement) de la charge hydraulique de la source. La période 1983-2008 est caractérisée par une (1) diminution de la fréquence d'occurrence des débits de débordement en comparaison à la période 1974-1982 et (2) une diminution plus importante de la charge hydraulique du drain karstique en période de basses eaux.

4.3.4. Conclusion

La Figure 94 résume la méthodologie utilisée pour la reconstitution des données manquantes et l'établissement des chroniques de débits naturels de la source du Lez.

Les procédures mises en œuvre dans cette étude ont permis d'estimer les débits naturels de la source du Lez sur la période 1962-2008. Sur la base de ces résultats, nous allons pouvoir discuter du « bon état quantitatif » de la masse d'eau souterraine de l'aquifère karstique du Lez.

Les données de débit naturel estimé vont également être utilisées dans l'approche de modélisation Tempo qui sera mise en œuvre dans l'atelier AT4, afin de modéliser le comportement hydraulique du Lez à partir de la recharge et des pompages. L'approche de modélisation repose sur le concept de sollicitation des réserves. La sollicitation des réserves du karst intervient lorsque le débit total de pompage devient supérieur au débit naturel qu'aurait présenté l'hydrosystème en absence de pompage. L'approche méthodologique sera détaillée dans le livrable L4.1 consacré à la description des outils de modélisation mis en œuvre dans le cadre de ce projet.

Données disponibles	Données inconnues	Données reconstituées	Données Simulées (Modèles)
1946-1951 H vasque (non rattaché à une cote)	Débit de débordemment (HE) Débit de prélèvement Débit naturel	Aucune	Débit naturel estimé en HE et BE de la source du Lez (I/s)
1951-1967 H vasque (seuil à 64.92 m NGF)	Débit de prélèvement Débit naturel	Débit de débordement (HE) de la source du Lez (l/s) estimation possible à l'aide des courbes de tarages théoriques 1962-1963 (cf. Fig A1 en annexe 3)	Débit naturel estimé en HE et BE de la source du Lez (l/s)
1968-1974 H vasque (seuil à 64.98 m NGF)	Débit de prélèvement Débit naturel	Débit de débordement (HE) de la source du Lez (I/s) estimation possible à l'aide des courbes de Ginger (Q0.34 ;Q0.38 ; Q0.42) cf A4, A5 et A6 en annexe 3	Débit naturel estimé en HE et BE de la source du Lez (l/s)
1974-1982 H vasque (seuil à 64.98 m NGF) Débit de prélèvement	Débit Naturel	Débit de débordement (HE) de la source du Lez (I/s) estimation possible à l'aide des courbes de Ginger (Q0.34 ;Q0.38 ; Q0.42) cf A4, A5 et A6 en annexe 3 Débit naturel estimé en HE de la source du Lez (I/s)	Débit naturel estimé en BE de la source du Lez (l/s)
1982-1987 H forage (puits n°4) Débit de prélèvement	Débit de débordemment (HE) Débit naturel	Aucune	Débit naturel en HE et BE de la source du Lez (I/s)
1987-2007 H forage (puits n°4) Débit de la station Y3204020 Débit de prélèvement	Débit naturel	Débit de débordement (HE) de la source du Lez (I/s) estimation possible à l'aide de la station Y3204020 Débit naturel estimé en HE de la source du Lez (I/s)	Débit naturel estimé en BE de la source du Lez (I/s)
Depuis fin 2007 H forage (puits n°4) Débit de prélèvement	Débit de débordemment (HE) Débit naturel	Aucune	Débit naturel en HE et BE de la source du Lez (I/s)

Figure 94. Synthèse de la méthodologie pour reconstituer les données manquantes et l'établissement des chroniques de débits naturels de la source du Lez.

5. Amélioration des connaissances hydrogéologiques

5.1. INTRODUCTION

Le schéma hydrodynamique de référence de l'aquifère karstique de la source du Lez en période d'étiage et sous l'influence des pompages à fort débit (après 1982) est dû à Bérard (1983). Il est présenté à la Figure 95. Il permet de définir la zone d'étude au sein de laquelle les informations piézométriques sont considérées comme pertinentes pour expliquer le fonctionnement du système karstique.

Des incohérences ou des doutes existent quant à l'hydrodynamique de la partie ouest du système (à l'ouest de la faille des Matelles) ainsi que dans les parties captives de l'aquifère. Une meilleure compréhension de l'hydrodynamique du Lez passe donc par la mise en place de forages profonds au niveau du causse de Viols le Fort / Cazevielles (manque de données), et au niveau de la couverture valanginienne entre les Matelles et la source du Lez pour identifier le comportement hydrodynamique de l'aquifère dans sa zone captive. La solution retenue s'est concrétisée par la réalisation de deux piézomètres début 2012 (Figure 96), sur la base des coupes géologiques réalisées en 2010 ; le premier est localisé dans le secteur du relais des chênes, au nord de l'Aven de la Baraque où HSM réalise des mesures de conductivités, température, pression, depuis quelques années ; le second forage est localisé sur la commune du Triadou, légèrement au Sud de la Faille Corconnes/ Les Matelles. Ces deux ouvrages complèteront le réseau existant des piézomètres constitué de 29 ouvrages suivis par VEOLIA pour la Communauté d'Agglomération de Montpellier (CAM). A noter que la réponse hydrodynamique de ces forages ainsi que les informations issues des tracages reportés (du fait de conditions hydrologiques défavorables jusqu'à présent) seront présentées dans un rapport complémentaire qui viendra enrichir les connaissances synthétisées dans cette partie, notamment afin de préciser les contours du bassin d'alimentation de la source du Lez en écoulement naturel pour les moyennes et les hautes eaux (débordement à la source) et en période d'étiage sous l'influence des pompages à fort débit.

Afin de caractériser les écoulements souterrains, les données collectées en continu depuis 2000 sur 22 ouvrages ont été analysées, ce qui a conduit différents auteurs à proposer une classification et une hiérarchisation du comportement hydrodynamique de l'aquifère (Perriquet 2006, Conroux 2007, Bicalho, 2010).

Figure 95 : Schéma hydrodynamique, en période d'étiage et sous l'influence des pompages à fort débit, du système aquifère de la source du Lez (Bérard, 1983) sur la base duquel ont été définies les limites de l'unité hydrogéologique de l'aquifère du Lez (bassin d'alimentation de la source du Lez influencé par les pompages)

Figure 96 : Réseau de surveillance piézométrique suivi par VEOLIA pour la Communauté d'Agglomération de Montpellier (CAM) et localisation des forages et points d'injection des traçages réalisés dans le cadre de ce projet.

Sur la base des variations piézométriques enregistrées (période 2001-2009), 4 groupes de piézomètres ont pu être proposés (Bicalho, 2010) sur la base de la surface piézométrique apparente moyenne (Figure 97), obtenue par interpolation (Distance Inverse pondérée). A noter que, du fait de la très forte hétérogénéité du karst et des circulations souterraines dans ce type de milieu, cette surface piézométrique apparente moyenne n'est là qu'à titre indicatif pour identifier les compartiments du karst présentant un comportement hydrodynamique distinct.

Le groupe 1 (Bicalho, 2010) correspond aux piézomètres ayant un niveau piézométrique moyen aux alentours de 60 m NGF et présentant un comportement hydrodynamique (augmentation et baisse du niveau piézométrique) semblable à celui observé à la source du Lez (Bois des Rozier, Bois des Avants, Gour Noir, Lez et St Gély). La bonne connectivité hydraulique entre ces forages et la source du Lez est attribuée à la faille de *Corconne-Les Matelles* qui agit comme axe de drainage majeur suivant la direction NE-SW. Le groupe 2 (Bicalho, 2010) correspond aux piézomètres (Ste Croix de Quintillargues, Bois St Mathieu, Fontanés et Mas de Martin) qui présentent un comportement hydrodynamique similaire à ceux du groupe 1 mais avec des niveaux piézométriques moyens légèrement supérieurs (aux alentours de 62 m NGF). Le groupe 3 (Bicalho, 2010) correspond aux piézomètres (Laudou et Les Matelles) où les plus hauts niveaux piézométriques sont enregistrés (niveau

piézométrique moyen aux alentours de 85 m NGF). Ces piézomètres présentent une très forte réactivité vis-à-vis des précipitations mais leur comportement hydrodynamique se distingue de celui observé à la source du Lez. Le groupe 4 correspond aux piézomètres (Claret et Coutach) présentant également de hauts niveaux piézométriques (niveau piézométrique moyen aux alentours de 76 m NGF).

Figure 97 : Niveaux piézométriques moyens (Période 2001-2009) et classification des piézomètres suivi par VEOLIA pour la Communauté d'Agglomération de Montpellier (CAM) en fonction de leur réponse hydrodynamique (d'après Bicalho, 2010)

Les analyses corrélatoires et spectrales (simple et croisée, pluie-piézométrie) menées par Perriquet (2006) permettent également d'identifier des groupes de piézomètres présentant des comportements hydrodynamiques comparables en terme d'inertie, de temps de réponse et d'allure de réponses impulsionnelles (au moyen du corrélogramme croisé Pluie-Piézométrie qui permet de donner une image approchée de la réponse impulsionnelle, i.e. fonction de transfert, du système).

Un groupe de 7 ouvrages (Groupe a : Gour Noir ; Bois des Avants ; Bois des Rosiers, St-Croix de Quintillargues, Mas de Martin, St-Gély du Fesc et Coutach) présente une réponse impulsionnelle comparable caractérisée par un pic à 2 jours (maximum de réponse atteint 2 jours après une pluie efficace), un temps de fin d'infiltration rapide inférieur à 10 jours et un temps de transit moyen de 120 jours environ. Le second groupe (Groupe b : Bois St-Mathieu ; Matelles, Claret-Brissac, Fontanes et Laudou) présente un comportement plus inertiel (pic à 3 jours, temps de fin d'infiltration de 30-40 jours, temps de transit moyen de 160 jours environ). L'évolution piézométrique de la source du Lez apparaît bien rattachée à ce groupe.

Le troisième groupe permet d'illustrer les comportements singuliers observés par rapport aux autres ouvrages et à la source du Lez (Groupe c : Carnas, St-Clément). Le piézomètre Carnas a la particularité d'être stable à 64 m en dehors des pics de crue

qui sont très prononcés. Aucune baisse n'est alors visible pendant l'étiage et son niveau est supérieur de 20 m par rapport à la source du Lez. L'évolution témoigne d'une très mauvaise connexion hydraulique avec le reste de l'aquifère du Lez. L'ouvrage Saint Clément, localisé au Sud de la source, est installé dans l'aquifère du Lutétien, constitué de calcaire lacustre. Il est situé sur une faille, proche de la limite entre le bassin sédimentaire de Saint Clément et les calcaires karstiques du système du Lez. En basses eaux, son niveau est supérieur de 14 m à celui de la source et il est inférieur de 5 m en hautes eaux. Ses variations hydrodynamiques paraissent indépendantes du système karstique du Lez. L'Eocène est très argileux dans son ensemble, ce qui tend à une forte inertie de l'aquifère. Ceci est confirmé par des crues presque inexistantes.

Les analyses spectrales ont permis de confirmer que l'aquifère du Lez était captif dans l'environnement immédiat de la source du Lez (Bois des Avants, Saint-Gély)

Une comparaison de l'évolution du rabattement (Δ Hpiézo) mesuré dans chaque ouvrage de contrôle avec celui observé à la source du Lez (Δ Hsource) dès que le niveau piézométrique à la source passe sous le seuil de débordement (cote +64.98 m NGF) a été menée par Conroux (2007). Ce type d'analyse apporte des renseignements sur le type de connexion hydraulique piézomètre/source. Les piézomètres de contrôle mal connectés au réseau principal de drainage doivent enregistrer un retard dans la chute du niveau piézométrique à l'étiage et la pente Δ Hpiézo/ Δ Hsource doit être faible. A l'inverse, les piézomètres bien connectés doivent réagir rapidement à la chute du niveau d'eau à la source avec une pente Δ Hpiézo/ Δ Hsource proche de 1.

L'analyse de l'évolution des niveaux piézométriques comparés entre la source (forage) les différents piézomètres de contrôle implantés au sein du bassin hydrogéologique du Lez a permis (1) de caractériser la position des piézomètres par rapport aux drains hydrauliques du système et (2) de préciser la direction des axes majeurs de drainage. Plusieurs groupes de piézomètres ont pu être identifiés selon leur réaction à la chute du niveau piézométrique observée à la source, dans le forage de captage, lors des périodes de sollicitation des réserves du karst (Figure 98).

Les ouvrages du groupe 1 (Conroux 2007) enregistrent une évolution de leur niveau piézométrique proche voire analogue à celle observée à la source. Leur temps de réaction est court, le rabattement observé est très comparable à celui mesuré à la source : Δ Hpiézo/ Δ Hsource >0.6. Ce sont les trois piézomètres de Bois Saint Mathieu, de Claret Brissac et de Laudou. Ils ont tous un niveau piézométrique supérieur à celui de la source et sont implantés à proximité de la faille normale des Corconnes-Matelles. Ces résultats confirment le rôle majeur de la faille des Corconnes-Matelles comme axe de drainage de direction nord-est/sud-ouest déjà reconnu par traçage [Thiery et Bérard 1984].

Les ouvrages du groupe 2 (Conroux 2007) présentent un léger retard dans la chute de leur niveau piézométrique lors du tarissement de source et le rabattement qu'ils enregistrent lorsque la source est tarie est de l'ordre de 40 à 60 % de celui mesuré à l'exutoire : Δ Hpiézo/ Δ Hsource compris entre 0.4 et 0.6. Ce sont les piézomètres de

Saint Gély-du-Fesc, de Gour Noir, de Bois des Avants, de Sainte Croix de Quintillargues, de Saint Bauzille-Bois des Rosiers et de Mas de Martin.

Les ouvrages du groupe 3 (Conroux 2007) enregistrent une évolution de leur niveau piézométrique différente de celle observée à la source du Lez. Leur temps de réaction à la sollicitation du pompage est long et le rabattement observé est faible par rapport à celui mesuré à la source : la pente Δ Hpiézo/ Δ Hsource est faible (<0.4). Ce sont les piézomètres de Saint Clément, des Matelles, de Coutach, de Fontanes et de Carnas.

Figure 98 : classification du comportement des piézomètres du Lez en période de sollicitation des réserves (période de tarissement de la source) – mofifié d'après Conroux (2007)

5.2. CYCLES DE POMPAGES

5.2.1. Introduction

A chaque cycle hydrologique, durant la période estivale, le niveau piézométrique dans le drain karstique du système du Lez décroît de plusieurs dizaines de mètres suite aux pompages effectués. La source cesse alors de déborder. Ensuite, lors des pluies automnales, les niveaux remontent et la source déborde à nouveau. Il en résulte des cycles annuels de baisse des niveaux d'eau comparables à ceux observés lors d'essais de pompage effectués sur un puits de pompage. Ces cycles, à l'échelle saisonnière, ont été étudiés de façon similaire à des essais de pompage afin d'en déduire les propriétés hydrodynamiques de l'aquifère du Lez et la nature des écoulements souterrains.

Ainsi, les courbes de niveaux d'eau à la vasque peuvent être interprétées comme des courbes de rabattements. Le débit de pompage considéré alors pour l'interprétation est le débit de sollicitation du système, c'est-à-dire le débit de pompage moins le débit naturalisé du système.

De la même façon, les cycles de pompage à l'échelle pluri journalière ont été considérés en tenant compte des « pulses » de pompage associés aux modifications du débit de pompage à la source du Lez.

Les résultats de ces interprétations sont présentés ci-dessous.

5.2.2. Interprétation des pompages à l'échelle saisonnière

Les cycles de pompage ont été interprétés individuellement au niveau de la vasque du Lez. A titre d'exemple, l'interprétation de la courbe de rabattement de l'année 2002 est présentée sur la Figure 99. On y constate une très bonne capacité du modèle classique (à écoulement radial) de Theis à reproduire les rabattements observés. La transmissivité T = 0.006 m²/s est très élevée, signe de la grande perméabilité de cet aquifère fortement karstifié. L'emmagasinement S = 13000 n'a aucune signification physique parce que calculé au puits de pompage et non dans un piézomètre d'observation.

Figure 99 : exemple d'interprétation du cycle de pompage de 2002

Plusieurs cycles hydrologiques récents (1986, 1987, 1998, 2002, 2003, 2005 et 2006) ont été interprétés au moyen du modèle de Theis (Figure 100). Il est remarquable de constater à quel point la transmissivité obtenue varie peu d'un cycle à l'autre (entre 6.0 et 6.9 x 10⁻³ m²/s). Cet élément confirme l'aptitude du modèle de Theis à reproduire le comportement du système karstique du Lez sollicité par un pompage. Les valeurs du coefficient d'emmagasinement, comme pour tout essai hydraulique mesuré au puits de pompage, n'ont aucune signification physique et constituent uniquement une variable d'ajustement. La valeur de transmissivité obtenue correspond à une valeur globale de l'aquifère sollicité, incluant les contributions du réseau de drains karstiques et de la matrice calcaire. Seule une modélisation plus détaillée, prenant en compte individuellement les conduits karstiques et la matrice, permettrait de distinguer les contributions relatives des conduits karstiques et de la matrice calcaire.

	Transmissivité T (m ² /s)	Emmagasinement S (-)	Coeff. Pertes de charge (m ⁻⁵ .s ²)	Rabattement maximum (m)
1986	6.2E-03	1.4E+04	2.7E-07	10.3
1987	6.3E-03	1.6E+04	2.3E-07	13.5
1998	6.9E-03	5.7E+03	0.0E+00	10.0
2002	6.0E-03	1.3E+04	0.0E+00	14.3
2003	6.9E-03	6.8E+03	0.0E+00	19.2
2005	6.7E-03	1.6E+04	3.9E-07	9.6
2006	6.6E-03	1.3E+04	0.0E+00	14.7

Figure 100 : tableau de synthèse des paramètres hydrodynamiques estimés au moyen du modèle de Theis appliqué à la source du Lez

Les niveaux piézométriques observés dans le bassin d'alimentation montrent une très forte corrélation entre les rabattements observés dans le drain karstique induits par le pompage et les rabattements observés à plus grande distance (Figure 101).

Figure 101: niveaux piézométriques dans les piézomètres d'observation du Lez pendant l'année 2003

Une interprétation des rabattements aux piézomètres a été effectuée et donne les résultats détaillés au tableau de la Figure 102. Les transmissivités obtenues sont proches de celle estimée à la source tandis que les coefficients d'emmagasinement ($S = 10^{-3}$ à 10^{-5}) sont dans des ordres de grandeur de nappe captive.

	Distance (km)	Transmissivité T (m ² /s)	Emmagasinement S (-)	Diffusivité T/S (m ² /s)
Bois des Avants	4	6.0E-03	2.0E-03	3.0E+00
Bois de St-Mathieu	6	7.5E-03	1.5E-03	5.0E+00
Claret	18	9.5E-03	3.4E-05	2.8E+02
Laudou	15	5.7E-03	1.1E-04	5.1E+01

Figure 102 : tableau de synthèse des paramètres hydrodynamiques estimés dans les piézomètres d'observation

5.2.3. Interprétation des pompages à l'échelle pluri-journalière

Pour déterminer la perméabilité de l'aquifère à l'échelle régionale (Jazayeri et al., 2011), nous avons considéré l'historique de pompage et les variations de la piézométrie à la fois à la source du Lez (Figure 103 a) et dans les puits situés sur le site expérimental du Terrieu (Figure 103 b,c), à 5 km de la source du Lez.

Figure 103: (a) Localisation de la source du Lez et du site expérimental du Terrieu à l'échelle régionale ; (b) Photo aérienne de la fracturation à l'échelle du site expérimental ; (c) Localisation des puits sur le site expérimental du Terrieu

Le débit de pompage varie en fonction de la demande en eau pour la ville de Montpellier, ce qui génère des arrêts et des reprises de pompage successives, de fréquence irrégulière. Ainsi les réponses hydrodynamiques mesurées dans les puits d'observation du site expérimental du Terrieu sont la conséquence de ces différentes impulsions (pulse) de pompage. Par conséquent, les essais par pompage ont été interprétés à l'aide de la méthode « pulse test » (Brigham, 1970; El-Khatib, 1991) pour déterminer la perméabilité effective de l'aquifère à l'échelle régionale. La méthode de superposition multi-débit (Bourdet, 2002) a également été appliquée comme méthode

alternative afin de vérifier les valeurs de perméabilité obtenues. A titre d'exemple, les variations piézométriques sur les forages P5, P8, P10 et P11 localisés sur le site expérimental du Terrieu, ainsi que les périodes de pompage (Pulse) et d'arrêt (Shut-in) à la source du Lez sont présentées sur la Figure 103a. Les puits d'observation donnent ainsi des informations sur les variations piézométriques dans l'aquifère avec un espacement moyen de 5 mètres entre les forages (Figure 103 b,c).

Figure 104 : Réponse hydrodynamique aux impulsions de pompage (pulse) à la source du Lez, mesurée sur les puits d'observation du site expérimental du Terrieu. Trois types de réponse hydrodynamique (Type A, B, C ont été identifiée).

Les propriétés de perméabilité et de diffusivité du milieu ont été obtenues en considérant une porosité effective moyenne de 1 % pour l'aquifère. Cette porosité effective de l'aquifère karstique Lez a été estimée (Roesch et Jourde, 2006) sur la base du volume extrait de l'aquifère par pompage et les variations de la piézométrie à l'échelle de l'aquifère Lez durant une période donnée (période estivale). Dans leur étude, ces auteurs ont estimé une porosité effective de 0,2%. Dans une autre étude visant à modéliser le fonctionnement hydrologique de l'aquifère karstique du Lez (Fleury et al. 2009), une porosité effective comprise entre 0,3% et 2% a été considérée, en fonction du niveau de la nappe phréatique dans le système. Afin de se concentrer sur l'effet des variations de la conductivité hydraulique sur la réponse hydrodynamique, plutôt que sur les changements de porosité effective, nous avons donc considéré une porosité effective moyenne de 1%.

Figure 105: Résultat de l'interprétation à l'aide de la méthode de superposition multi-débit, pour une interprétation sur le puits P11 pour un pompage à la source du Lez. En noir la piézométrie mesurée, en rouge le calage obtenu à l'aide de la méthode de superposition multi-débit.

Une	interprétation des rabattements aux piézomètres a été effectuée (Jazayeri et al.,
2011	, Figure 105) et donne les résultats détaillés au tableau de la Figure 106.

	Distance (km)	Transmissivité T (m ² /s)	Emmagasinement S (-)	Diffusivité T/S
P8	5	5.0E-04	1.0E-02	2.5E+00
P5	5	3.5E-04	1.0E-02	1.75E+00
P10	5	3.6E-04	1.0E-02	1.8E+00
P11	5	3.5E-04	1.0E-02	1.75E+00

Figure 106 : tableau de synthèse des paramètres hydrodynamiques estimés dans les piézomètres d'observation P8, P5, P10 et P11 du site expérimental du Terrieu

Les transmissivités obtenues sont un ordre de grandeur en dessous de celles estimées par la méthode de Theis, pour un emmagasinement S fixé à un ordre de grandeur audessus de celui estimé par la méthode de Theis.

A noter que les valeurs de transmissivité estimées en fonction de la réponse hydrodynamique en période de hautes eaux (interprétation présentée ci-dessus) et celles estimées en période de basses eaux sont divisées par 2 pour le puits P11 et diminuent d'un ordre de grandeur pour le puits P10. Cela est la conséquence directe d'une variation de la connectivité entre le puits d'observation et le réseau de drainage

principal dans lequel se propage la sollicitation par pompage à la source du Lez (Jazayeri et al., 2011).

Les valeurs de diffusivité sont en accord avec les valeurs obtenues précédemment pour les puits d'observation Bois des Avants et Bois de Saint Mathieu, ce qui tendrait à indiquer que le site expérimental du Terrieu présente la même connectivité que ces puits avec le réseau de drainage principal.

5.2.4. Conclusion

Interprétation des pompages à l'échelle saisonnière

L'interprétation des rabattements observés à la source du Lez montre la dominance d'écoulements radiaux au sein de la matrice de l'aquifère vers le réseau de drains karstiques. La transmissivité globale est de l'ordre de 0.007 m²/s. Un modèle mathématique prenant en compte séparément le réseau de drains karstiques et la matrice calcaire permettrait une interprétation plus détaillée de ces pompages. Il sera mis en œuvre au sein de l'atelier 4 du projet.

Interprétation des pompages à l'échelle pluri-journalière

L'interprétation des pompages à deux échelles différentes (locale et régionale) au sein de l'aquifère du Lez a permis de vérifier la dépendance de la perméabilité avec l'échelle d'observation, mais également d'identifier d'autres paramètres (plus importants que l'échelle d'observation) affectant ces variations de perméabilité (Jazayeri et al., 2011).

Ainsi, le niveau piézométrique de la nappe et le degré de la connectivité entre le puits d'observation et le réseau de drainage principal dans lequel se propage la sollicitation par pompage à la source du Lez, apparaissent comme des paramètres clés qui contrôlent l'estimation de la perméabilité lors de l'interprétation d'essais par pompage.

5.3. TRAÇAGES ARTIFICIELS

5.3.1. Introduction

Un certain nombre d'essais de traçages ont été réalisés dans le passé sur le système karstique du Lez (Annexe 5). Afin d'améliorer la connaissance des limites du bassin d'alimentation souterrain de la source du Lez, et notamment ses limites avec les bassins d'alimentation de la Mosson au Sud-Ouest et de la source de Fontbonne au Nord Est, plusieurs campagnes de traçage ont été mises en place (Figure 107).

Figure 107 : Localisation des différents points d'injection (avens ou pertes) et des sources suivies durant les traçages ; les connections hydrauliques confirmées par traçages sont en trait plein.

Les points d'injection ont été définis à partir de l'analyse des chroniques piézométriques et en fonction des « zones d'ombre » quant aux limites du bassin d'alimentation de la source du Lez. Le suivi de restitution du traceur a été réalisé en différents points, dont la source du Lez. Les limites du bassin d'alimentation de la

source du Lez variant en fonction des conditions hydrologiques (hautes ou basses eaux), il est important de réaliser des traçages durant des périodes hydrologiques contrastées. Réalisées en hautes et basses eaux, ces campagnes de traçage permettent ainsi de caractériser les écoulements et le fonctionnement spécifique de l'aquifère en fonction de son degré de saturation.

5.3.2. Opération de traçage sur l'aven de la Fausse Monnaie, en avril-juin 2010

L'injection a été réalisée le 20 avril 2010 à 12h00, au fond de l'aven de la Fausse Monnaie (situé sur le causse de Viols le fort), à -60 m de profondeur, par un groupe de spéléologues du club de Montpellier, mené par Daniel Caumont (Figure 67).

Quatre kilogrammes de Fluorescéine en poudre, diluée dans 21 litres d'eau, ont été injectés.

Figure 108: Injection de la fluoréscéine par D. Caumont, à 60m, au fond de l'aven de la Fausse Monnaie (20 avril 2010, 12h)

Les conditions hydrologiques à cette période étaient plutôt sèches : la source du Lirou s'est tarie le 20 avril, et la source du Lez continuait à couler de jour mais pas de nuit (du fait des pompages). Cependant, l'injection s'est faite au niveau d'un écoulement souterrain à –60 m de profondeur (par rapport au niveau du sol du causse de Viols le Fort), écoulement de l'ordre de guelgues l/s.

La restitution a été suivie au niveau de quatre sources, celles du Lez, du Lirou, de Restinclières et des Fontanilles, ainsi que d'un forage localisé à proximité de la source du lirou (forage « Les Matelles » du réseau de surveillance de l'aquifère du Lez, suivi par Veolia pour la Communauté d'Agglomération de Montpellier). Des mesures ont été

réalisées par 4 fluorimètres (deux au Lez, un au forage des Matelles et un aux Fontanilles) avec un pas de temps de 4min. Parmi les fluorimètres installés au niveau des sources pouvant restituer le traceur, celui de la source du Lirou a été vandalisé dès la première semaine.

Deux préleveurs automatiques ont été installés à la source du Lez et à la source des Fontanilles, pendant que des prélèvements journaliers manuels ont été réalisés pendant près d'un mois et demi à la source du Lirou et de Restinclières.

Sources du Lez, du Lirou et de Restinclières :

Il n'y a pas eu d'apparition visible à l'œil nu de la fluorescéine à la source du Lez : seul le spectro-fluorimètre nous a permis de valider l'arrivée du traceur à la source du Lez, environ 25 jours après l'injection (

Figure *110*). D'autres pics de fluorescence sont apparus avant le 15-17 mai, mais ne sont pas du à la présence de fluorescéine d'après l'analyse spectro-fluorimétrique : le pic du 5 mai apparaît lors des périodes de fortes pluies qui ont eu lieu début mai, et qui ont remis en charge l'aquifère du Lez. La source du Lirou s'est remise à couler à partir de cette date (Figure 111). Ces pics de fluorimétrie sont induits par l'augmentation de la turbidité associée à des pics de crues lors de ces fortes pluies.

Par ailleurs, nous constatons de fortes fluctuations de l'intensité de la fluorescence entre le 15 mai et le 4 juin (

Figure 110) sur la source du Lez, liés aux effets de pompage pendant cette période.

Apparition du traceur entre 23 jours et 28 jours après l'injection (20 avril 2010):

- début de la restitution le 13 mai au Lirou, avec un maximum le 18 mai (Figure 109)
- début de la restitution le 18 mai à Restinclières, avec un maximum le 22 mai

début de la restitution autour du 15 mai au Lez, avec un maximum/palier autour du 30 mai (

- Figure 110)

Figure 109 : Restitution du traceur à la source du Lirou (Mai 2010)

FLUORIMETRE - Source du Lez

Figure 110 : Restitution du traceur à la source du Lez (Mai 2010)

Figure 111 : La source du Lirou, lors du maximum de restitution du traceur (fluorescéine), le 18 mai 2010

Source des Fontanilles

Malgré quelques fluctuations du signal du fluorimètre (Figure 112), l'eau de cette source (débit interannuel moyen de l'ordre de 250 l/s) n'a pas présenté de trace de fluorescéine dans les eaux échantillonnées par le préleveur automatique. Nous expliquons ces fluctuations par la fluorescence naturelle de l'eau liée à la turbidité.

Figure 112 : Intensité du signal du fluorimètre à la source des Fontanilles

Total de la masse de traceur restitué début juin 2010

En prenant en compte les débits à la source du Lez ainsi que ceux de la source du Lirou (Figure 113), la quantité de traceur restitué du 10 mai au 25 juin sur ces deux sources correspond à :

- 1.4 kg à la source du Lirou
- 0.8 kg à la source du Lez

Soit un total de 2.2kg +-0.1 kg sur 4kg injecté à l'aven de la Fausse Monnaie : Fin juin, 55% du traceur était donc restitué sur ces deux sources. L'absence de mesure de débit à Restinclières ne permet pas de calculer la quantité évacuée par cette source, cependant son débit est très faible par rapport à la source du Lez ou du Lirou, et les concentrations de traceur étaient très faibles également : Nous estimons à moins de 0.1 kg la masse évacuée par cette source.

B - Restitution du traceur à la source du Lirou

Figure 113 : Débits et flux massique restitué à la source du Lez (A) et à la source du Lirou (B)

Conclusion

L'injection de traceur à l'aven de la Fausse Monnaie, a permis de vérifier l'existence de relations entre cet aven et les sources du Lez et du Lirou. Au contraire, la non restitution de traceur à la source des Fontanilles semble indiquer une absence de relation entre cette source et ce réseau karstique. Lors des pluies du mois de mai, 50% du traceur a été évacué sur ces deux sources, alors que 50% restait bloqué au sein de ce système karstique pendant l'été.

Suite à un suivi en automne par fluorimètre, les premières pluies automnales semblaient continuer à évacuer le reste du traceur, des pics de fluorimétrie étant observés. Cependant après analyse des échantillons d'eau par spectrofluorimètre en laboratoire, ces pics de fluorimétrie ne seraient pas dus à la présence de fluoréscéine, mais à de la turbidité ou de la matière organique dissoute dans l'eau.

Les vitesses apparentes moyennes de transit sont de l'ordre de 13 m/h (la vitesse apparente maximale étant de l'ordre de 15,9 m/h pour le trajet aven-source du Lez, et de 10,9 m/h pour celui de l'aven-source du Lirou). La vitesse semble plus lente pour le trajet jusqu'à la source du Lirou, mais celui-ci intègre beaucoup plus l'impact de la traversée de la zone non saturée. Quant à la vitesse apparente maximale correspondant au trajet « Source du Lirou – Source du Lez », celle-ci serait de l'ordre de 70 m/h : cependant cette valeur correspondrait au transfert du traceur uniquement en zone saturée, et ce transfert s'est réalisé en période de hautes eaux, juste avant l'infiltration dans le karst d'une quantité importante de précipitations.

Le Causse de Viols le Fort présentant les terrains aquifères à l'affleurement est une zone d'infiltration et de recharge préférentielle de l'aquifère du Lez. De ce fait, la précision du bassin d'alimentation dans cette zone est importante pour pouvoir quantifier les volumes infiltrés et donc les réserves de notre aquifère.

Ainsi, ce traçage nous permet de placer la limite ouest du bassin hydrogéologique du Lez au Nord Ouest de l'anticlinal qui affecte le flanc sud du Pic Saint Loup : cet anticlinal, reconnu jusqu'à présent comme une limite imperméable, n'agit pas comme tel sur le tracé "aven de la fausse monnaie - source du Lez". Dans la partie nord de cet anticlinal, la limite du bassin d'alimentation doit donc être modifiée pour inclure l'aven de la fausse monnaie. Cependant, la question d'une continuité hydraulique persiste dans la partie sud (à proximité de viols le fort) où la flexure de l'anticlinal est plus marquée, permettant l'affleurement de terrains moins perméables tels que les marnocalcaires du callovo-oxfordien. Dans le but de préciser d'avantage cette limite nord ouest, un autre essai de traçage (injection à l'aven Roussières) a été réalisé au printemps 2011. Cette opération de traçage ayant été fortement perturbée par l'évènement pluvieux de mars 2011, celle-ci sera renouvelée dès que les conditions hydroclimatiques seront favorables (pluies). Ce sera également le cas de l'opération de traçage depuis la perte en amont du Mas Martin (Nord de Saint Bauzille de Montmel), qui a pour objectif de préciser la limite nord est du système et avait également été perturbé par l'évènement pluvieux de mars 2011.
Paramètres du transit

Traçage depuis Aven de la Fausse Monnaie Restitution à Source du Lez Injection de 4 kg d'Uranine : le 20/4/2010 à 12 heure 0 minutes

Distance entre le point d'injection et le point de restitution : 9.5 km

Figure 114 : fiche synthétique de la restitution à la source du Lez

5.3.3. Opération de traçage sur l'aven Roussière et au niveau de la perte du Mas Martin, en février 2011

Deux injections ont été réalisées sur le bassin hydrogéologique du Lez en février 2011, la première dans la zone supposée comme limite Est du bassin, la seconde dans la zone supposée comme limite Ouest. Ces opérations de traçage avaient pour but de préciser les limites hydrogéologiques de l'aquifère du Lez, ainsi que d'estimer les vitesses de transport au sein de l'aquifère.

La première injection (5 kg de sulforhodamine) a eu lieu le 03/02/2011 dans une perte en amont du Mas Martin (au Nord de Saint Bauzille de Montmel). La seconde injection (5 kg de fluorescéine) a eu lieu le 17/02/2011 dans l'aven Roussière, localisé entre Viols en Laval et Viols le Fort.

Ces deux injections ont été réalisées en sub-surface, dans la perte d'un lit de rivière temporaire pour la première, dans un aven peu développé (20m de profondeur maximum) pour la seconde. Pour pouvoir entrainer les traceurs en profondeur, ces derniers ont été injectés à l'aide de 30 m³ d'eau transportés par des camions citernes de pompiers (Figure 115).

Figure 115 : Injection de sulforhodamine dans la perte située en amont du Mas Martin, le 03/02/2011

Le mois de février et le début mars ont été marqués par une très faible pluviométrie qui faisait suite à une fin décembre et un début janvier très pluvieux. Les injections ont donc eu lieu lors d'un période de décrue marquée. Du 12 au 16 mars, des précipitations très importantes voire exceptionnelles pour la saison ont touché toute la région. Ces pluies, homogènes sur l'ensemble du bassin, ont occasionné des crues karstiques importantes pour la saison, qui ont eu un double impact négatif sur les traçages :

- ces crues ont été accompagnées par un pic de turbidité qui perturbe la mesure par fluorescence réalisée sur le terrain et en laboratoire : ainsi les fluorimètres de terrain vont présenter des pics de fluorescence induits par l'augmentation de la turbidité et non par la présence du traceur.
- ces crues correspondent à des débits importants qui vont fortement diluer la concentration du traceur à l'exutoire, notamment au moment du pic de crue. Or le traceur déjà présent dans l'aquifère au début de la crue a de forts risques d'être évacué pendant les premiers jours où la crue est à son maximum.

Ainsi les mesures réalisées sur les différentes sources suivies en continu (Fontbonne, Lez, Lirou, Fontanilles) présentent des pics de fluorescence qui sembleraient être liés à la turbidité et non au passage du traceur (Figure 116). Cependant, si les traceurs sont passés pendant cet épisode de crue, du fait de la dilution de ceux-ci et de la perturbation du signal par la turbidité, il nous est impossible de les identifier.

Pour pouvoir confirmer qu'il y a une relation hydraulique ou non entre ces avens/pertes et la source du Lez, il faudra réaliser une seconde opération de traçage en injectant des quantités plus importantes. Cependant, cela risquerait de provoquer une évacuation massive (et donc fortement visible à l'œil nu) des traceurs soit à la source de Fontbonne (proche de la perte de Saint Martin), soit à la source des Fontanilles (proche de l'aven Roussière). Il est à noter que les quantités qui ont été injectées en avril 2010 étaient les mêmes que celles de 2011, et qu'elles ont été clairement identifiées aux sources du Lez et du Lirou par nos appareils de 180 BRGM/RP-60041-FR – Rapport final

mesure. Une autre possibilité serait d'injecter ces traceurs à plus grande profondeur afin d'éviter des pertes dans la zone non saturée. Cependant, à ce jour, aucun autre aven dans ces lieux n'a été clairement identifié.

Sur la source du Lirou, on observe un pic bien net qui n'est présent que sur la fluorescéine, le 14/03 à 6h (Figure 116). Ce pic pourrait correspondre à 2 ou 3 ppb de fluorescéine mais comme il se situe en début de crue il peut aussi être dû à de la turbidité. Le site étant peu protégé, aucun échantillonneur automatique n'avait été installé. Les prélèvements manuels ayant été réalisés 2 jours après ce pic, nous n'avons pu vérifier son origine au spectrofluorimètre en laboratoire.

Sur la source des Fontanilles, ni les echantillons issus du préleveur automatique, ni le fluorimètre de terrain n'ont identifié la présence du traceur. Seul un pic de turbidité, identique à ceux observés à la source du Lez et du Lirou a été détecté par le fluorimètre. L'analyse des échantillons en laboratoire ne montre pas la présence de traceur pendant ce pic de turbidité.

Figure 116 : Enregistrement des fluorimètres installés aux sources de Fontbonne, du Lez et du Lirou en mars-avril 2011

5.3.4. Conclusion

Les traçages qui ont été réalisés ont permis de confirmer que la limite du bassin d'alimentation de l'aquifère du Lez se situait au-delà de l'anticlinal de Viols le fort, dans la partie nord de cet anticlinal. Ceci reste encore à confirmer dans la partie sud, du côté de

l'aven Roussière, puisque l'opération de traçage de 2011 a été fortement perturbée par l'évènement pluvieux de mars 2011 (Figure 117). Une opération de traçage est par conséquent prévue en 2012 avec injection de traceur vers 80 m de profondeur dans l'aven Vidal (à proximité de l'aven Roussière) dès que les conditions hydroclimatiques seront favorables puisque ce traçage ne peut être réalisé qu'en période de très hautes eaux, lorsqu'un écoulement pérenne existe au fond de cet aven. Les résultats de ce futur traçage permettront de lever les incertitudes sur la limite ouest du bassin d'alimentation de l'aquifère du Lez si ils confortent les résultats du traçage actuellement validé (aven de la fausse monnaie).

Figure 117 : Carte de localisation des opérations de traçage réalisées en 2010 et 2011 (sur fond topographique de l'IGN). Injection 1 : Aven de la Fausse Monnaie le 20/04/10 ; Injection 2 : Perte du Mas Martin le 03/02/11 ; Injection 3 : Aven Roussière le 17/02/11. Les flèches en trait continu correspondent aux tracages assurés, les flèches en trait pointillé correspondent aux tracages réalisés mais sans assurance de sortie du traceur. Les flèches vertes correspondent aux tracages réalisés par fluoresceine, en rouge au tracage réalisé par sulforhodamine.

Le premier traçage de 2010 permet de proposer une vitesse de transport moyenne de l'ordre de 15m/h en période hydrologique plutôt sèche, lorsqu'une faible épaisseur de la zone non saturée est traversée. Lorsque le traceur circule essentiellement dans la zone noyée, les vitesses sont plus importantes, de l'ordre de 70 m/h pour des conditions hydrologiques humides. Ces ordres de grandeur de vitesse sont des informations importantes à prendre en compte dans le cas de l'étude de la vulnérabilité de l'aquifère. Les prochains traçages qui seront réalisés en 2011-2012 permettront d'obtenir d'autres champs de vitesse dans d'autres contextes hydrologiques, permettant d'intégrer les effets de la variabilité climatique sur les vitesses de transport.

5.4. BON ETATQUANTITATIF DE LA MASSE D'EAU SOUTERRAINE

5.4.1. Définition du bon état du point de vue quantitatif

Le bon état quantitatif d'une eau souterraine tel que défini par la Directive Cadre Européenne sur l'Eau, est atteint lorsque les prélèvements ne dépassent pas la capacité de renouvellement de la ressource disponible, compte tenu de la nécessaire alimentation des écosystèmes aquatiques. L'état quantitatif dépend de l'équilibre entre d'une part les prélèvements anthropiques et les besoins liés à l'alimentation des eaux de surface, et d'autre part, la recharge naturelle par les précipitations efficaces des eaux souterraines Une masse d'eau souterraine est considérée en bon état quantitatif s'il n'y a pas d'évolution interannuelle défavorable de la piézométrie (baisse significative et durable du niveau de la nappe, hors variations saisonnières climatiques), que le niveau piézométrique en période d'étiage permet de satisfaire les besoins des usages, sans risque d'effets négatifs sur les milieux aquatiques terrestres liés à la nappe, ni d'intrusion saline en bordure littorale.

L'état quantitatif comprend deux classes : bon et médiocre.

5.4.2. Données utilisées

La masse d'eau souterraine concernée est la masse d'eau référencée à l'aide du code FRDG113, dénommée comme « Calcaires et marnes jurassiques des garrigues nordmontpelliéraines - système du Lez ». Dans le cadre de l'état des lieux mené en 2009 à l'échelle du SDAGE du bassin Rhône Méditerranée et Corse, cette masse d'eau fait l'objet d'une remarque concernant la nécessité d'actions de résorption du déséquilibre relatives aux prélèvements pour l'atteinte du bon état quantitatif (Figure 117). La raison de cette remarque est liée à l'exploitation par pompage (gestion active) de la source du Lez pour l'alimentation en eau potable et à la relation entre la masse d'eau souterraine et la masse d'eau de surface du Lez qui prend naissance au niveau de la source. Le débit du Lez au niveau de sa source est influencé par l'exploitation de l'aquifère, le débit étant modifié notamment en période d'étiage. Un débit de restitution est fixé par la DUP de 1981 à 160 l/s lorsque qu'il n'y a plus débordement naturel de la source (niveau de rabattement inférieur à 65 m NGF).

Figure 118 : carte des actions relatives au bon état du point de vue quantitatif des masses d'eau souterraine du bassin RMC (document du SDAGE).

Les données utilisées pour caractériser le bon état quantitatif de cette masse d'eau sont les suivantes :

- Piézométrie au niveau du captage de la source du Lez sur la période 1961 à 2010 ;
- Piézométrie au niveau du réseau de suivi en continu (21 points) pour la période 2000 à 2010 (Figure 119 et Figure 120) ;
- Débits « naturels » reconstitués (cf §4.3.) de la source du Lez pour la période 1967 à 2009 ;
- Pluviométrie pour les stations de St-Martin-de-Londres, de Valfaunès et de Montpellier;
- Prélèvements au captage AEP de la source du Lez pour la période de 1982 à 2010 ;
- Prélèvements AEP sur la masse d'eau moyens annuels sur 30 points en plus de la source du Lez
- Données hydrochimiques (conductivité électrique et données Cl⁻) pour la période de 2006 à 2008 (Bicalho et al. 2010).

Figure 119 : Localisation du réseau piézométrique à l'échelle de la masse d'eau FRDG113

Due due terre de un é e	1.16 - 11.4	N			
Producteur donnee	Libelle	Nature	XL2E (m)	YLZE (m)	Altitude (m NGF)
ONEMA-BRGM	Aven de la Sœur (Conquérac)	Cavité Naturelle	728125	1883621	130.0
ONEMA-BRGM	Claret (ONEMA)	Piézomètre	726884	1873815	139.0
CG34	Sce Fontanilles	Sce Karstique	703766	1862097	82.2
CG34	F. Fontbonne	Forage AEP	733669	1866205	57.0
CG34	F. Suquet	Forage	717798	1860042	165.0
CG34	F. Crouzette	Forage AEP	726171	1849108	51.0
CAM/Veolia	Sce du Lez	Forage AEP	721649	1858552	64.0
CAM/Veolia	St Clément de Rivière	Piézomètre	722273	1855018	64.4
CAM/Veolia	Ste Croix de Quintillargues F3	Piézomètre	727052	1863043	137.9
CAM/Veolia	St Bauzille Bois des Rosiers	Piézomètre	731495	1866382	87.8
CAM/Veolia	Mas de Martin F84	Piézomètre	730553	1867132	99.1
CAM/Veolia	Les Matelles 1	Piézomètre	718063	1859851	111.5
CAM/Veolia	Laudou	Piézomètre	727647	1870043	114.6
CAM/Veolia	Gour Noir	Piézomètre	723491	1858884	83.2
CAM/Veolia	Fontanès F2	Piézomètre	728171	1866289	94.0
CAM/Veolia	Bois des Avants	Piézomètre	723728	1862299	125.9
CAM/Veolia	Carnas stade	Piézomètre	731572	1869676	156.8
CAM/Veolia	Claret Brissac	Piézomètre	727553	1873518	139.0
CAM/Veolia	Coutach	Piézomètre	731395	1877076	138.2
CAM/Veolia	St Gély les Vautes	Piézomètre	720350	1854906	95.0
CAM/Veolia	Bois de St Mathieu	Piézomètre	721903	1865652	131.7

Figure 120 : Tableau des caractéristiques des piézomètres suivis en continu sur le réseau du système karstique du Lez, réseau élargi à des piézomètres situés en-dehors du système sensus stricto mais apportant une information pertinente

5.4.3. Analyse des données et interprétation

Les prélèvements dans la masse d'eau souterraine sont reportés sur le graphique cidessous (lignes rouge et bleue, Figure 121). Ils comprennent d'une part les prélèvements au captage de la source du Lez depuis 1974 et d'autre part les prélèvements totaux recensés à l'échelle de la masse d'eau en considérant les prélèvements moyens annuels, totalisant 7 056 950 m³ répartis sur 30 points de prélèvements. A noter qu'en l'absence d'information relative à la variabilité temporelle de ces prélèvements depuis 1974, les données de prélèvements actuels ont été extrapolées sur l'ensemble de la période. Cette hypothèse est certainement une hypothèse pessimiste pour les périodes anciennes. La ligne bleue représente ainsi les volumes totaux prélevés sur la masse d'eau concernée. Ces volumes prélevés sont comparés au volume des précipitations efficaces rechargeant l'aquifère. Ces volumes ont été estimés à l'aide des modèles de transferts développés dans cette étude (cf.§. 4.3) pour reconstituer les débits naturels de la source du Lez. La recharge movenne estimée correspond à un volume de 125 000 000 m³ environ, en considérant une surface d'impluvium de recharge de 112 km². Cette recharge varie selon les cycles hydrologiques et climatiques entre 65 000 000 m³ pour les années déficitaires et 185 000 000 m³ pour les années excédentaires. Les volumes de recharge efficace sont très nettement supérieurs au volume d'eau prélevée sur la masse d'eau concernée (Figure 121).

Figure 121 : Graphique représentant les volumes d'eau de précipitations efficaces rechargeant la masse d'eau FRDG113 et les volumes prélevés au niveau de la source du Lez (en rouge) et totaux au niveau de la masse d'eau (en bleu)

Comme le stipule la définition du bon état quantitatif d'une masse d'eau souterraine, le bon état est atteint lorsque les prélèvements ne dépassent pas la capacité de renouvellement de la ressource disponible. **Cette première condition existe** pour la masse d'eau souterraine concernée.

Par ailleurs, examinons la deuxième condition à savoir, l'évolution interannuelle de la piézométrie. S'il n'y a pas de baisse significative et durable du niveau de la nappe, hors variations saisonnières climatiques, la deuxième condition est validée. La piézométrie au niveau du forage d'observation du captage de la source du Lez (Figure 122) indique que le niveau piézométrique à la fin des périodes d'étiage et de pompage engendrant une interruption du débordement au niveau de la source retrouve son état initial rapidement. Ce niveau se situe autour de la cote 65 m NGF.

Par ailleurs, la piézométrie des forages du réseau de piézomètres de la masse d'eau souterraine est caractérisée par des niveaux moyens variables en fonction de leur position au sein de la masse d'eau, avec des valeurs comprises entre 75 mNGF et 55 mNGF pour le forage de Fontbonne. Aucune tendance à la diminution en dehors des variations saisonnières n'est observée sur ces piézomètres et ce, y compris durant la période 1980-1983 qui a vu la succession de plusieurs années sèches (Figure 123). La deuxième condition est donc remplie.

Figure 122 : Graphique de la piézométrie mesurée dans le forage d'observation (données journalières) sur plus de vingt années, suite à la mise en exploitation par gestion active de la source du Lez, au niveau du captage

Figure 123 : Graphique de la piézométrie mesurée au niveau d'une sélection de piézomètres situés au sein de la masse d'eau souterraine FRDG113

On peut par ailleurs analyser l'impact de la gestion active sur les débits naturels reconstitués de la source du Lez, de débordement, considérant les débits prélevés ainsi que les débits moyens annuels.

Si l'on analyse les données de débit moyen annuel observées et calculées (cf.§ 4.3), sur la période 1963-2008, le débit moyen interannuel de la source du Lez est estimé à 2008 l/s [1918 l/s-2175 l/s]. Le débit moyen annuel minimum est estimé à 960 l/s (observé en 1983 [929 l/s-1094 l/s]). Le débit moyen annuel maximum est estimé à 3516 l/s (observé en 1972 [3483 l/s-3951 l/s]). Sur la période 1963-2008, le débit médian de la source au cours des BRGM/RP-60041-FR – Rapport final

mois de juillet à septembre est compris entre 1129 l/s et 605 l/s (débit naturel estimé). En contexte décennal sec, le débit de la source au cours des mois de juillet à septembre est compris entre 541 l/s et 264 l/s. Sur la Figure 92 et sur la Figure 93(§ 4.3.3), nous présentons l'évolution annuelle des quantiles des débits naturels calculés pour les périodes 1974-1982 et 1983-2008. Les valeurs moyennes des débits moyens annuels pour la période antérieure à 1981 n'apportent pas de modification ; le débit moyen interannuel pour la période de 1966 à 1971 est de 2.2 m³/s. Les débits sont compris entre 1020 l/s (1967 année exceptionnellement sèche) et 2800 l/s (1962, année très pluvieuse) (Paloc, 1979). Les débits simulés sont fidèles aux débits mentionnés par Paloc.

L'évolution temporelle des débits naturels estimés de la source du Lez est présentée sur la Figure 124. Cette illustration permet également d'appréhender la variabilité interannuelle des débits naturels reconstitués. Les évolutions annuelles des médianes calculées sur les périodes 1974-1982 (pompage dans la vasque) et 1983-2008 (pompage dans le drain karstique) du débit de prélèvement à la source du Lez sont reportées sur la Figure 125. Les évolutions des valeurs médianes des débits de débordement de la source du Lez pour ces deux périodes sont représentées sur la Figure 126. Un changement de régime hydraulique de la source du Lez est observé dès la mise en exploitation de la source du Lez selon le mode de gestion active. Pour la période 1983-2008, les débits de débordement du Lez en hiver apparaissent plus faibles que ceux de la période antérieure (1974-1982). Les débits de débordement sont du même ordre de grandeur à l'automne et au printemps pour les deux périodes mais diffèrent en hiver avec une diminution durant la seconde période. Dès 1981, la période de non débordement est située en moyenne entre le 1^{er} juillet et la mi-septembre. La reprise des débits à l'automne semble plus efficace lors de la seconde période (1983-2008). Toutefois, au vu de la forte dépendance de cette reprise vis-à-vis des conditions climatiques (intensités des pluies d'automne) et de la courte durée d'observation de la première période (8 années), il est statistiquement hasardeux d'en conclure une modification du comportement du système.

Les bilans calculés sur la période 1974-2004 (Figure 127) indiquent que les volumes prélevés annuellement sont inférieurs aux volumes de recharge par les pluies efficaces (i. e volume qui se serait naturellement écoulé en absence de pompage). Les années déficitaires en précipitation, les volumes prélevés apparaissent globalement supérieurs aux volumes de débordement de la vasque.

Le cumul des volumes prélevés et des volumes de débordement à la vasque sont globalement supérieurs au volume naturel qui se serait écoulé en absence de pompage. La différence entre les deux courbes permet de montrer que les réserves du système karstique sont sollicitées notamment lors des étiages. Les premières pluies automnales contribuent à la reconstitution des réserves ce qui se traduit dans un premier temps, par une augmentation de la charge hydraulique du drain et dans un second temps par le débordement de la vasque (charge hydraulique > 64.98 m NGF).

Figure 124. Evolution temporelle des débits moyens mensuels naturels (estimé) de la source du Lez et des précipitations en mm.

Figure 125 : Débits de prélèvement de la source du Lez pour les périodes 1974-1982 et 1983-2008

Figure 126 : Débit de débordement de la source du Lez pour les périodes 1974-1982 et 1983-2008

Figure 127. Evolution du volume de pluie précipité annuellement sur l'impluvium du système karstique de la source du Lez (S = 112 km²) depuis 1974. Les volumes prélevés ainsi que les volumes écoulés à la vasque (débordement de la vasque) sont également reportés. La somme du volume écoulé à la vasque et du volume prélévé ainsi que le volume naturel (estimé par modélisation) qui se serait écoulé en absence de pompage sont également présentés.

Les procédures mises en place dans cette étude ont permis d'estimer les débits naturels de la source du Lez sur la période 1962-2008. Sur la base de ces résultats, nous pouvons montrer que les volumes prélevés annuellement sont inférieurs à la recharge annuelle. Les réserves sollicitées par les pompages en période de basses eaux sont reconstituées dès les premières pluies automnales. Dans ce contexte, la gestion active actuelle du système karstique ne conduit pas à une surexploitation de la ressource. Néanmoins, on constate une augmentation de la fréquence de non débordement de la source.

La **troisième condition** concerne la satisfaction des besoins des usages en période d'étiage, pour les prélèvements en eau souterraine et d'autre part sans effet négatif sur les milieux aquatiques terrestres associés. Aucun problème de prélèvements en période d'étiage n'est signalé à l'échelle de la masse d'eau souterraine. Concernant l'effet sur les milieux aquatiques associés, à savoir le fleuve Lez qui prend naissance au niveau de la source, il faut considérer d'une part le débit de restitution stipulé dans la DUP de 1981, à savoir 160 l/s et d'autre part les données des valeurs de débits en période d'étiage pour les périodes précédant la mise en exploitation par gestion active au niveau du captage souterrain de la source du Lez.

Les données de la littérature indiquent des valeurs de débit d'étiage de la source du Lez comprises entre 0.5 et 0.4 m³/s pour des étiages normaux (Paloc, 1979) et des valeurs comprises entre 0.35 et 0.2 m³/s pour des années sèches (Drogues et Plegat, 1965). Aucun assèchement de la source du Lez pour la période antérieure à l'exploitation par gestion active (1981) ni depuis n'est signalé dans les rapports d'étude. Les débits minimums obtenus par simulation (cf § 4.2.) donnent des valeurs moyennes pour la période de 1962 à 2010 comprises entre 70 l/s à 350 l/s. Du fait de l'absence de données fiables du débit naturel sur la période antérieure à 1967 et de la procédure de calage validée sur les débits moyens interannuels jugés en cohérence avec les données de la littérature pour les périodes antérieures à 1981, les débits minimums inférieurs à 100 l/s sont entachés d'une erreur difficile à quantifier et sont considérés comme du bruit. Les débits simulés pour les étiages BRGM/RP-60041-FR – Rapport final

(valeurs comprises entre 150 et 350 l/s) sont néanmoins cohérents avec les données de la littérature citée ci-dessus.

L'étude des débits du Lez et des volumes prélevables sur la masse d'eau de surface menée pour le SyBLe permettra d'apporter des éléments circonstanciés au sujet de la troisième condition.

	Janvier	Février	Mars	Avril	Mai	Juin
Minimum	118	346	270	361	421	159
Décile 0.1	582	748	843	1031	1105	939
Décile 0.2	788	1149	1117	1259	1375	1172
1er Quartile	948	1418	1271	1428	1494	1255
Médiane	2233	2366	2128	2123	2116	1762
3ème quartiles	3669	3718	3403	3108	3047	2414
Décile 0.8	4212	4135	3751	3386	3318	2643
Décile 0.9	5503	5232	4660	4174	3926	3247
Maximum	13408	12154	8265	6628	7864	6360
nb valeurs journalières	1426	1300	1426	1380	1426	1350
Moyenne	2675	2764	2499	2390	2365	1943
Ecart-type	2059	1787	1548	1242	1159	965
	Juillet	Août	Septembre	Octobre	Novembre	Décembre
Minimum	Juillet 177	Août 80	Septembre 29	Octobre 60	Novembre 66	Décembre 69
Minimum Décile 0.1	Juillet 177 541	Août 80 323	Septembre 29 264	Octobre 60 243	Novembre 66 361	Décembre 69 543
Minimum Décile 0.1 Décile 0.2	Juillet 177 541 705	Août 80 323 445	Septembre 29 264 349	Octobre 60 243 390	Novembre 66 361 701	Décembre 69 543 721
Minimum Décile 0.1 Décile 0.2 1er Quartile	Juillet 177 541 705 776	Août 80 323 445 488	Septembre 29 264 349 384	Octobre 60 243 390 515	Novembre 66 361 701 872	Décembre 69 543 721 890
Minimum Décile 0.1 Décile 0.2 1er Quartile Médiane	Juillet 177 541 705 776 1129	Août 80 323 445 488 749	Septembre 29 264 349 384 605	Octobre 60 243 390 515 1250	Novembre 66 361 701 872 1822	Décembre 69 543 721 890 1862
Minimum Décile 0.1 Décile 0.2 1er Quartile Médiane 3ème quartiles	Juillet 177 541 705 776 1129 1579	Août 80 323 445 488 749 1142	Septembre 29 264 349 384 605 1394	Octobre 60 243 390 515 1250 2349	Novembre 66 361 701 872 1822 3087	Décembre 69 543 721 890 1862 3239
Minimum Décile 0.1 Décile 0.2 1er Quartile Médiane 3ème quartiles Décile 0.8	Juillet 177 541 705 776 1129 1579 1722	Août 80 323 445 488 749 1142 1269	Septembre 29 264 349 384 605 1394 1731	Octobre 60 243 390 515 1250 2349 2785	Novembre 66 361 701 872 1822 3087 3313	Décembre 69 543 721 890 1862 3239 3573
Minimum Décile 0.1 Décile 0.2 1er Quartile Médiane 3ème quartiles Décile 0.8 Décile 0.9	Juillet 177 541 705 776 1129 1579 1722 2157	Août 80 323 445 488 749 1142 1269 1572	Septembre 29 264 349 384 605 1394 1731 2657	Octobre 60 243 390 515 1250 2349 2785 3961	Novembre 66 361 701 872 1822 3087 3313 4390	Décembre 69 543 721 890 1862 3239 3573 4529
Minimum Décile 0.1 Décile 0.2 1er Quartile Médiane 3ème quartiles Décile 0.8 Décile 0.9 Maximum	Juillet 177 541 705 776 1129 1579 1722 2157 4477	Août 80 323 445 488 749 1142 1269 1572 4278	Septembre 29 264 349 384 605 1394 1731 2657 10043	Octobre 60 243 390 515 1250 2349 2785 3961 8990	Novembre 66 361 701 872 1822 3087 3313 4390 10459	Décembre 69 543 721 890 1862 3239 3573 4529 16358
Minimum Décile 0.1 Décile 0.2 1er Quartile Médiane 3ème quartiles Décile 0.8 Décile 0.9 Maximum nb valeurs journalières	Juillet 177 541 705 776 1129 1579 1722 2157 4477 1395	Août 80 323 445 488 749 1142 1269 1572 4278 1395	Septembre 29 264 349 384 605 1394 1731 2657 10043 1350	Octobre 60 243 390 515 1250 2349 2785 3961 8990 1395	Novembre 66 361 701 872 1822 3087 3313 4390 10459 1380	Décembre 69 543 721 890 1862 3239 3573 4529 16358 1426
Minimum Décile 0.1 Décile 0.2 1er Quartile Médiane 3ème quartiles Décile 0.8 Décile 0.9 Maximum nb valeurs journalières Moyenne	Juillet 177 541 705 776 1129 1579 1722 2157 4477 1395 1253	Août 80 323 445 488 749 1142 1269 1572 4278 1395 866	Septembre 29 264 349 384 605 1394 1731 2657 10043 1350 1150	Octobre 60 243 390 515 1250 2349 2785 3961 8990 1395 1704	Novembre 66 361 701 872 1822 3087 3313 4390 10459 1380 2153	Décembre 69 543 721 890 1862 3239 3573 4529 16358 1426 2323

Figure 128 : Statistiques descriptives des débits naturalisés de la source du Lez (valeurs en l/s)

Finalement la dernière condition concerne les masses d'eau situées en bordure littorale pour lesquelles l'exploitation ne doit pas conduire à une intrusion saline. La masse d'eau concernée n'est pas située sur le littoral. De plus, les concentrations moyennes en Cl- sont de l'ordre de 40 mg/l avec des pics pouvant atteindre 80 à 100 mg/l (Bicalho et al. 2010). Les pics sont situés en période de crues automnales après l'étiage, lors de la recharge et reprise de l'écoulement à la source. A noter que ces concentrations sont d'un ordre très inférieur à des concentrations liées à des intrusions salines dans des aquifères karstiques littoraux où les concentrations en chlorures sont de l'ordre du g/l voir plus. Cette **dernière condition est donc bien remplie**.

5.4.4. Conclusion

Les procédures mises en place dans cette étude ont permis d'estimer les débits naturels de la source du Lez sur la période 1962-2008. Sur la base de ces résultats, nous pouvons montrer que les volumes prélevés annuellement sont inférieurs à la recharge annuelle. Les réserves sollicitées par les pompages en période de basses eaux sont reconstituées dès les premières pluies automnales aussi bien à l'exutoire principal que sur les piézomètres d'observation. Enfin, il n'y a pas d'intrusion saline liée à l'exploitation par pompage. Dans ce contexte, trois des quatre conditions pour le bon état quantitatif de la masse d'eau souterraine au sens de la DCE sont remplies. L'étude des volumes prélevables menée pour le Syble permettra d'indiquer si la dernière condition, à savoir, l'absence d'impact négatif sur les eaux de surface associées, est remplie.

5.5. CONCLUSION

L'ensemble des informations recueillies confirme donc le schéma hydrodynamique de référence de l'aquifère karstique de la source du Lez en période d'étiage et sous l'influence des pompages à fort débit (après 1982) proposé par Bérard (1983), tout en levant certaines incertitudes ; en effet, les traçages réalisés ont permis de déterminer que la limite Ouest du bassin d'alimentation de l'aquifère du Lez se situait au-delà de l'anticlinal de Viols le fort, dans la partie nord de cet anticlinal. D'autres traçages (réalisation en cours ou future) permettront de préciser la limite Nord du bassin d'alimentation de l'aquifère du Lez.

Sur le plan hydrodynamique, l'information piézométrique disponible sur les différents forages suivis en continu par Veolia pour la CAM confirme le rôle prépondérant de l'axe de drainage constitué par la faille de Corconne/Les Matelles (mises en charge et décrue rapides sur les forages localisés à proximité de cet axe), mais permet également de distinguer les zones de l'aquifère caractéristiques d'un comportement hydrodynamique en contexte captif (relative inertie de la réponse hydrodynamique) de celles caractéristiques d'un comportement hydrodynamique d'une nappe libre. De la même façon, le suivi piézométrique a permis d'identifier les zones de l'aquifère présentant une inversion de gradient piézométrique en période de moyennes eaux, ce qui s'explique par un déplacement de la crête piézométrique localisée au Nord Est et au Sud de la source du Lez, au-delà de laquelle les eaux ne participent plus aux écoulements vers la source. Ce comportement se traduit par une modification des limites Nord Est et Sud du bassin d'alimentation de la source du Lez, suivant que l'on considère l'aquifère en période d'étiage lorsque l'influence des pompages à gros débits est prépondérante sur l'hydrodynamique du système, ou en périodes de moyennes et hautes durant lesquelles le drainage naturel de l'hydrosystème par la source est peu influencé par les pompages à gros débits.

Les informations apportées par les traçages et le suivi hydrodynamique de l'hydrosystème karstique permettent ainsi de proposer des limites distinctes pour l'unité hydrogéologique drainée par la source du Lez, suivant que l'aire d'influence de la source du Lez est considérée en régime d'écoulement naturel (période de moyennes et hautes eaux), ou en période d'étiage lorsque l'influence des pompages à gros débits est prépondérante sur l'hydrodynamique du système karstique. Ces limites du bassin d'alimentation de la source du Lez i) en écoulement naturel pour les moyennes et les hautes eaux (débordement à la source) et ii) en période d'étiage sous l'influence des pompages à fort débit seront présentées dans le rapport complémentaire à venir qui intégrera les précisions issues des traçages en cours et futurs, ainsi que de la réponse hydrodynamique des forages réalisés dans le cadre de cette étude.

Enfin, concernant le bon état quantitatif de la masse d'eau souterraine au sens de la DCE, trois des quatre conditions sont remplies. La **première condition** (prélèvements inférieurs à la capacité de renouvellement de la ressource disponible) existe. **La deuxième condition** est remplie également puisqu'aucune tendance à la diminution en dehors des variations saisonnières n'est observée sur les piézomètres du réseau de suivi Veolia/CAM, y compris durant la période 1980-1983 qui correspond à une succession de plusieurs années sèches. La **troisième condition** concerne, d'une part, la satisfaction des besoins des usages en période d'étiage pour les prélèvements en eau souterraine qui, d'autre part, ne doit pas avoir d'effets négatifs sur les milieux aquatiques terrestres associés. Aucun problème de prélèvements en période d'étiage n'est signalé à l'échelle de la masse d'eau souterraine. Concernant l'effet sur les milieux aquatiques associés, l'étude des débits du Lez et des volumes prélevables sur la masse d'eau de surface menée pour le SyBLe permettra

d'apporter des éléments circonstanciés au sujet de cette troisième condition. Finalement la **dernière condition**, qui concerne les masses d'eau situées en bordure littorale et stipule que leur exploitation ne doit pas conduire à une intrusion saline, est bien remplie.

6. Amélioration des connaissances hydrochimiques

6.1. INTRODUCTION

La caractérisation hydrogéochimique des eaux souterraines et des eaux de surface sur le bassin du Lez s'intègre dans les ateliers thématiques AT1, AT2 et l'atelier « intégrateur » AT5. Les objectifs multiples concernent à la fois un état des connaissances actuelles concernant ces aspects et également une investigation approfondie par le biais de prélèvements et suivis in situ et analyses en laboratoire, afin de pouvoir répondre aux questions scientifiques posées.

Au travers de cette approche, les AT1 et AT2 ont pour principaux objectifs de :

- réévaluer la ressource en eau exploitable au sein de l'aquifère et caractériser les impacts de nouveaux scénarios d'exploitation,

- évaluer la vulnérabilité de l'aquifère karstique à partir d'analyses hydrochimiques y compris les traceurs émergents.

Les résultats obtenus ont ainsi été confrontés aux réponses hydrodynamiques de l'aquifère compte tenu des conditions hydrologiques. La finalité est de pouvoir notamment coupler la caractérisation hydrochimique et écologique / hydrogéologique / hydrologique et hydraulique à l'échelle du bassin d'alimentation. Le rôle des pertes sur le fonctionnement à l'exutoire a également été étudié, ainsi que la vulnérabilité du système face aux pressions anthropiques et aux changements climatiques. Ces deux derniers points seront abordés ultérieurement, dans le rapport de synthèse de l'AT2 du projet.

Cet atelier de travail a tout d'abord pour but de faire une synthèse générale des données géochimiques existant sur le bassin et ensuite de compléter ces dernières par le biais de nouveaux prélèvements et analyses d'échantillons.

6.2. BILAN DES DONNEES HYDROCHIMIQUES DISPONIBLES A L'ECHELLE REGIONALE LORS DU DEMARRAGE DU PROJET

La délimitation du système karstique de la source du Lez a été définie par Bérard (1983) en considérant l'extension du bassin hydrogéologique du fleuve Lez à la station de La Valette située à l'entrée de Montpellier. Ce bassin hydrogéologique a une surface d'environ 380 km² et comprend plusieurs secteurs en fonction notamment de leurs comportements hydrogéologiques vis-à-vis des processus d'alimentation de l'aquifère karstique de la source du Lez (Fig.76). Cependant, certaines limites et relations avec les aquifères voisins (Karst du Haut Vidourle notamment) demandent à être précisées.

Un premier état des lieux des données hydrogéochimiques disponibles pour les eaux souterraines couplées à l'hydrogéologie de l'hydrosystème du Lez, prélude à ce projet de recherche, a été fait durant le stage de Master 2 de S. Bosser (2009).

Une base de données hydrogéochimiques existantes a été créée sur les forages et sources actuellement suivis par le Conseil Général de l'Hérault, l'Agence de l'Eau RM et C, l'ARS, la banque ADES (et Info Terre via le BRGM), CAM/Veolia et HydroSciences Montpellier (Observatoire MEDYCYSS, OSU OREME). Ces données ont été complétées par des données plus anciennes issues de la bibliographie (Salado and Marjolet, 1975; Joseph et al., 1988).

Les points identifiés sur la Figure 129 comprennent les sources pérennes (Lez) et temporaires (notamment Lirou, Fleurette, Restinclières, Gour Noir) drainant l'aquifère du Lez, ainsi que des sources karstiques drainant des aquifères karstiques voisins et pouvant avoir des relations complexes avec ce dernier (Sauve, Fontbonne, Lamalou...).

Figure 129 : Unités hydrogéologiques et schéma hydrodynamique de l'aquifère karstique des Garrigues Nord Montpelliéraines influencé par les pompages à la source du Lez (Yann Conroux, 2007 ; issu de S. Bosser, 2009)

L'aquifère karstique du Lez est un système complexe. L'un des objectifs de l'AT1 dans ce projet était de caractériser les circulations ainsi que les origines des flux karstiques souterrains du système Lez et notamment d'éclaircir les singularités hydrochimiques de la source du Lez par rapport aux autres systèmes karstiques régionaux. En effet, de précédentes études avaient mis en évidence l'hétérogénéité de ce système, en termes de structure, d'organisation ainsi que des anomalies en chlorures à la source même (Mba-Mpondo, 1971 ; Marjolet et Salado, 1975 ; Joseph et al., 1988).

Par ailleurs, le suivi hydrochimique de l'aquifère du Lez (source du Lez, sources temporaires, forages appartenant au réseau de surveillance piézométrique CAM/Veolia) a été remis en place par HSM depuis Mars 2006, à pas de temps régulier bimensuel (à la source de Lez) et pluri-journaliers (sources) durant les crues. Ce suivi s'est appuyé sur les projets financés par l'IFR ILEE en 2005 et 2008, ainsi que par un financement sur projet interne de HSM en 2007.

6.3. BILAN DES CONNAISSANCES ACTUELLES SUR LE FONCTIONNEMENT DE L'AQUIFERE DU LEZ

6.3.1. Caractérisation des types d'eaux s'écoulant aux exutoires

Les premiers résultats issus du travail de Master 2 d' A. Lafare (2007) ont notamment mis en évidence des phénomènes d'infiltration rapide à l'aide du Carbone Organique Total (COT) aux sources du Lez et du Lirou et confirmé la signature chimique particulière du Lirou par rapport à celle du Lez. Le Lirou semble drainer un compartiment plus superficiel de l'aquifère (« pôle infiltration rapide ») alors qu'en période de crue, des eaux particulières s'écoulent à la source du Lez (Figure 130 et Figure 131). Elles présentent notamment une minéralisation anormalement élevée (chlorures et certains éléments en trace). L'origine de ces eaux reste à expliciter.

Figure 130 : Relation (Mg/Ca)-COT pour le système karstique du Lez (Lafare, 2007)

Figure 131 : Na⁺ versus CI, en meq/L. Sources Lez et Lirou (Lafare, 2007) BRGM/RP-60041-FR – Rapport final

Figure 132 : Pluie moyenne journalière sur le BV (mm), piézométrie à la source, CE (Conductivité Electrique) mesurée sur le terrain (HSM) et en continu (CAM/Veolia).Variations en Cl, SO₄ et Mg (Bicalho et al., 2009).

Les résultats issus de la thèse de C. Bicalho, initiée en 2006, ont permis de caractériser les différents types d'eaux s'écoulant à la source du Lez en fonction des conditions hydrologiques (Figure 132, Bicalho et al., 2009).

La Figure 133 présente la relation Na-Cl pour les différents types d'eaux s'écoulant à la source du Lez et définies sur la Figure 130, ainsi que pour les sources karstiques temporaires drainant l'aquifère du Lez (Fleurette, Lirou et Restinclières) et également d'autres exutoires karstiques régionaux drainant des terrains jurassiques et/ou crétacés (« Surrounding systems » et « Valanginian springs and wells »). La source du Lez présente des concentrations en chlorures systématiquement plus élevées que les autres points

étudiés. Les plus fortes teneurs correspondent notamment aux eaux poussées par effet piston au moment des crues. Ces différents résultats seront plus particulièrement détaillés et analysés dans le rapport relatif à l'AT2 du présent projet.

Deux explications de l'origine de cette minéralisation sont possibles : une origine peu profonde depuis le compartiment du sol/épikarst avec lequel l'eau a interagi, et résidant dans les pores ou les fractures près de la surface (Marjolet and Salado, 1976; Joseph et al., 1988) et une origine profonde depuis un compartiment spécifique au sein de la zone saturée.

Figure 133 : Concentrations en Na et Cl au sein du système Lez (Bicalho et al., 2011, modifié)

La forte corrélation entre les concentrations de Cl et Na (Figure 133) suggère l'existence d'une dissolution de l'Halite (Vengosh et al. 1995; Bernasconi, 1999). Les bonnes corrélations observées pour les éléments comme Cl⁻, Mg²⁺, K⁺, SO₄²⁻, Na⁺, Ca²⁺, Li, B, Rb et Sr marquent une empreinte évaporitique (Pulido-Leboeuf et al., 2003).

La forte minéralisation identifiée à la source du Lez est vraisemblablement associée aux eaux souterraines issues des formations profondes qui circulent à travers les fractures mais les interactions avec des minéraux évaporitiques doivent encore être précisées.

La participation de ce pôle fortement minéralisé a été régulièrement observée dans le mélange qui constitue le flux de sortie des eaux de la source du Lez, car même les plus diluées des eaux souterraines présentent une forte minéralisation supérieure à 600 μ S/cm. La participation des eaux souterraines profondes augmente notablement pendant les premiers événements de pluie à l'automne, quand la charge hydraulique au sein du système karstique est assez forte pour mobiliser les eaux profondes et les eaux à long temps de résidence.

6.3.2. Caractérisation de la réactivité du système et de la recharge saisonnière

Les isotopes stables de l'eau (Oxygène-18 et Deutérium) sont couramment utilisés afin de caractériser les types d'eau et leur mélange à l'exutoire, ainsi que les conditions d'écoulement. En comparant le signal isotopique de la pluie sur le bassin d'alimentation avec le signal à l'exutoire, il est possible de mettre en évidence la réactivité du système, ainsi que de mieux appréhender les processus de recharge.

La Figure 134 présente les variations isotopiques de la source du Lez et des sources temporaires associées au système, en relation avec le contexte hydrodynamique et le signal isotopique de la pluie (pluviomètres de Viols-le-Fort, Montpellier et Sauteyrargues). De façon générale, les sources (Lez, Restinclières et Fleurette) présentent des variations isotopiques faibles comparées à celles des pluies, notamment pour la source du Lez qui présente de faibles variations (1‰ pour d18O durant les crues automnales de 2008). **Ceci atteste de l'existence d'une importante capacité de stockage au sein de l'aquifère.** Cependant, des eaux très récemment infiltrées dans le système participent à l'écoulement aux exutoires, ce qui démontre une certaine réactivité du système (Bicalho et al., 2011b). La source temporaire du Lirou présente quant à elle de fortes variations, notamment lors des crues d'octobre 2008, démontrant une très forte réactivité suite à un évènement pluvieux important.

Figure 134 : Pluie (pluviomètres de Montpellier, Viols le Fort et Sauteyrargues); Conductivité électrique (EC) ; d180 (‰); et excès en Deutérium pour les différentes sources du Système Lez (Lez, Lirou, Fleurette et Restinclières).

Par ailleurs, des circulations très rapides au sein du système ont également été identifiées de façon récurrente à l'aide de la turbidité (Figure 135), de la bactériologie (coliformes totaux et fécaux) et de la fluorescence de la Matière Organique Dissoute (Bicalho et al., 2011 a. ; Quiers et al., 2011), confirmant les observations faites sur une crue automnale par Joseph et al. (1987). Ces circulations rapides sont vraisemblablement rattachées aux flux d'eau de surface qui sont infiltrés par les différentes zones de pertes situées au sein du bassin d'alimentation lors des crues.

Figure 135 : Variations temporelles de Cl, SO₄, Mg, Sr, COT, NO₃, indice de saturation de la Calcite, coliformes totaux/fécaux (Colony Forming Units : CFU pour 100 ml) et Turbidité (TU). Pluie journalière moyenne calculée pour les stations de Prades, St Martin de Londres et Valflaunès. Niveau piézométrique à la station de pompage de la source du Lez. T et CE mesurées à la source du Lez (CAM/Veolia) et CE mesurée sur le terrain (HSM). (Bicalho et al., 2011 a.)

6.3.3. Modèle conceptuel simplifié du fonctionnement de l'aquifère du Lez

La Figure 136 représente de façon schématique les différents compartiments à travers lesquels l'eau circule avant de ressortir aux exutoires (source pérenne du Lez et sources temporaires). A la source du Lez, s'écoule un mélange de plusieurs types d'eaux en proportions variables : (1) les circulations peu profondes au sein de l'aquifère « supérieur » (calcaires du Jurassique supérieur et du Berriasien), (2) interactions avec les eaux de surface et influence des eaux ayant été en contact avec les marno-calcaires du Valanginien et (3) circulations profondes des eaux, probablement facilitées par la présence d'importantes failles mettant en contact l'aquifère supérieur avec les réservoirs carbonatés du Jurassique moyen et inférieur et (4) potentiellement des fluides d'origine plus profonde (en provenance du Trias voire même du socle paléozoïque sous-jacent).

Figure 136 : Modèle conceptuel de fonctionnement de l'aquifère du Lez (Bicalho et al. 2011c)

La contribution des pôles profonds (3 et/ou 4) se manifeste graduellement lors des périodes estivales et de manière très significative lors des premières crues automnales, par une augmentation de la température et de la minéralisation des eaux du Lez : augmentation importante des teneurs en Cl, Na, B, Li, Sr, Mg et enrichissement en carbone-13 indiquant que ces eaux ont bien évolué en profondeur, en milieu fermé (Bicalho et al., soumis b).

L'origine du pôle profond (3 et/ou 4) qui contribue au fonctionnement hydrodynamique du Lez reste encore à préciser. En particulier, il faudrait vérifier si l'eau profonde mobilisée provient d'un réservoir « tampon » situé dans le jurassique supérieur ou des calcaires jurassiques moyens et inférieurs situés sous les marno-calcaires du Callovien-Oxfordien. Dans ce schéma conceptuel, les flux d'eaux profondes en provenance des évaporites du Trias (type halite) et/ou du socle Primaire viennent « alimenter » ce réservoir « tampon » situé en profondeur.

6.4. PROTOCOLE D'ECHANTILLONNAGE ET SUIVIS MIS EN PLACE DANS LE CADRE DU PROJET

Afin de pouvoir valider les hypothèses du fonctionnement hydrogéologique, nous avons mis en place un suivi et un protocole d'échantillonnage. Un document détaillé ayant été préalablement rédigé (Délivrable L2.1., 2010), nous ne rappellerons ici que l'essentiel des points suivis et les analyses effectuées depuis le démarrage officiel du projet en juillet 2009.

• Suivi existant avant le projet

Source du Lez

Suivi HSM depuis Mars 2006: prélèvements bimensuels et pluri journaliers en crue (manuels et à l'aide du préleveur automatique situé dans le local CAM/Veolia (déversoir du débit réservé). Installation d'une sonde CTD au niveau du déversoir en septembre 2008 (P, T, CE en continu) *Suivi CAM/Veolia* : enregistrement en continu (CE, T, turbidité, piézo). Données complètes disponibles depuis 2006.

Source temporaire du Lirou

Suivi HSM. Prélèvements journaliers en périodes de crue (depuis l'automne 2006). Installation d'une sonde CTD dans le réseau karstique en septembre 2007 (P, T, CE en continu)

Sources temporaires de Restinclières et Fleurette

Suivi HSM en période de hautes eaux

Forages appartenant au réseau de suivi CAM/Veolia - Forages et sources appartenant au système karstique du Valanginien

Suivi HSM - Tournées d'étiage 2009 sur les forages CAM/Veolia (Bois des roziers, Laudou, Gour noir, Fontanès) et les forages et sources de l'aquifère Valanginien (Forages Boinet, Olivier, Lavabre et sources du Brestalou, Dolgue, Lavabre).

• Suivi mis en place dans le cadre du projet

Des informations détaillées sont disponibles dans le Délivrable L2.1. (2010). Le planning des prélèvements effectués a cependant été mis à jour et étendu jusqu'à l'étiage 2011 (Figure 137).

Lez Multiusages. Protocole d'échantillonn	nage h	yd rog	éochim	nique e	eaux s	outerr	aines e	et eaux	desu	rface .															
Régulier sur 2 cycles hydrologiques + cru Bllan sulvi AT1 et AT2 H SM - BRGM	es. Ao	ut 200	9àAoı	ut 2011																					
	a-09	s-09	0-09	n-09	d-09	J-10	1-10	m-10	a -10	m-10	J-10	J-10	a-10	s-10	0-10	n-10	d-10	J-11	1-11	m-11	a-11	m-11	J-11	J-11	8-11
Prélèvements hydrogéochimiques Eaux souterraines (HSM et BRGM)																									
Spatial Etiage sur sources (Lez, Restincilères, + lim trophes) <u>et quelques Forages</u> (Réseau Véola + autres). Paramètres physico-chimiques in situ (pH, T, CE, O2), éléments majeurs et traces, REE, 180/D 13C, OrganoSn, isotopes (Sr, B, Li), MOD, bactériol	x										x	x	x												×
Réguiller Source du Lez. <u>Echantilionnage bimensuel</u> ; Paramètres phy sico-chimiques in situ (pH, T, CE, O2), éléments majeurs et traces, MOD, bactériologie, 18O/D, 13C. Ponotuel: REE, OrganoSn, isotopes (Sr, B, LI), pesticides	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
Sulvis de crues des cours d'eau au niveau de s zones de pertes Paramétres physico-chimiques in situ (pH, T, CE, O2), éléments majeurs et traces, REE, 180/D, 13C, OrganoSh, isotopes (Sr, B, LI), MOD, bactério, pesticides								x	x	x	x			x	x	x	x			x	x	x			
Sulvis de crues au niveau des sources (Lez + Lirous + sources de débordements : Paramètres physico-chimiques in stu (pH, T, CE, O2), éléments majeurs et traces, REE, 180/D, 13C, Organo Sn, Isotopes (Sr, B, Li), MOD, bactério, pesticides				x	x	x		x	x	x	x				x	x	х			x	х	x			
Eaux superficielles (HSM et BRGM)																									
Cours intermitten ts en crue + step. Paramètres physico-chimiques in situ (pH, T, CE, O2), éléments majeurs et traces, REE, 180/D, 13C, OrganoSn, isotopes (Sr, B, Li), MOD, bactério, pesticides							x												x						

Figure 137 : Planning des prélèvements effectués dans le cadre du projet (Août 2009-Août 2011)

Ainsi, entre août 2009 et juin 2011, ont été prélevés (informations complémentaires disponibles dans le Délivrable L2.1., 2010):

- Source du Lez : 50 échantillons ;

- Sources temporaires (15 échantillons Lirou + 13 échantillons Fleurettes + 27 échantillons Restinclières) ;

- Cours temporaires (2 échantillons du Brestalou en Février 2010) ;

- Station d'épuration : 3 échantillons (Valflaunès, Viols-le-Fort, Les Matelles) ;

- Forages du réseau de surveillances CAM/Veolia : 2 tournées d'étiage en Août 2009 et 2010 (Gour Noir, Coutach, Bois des Roziers, Fontanès, Laudou) ;

- Forages/Sources systèmes voisins : 2 tournées d'étiage en Août 2009 et 2010 (Sources de Sauve et Fontbonne et divers forages AEP Suquet, Crouzette, Cantagril, Piste Lauzette, Flès, Maurin-Lou Garigou, Crès).

6.5. ACTIONS EN COURS DE PROJET

Les axes de travail se déclinent actuellement autour de deux objectifs majeurs, notamment abordés à l'aide de traceurs émergents (AT2 du projet) :

• Caractériser l'origine des eaux très minéralisées s'écoulant à la source du Lez

Compte-tenu des singularités hydrogéochimiques des eaux s'écoulant à la source du Lez et la mise en évidence de remontée de flux d'origine profonde, il est nécessaire de caractériser le ou les pôles géochimiques participants aux écoulements. Dans cette étude, cette caractérisation a été réalisée par une approche géochimique inédite basée sur l'analyse des éléments majeurs et en trace, des Terres Rares et le multi-traçage isotopique (isotopes stables de l'eau et du carbone, Strontium, Bore et Lithium).

Dans un premier temps, les eaux du système karstique du Lez ont été replacées dans le contexte géochimique régional. Ce travail, initié par S. Bosser (2009) durant son stage de Master 2, a permis d'identifier les systèmes aquifères qu'il conviendrait d'échantillonner en vue d'analyses chimiques et isotopiques.

Les résultats préliminaires des campagnes d'étiage et de hautes eaux de 2009 et 2010 (Figure 138), mettent en évidence l'évolution des eaux de la source du Lez depuis les basses eaux (rapport Cl/Sr et rapport isotopique ⁸⁷Sr/⁸⁶Sr plus faibles que pour les eaux s'écoulant en crue) vers un pôle plus minéralisé et enrichi en Sr. Ce pôle reste encore à définir.

Figure 138 : ⁸⁷Sr/⁸⁶Sr en fonction du rapport Cl/Sr

Des prélèvements sur des forages et/ou sources appartenant au système karstique du Lez, aux systèmes karstiques voisins, ainsi qu'à d'autres systèmes régionaux (Corbières, Perrier, Fontcaude, Fontreboule), ont été réalisés en Août 2010 et au printemps 2011. Les résultats préliminaires (campagne de 2011 en cours d'analyse) permettront de mieux contraindre les différents pôles d'eau et ainsi d'identifier celui ou ceux influençant le chimisme de la source du Lez (Laurent, 2011).

• Caractériser les processus de recharge et la vulnérabilité de l'hydrosystème karstique

Des flux d'infiltrations rapides et les interactions surface/souterrain ont été mis en évidence. Le suivi actuellement mené sur l'hydrosystème du Lez à l'aide des traceurs émergents a pour but d'identifier la vulnérabilité de ce dernier et les pressions anthropiques existantes. Un « screening » de différents paramètres a été mis en place depuis Septembre 2010 et renforcé depuis les crues du printemps 2011 sur la source du Lez et les sources temporaires du Lirou, de Restinclières et de Fleurette. Deux types de contamination anthropique sont ciblés :

- pollution domestique (eaux usées): Matière Organique Dissoute, Gadolinium, bactériologie, résidus médicamenteux (carbamazépine), organo-étains ;

- pollution agricole: pesticides (détermination par l'Ecole des Mines d'Alès), organoétains. Les premières investigations ont identifié ces contaminations anthropiques sur l'hydrosystème du Lez. Ces résultats préliminaires confirment la vulnérabilité de la ressource en eau, notamment en période de crue. Ils seront exposés de façon plus exhaustive dans le rapport de l'AT2.

6.6. CONCLUSION

Ce premier état des lieux a permis de mieux identifier les différents types d'eau qui s'écoulent à la source du Lez selon les conditions hydrologiques. La participation de plusieurs masses d'eau de chimisme différent est confirmée. La participation d'un réservoir profond est évidente mais reste à préciser par une approche multi-isotopique (87 Sr/ 86 Sr, δ^{11} B et δ^{7} Li) afin de pouvoir mieux définir les différents pôles géochimiques sollicités et mieux évaluer les proportions du mélange résultant.

A noter que ces résultats sont de toute première importance dans le contexte actuel d'une potentielle exploitation des gaz de schistes localisés dans les compartiments sous-jacents à l'aquifère puisqu'ils mettent en évidence des connections avec les compartiments profonds de l'aquifère ; cela atteste de possibles circulations depuis les zones potentiellement exploitées vers la masse d'eau souterraine alimentant l'aquifère du Lez, ce qui illustre la possible vulnérabilité de l'hydrosystème vis-à-vis de ce type d'exploitation.

La caractérisation des processus de recharge influant directement sur la vulnérabilité du système aquifère est actuellement appréhendée au travers du suivi concomitant, surtout en période de crue et d'étiage prononcé, des différents traceurs émergents, témoins incontestables de l'activité anthropique et de la vulnérabilité de l'hydrosystème du Lez.

7. Amélioration des connaissances écologiques

7.1. INTRODUCTION

A l'exception des glaces non directement mobilisables, les eaux souterraines constituent le plus grand réservoir de biodiversité mondial, renfermant 98% des eaux douces continentales (Diop & Rekacewicz 2004). Les eaux souterraines ne constituent pas seulement un vaste réservoir d'eau, elles sont également, de manière beaucoup plus difficilement perceptible, le réservoir d'une diversité biologique originale composé d'organismes dont la plupart n'ont pas d'équivalent dans les écosystèmes aquatiques de surface et dont certaines lignées sont anciennes de plusieurs millions d'années (Rouch et Danielopol 1987, Danielopol *et al.* 2000, Humphreys 2000).

Le karst du bassin versant du Lez est considéré comme un hotspot de biodiversité à l'échelle mondiale (Malard *et al.* 1997; Culver & Sket 2000). Dans le cadre de ce projet, un complément d'étude et une synthèse des connaissances sur la faune stygobie remarquable du karst du Lez est donc mis en œuvre.

Les objectifs de cette tâche sont les suivants : (i) compléter la connaissance concernant la biodiversité, afin de disposer d'un état de référence en prévision d'essais de sollicitation sur le système karstique réalisés dans le futur (dans un autre cadre que celui de ce projet) (essais de pompage à des débits supérieurs et des niveaux piézométriques inférieurs à ceux indiqués dans la DUP de 1981) et (ii) d'apporter des éléments concernant les limites du système karstique et des sous-systèmes en utilisant des marqueurs.

La biodiversité souterraine

La biodiversité se décline à tous les niveaux de l'organisation des systèmes biologiques, des gènes aux écosystèmes. La biodiversité souterraine englobe donc ces différents niveaux d'organisation pour ce qui concerne les écosystèmes souterrains. Toutefois, le niveau de l'espèce est le plus communément admis pour qualifier et quantifier la biodiversité. La biodiversité souterraine peut donc être comprise comme une liste d'espèces vivant dans un écosystème souterrain. S'il est difficile de définir l'écosystème souterrain tant ses déclinaisons sont diverses (eaux souterraines, terre, cavités, réseaux de micro-fissures...), sa caractéristique est l'absence de lumière, donc absence aussi de végétaux chlorophylliens. On parle alors d'écosystème « tronqué », à la base par l'absence de producteurs primaires, au sommet par l'absence de macro prédateurs.

Environ 7 000 espèces adaptées à la vie souterraine ont été décrites à ce jour mais les estimations régionales (et les très nombreuses zones non encore étudiées) suggèrent que le nombre d'espèces souterraines (terrestres et aquatiques) pourrait s'élever à plus de 50 000.

Les écosystèmes souterrains peuvent être divisés en deux grands types : aériens (troglo-) et aquatiques (stygo-). Ce sont les écosystèmes aquatiques qui font l'objet de ce travail. Les organismes aquatiques souterrains sont qualifiés de stygobies pour les espèces strictement inféodées au milieu souterrain, de stygoxène pour les espèces effectuant une partie de leur cycle seulement en milieu souterrain et de stygophiles pour les espèces présentes en milieu souterrain occasionnellement, ou strictement dépendantes du milieu extérieur. Les stygobies, qui ne peuvent vivre en milieu épigée, sont généralement dépigmentés, anophtalmes et présentent des caractéristiques communes telles que l'allongement des appendices, de développement des organes sensoriels, une longévité plus grande...

L'essentiel de la biodiversité stygobie est constitué par des espèces de crustacés et de mollusques.

Nous présenterons dans un premier temps la biodiversité souterraine du bassin versant du Lez telle qu'elle est connue de la littérature, puis un zoom sur les mollusques souterrains qui est le groupe le mieux connu actuellement. Nous présentons ensuite les premiers résultats obtenus à partir de l'étude des coquilles et les liens entre biogéographie et aquifères karstiques. Nous nous intéresserons en particulier au cas du causse de l'Hortus, un des compartiments qui alimentent la source du Lez.
7.2. SYNTHESE DES CONNAISSANCES ECOLOGIQUES DU SYSTEME KARSTIQUE DU LEZ

7.2.1. Historique des travaux concernant la faune souterraine du bassinversant du Lez

Le karst du Lez a été très étudié par les naturalistes montpelliérains au XIX° siècle, et plusieurs espèces de mollusques stygobies ont été décrites des alluvions du Lez ou de la Mosson, en particulier les genres *Moitessieria* et *Paladilhia* qui ont été décrits à partir d'échantillons récoltés sur le bassin versant du Lez.

Le karst du Lez revêt donc une importance particulière en tant que localité-type de toutes ces espèces (voir encadré).

L'importance des localités-type

La loi protège des espèces définies par leur nom. Pour qu'un nom soit applicable, une description du taxon doit être publiée. Cette description s'appuie sur un spécimen type conservé dans une collection publique. Dans le cas des mollusques, il s'agit généralement d'une coquille et les analyses anatomiques ou moléculaires ne peuvent être faites sur le spécimen type.

La **localité-type** est le site où a été récolté ce spécimen. Si elle existe toujours et si l'espèce y est toujours présente, on s'appuiera sur l'examen des spécimens récoltés à la station-type pour valider (ou non) la correspondance entre les noms utilisés dans les listes réglementaires aux spécimens récoltés sur la zone d'étude.

Plus récemment, une thèse de doctorat a été consacrée à l'étude de la faune stygobie du bassin versant du Lez (Malard 1995 ; Malard *et al.* 1997), centrée principalement sur les crustacés, mais incluant quelques données concernant les mollusques souterrains. Les données relatives à ce travail sont reprises dans la base de données PASCALIS (<u>http://www.pascalis-project.com</u>)

Un travail universitaire (Prié 2006) a permis d'améliorer les connaissances sur la biogéographie des espèces de mollusques souterrains. Ce travail, effectué sur la base d'analyses morphologiques, ne propose pas une réactualisation de la taxonomie des espèces, laquelle nécessite des études plus poussées incluant les analyses génétiques. Toutefois, les différents morphospecies reconnus sur les karsts du Nord-montpelliérain permettent de proposer une première signature taxonomique des hydrosystèmes (Prié 2009).

Figure 139 : Distribution de la biodiversité souterraine du bassin versant du Lez. Les crustacés constituent l'essentiel des espèces, les mollusques sont le second groupe. Planaires et Annélides sont représentés de manière marginale

Figure 140 : Echantillonnage issu de la base de données Pascalis (en bleu : le bassin versant du Lez)

TABLEAU 2 : LISTE DES ESPECES STYGOBIES RECENSEES SUR LE BASSINVERSANT DU LEZ

PHYLUM	Espèce	Remarque
Annelida	Abyssidrilus cuspis	
Annelida	Rhyacodrilus subterraneus	
Crustacea	Acanthocyclops rhenanus	
Crustacea	Acanthocyclops sensitivus	
Crustacea	Bathynellidae	
Crustacea	Ceuthonectes gallicus	
Crustacea	Cirolanidae n sp.	Taxon non décrit
Crustacea	Diacyclops zschokkei	
Crustacea	Elaphoidella sp. gr. leruthi	
Crustacea	Faucheria faucheri	
Crustacea	Gelyella droguei	
Crustacea	Graeteriella (Paragraeteriella) gelyensis	
Crustacea	Graeteriella boui	
Crustacea	Graeteriella unisetigera	
Crustacea	Kieferiella delamarei	
Crustacea	Microcharon sp.	Taxon non décrit
Crustacea	Niphargus gallicus	
Crustacea	Niphargus kochianus kochianus	
Crustacea	Niphargus laisi	
Crustacea	Niphargus pachypus	
Crustacea	Niphargus virei	
Crustacea	Nitocrella sp 1 groupe hirta	Taxon non décrit
Crustacea	Nitocrella sp 2 groupe hirta	Taxon non décrit
Crustacea	Parabathynellidae	
Crustacea	Proasellus boui	
Crustacea	Proasellus cavaticus	
Crustacea	Proasellus coxalis	
Crustacea	Salentinella delamarei delamarei	
Crustacea	Salentinella juberthieae	
Crustacea	Spelaeodiaptomus rouchi	
Crustacea	Sphaeromides raymondi	
Crustacea	Troglocaris inermis	
Mollusca	Bythinella eutrepha	
Mollusca	Bythiospeum articense	Donnée douteuse
Mollusca	Bythiospeum bourguignati	
Mollusca	Heraultiella exilis	
Mollusca	Islamia cf. moquiniana	Taxonomie incertaine
Mollusca	Moitessieria rolandiana	
Mollusca	Paladilhia conica	
Mollusca	Paladilhia pleurotoma	

Mollusca	Paladilhia umbilicata	Donnée douteuse
Mollusca	Paladilhia subconica	Taxonomie incertaine
Mollusca	Moitessieria magnanae	Taxonomie incertaine
Mollusca	Moitessieria sp. 1	Taxon non décrit
Planaria	Phagocata vitta	

Figure 141 : Liste des espèces stygobies recensées sur le bassin versant du Lez

7.2.2. Présentation des mollusques souterrains du bassin versant du Lez

Les mollusques souterrains sont répartis actuellement en trois familles : les Moitessieriidae, seule famille ne comportant que des espèces souterraines ; les Hydrobiidae, famille qui regroupe beaucoup d'espèces mais dont la monophylie (l'intégrité, « l'unité » systématique) est remise en cause (Swarovska 2006) ; les Amnicolidae, dont seules les Bythinelles (genre *Bythinella*) ont des représentants en Languedoc-Roussillon.

TABLEAU: LES MOLLUSQUES STYGOBIES DECRITS DU SYSTEME KARSTIQUE DU LEZ (EN GRISE LES TAXONS QUI NE SONT PAS RECONNUS COMME VALIDES ACTUELLEMENT) :

Famille MOITESSIERIIDAE BOURGUIGNAT 1863 Genre *Moitessieria* BOURGUIGNAT, 1863 Moitessieria rolandiana BOURGUIGNAT 1863 Moitessieria gervaisiana BOURGUIGNAT 1863 Moitessieria monspessulana COUTAGNE, 1883 Moitessieria magnanae Girardi, 2009 Genre Paladilhia BOURGUIGNAT, 1865 Paladilhia pleurotoma BOURGUIGNAT 1865 Paladilhia moitessieri BOURGUIGNAT, 1865 Paladilhia gervaisiana BOURGUIGNAT, 1865 Paladilhia masclaryana BOURGUIGNAT, 1866 Paladilhia conica (PALADILHE 1867) Paladilhia subconica (Girardi, 2009) Genre *Bythiospeum (*BOURGUIGNAT 1882) Bythiospeum bourguignati (PALADILHE, 1867) Famille HYDROBIIDAE TROSCHEL 1857 Genre Heraultiella (Bodon, Manganelli & Giusti, 2002) Heraultiella exilis (Paladilhe 1867) Genre Islamia Radoman, 1974 Islamia moquiniana (Dupuy, 1851) Famille AMNICOLIDAE TRYON 1863 Genre Bythinella Moquin-Tandon 1856 Bythinella eutrepha (Paladilhe 1867)

Figure 142 : Tableau : Mollusques stygobies décrits dans le système karstique du Lez

Moitessieriidae

Les Moitessieriidae regroupent 18 espèces valides. La taxonomie de ces espèces est rendue complexe par le nombre de publications imprécises et les conflits d'opinion des descripteurs. Pour *Bythiospeum bourguignati*, initialement décrit dans le genre *Paladilhia*, les premiers résultats obtenus en génétique moléculaire montrent que le genre *Bythiospeum* se rapproche de la famille des Moitessieriidae (Prié ined.). Il existe 4 genres sur les bassins-versants du Lez et de l'Hérault qui peuvent être regroupés en deux grands morphotypes :

Les Moitessieries

Le genre *Moitessieria* est caractérisé par une microscultpure évoquant un dé à coudre. Le genre monospécifique *Henrigirardia* désigne une espèce initialement décrite au sein du genre *Moitessieria* mais dont la coquille est très conique (micro-endémique de la source des Fontanilles, à Puéchabon).

Figure 143: Les 3 genres de Moitessieries, de gauche à droite : Moitessieria, Spiralix et Henrigirardia. Echelle : 2 mm

Les Bythiospées et Paladilhies

Le genre *Bythiospeum* regroupe des animaux caractérisés par une coquille aux tours arrondis et une ouverture simple. Le genre *Paladilhia* se distingue par des tours plus épaulés et une ouverture « pleurotomoidale », i. e. avec une fente sur le haut de l'ouverture visible de profil. Ces deux genres sont souvent présents en sympatrie.

Figure 144: Les deux genres de Bythiospées, de gauche à droite Bythiospeum et Paladilhia (à droite). Echelle : 2 mm.

Hydrobiidae

Les **Hydrobiidae** sont une grande famille de mollusques aquatiques cosmopolites présents dans un large éventail de milieux aquatiques. Les analyses récentes (Swarowska 2006) montrent qu'il pourrait s'agir d'une famille polyphylétique. La distinction entre les genres d'Hydrobies repose sur l'anatomie. Sur la zone d'étude, on distinguera les « Globhydrobies » aux coquilles globuleuses (*Islamia* spp) et les « Planhydrobies » aux coquilles planes (*Heraultiella exilis*). Pour caractériser les aquifères à partir des coquilles récoltées, il n'a pas été fait de distinction entre les différentes espèces de Globhydrobie, la taxonomie étant toujours confuse, seule la présence ou l'absence du genre a été retenue.

Figure 145 : Les Globhydrobies ont des coquilles très rondes, les Planhydrobies ont des coquilles presque plates. Mais il existe beaucoup de variabilité au sein des premières : ici, exemple de variation morphologique au sein de la globhydrobie de l'Ardèche, Islamia bomangiana

Amnicolidae

Parmi les Amnicolidae, seules 2 espèces stygobies sont actuellement valides sur les bassins versants du Lez et de l'Hérault : Bythinella navacellensis (causses) et

Bythinella eutrepha (Bassin-versant du Lez). Si la première a fait l'objet d'une description récente intégrant morphométrie et analyse génétique (Prié & Bichain 2009), la seconde, décrite au XIX° siècle n'a toujours pas été récoltée vivante.

Bichain (2007) montre que les espèces de Bythinelles ne peuvent être distinguées sur la base de l'examen de la coquille uniquement. Le recours à la génétique est donc indispensable pour décrire et identifier les espèces. A l'heure actuelle, seule la Bythinelle de Navacelles et une forme spectaculaire des réseaux du Causse de la Selle ont fait l'objet d'analyses génétiques. Dans le premier cas, on montre qu'il s'agit d'une espèce distincte comme le suggère la morphologie de la coquille. Dans le second cas, on montre qu'il ne s'agit que d'une forme, d'un écotype de l'espèce de surface *Bythinella cebennensis* (Figure 146). Pour caractériser les aquifères à partir des coquilles récoltées, il n'a pas été fait de distinction entre les différentes espèces, seule la présence ou l'absence du genre a été retenue.

Figure 146: Bythinelle cévenole, forme souterraine (à gauche) et forme épigée (à droite). Deux formes bien distinctes, une seule et même espèce biologique.

7.3. DONNEES NOUVELLES ACQUISES

Les précédentes études ont fourni une première liste d'espèces présentes dans le karst du Lez. Toutefois, les échantillonnages étaient très ponctuels (Fig. 84) et ne visaient ni la biogéographie (distribution des espèces dans le milieu souterrain) ni l'écologie (différences entre populations d'une même espèce en fonction des hydrosystèmes).

Une phase de terrain réalisée entre 2008 et 2010 a permis d'augmenter significativement le nombre de stations échantillonnées pour les mollusques. Une analyse biogéographique est ainsi rendue possible, montrant d'une part la pérennité des faunes dans le temps et d'autre part leur homogénéité au sein d'une même masse d'eau. De là, une première signature taxonomique des aquifères a pu être proposée (Prié 2009).

Par ailleurs, la morphométrie fine des coquilles a montré qu'on pouvait distinguer différentes populations au sein d'une même espèce. La signification des différences observées reste hypothétique : soit il s'agit d'écotypes, c'est-à-dire de populations qui se distinguent morphologiquement en raison de l'influence de l'environnement mais qui restent connectées génétiquement, soit de phylotypes, c'est-à-dire de populations isolées physiquement les unes des autres. Quoiqu'il en soit, la présence de différences significatives entre les formes semble indiquer un isolement des eaux (en cas de mélange des eaux, les différentes formes se mélangeraient également). Ce cas de figure est développé au niveau du causse de l'Hortus.

Enfin, malgré les difficultés rencontrées pour échantillonner des animaux vivants et pour les séquencer, quelques séquences ont pu être obtenues. Ces séquences montrent une très forte structuration biogéographique. Cet exemple est développé pour le genre *Islamia*, pour lequel nous avons obtenu des séquences provenant d'aquifères contigus.

7.3.1. Association de taxons – approche combinatoire

Fondements théoriques

Les réseaux souterrains et leurs connexions occasionnelles étant difficiles à appréhender sur du long terme à partir des données disponibles, il est proposé ici d'utiliser comme marqueurs les gastéropodes inféodés aux eaux souterraines. Les taxons ciblés sont tous exclusivement stygobies (c'est-à-dire inféodés aux eaux souterraines) et ne peuvent survivre ni hors de l'eau (aquatiques strictes), ni hors des réseaux souterrains (dépigmentés, donc vulnérables aux ultra-violets). Ils sont donc « prisonniers » de masses d'eau souterraines dans lesquelles ils vivent. Leur transport passif (coquilles) ou actif (animaux vivants) ne peut se faire qu'au sein d'entités hydrologiques interconnectées. Lors d'épisodes exceptionnels, des connexions occasionnelles peuvent permettre aux animaux de coloniser les masses d'eau adjacentes ou aux coquilles d'être transportées. Leur présence témoigne alors de ce flux d'eau. *A contrario*, les différences de biodiversité reflèteraient un isolement pérenne des masses d'eau souterraines.

Les marqueurs présentés ici sont des gastéropodes des familles des Moitessieriidae, des Amnicoliidae et des Hydrobiidae. La systématique et la nomenclature des mollusques souterrains sont complexes et toujours sujettes à discussion (ex. Bertrand 2004). Le présent travail s'affranchit de ces problèmes taxonomiques en se basant sur des « morphotypes », c'est à dire sur des taxons (espèces, groupes d'espèces ou sous-espèces) différentiables sans ambiguïté à partir de la simple morphologie de la coquille. Des morphotypes peuvent donc regrouper plusieurs espèces biologiques, ou *a contrario* s'appliquer à des formes locales, des « écotypes » (populations d'une espèce présentant des caractéristiques liées aux conditions environnementales). De telle sorte, on travaille sur des marqueurs identifiables sans se préoccuper de la systématique. On utilisera donc les termes de « morphotypes » pour désigner ces marqueurs taxonomiques. Les spécimens-types des espèces connues sur la zone d'étude ont toutefois été examinés pour appliquer un nom à chacun des marqueurs : collection Bourguignat conservée au Muséum d'Histoire Naturelle de Genève, collection Paladilhe conservée à l'Université de Montpellier II et collections du Muséum national d'Histoire naturelle de Paris. La nomenclature suit Falkner *et al.* (2002) et la littérature subséquente.

Certains marqueurs ne sont pas attribuables à l'une ou l'autre des espèces décrites (*Moitessieria sp.*) ou présentent une taxonomie complexe dont l'étude dépasse le cadre de ce travail (*Islamia spp.*) ou encore semblent appartenir à plusieurs espèces morphologiquement distinctes (*Bythinella spp.*, *Islamia spp.*) mais non identifiées au niveau spécifique.

Pour simplifier l'étude et éviter des confusions, on a donc procédé à des regroupements. Les neuf marqueurs suivants sont considérés pour cette étude sur les coquilles : *Paladilhia pleurotoma* Bourguignat, 1865 *Paladilhia conica* Paladilhe, 1867 *Paladilhia gervaisiana* Bourguignat, 1865 *Henrigirardia wienini* (Girardi 2004) *Moitessieria rolandiana* Bourguignat, 1863 *Moitessieria sp.*

Bythiospeum bourguignati (Paladilhe, 1866)

Islamia spp.

Bythinella spp.

Heraultiella exilis (Paladilhe 1867), considérée comme une espèce stygobie (Ferreira 2005), n'a pas été intégrée dans les analyses. L'expérience montre en effet qu'il s'agit d'une espèce inféodée au sous-écoulement : elle est commune dans les prélèvements de sources mais n'a jamais été récoltée dans les cavités ou les grands réseaux karstiques (Prié 2005). Elle ne caractérise donc pas les eaux souterraines proprement dites.

Moitessieria rolandiana et *Islamia spp.*, deux marqueurs à vaste répartition, vivent à la fois en milieu souterrain et dans le sous-écoulement. Le chevelu de cours d'eaux forme des corridors de déplacement qui leur donne potentiellement accès à tous les systèmes d'un bassin versant de fleuve. Ils sont néanmoins pris en compte en tant que marqueurs a minima. Nous verrons que ces deux marqueurs, malgré leur forte capacité de dispersion, ne sont pas toujours présents dans les hydrosystèmes.

Echantillonnage

L'échantillonnage dans les différentes masses d'eau est contraint par l'accessibilité au milieu souterrain : les prélèvements de sédiment ont été réalisés dans les cavités présentant un réseau actif et les exsurgences pérennes ou temporaires. Les prélèvements sont constitués au minimum de cinq litres de sédiment tamisé (grains de moins de 5 mm). Le sédiment récolté a d'abord été séché, puis ré-immergé. Les coquilles, remplies d'air, flottent à la surface. Le surnageant est alors récolté dans un filet de maille 0,5 mm (Figure 147).

Les données sur chaque site échantillonné sont traitées sous forme de présence/absence du marqueur.

La source du Lez a fait l'objet d'un suivi sur plusieurs mois (septembre – novembre 2009). Un filet phréatobie a été installé en extérieur, au niveau du canal du débit réservé et relevé toutes les semaines.

Figure 147 : Traitement du sédiment. A : les lots sont laissés quelques jours à décanter pour rechercher des animaux vivants. B : Le sédiment est ensuite séché au soleil. C : Immersion du sédiment sec et D : récolte du surnageant. Les coquilles sont concentrées dans de petits volumes (E) puis triées sous la loupe (F).

Cartographie et base de données

Un système d'information géographique a été élaboré permettant de lier aux stations échantillonnées les caractéristiques géologiques et hydrologiques de la zone d'étude. En raison de la difficulté de cartographier les réseaux souterrains (méconnaissance, organisation tridimensionnelle), il existe peu de travaux synthétiques permettant de tester les hypothèses de distribution de la biodiversité malacologique. Les seules approches globales sont fournies par les bases de données cartographiques BDRHF V1® [SANDRE & BRGM 2004] et SANDRE [2007]. La première, basée essentiellement sur la géologie, ne reflète pas la réalité hydrologique puisqu'elle ne délimite pas les systèmes (certaines entités traversant plusieurs bassins versants de fleuves par exemple). La seconde, basée sur l'hydrographie de surface, présente une résolution supérieure, même si le tracé des limites s'avère souvent faux en milieu karstique. Les « zones hydrographiques » de la base de données du SANDRE [2007] ont finalement fourni une première base de travail cartographique sur l'hydrogéologie de la zone d'étude. Des études ponctuelles ont été préférées quand elles étaient disponibles (Dubois 1964; Paloc 1967; Caumont 1993; Camus 1997, 1999; Boinet 2002).

Résultats

• Echantillonnage

Quatre vingt stations ont été échantillonnées entre 2003 et 2011 sur la zone d'étude. Cet échantillonnage, contraint par l'accessibilité au milieu souterrain, n'est pas homogène mais permet l'investigation de toutes les zones hydrographiques *sensus* SANDRE (2007) sur le bassin versant du Lez et les bassins adjacents.

Dans tous les cas, les marqueurs récoltés sont présents en plusieurs dizaines d'exemplaires. La méthode employée permet donc de prétendre à l'exhaustivité. La quantité de sédiment récoltée permet donc d'inventorier la totalité de la faune présente sur un site.

Douze stations ont été échantillonnées de manière itérative, c'est à dire avec entre deux et six prélèvements effectués dans un intervalle de temps de deux à quatre ans (**Tabl. 1**). Les échantillonnages itératifs ont permis de récolter la même faune dans presque tous les cas. Ces résultats confirment d'une part l'efficacité des méthodes de prélèvements pour récolter l'ensemble de la biodiversité présente sur un site et montrent d'autre part la constance des assemblages faunistiques dans le temps (pré requis intuitif qu'il était toute de même nécessaire de tester).

• Marqueurs

Chaque marqueur présente une répartition continue incluant une ou plusieurs zones hydrologiques. Les différents marqueurs ont des aires de répartition différentes, parfois contigües, parfois chevauchantes. On observe 13 associations faunistiques, ou combinaisons différentes de marqueurs malacologiques.

Délimitation des zones hydrologiques

Comme le précisent leurs auteurs, la BDRH V1 ne délimite pas les différents systèmes hydrologiques. En effet, les assemblages faunistiques diffèrent significativement à l'intérieur d'une même zone hydrologique. La distribution de la biodiversité n'est pas corrélée à ce modèle cartographique ; celui-ci n'est donc pas utilisable pour étudier la répartition des espèces de mollusques souterrains.

Dans 95 % des cas, les données malacologiques sont cohérentes avec les polygones de la base de données du SANDRE : les échantillonnages réalisés à différents endroits d'une même zone hydrographique ont permis de récolter un assemblage faunistique identique (pour les exceptions à la règle, hors du bassin versant du Lez, voir Prié 2009). Il n'y a donc pas de structuration des marqueurs au sein d'une même masse d'eau, la biodiversité y est uniformément répartie. Tout se passe comme si les marqueurs étaient « dilués » dans l'eau, à la manière d'un colorant.

Cartographie des masses d'eau

Les neuf marqueurs choisis se combinent en 13 assemblages faunistiques différents sur la zone d'étude (Figure 148). Chaque combinaison de marqueurs constitue la signature taxonomique d'un ensemble hydrologique homogène. On observe que les différentes zones hydrologiques caractérisées par une combinaison de marqueurs identique sont contiguës. Ce résultat corrobore l'hypothèse que la distribution de la biodiversité reflète les connexions entre zones hydrologiques adjacentes. De là, une première cartographie des masses d'eau peut être proposée en regroupant entre elles les zones hydrographiques qui présentent une faune identique (Figure 149). On suppose alors une continuité hydrologique entre ces zones et un isolement par rapport aux zones contiguës présentant un assemblage malacologique différent.

Secteur hydrologique	Zone hydrographique (SANDRE 2007)	Nombre de stations sur cette zone	Bythinella spp.	Islamia sp.	Bytihiospeum bourguignati	Moitessieria rolandiana	Moitessieria sp.	Paladilhia pleurotoma
Plaine Hérault	Y214	4				х		
Larzac (piedmont)	Y220	3	Х			Х		
Larzac	Y203*	15	Х	(X)*		Х	(X)*	
(Larzac <i>cf</i> . Buèges)	Y203*	1		х			х	
Buèges	Y211	2		х			х	
Causse de la Selle	Y213*	3	Х		Х	Х	Х	(X)*
Hortus	Y212	6		Х	Х	Х		Х
Pompignan	Y340	2		Х	Х	Х	Х	Х
Sauve	Y341	2		Х		Х		х

* : Pour une discussion sur ces stations, voir Prié (2009).

Figure 148 : Résultats des échantillonnages successifs pour une même zone hydrographique

Figure 149 : Assemblages faunistiques correspondant à chacune des masses d'eau identifiées par leur signature taxonomique (au centre de la figure, le bassin hydrologique du Lez à Lavalette est en rouge).

Le causse de l'Hortus fait partie des cas particuliers pour lesquels les données collectées ne sont pas en adéquation avec le modèle bidimensionnel fourni par le SANDRE. En effet, le causse de l'Hortus est constitué de deux masses d'eau superposées et les récoltes effectuées en source et cavités (Crès, Rouet, Lamalou, Foux de Pompignan...) ne concernent que la partie supérieure (l'aquifère du Valanginien) qui alimente le Lirou à l'Est, l'Hérault à l'Ouest et le Vidourle au Nord-Est. Il n'a pas été possible de récolter directement dans l'aquifère profond ; les récoltes effectuées directement au niveau du débit réservé du Lez ayant été infructueuses. En revanche, on récolte dans les laisses de crues du Lez trois marqueurs supplémentaires : *Moitessieria sp., Paladilhia gervaisiana* & *Bythinella sp.* ; ainsi que *Paladilhia conica* qui n'a pas été récoltée mais a été décrite à la source du Lez au XIX° siècle. Le schéma théorique logique impliquerait la superposition de deux aquifères chacun caractérisés par un assemblage différent ; la diversité récoltée dans les laisses de crues du Lez résulterait alors du cumul des deux.

7.3.2. Approche morphométrique

Une morphométrie fine a été effectuée sur les coquilles de Moitessieria cf. rolandiana à partir des récoltes des différents exutoires de l'aquifère supérieur de l'Hortus. Selon l'hypothèse proposée par Boinet (2002, Figure 150), cet aquifère se composerait de 5 sous-ensembles distincts. Si les eaux sont isolées, on peut s'attendre à ce que les populations de mollusques le soient aussi. Cet isolement pourrait se traduire par des différences morphométriques et / ou génétiques. N'ayant pas pu récolter suffisamment d'animaux vivants pour réaliser une étude génétique, nous avons donc testé cette hypothèse en réalisant une morphométrie fine des coquilles de l'espèce la plus commune dans les prélèvements : Moitessieria cf. rolandiana. Une première approche réalisée à plus large échelle (Prié 2006) avait en effet montré que chez cette espèce largement répandue, des différences morphométriques caractérisaient des populations distantes.

Figure 150 : Schéma d'écoulement des eaux proposé par Boinet (2002). Cette hypothèse a été testée en réalisant la morphométrie fine d'un des marqueurs, Moitessieria rolandiana, collecté sur les différents sous-ensembles proposés par Boinet, soit les populations du Lirou, de la Foux de Pompignan et de l'aven du Rouet.

La morphométrie fine des coquilles de trois stations de l'Hortus a donc été intégrée au jeu de données intégrant des populations de la Séranne (Rodel aval) et du bassin versant de l'Ardèche (Leg_Girardi).

Les ANVOA¹¹ comme l'ACP¹² permettent effectivement de distinguer des traits particuliers aux trois populations échantillonnées (Figure 151 et Figure 152).

Figure 151: résultat des mesures effectuées sous forme de boxplots. Les différentes populations se distinguent sans équivoque par la morphométrie des coquilles

¹¹ ANOVA : analyse de la variance

¹² ACP : analyse en composantes principales

Figure 152 : Résultats de l'ACP réalisée sur l'ensemble des mesures prises sur les coquilles de Moitessieria rolandiana montrant la séparation des différentes populations échantillonnées.

Que ces traits morphologiques soient liés à un isolement physique des aquifères (donc à des phylotypes, des populations génétiquement isolées) ou à des différences de qualité d'eau (donc des écotypes, soit des différences), ils corroborent l'hypothèse d'une structuration de cet aquifère valanginien.

7.3.3. Approche génétique

L'approche génétique doit permettre de confirmer le statut d'isolement de ces différentes populations. Les échantillonnages n'ont pas permis de collecter suffisamment d'individus vivants pour pouvoir comparer au niveau génétique les populations des différentes espèces présentes sur la zone d'étude. Il a toutefois été possible de séquencer une partie des espèces du bassin versant du Lez, même si les individus n'ont généralement pas pu être récoltés sur le bassin versant du Lez luimême (Figure 153).

Figure 153 : Arbre phylogénétique figurant la position des taxons vivant sur le bassin versant du Lez

Néanmoins, pour un groupe d'espèces (*Heraultiella exilis & Islamia cf. moquiniana*), suffisamment d'individus ont été récoltés pour montrer un isolement génétique des populations du bassin versant du Lez (du Lirou plus précisément) par rapport à celles des bassins versants adjacents (Figure 154). Ces résultats, bien que partiels, sont encourageants quant à la possibilité d'affiner la traçabilité des eaux à partir d'indicateurs génétiques.

Figure 154 : Arbre phylogénétique obtenu pour les échantillons de Heraultiella exilis et Islamia cf. moquiniana montrant respectivement les divergences entre les populations du Lirou et de l'Hérault ; et celles du Vidourle, de la Cadoule et du Lirou.

Une approche à partir d'ADN environnemental est en cours pour pallier à la pauvreté des récoltes d'individus vivants. Les identités génétiques des individus séquencés ici permettront la réaffiliation des séquences obtenues à partir d'ADN environnemental. Ce premier travail, bien qu'incomplet et réalisé en grande partie hors de la zone d'étude, fourni donc un référentiel indispensable pour travailler directement sur les eaux souterraines.

7.4. SENSIBILITE ET PERTURBATIONS

La richesse de la faune du Lez comparée à d'autres écosystèmes est difficile à expliquer. L'influence des glaciations plus au nord expliquerait un appauvrissement des faunes et mettrait en exergue le rôle de refuge des karsts méditerranéens. La richesse observée sur le karst du Lez ne traduit donc pas un écosystème « mieux préservé », mais plutôt une histoire plus complexe.

L'essentiel des récoltes étant constitué de coquilles, la présence effective de certaines espèces reste putative (on peut imaginer un relarguage de coquilles d'espèces disparues depuis longtemps). Plusieurs espèces de la région (*Paladilhia conica, Paladilhia gervaisiana, Bythinella eutrepha, Moitessieria* sp., *Henrigirardia wienini, Paladilhia magnanae...*) n'ont jamais été récoltées vivantes et les coquilles collectées aujourd'hui pourraient être sub-fossiles.

Un échantillonnage des espèces présentes dans le sous-écoulement en amont et en aval du rejet de la station d'épuration des Matelles a été réalisé (Figure 155). Très peu d'individus vivants ont été collectés lors de ces prélèvements. La quantité de coquilles collectées ne semble pas être influencée par le rejet de la STEP. Nous ne pouvons donc pas conclure à une influence du rejet sur la présence des espèces collectées.

Les données collectées ne permettent pas de montrer une sensibilité des espèces souterraines aux activités humaines. Il n'existe pas dans la littérature d'études précises sur l'écologie de ces espèces. Il n'est donc pas possible de conclure formellement à l'influence des polluants ou des pompages sur la biodiversité souterraine du Lez. Toutefois, les collections des malacologues du XIX° siècle montrent que certaines

espèces étaient probablement plus communes par le passé qu'aujourd'hui : *Paladilhia gervaisiana*, endémique du Lez, n'a été collectée qu'une seule fois malgré une pression de prospection importante alors que plusieurs coquilles sont conservées dans les collections Paladhile (Université de Montpellier II) et Bourguignat (Muséum d'Histoire Naturelle de Genève). Les espèces crénicoles décrites de la source du Lez semblent avoir définitivement disparu en même temps que leur milieu.

Le battement plus important de la nappe avec le processus de gestion active pourrait avoir une influence sur les espèces vivant dans sa partie superficielle. Par ailleurs, le niveau d'étiage étant plus bas, le volume d'habitat globalement disponible pour ces espèces est diminué d'autant. Enfin, nous ne savons rien des micro-milieux occupés par ces espèces et il est probable que l'assèchement, même temporaire, de certaines zones du karst soit préjudiciable à la faune souterraine.

Figure 155 : Résultat de l'échantillonnage du sous-écoulement en amont et en aval du rejet de la STEP des Matelles. Pour chaque site, 5 réplicats ont été prélevés à environ 1m de profondeur. Deux espèces dominent largement le peuplement : Moitessieria rolandiana et Heraulteilla exilis. Le rejet de la STEP, situé entre les stations 2 et 3, ne semble pas avoir d'influence significative sur l'abondance des coquilles récoltées.

7.5. CONCLUSION - PERSPECTIVES

L'échantillonnage mis en place permet de caractériser les grandes masses d'eau des bassins du Lez et de l'Hérault à partir de leur signature taxonomique (assemblages d'espèces). Toutefois, cette signature est trop grossière pour permettre d'apporter des données nouvelles sur l'alimentation de la source du Lez en elle-même.

Une seconde approche a été développée sur la base de la morphométrie fine des coquilles au sein d'une même espèce. Cette approche a permis d'augmenter la résolution pour la zone hydrologique du Causse de l'Hortus. On distingue alors les écoulements nord-est (Vidourle) des écoulements sud-ouest (Lamalou – Hérault).

Enfin, des analyses génétiques complémentaires ont permis d'une part de caractériser une partie des espèces présentes sur le bassin versant du Lez, d'autre part de constater l'isolement des populations de la Cadoule par rapport à celles du Causse de l'Hortus

La source du Lez constitue le site le plus important pour cette étude. C'est aussi le site le plus riche, d'après les données issues de la littérature (laquelle est antérieure à la mise en place du pompage). Toutefois, le suivi mis en place n'a pas permis de récolter de coquilles au niveau du rejet du débit réservé. Il est probable que les pompes broient ce matériel et qu'il ne soit pas restitué par cet exutoire. Les données intégrées dans cette étude se basent sur la littérature et les récoltes effectuées dans les laisses de crues (Prié 2003). Pour compléter l'étude et avancer sur l'origine des faunes collectées au niveau de la source du Lez, il faudrait soit organiser une plongée dans la source pour récolter directement dans le réseau, soit mettre en place un protocole permettant d'échantillonner ces eaux en période de crue (dérivation de la source par exemple).

Pour tenter de collecter des données supplémentaires sur les espèces présentes dans les eaux de la source du Lez, nous mettons actuellement en œuvre une approche par l'ADN environnemental. Il s'agit pour nous de reconstituer la signature taxonomique des eaux à partir des traces d'ADN laissées par les organismes qui y vivent. Cette approche beaucoup plus puissante devrait permettre d'augmenter considérablement le nombre de marqueurs en prenant en compte non seulement les mollusques, qu'on déterminera alors génétiquement et non plus morphologiquement, mais potentiellement toute source de vie souterraine.

8. Synthèse des connaissances

Dans cette synthèse, sont résumées les connaissances récentes et passées, acquises dans le cadre de l'atelier 1 du projet de recherche « Gestion multi-usages des aquifères karstiques méditerranéens – Le Lez, son bassin versant et son bassin d'alimentation ».

Cette synthèse est structurée en sept points qui abordent successivement i) la géologie, ii) la tectonique et la karstification, iii) l'hydrologie et l'hydraulique, iv) l'hydrogéologie, v) l'hydrochimie, vi) l'écologie et vii) la base de donnée relative à l'Observatoire MEDYCYSS_Observatoire Multi Echelle de la DYnamique des Crues et de l'hYdrodynamique Souterraine en milieu karStique (www.medycyss.org), dans laquelle sont répertoriées les différentes informations caractéristiques de l'hydrosystème LEZ.

8.1. GEOLOGIE

Dans le cadre de ce projet, il s'agissait de parfaire la connaissance du milieu karstique d'un point de vue géologique à l'échelle de l'ensemble du bassin d'alimentation de la source du Lez (aspect multi-échelle). Les principales périodes géologiques et leur incidence sur la structuration de la région sont ainsi rappelées et enrichies de nouvelles connaissances acquises dans le cadre de cette étude.

Du Trias au Jurassique, la zone Languedocienne est entièrement submergée. Les variations eustatiques sont faibles et la région connaît une période tectonique calme essentiellement subsidente. Les dépôts d'argilites sulfatées et à sulfate de calcium du Trias moyen et supérieur interviennent en discordance sur le Permien. Leur épaisseur est comprise entre 100 et 300 m sur les bordures et dépassent 1 000 m au cœur du bassin sub-alpin. Au Jurassique les dépôts sont de type calcaire, dolomie et calcaire argileux au niveau de la plate-forme et marneux dans le bassin profond. La forte subsidence permet l'accumulation de plus de 12000 m de sédiments au cœur du bassin. Du Trias au Jurassique, les variations eustatiques sont de faible amplitude ; seules les zones proches des hauts-fonds sont affectées par des émersions lors des régressions marines, ce qui entraine une érosion et une karstification de ces zones faiblement développées spatialement.

Au Crétacé, la position du bassin est modifiée, on passe du bassin sub-alpin au bassin dit Vocontien. La sédimentation est de type argilo-calcaire. Les zones des Causses et sud- Languedocienne sont émergées. Il se produit alors de l'érosion et un développement de la karstification sur ces zones. Des bassins continentaux se mettent également en place au Crétacé supérieur. Dans le bassin, la sédimentation se poursuit. On assiste à une migration vers le nord du bassin au crétacé supérieur. La région Nîmoise est ainsi submergée au Crétacé inférieur puis émergée au Crétacé supérieur, permettant ainsi le développement de la karstification des calcaires du Crétacé dès cette période. A la fin du Crétacé le bassin est totalement émergé.

Le Tertiaire est caractérisé par de grands bouleversements tectoniques, avec d'abord à l'Eocène une phase compressive associée à la structuration des Pyrénées. Elle aura pour conséquence d'abord la formation de reliefs et ensuite le développement de la karstification des roches jurassiques et crétacées. Il s'ensuit une phase de rifting à l'Oligocène liée à l'ouverture du Golfe du Lion, durant laquelle les bassins sédimentaires se remplissent.

Au Miocène, suite aux événements tectoniques alpins et à la crise de salinité du Messinien, le potentiel de karstification atteint son paroxysme. Il laisse entrevoir la formation de karsts très profonds sous le niveau de la mer actuel et sur toute la région jusque probablement très loin du rivage actuel.

Enfin, au Quaternaire, les variations eustatiques liées aux glaciations, ont également permis le développement de la karstification de cette région. Cette dynamique réactive sans aucun doute les anciens réseaux karstiques, notamment ceux hérités de l'événement messinien.

Huit coupes interprétatives de toute la couverture sédimentaire Secondaire, Tertiaire et Quaternaire reposant sur le socle d'âge Primaire ont été réalisées. Cinq coupes recoupent la zone transversalement et sont de direction NW-SE. Elles mesurent chacune entre 30 et 60 kilomètres de long. Trois sont longitudinales à la zone de direction SW-NE et mesurent entre 50 et 60 kilomètres. Ces coupes sériées sur la zone du système karstique du Lez traduisent une géométrie structurale complexe, reflet de l'histoire tectono-sédimentaire de la région du Languedoc présentée précédemment. Des structures assez atypiques comme par exemple des synclinaux sur rampes ou des pieds de poussée gravitaire sont présents. De nombreux accidents tectoniques affectent la couverture et/ou le socle, et ont contribué soit pendant la phase compressive, soit pendant la phase distensive à faire évoluer cette géométrie.

Les formations aquifères associées au système karstique du Lez correspondent à l'épaisse série des calcaires dolomitiques du Dogger et les calcaires massifs du Tithonien, principalement dans la partie NW de l'hydrosystème. Sur certaines coupes telles que celle entre le village de Pouzols et le village de Fausargues-les-bains (cf. Planche 7), on met en évidence une épaisseur de 800 m de Dogger et donc de Bathonien dolomitique. La zone où se sont accumulés près de 700 mètres de calcaires massifs Portlandien, correspond à la zone aquifère associée à la source du Lez. D'autre part, on peut supposer que les jeux de failles normales favorisent les connections entre les trois horizons aquifères que sont le Jurassique supérieur, le Dogger dolomitique et le Lias calcaire, ce qui se voit tout particulièrement sur certaines coupes (Coupe interprétative, de direction SW-NE, entre le Mas de Vedel et le village de Gailhan, cf. Planche 6)

Les séries karstiques jurassiques du bassin de l'Hérault, qui peuvent s'enfoncer jusqu'à presque 2000 mètres de profondeur, sont probablement en liaison avec le système du Lez. La source du Lez se situe d'ailleurs au niveau d'une zone caractérisée par une importante déformation, au vue du nombre de failles présentes et non à l'aplomb de l'ancienne zone de récif qui se situe à une dizaine de kilomètres au NW.

La couverture tertiaire, de par sa nature plutôt marneuse en dehors de quelques horizons calcaires, contribue à mettre les horizons aquifères en position captive. A l'inverse, là où elle n'est pas présente par un manque de dépôt ou du fait de l'érosion, les formations aquifères affleurent et l'aquifère est ainsi qualifié de libre.

D'un point de vue hydrogéologique, de potentielles connections directes entre les aquifères reconnus du Jurassique supérieur, du Bathonien et du Lias calcaire au droit de grands accidents ont été confirmées.

8.2. TECTONIQUE ET KARSTIFICATION

Dans le SE de la France, les aquifères karstiques se caractérisent par la surimposition de nombreuses phases de karstification. Au Crétacé moyen, lors de l'ouverture de l'isthme durancien, des bauxites provenant de l'érosion du Massif central fossilisent des réseaux karstiques développés dans des calcaires du Jurassique supérieur et du Crétacé inférieur. Du Crétacé supérieur à l'Eocène, le bombement lithosphérique lié au front pyrénéen génère une émersion des terrains carbonatés favorisant leur karstification. Certaines surfaces paléokarstiques comprennent des remplissages sédimentaires datés du Paléocène, période durant laquelle le gradient hydraulique est successivement orienté du sud vers le nord, puis du nord vers le sud, ce qui participe à la karstification des massifs crétacé et jurassique. Lors de la crise messinienne (Miocène), l'abaissement de plus de 1500 m du niveau de la mer Méditerranée génère un approfondissement des réseaux karstiques et une réactivation des karsts développés depuis le Secondaire. Enfin, pendant le plio-quaternaire, l'alternance de périodes glaciaires et interglaciaires, provoque la réactivation ou la mise en place de nouveaux karsts.

Dans la région nord-montpelliéraine, depuis le Jurassique jusqu'au Miocène, les phases de karstification sont toutes concomitantes avec des périodes d'activité tectonique majeures, à l'origine d'une importante fracturation des massifs carbonatés. Ces différentes phases tectoniques sont associées à des directions d'extension ou de compression qui contrôlent l'ouverture ou la fermeture de ces fractures. Des analyses statistiques réalisées à différentes échelles ont mis en évidence que -i) le réseau de karstification s'oriente principalement selon les axes NS et EW dans les zones peu soumises aux déformations d'origine tectonique, tandis que -ii) près des accidents majeurs il s'oriente préférentiellement suivant la direction NE-SW. La karstification EW a été initiée au Crétacé moyen par l'extension NS lors de l'ouverture de l'Isthme Durancien : cette direction d'extension a permis l'ouverture des fractures orientées EW, facilitant l'infiltration et la circulation d'eau dans celles-ci. La karstification NS a été initiée pendant l'orogenèse pyrénéenne à l'Eocène, sous l'effet i) de la compression NS qui a engendré un réseau de fractures conjuguées N150-170 et N010-020 et leur ouverture, et ii) du gradient hydraulique régional successivement orienté SN puis NS qui a favorisé la karstification suivant cette direction.

Lors de l'ouverture du golfe du Lion (Oligocène), la faille des Matelles-Corconne a un jeu normal, permettant la mise en contact des terrains aquifères jurassiques avec les terrains imperméables du crétacé inférieur. La zone endommagée autour de cette faille (près de 200 m de large) présente de nombreuses fractures sub-parallèles, ouvertes

pendant l'Oligocène ; le paléo-gradient hydraulique était alors perpendiculaire à cet accident. La présence d'un réseau karstique sub-parallèle à la faille des Matelles-Corconne indique que le contexte tectonique oligocène (fractures ouvertes N045 et contact avec les terrains imperméables) a dévié la direction générale des écoulements (gradient hydraulique N-S) qui ont été contraints de suivre la direction de la faille, facilitant ainsi la karstification suivant cette direction.

Ces différentes périodes de karstification permettent de comprendre l'origine des directions préférentielles d'écoulements actuels. Contrairement aux hypothèses classiquement admises, les directions préférentielles de dissolution ne sont pas nécessairement liées à la direction du gradient hydraulique. Par ailleurs,, contrairement à ce qui est souvent proposé en contexte méditerranéen, le Messinien n'est pas la période prépondérante en terme de karstification des carbonates, puisque les périodes précoces de karstification prédéterminent les directions d'écoulements souterrains qui vont ensuite perdurer jusqu'à l'actuel. Toutefois, la karstification associée à la crise messinienne demeure importante, notamment en profondeur, mais elle est guidée par les réseaux karstiques précoces du Crétacé jusqu'à l'Eocène.

8.3. HYDROLOGIE ET HYDRAULIQUE

Dans le cadre de ce projet, un point important concernait la caractérisation du régime hydrologique et hydraulique du fleuve côtier Lez afin notamment de mieux évaluer l'aléa inondation associé aux hautes eaux.

8.3.1. Caractérisation de la perméabilité des sols

La mesure de la perméabilité des sols sur le bassin versant hydrogéologique de la Source du Lez a permis de proposer une cartographie de cette perméabilité, une base de données ayant été constituée à partir de la carte géologique harmonisée des départements du Gard et de l'Hérault, des données pédologiques de la BD Sols, et enfin de la carte d'occupation du sol produite par SIG-LR.

Des mesures d'infiltration ont également été réalisées sur 4 sites, à proximité de Prades le Lez. Elles ont été doublées sur chaque site, et réalisées en surface ou à des profondeurs différentes. L'intérêt de ce double système de mesure est de valider et calibrer les différents niveaux de perméabilité. Les valeurs de conductivité hydraulique à saturation (Ks) obtenues par les mesures d'infiltration sont sensiblement différentes de celles obtenues à l'aide du système de Guelph, ces différences pouvant atteindre un ordre de grandeur ; ces différences sont sans doute la conséquence d'incertitudes liées à la préparation du sol et au calage du dispositif.

Les mesures de perméabilité réalisées à l'aide du système de Guelph ont montré une forte variabilité selon les formations géologiques observées, cette perméabilité variant entre 12mm/h et 33mm/h pour les colluvions, conglomérats, calcaires argileux et alluvions, jusqu'à 97mm/h pour les grès et 180mm/h pour les calcaires. L'intérêt majeur de l'utilisation du perméamètre de Guelph est la capacité à reproduire les mesures, ce

qui permet d'atteindre pour les catégories principales un nombre significativement représentatif de résultats.

La synthèse statistique des mesures de perméabilité a permis d'attribuer un niveau moyen de perméabilité à chacune des formations pédo-paysagères présentes sur le bassin versant.

	culture / syst cult.	eau	foret	garrigue	vigne / oliveraie	prairie	urbain
alluvions	38.3	-97	30	30	16	47.3	-96
basalte / bauxite / fer	-99	-97	-99 : pas de données			-99	-96
calcaire / brèches / blocs	-98	-97	-98 : perméabilité très fortement variable			-98	-96
calcaires argileux	19	-97	15	42.4	8	25.1	-96
colluvions		-97	idem alluvions		8.7		-96
conglomérat / grès	18.4	-97	18.4	18.4	20.5	17	-96

Figure 156 : Perméabilité moyenne par classe combinant géologie et occupation du sol (mm/h)

8.3.2. Hydraulique du fleuve Lez

Les données nécessaires pour la modélisation hydraulique du Lez, tant pour la paramétrisation du ou des modèles, que pour la simulation des scénarios, dépendent du type de modèle retenu (ex.: modèle à base physique 1D, 2D, casiers, modèle de représentation entrées-sorties, etc.). La modélisation hydraulique du Lez nécessite notamment :

- les données géométriques des lits (ex.: mineur, moyen et majeur),
- les caractéristiques des ouvrages frontaux et latéraux,
- les conditions aux limites amont et aval,
- les apports intermédiaires,
- les coefficients de frottements sur le fond et sur les berges,
- les termes d'infiltration.

Diverses sources de données étaient disponibles en ce qui concerne la géométrie des lits (mineur, moyen, majeur) du Lez (de sa source à la mer), parfois de certains de ses affluents (Lirou, Terrieu, Yorgues), ainsi que des ouvrages frontaux et latéraux.

Une analyse des résultats obtenus au moyen de différentes méthodes de mesures a permis de valider l'utilisation la BD Topo IGN datant de 2001 au pas de 5m pour extraire 29 profils en travers pour le lit majeur, complétés par 6 profils de lit majeur à partir du MNT LIDAR 1m.

La Maison de la Télédétection a récemment fait l'acquisition d'un scanner laser terrestre 3D (Riegl VZ-400). Afin d'évaluer la possibilité d'utilisation d'un tel matériel pour une meilleure définition géométrique du Lez, trois zones localisées à des endroits où des profils ont été récemment levés par des moyens conventionnels (tachéométrie, GPS différentiel) ont été considérées.

Des coupes (profils en travers perpendiculaires à la direction d'écoulement par exemple) à partir du nuage de points 3D ont été extraite de ces mesures. Une méthodologie de traitement des données du nuage de points 3D est en cours afin de pouvoir affiner l'extraction des profils en travers de ces zones. Nous pourrons alors les comparer aux relevés traditionnels que nous utilisons actuellement, relevés au théodolite laser. Si ce type d'acquisition de données est concluant, il pourrait permettre de relever la géométrie des berges, ouvrages et obstacles au dessus du niveau de l'eau.

Ces études seront poursuivies au-delà du projet en cours. A terme, un cheminement le long du système hydraulique, avec un scanner terrestre 3D couplé à une centrale inertielle et un GPSD pour le recalage lorsque le couvert végétal le permet, deviendra très certainement un moyen efficace, précis et rapide d'acquisition des données géométriques des berges des lits mineurs et moyens ainsi que de leurs coefficients de rugosités. En ce qui concerne les lits majeurs, les MNT comme celui de la BD Topo IGN au pas de 5m sont pour le moment suffisants.

Les données topologiques et géométriques listées ci-dessus, analysées et vérifiées ont été introduites dans le logiciel hydraulique SIC pour la validation du modèle est le tronçon Lavalette – Garigliano – 3^{ème} Ecluse. 21 crues ont été retenues (critères : cumul de pluie sur l'épisode > 90 mm et Q de pointe à Lavalette > 40 m3/s) pour le modèle hydrologique (Bassin Versant à l'exutoire Lavalette). Certaines crues sont très bien reproduites en simulation, même sans étude ni prise en compte des apports intermédiaires. D'autres peuvent être améliorées par reconstitution des apports intermédiaires, importants dans certains cas. Ces aspects seront étudiés soit par modélisation des apports par un modèle hydrologique des affluents, soit par assimilation de données dans la suite du projet.

8.3.3. Données de débits à la source du Lez

Historique des prélèvements et données disponibles à la source du Lez

Depuis 1951, date à partir de laquelle on dispose d'information à la source du Lez, jusqu'en 1982 ; trois périodes distinctes de gestion de la ressource peuvent être distinguées à la source du Lez:

1) Jusqu'en 1967, la source est exploitée de manière gravitaire au débit maximum de 400 l/s. Aucune donnée de prélèvement n'est disponible pour cette période. Nous supposerons que le débit de prélèvement est de 400 l/s.

2) La période juin 1968- mai 1973 est caractérisée par le début des prélèvements par pompage à l'aide de 3 pompes de 420 l/s installées dans la vasque à une profondeur de 6.6 m sous le seuil du déversoir. Ce dispositif permet d'évacuer des débits de l'ordre de 600 l/s dans la conduite gravitaire de 1 m de diamètre. Aucune donnée de prélèvement n'est disponible pour cette période. Nous supposerons que le débit de prélèvement est de 600 l/s. La période mai 1973-décembre 1982 est caractérisée par la poursuite des prélèvements par pompage à l'aide de 3 pompes de 420 l/s. La mise

en place de la conduite de 1.4 m de diamètre permet d'évacuer des volumes d'eau plus importants (jusqu'à 1100 l/s) notamment en période de hautes eaux. En période d'étiage, les débits de prélèvement sont moins élevés (compris entre 480 et 860 l/s). Les données de prélèvements de cette période sont connues.

3) Depuis le 09/12/1982, les pompages s'effectuent directement dans la galerie karstique en amont hydraulique de la vasque du Lez. Depuis la mise en place de la gestion active par forage (1982), le débit moyen interannuel prélevé est de 1113 l/s, soit environ 35 millions m³/an (1983-2009).

De toutes les variables collectées (hauteur d'eau dans la vasque ou le forage n°4, débit de prélèvement, débit de débordement de la vasque), c'est la variable piézométrique qui est la mieux renseignée sur la période d'investigation (1946-2009). Les données acquises avant 1951 ne peuvent pas être exploitées, car les données n'ont pas pu être rattachées à un repère connu. Entre 1951 et 1967, la piézométrie a été mesurée au niveau de la vasque et est exprimée par rapport à la côte du seuil déversoir (cote 64.92 m NGF jusqu'en 1967). Des mesures de débits ont été réalisées entre 1962 et 1963 ce qui permet d'estimer les débits de débordement de la source. En juin 1967, le seuil déversoir de la source du Lez a été surélevé de 6 cm. Les cotes piézométriques mesurées avant 1967 ont été normalisées par rapport au nouveau repère (64.98 m NGF) dans un souci de simplicité. La courbe de tarage de 1962-1963 ne peut donc plus être utilisée pour estimer les débits de débordement de la source du Lez après juin 1967. Entre juin1967 et décembre1982, les débits de débordement ont été estimés à l'aide de la courbe de tarage de 1969-1970 établie à partir des niveaux d'eau mesurés dans la vasque.

A partir de décembre 1982, la piézométrie est mesurée au niveau du forage 4 de la chambre de captage. Entre 1983 et 1984, la piézométrie a été mesurée de manière simultanée à la vasque et au forage. La confrontation des informations obtenues sur cette période ne permet pas d'établir une relation fiable de correspondance de charge entre la vasque et le forage. Le capteur de pression du forage n'a pas assez de résolution (+/- 0.1 m) pour établir de manière précise la relation entre la charge mesurée à la vasque et le drain. La différence de charge entre la vasque et le forage quadratiques provoquées par le drain karstique (fonction du débit du système karstique). Entre 1982 et 1987, les débits de débordement du karst ne peuvent donc pas être estimés de manière fiable.

A partir de 1987 et jusqu'en 2007, les débits de débordement de la source du Lez ont été estimés à l'aide de la station hydrométrique de la DREAL située à environ 300 m en aval de la source. En période d'étiage, lorsque la source est tarie en raison des pompages, la station hydrométrique mesure le débit restitué au Lez (**Q=160 l/s**).

En résumé, sur la base de ces courbes de tarage, le débit naturel de la source du Lez peut être estimé avec précision lors des périodes de hautes eaux (périodes de débordement de la source) pour les périodes:

- D'août 1973 à décembre 1982 (1925 jours sur un total de 3287 jours)
- De décembre 1987 à mai 2007 (2728 jours sur un total de 7305 jours)

Reconstitution des débits naturels à la source du Lez

Comme expliqué précédemment, Lors des périodes de hautes eaux (périodes de débordement de la source), le débit naturel de la source du Lez ne peut être estimé avec précision que pour les périodes d'aout 1973 à décembre 1982 et de décembre 1987 à mai 2007. En dehors de ces périodes, le manque d'informations fiables sur les débits de débordement et/ou les débits de prélèvements ne permet pas d'estimer avec précisions les débits naturels de hautes eaux et nécessite de reconstituer les débits naturels à la source du Lez par modélisation.

L'approche de modélisation repose sur l'utilisation d'un modèle global (TEMPO) basé sur la détermination, par modélisation inverse, de fonctions de transfert qui permet de décrire la réponse du système karstique aux sollicitations provoquées par les épisodes de pluies efficaces. Trois modèles de transfert (étape 1) ont été élaborés pour les temps de régulation suivants : 128 jours, 256 jours et 366 jours pour chacune des chroniques de débit estimées à partir des courbes de tarages théoriques (établie pour les 3 coefficients de débits suivants : 0.34 ; 0.38 et 0.42, cf. ci-dessus et annexes), soit au total 9 modèles. L'utilisation de ces 9 modèles de transfert a permis de reconstituer par modélisation les débits naturels du Lez sur la période 1962-2008. A partir des chroniques produites par chaque modèle, nous avons calculé la chronique « moyenne » des 3 chroniques simulées pour les différents temps de régulation considérés.

Dans un second temps (étape 2), les données moyennes produites par les modélisations ont été confrontées aux débits naturels estimés à partir de la chronique de la station de jaugeage de la Diren (période 1987-2007). Les données modélisées ont été jugées globalement fidèles aux débits naturels estimés en hautes eaux à partir de cette chronique de la Diren. Les données de débits obtenus par modélisation ont été identifiées aux débits naturalisés estimés à partir de la chronique de la station de jaugeage de la Diren (période 1987-2007) afin de combler les lacunes des périodes de basses eaux. Pour la période antérieure à 1974, faute de données disponibles fiables concernant les débits prélevés à la source du Lez, nous avons considéré que les débits naturels de la source du lez pouvaient être estimés par modélisation à l'aide de 3 modèles de transfert. Le premier modèle permet d'estimer les débits de la borne inferieure de la courbe de tarage théorique tandis que le dernier permet d'estimer les débits de la borne supérieure. Pour la période de 1974 à 1982, les débits naturels de la source du lez ont été estimés en période de hautes eaux à partir des mesures tandis que les débits de basses eaux ont été estimés par modélisation à l'aide des 3 modèles de transfert. Pour la période de 1982 à 1987, faute de données concernant les débits de hautes eaux, nous avons considéré que les débits naturels de la source du lez pouvaient être estimés par modélisation à l'aide des 3 modèles de transfert suivants. Pour la période 1987-2007, les débits naturels de la source du lez ont été estimés en période de hautes eaux à partir des mesures réalisées à la station de la Diren tandis que les débits de basses eaux ont été estimés par modélisation à l'aide des 3 modèles de transfert. Depuis 2007, les débits naturels de la source du lez sont estimés par modélisation à l'aide des 3 modèles de transfert.

Enfin, (étape 3) les procédures mises en place dans cette étude ont permis d'estimer les débits naturels de la source du Lez sur la période 1962-2008. Sur la période 1963-2008, le débit moyen interannuel de la source du Lez est estimé à 2008 l/s [1918 l/s-2175 l/s]. Le débit moyen annuel minimum est estimé à 960 l/s (observé en 1983 [929 l/s-1094 l/s]) et le débit moyen annuel maximum est estimé à 3516 l/s (observé en 1972 [3483 l/s-3951 l/s]). Sur la période 1963-2008, le débit médian de la source au cours des mois de juillet à septembre est compris entre 1129 l/s et 605 l/s (débit naturel estimé). En contexte décennal sec, le débit moyen de la source au cours des mois de juillet à septembre (débit naturel estimé) est compris entre 541 l/s et 264 l/s. Les valeurs minimales reportées dans les tableaux n'ont pas de signification physique. Elles correspondent a du « bruit numérique » engendré par l'utilisation des modèles.

8.4. HYDROGEOLOGIE

Afin de réévaluer la ressource en eau exploitable au sein de l'aquifère et caractériser les impacts éventuels de nouveaux scénarios d'exploitation, la caractérisation multiéchelles des propriétés hydrodynamiques ainsi que la précision des limites hydrogéologiques de l'aquifère constitue un préalable essentiel. Ce sont ces nouvelles connaissances qui sont exposées ici.

8.4.1. Estimation des propriétés hydrodynamiques de l'aquifère

A l'échelle locale, lors de pompages (sur le puits W) réalisé sur le site expérimental du Terrieu (Figure 157B), les écoulements s'organisent suivant deux directions préférentielles: E-W (N080-N090) et N-S (N160-N170).

Figure 157 : A) Courbes de rabattement (en m) associées à un pompage au puits W (site expérimental du Terrieu). – B) Isopièzes (en m) pendant pompage à la source du Lez (valeurs du 08/09/2006).

Ces directions préférentielles correspondent à celles identifiées à partir des analyses du réseau karstique (en zone non saturée) du Causse de Viols le Fort. Par conséquent, loin des failles majeures et quelle que soit l'échelle d'observation, les écoulements préférentiels semblent donc s'organiser selon les directions N-S et E-W, qui correspondent à deux familles majeures de fracturation.

A l'échelle régionale, les pompages à la source du Lez influencent l'aquifère à grande échelle, jusqu'à plus de 30 km en amont de la source (Figure 157 B). L'analyse des cartes piézométriques en période de basses eaux, conséquence des pompages à la source du Lez, permet d'identifier les principales directions d'écoulement souterrain de l'aquifère du Lez à une échelle régionale, la direction de perméabilité maximale (NE-SW) étant parallèle à la faille des Matelles-Corconne (Figure 157 B).

A chaque cycle hydrologique, durant la période estivale, le niveau piézométrique dans le drain karstique du système du Lez décroît de plusieurs dizaines de mètres suite aux pompages effectués. La source cesse alors de déborder. Il en résulte des cycles annuels de baisse des niveaux d'eau comparables à ceux observés lors d'essais de pompage effectués sur un puis de pompage. Ces cycles, à l'échelle saisonnière, ont été étudiés de façon similaire à des essais de pompage afin d'en déduire les propriétés hydrodynamiques de l'aquifère du Lez et la nature des écoulements souterrains. De la même façon les cycles de pompage à l'échelle pluri journalière ont été considérés en tenant compte des « pulses » de pompage associés aux modifications du débit de pompage à la source du Lez.

A l'échelle saisonnière, plusieurs cycles hydrologiques récents (1986, 1987, 1998, 2002, 2003, 2005 et 2006) ont été interprétés au moyen du modèle de Theis. La transmissivité obtenue varie très peu d'un cycle à l'autre (entre 6.0 et 6.9 x 10^{-3} m²/s). La valeur de transmissivité obtenue correspond à une valeur globale de l'aquifère sollicité, incluant les contributions du réseau de drains karstiques et de la matrice calcaire. Une interprétation des rabattements aux piézomètres des transmissivités proches de celle estimée à la source tandis que les coefficients d'emmagasinement sont dans des ordres de grandeur de nappe captive.

A l'échelle pluri-journalière (Jazayeri et al., 2011), nous avons considéré l'historique de pompage et les variations de la piézométrie à la fois à la source du Lez et dans les puits situés sur le site expérimental Terrieu, à 5km de la source du Lez. Les propriétés de perméabilité et de diffusivité du milieu ont été obtenues en considérant une porosité effective moyenne de 1 % pour l'aquifère (Roesch et Jourde, 2006 ; Fleury et al. 2009). L'estimation des transmissivités estimées par les méthodes (pulse test et superposition) sont un ordre de grandeur en dessous de celles estimées par la méthode de Theis, pour un emmagasinement S fixé à un ordre de grandeur au dessus de celui estimé par la méthode de Theis.

Toutefois, les valeurs de diffusivité sont en accord avec les valeurs obtenues précédemment pour les puits d'observation Bois des Avants et Bois de Saint Mathieu, ce qui montre que les différentes méthodes d'estimation de la perméabilité donnent des résultats cohérents.

A noter, que la réalisation des pompages à deux échelles différentes (locale et régionale) au sein de l'aquifère du Lez a permis de vérifier la dépendance de la perméabilité avec l'échelle d'observation, mais également de montrer que le niveau

piézométrique de la nappe et le degré de la connectivité entre le puits d'observation et le réseau de drainage principal sont des paramètres qui contrôlent l'estimation de la perméabilité lors de l'interprétation d'essais par pompage.

8.4.2. Traçages artificiels

Trois essais de traçage ont été réalisés (Figure 158) ; ceux-ci ont permis de confirmer que la limite du bassin d'alimentation de l'aquifère du Lez se situait au-delà de l'anticlinal de Viols le fort, dans la partie nord de cet anticlinal.

Figure 158 : Carte de localisation des opérations de traçage réalisées en 2010 et 2011 (sur fond topographique de l'IGN). Injection 1 : Aven de la Fausse Monnaie le 20/04/10 ; Injection 2 : Perte du Mas Martin le 03/02/11 ; Injection 3 : Aven Roussière le 17/02/11. Les flèches en trait continue correspondent aux tracages assurés, les flèches en trait pointillés correspondent aux tracages réalisés mais sans assurance de sortie du traceur. Les flèches vertes correspondent aux tracages réalisés par fluoresceine, en rouge au tracage réalisé par sulforhodamine.

Le premier essai correspond à une injection de traceur à l'aven de la Fausse Monnaie. La restitution a été suivie au niveau de quatre sources, celles du Lez, du Lirou, de Restinclières et des Fontanilles, ainsi que d'un forage dans le secteur des Matelles, à proximité de la source du Lirou. Des mesures ont été réalisées par 4 fluorimètres (deux au Lez, un au forage des Matelles et un aux Fontanilles) avec un pas de temps de 4min. Parmi les fluorimètres installés au niveau des sources pouvant potentiellement restituer le traceur, celui de la source du Lirou a été vandalisé dès la première semaine. Ce traçage a permis de mettre en évidence les relations entre l'aven de la Fausse Monnaie et les sources du Lez et du Lirou. La source des Fontanilles, au contraire, ne semble pas reliée à ce réseau karstique. Lors des pluies du mois de Mai, 50% du traceur a été évacué sur ces deux sources, alors que 50% restait bloqué au sein de ce système karstique pendant l'été.
Les vitesses apparentes moyennes de transit sont de l'ordre de 13 m/h (la vitesse apparente maximale étant de l'ordre de 15,9 m/h pour le trajet aven-source du Lez, et de 10,9 m/h pour celui de l'aven-source du Lirou). La vitesse semble plus lente pour le trajet jusqu'à la source du Lirou, mais celui-ci intègre beaucoup plus l'impact de la traversée de la zone non saturée. Quant à la vitesse apparente maximale correspondant au trajet « Source du Lirou – Source du Lez », celle-ci serait de l'ordre de 70 m/h : cependant cette valeur correspondrait au transfert du traceur uniquement en zone saturée et en période de hautes eaux, juste avant l'infiltration dans le karst de précipitations importantes. Cet essai a ainsi permis d'estimer des vitesses moyennes de transit de l'ordre de 15 m/h en période de moyenne eau, pour un transfert intégrant une faible épaisseur de zone non saturée. Pour un transfert dans la zone saturée, les vitesses sont bien plus importantes, de l'ordre de 70 m/h en période de hautes eaux. Ces ordres de grandeur des vitesses de transfert sont des informations importantes à prendre en compte pour la caractérisation de la vulnérabilité de l'aquifère.

Ce traçage a ainsi permis de placer la limite ouest du bassin hydrogéologique du Lez au Nord Ouest de l'anticlinal qui affecte le flanc sud du Pic Saint Loup, alors que cet anticlinal était considéré jusqu'à présent comme une limite étanche de notre aquifère. Afin de préciser cette limite du côté de Viols le Fort, où l'anticlinal permet l'affleurement de terrains moins perméables, un essai de traçage (injection à l'aven Roussières) a été réalisé au printemps 2011. Cette opération de traçage a été fortement perturbée par l'évènement pluvieux de mars 2011, ce qui implique la mise en place d'une autre opération de traçage dans un futur proche (hiver-printemps 2012).

8.4.3. Bon état de la masse d'eau souterraine

Concernant le bon état quantitatif de la masse d'eau souterraine au sens de la DCE, trois des quatre conditions sont remplies. La première condition (prélèvements inférieurs à la capacité de renouvellement de la ressource disponible) existe. La deuxième condition est remplie également puisqu'aucune tendance à la diminution en dehors des variations saisonnières n'est observée sur les piézomètres du réseau de suivi Veolia/CAM, y compris durant la période 1980-1983 qui correspond à une succession de plusieurs années sèches. La troisième condition concerne, d'une part, la satisfaction des besoins des usages en période d'étiage pour les prélèvements en eau souterraine qui, d'autre part, ne doit pas avoir d'effets négatifs sur les milieux aquatiques terrestres associés. Aucun problème de prélèvements en période d'étiage n'est signalé à l'échelle de la masse d'eau souterraine. Concernant l'effet sur les milieux aquatiques associés, l'étude des débits du Lez et des volumes prélevables sur la masse d'eau de surface menée pour le SyBLe permettra d'apporter des éléments circonstanciés au sujet de cette troisième condition. Finalement la dernière condition, qui concerne les masses d'eau situées en bordure littorale et stipule que leur exploitation ne doit pas conduire à une intrusion saline, est bien remplie.

8.4.4. Synthèse hydrogéologique

Le schéma hydrodynamique de référence de l'aquifère karstique de la source du Lez en période d'étiage et sous l'influence des pompages à fort débit (après 1982) proposé par Bérard (1983) est confirmé et certaines incertitudes ont été levées, notamment au niveau de la limite Ouest du bassin d'alimentation de l'aquifère du Lez qui a été identifiée comme se situant au-delà de l'anticlinal de Viols le fort, dans la partie nord de cet anticlinal. Sur le plan hydrodynamique, le rôle prépondérant de l'axe de drainage constitué par la faille de Corconne/Les Matelles est confirmé et sont identifiées des zones de l'aquifère présentant une inversion de gradient piézométrique en période de moyennes eaux. Ce comportement se traduit par une modification des limites Nord Est et Sud du bassin d'alimentation de la source du Lez, suivant que l'on considère l'aquifère en période d'étiage lorsque l'influence des pompages à gros débits est prépondérante sur l'hydrodynamique du système, ou en périodes de moyennes et hautes durant lesquelles le drainage naturel de l'hydrosystème par la source est peu influencé par les pompages à gros débits.

Les informations apportées par les traçages et le suivi hydrodynamique de l'hydrosystème karstique permettent ainsi de proposer des limites distinctes pour l'unité hydrogéologique drainée par la source du Lez, suivant que l'aire d'influence de la source du Lez est considérée en régime d'écoulement naturel (période de moyennes et hautes eaux), ou en période d'étiage lorsque l'influence des pompages à gros débits est prépondérante sur l'hydrodynamique du système karstique. Ces limites du bassin d'alimentation de la source du Lez i) en écoulement naturel pour les moyennes et les hautes eaux (débordement à la source) et ii) en période d'étiage sous l'influence des pompages à fort débit seront présentées dans le rapport complémentaire à venir qui intégrera les précisions issues des traçages en cours et futurs, ainsi que de la réponse hydrodynamique des forages réalisés dans le cadre de cette étude.

8.5. HYDROCHIMIE

La caractérisation hydrogéochimique des eaux souterraines et des eaux de surface sur le bassin du Lez s'intègre dans les ateliers thématiques AT1 et AT2. Les objectifs multiples concernent à la fois un état des connaissances actuelles et également une investigation approfondie par le biais de prélèvements et suivis in situ, avec analyses en laboratoire, afin de pouvoir répondre aux questions scientifiques posées.

Les résultats obtenus ont ainsi été confrontés aux réponses hydrodynamiques de l'aquifère en fonction des conditions hydrologiques, la finalité étant notamment d'être en mesure de coupler les caractérisations hydrochimique et écologique / hydrogéologique / hydrologique et hydraulique à l'échelle du bassin d'alimentation. Le rôle des pertes sur le fonctionnement à l'exutoire a également été étudié, ainsi que la vulnérabilité du système face aux pressions anthropiques et aux changements climatiques.

Figure 159 : Unités hydrogéologiques et schéma hydrodynamique de l'aquifère karstique des Garrigues Nord Montpelliéraines (Yann Conroux, 2007 ; issu de S. Bosser, 2009)

La délimitation du système karstique de la source du Lez a été définie par Bérard (1983). Ce bassin hydrogéologique a une surface d'environ 380 km² et comprend plusieurs secteurs dont les caractéristiques dépendent notamment de leur comportement hydrogéologique vis-à-vis des processus d'alimentation de l'aquifère karstique (Figure 159). Toutefois, certaines limites et relations avec les aquifères voisins (Karst du Haut Vidourle notamment) doivent être précisées.

8.5.1. Données hydrochimiques et modélisation conceptuelle de l'aquifère du lez

Une base de données des connaissances hydrogéochimiques existantes a été mise en place pour les forages et sources actuellement suivis par le Conseil Général de l'Hérault, l'Agence de l'Eau RM et C, l'ARS, la banque ADES (et Info Terre via le BRGM), CAM/Veolia et HydroSciences Montpellier (Observatoire MEDYCYSS, OSU OREME). Ces données ont été complétées par des données plus anciennes issues de la bibliographie (Salado et Marjolet, 1975 ; Joseph et al., 1988).

Les points identifiés comprennent les différentes sources (Lez, Lirou, Fleurette, Restinclières, Gour Noir) drainant l'aquifère du Lez, ainsi que des sources karstiques drainant des aquifères karstiques voisins et pouvant avoir des relations complexes avec ce dernier (Sauve, Fontbonne, Lamalou...).

Les premiers résultats ont mis en évidence des phénomènes d'infiltration rapide à l'aide du Carbone Organique Total (COT) aux sources du Lez et du Lirou, et ont confirmé la signature chimique particulière du Lirou par rapport à celle du Lez. La source du Lirou semble drainer un compartiment plus superficiel de l'aquifère (« pôle infiltration rapide ») alors qu'en période de crue, des eaux différentes présentant notamment une minéralisation anormalement élevée en chlorures et certains éléments en trace s'écoulent à la source du Lez. La source du Lez présente d'ailleurs des concentrations en chlorures systématiquement plus élevées que les autres points étudiés, les plus fortes teneurs étant liées aux eaux poussées par effet piston au moment des crues.

En effet, bien que deux explications de l'origine de cette minéralisation soient possibles (origine peu profonde depuis le compartiment du sol/épikarst ou origine profonde depuis un compartiment spécifique au sein de la zone saturée), la forte minéralisation identifiée à la source du Lez est vraisemblablement associée aux eaux souterraines issues des formations profondes qui circulent à travers les fractures ; les interactions probables avec des minéraux évaporitiques doivent cependant encore être précisées. La participation de ce pôle fortement minéralisé a été régulièrement observée dans le mélange qui constitue le flux de sortie des eaux de la source du lez, car même les plus diluées des eaux souterraines présentent une forte minéralisation supérieure à 600μ S/cm. La participation des eaux souterraines profondes augmente notablement pendant les premiers événements de pluie à l'automne, quand la charge hydraulique au sein du système karstique est assez forte pour mobiliser les eaux profondes et les eaux à long temps de résidence.

Les isotopes stables de l'eau (Oxygène-18 et Deutérium) sont couramment utilisés afin de caractériser les types d'eau et leur mélange à l'exutoire, ainsi que les conditions d'écoulement. De façon générale, les sources du Lez, de Restinclières et de La Fleurette présentent des variations isotopiques faibles comparées à celles des pluies, notamment pour la source du Lez (1‰ pour δ 180 durant les crues automnales de 2008). Ceci atteste d'une importante capacité de stockage au sein de l'aquifère. La source temporaire du Lirou présente quant à elle de fortes variations, notamment lors des crues d'octobre 2008, démontrant une très forte réactivité suite à un évènement pluvieux important.

Par ailleurs, des circulations très rapides au sein du système ont été identifiées de façon récurrente à l'aide de la turbidité, de la bactériologie (coliformes totaux et fécaux) et de la fluorescence de la Matière Organique Dissoute (Bicalho et al., 2011 a. ; Quiers et al., 2011), confirmant les observations faites sur une crue automnale par Joseph et al. (1987). Ces circulations rapides sont vraisemblablement rattachées aux flux d'eau de surface qui s'infiltrent dans les différentes zones de pertes situées au sein du bassin d'alimentation lors des crues.

En conclusion, il est possible d'identifier les différents compartiments (Figure 160) à travers lesquels l'eau circule avant de ressortir aux exutoires de l'aquifère karstique. A la source du Lez, l'eau provient de différentes circulations à l'origine d'un mélange de plusieurs types d'eaux: (1) les circulations peu profondes au sein de l'aquifère « supérieur » (calcaires du Jurassique supérieur et du Berriasien), (2) circulations en

interaction avec les eaux de surface ou avec des eaux ayant été en contact avec les marno-calcaires du Valanginien et (3) circulations profondes des eaux facilitées par la présence d'importantes failles mettant en contact l'aquifère supérieur avec les réservoirs carbonatés du Jurassique moyen et inférieur et (4) potentiellement des fluides d'origine plus profonde (en provenance du Trias voire du socle paléozoïque sous-jacent).

Figure 160 : Modèle conceptuel actuel de fonctionnement de l'aquifère du Lez (Bicalho et al. 2011c).

La contribution du pôle profond (3 et/ou 4), se manifeste graduellement lors des périodes estivales sous l'effet des pompages, et de manière très significative lors des premières crues automnales, par une augmentation de la température et de la minéralisation à la source du Lez: augmentation importante des teneurs en Cl, Na, B, Li, Sr, Mg et enrichissement en carbone-13 indiquant que ces eaux ont évolué en profondeur et en milieu fermé (Bicalho et al., soumis b). L'origine de ce pôle profond reste encore à préciser ; il s'agit par exemple de vérifier si l'eau profonde mobilisée provient d'un « réservoir tampon » situé dans le jurassique supérieur ou provient des calcaires jurassiques moyens et inférieurs situés sous les marno-calcaires du Callovien-Oxfordien. Dans ce schéma conceptuel, des flux d'eau profonde en provenance des évaporites du Trias (type halite) et/ou du socle Primaire alimenteraient le « réservoir tampon » situé en profondeur.

8.5.2. Caractérisation de l'origine des eaux très minéralisées s'écoulant à la source du Lez

Compte-tenu des singularités hydrogéochimiques des eaux s'écoulant à la source du Lez mettant en évidence des flux d'origine profonde, le ou les pôles géochimiques participants aux écoulements ont été caractérisés par une approche géochimique inédite basée sur i) l'analyse des éléments majeurs et en trace ainsi que des terres rares, et ii) sur un multi-traçage isotopique (isotopes stables de l'eau et du carbone, Strontium, Bore et Lithium). Les résultats préliminaires (campagnes d'étiage et de hautes eaux réalisées en 2009 et 2010) mettent en évidence l'évolution de la minéralisation à la source du Lez depuis la minéralisation rencontrée en période de basses eaux (rapport Cl/Sr et rapport isotopique ⁸⁷Sr/⁸⁶Sr plus faibles que pour les eaux s'écoulant en crue) vers un pôle plus minéralisé et enrichi en Sr en période de hautes eaux. Ce pôle reste encore à définir.

8.5.3. Caractérisation des processus de recharge et de la vulnérabilité de l'hydrosystème karstique

Des flux d'infiltrations rapides et les interactions surface/souterrain ont été mises en évidence. Le suivi actuellement mené sur l'hydrosystème du Lez à l'aide des traceurs émergents a pour but d'identifier la vulnérabilité de ce dernier et les pressions anthropiques existantes. Un « screening » de différents paramètres a été mis en place depuis Septembre 2010 et renforcé depuis les crues du printemps 2011 sur la source du Lez et les sources du Lirou, de Restinclières et de La Fleurette. Deux types de contamination anthropique sont ciblés en fonction de leur origine : i) origine domestique (eaux usées): matière porganique dissoute, gadolinium, bactériologie, résidus médicamenteux (carbamazépine), organo-étains et ii) origine agricole: pesticides (détermination par l'Ecole des Mines d'Alès), organo-étains.

Les premières investigations ont identifiées des contaminations anthropiques sur l'hydrosystème du Lez, notamment en période de crue, ce qui confirme la vulnérabilité de la ressource en eau de l'aquifère du Lez à certains moments du cycle hydrologique.

8.6. ECOLOGIE

Comme exposé précédemment, la vulnérabilité de l'aquifère karstique peut être appréhendée à partir d'analyses hydrochimiques (traceurs émergents) ; cependant, elle peut également être précisée par le biais de bio-indicateurs basés sur la qualité de l'eau des eaux de surface et des eaux souterraines et sur la microfaune des eaux souterraines et du sous-écoulement. A cet effet, un inventaire et un état des lieux de la biodiversité souterraine de l'aquifère du Lez ont été réalisés, notamment au travers de la cartographie des espèces de mollusques stygobies.

Les écosystèmes souterrains peuvent être divisés en deux grands types : aériens (troglo-) et aquatiques (stygo-). Ce sont les écosystèmes aquatiques qui font l'objet de ce travail. Le karst du Lez a été très étudié par les naturalistes montpelliérain au XIX° siècle, et plusieurs espèces de mollusques stygobies ont été décrites des alluvions du

Lez ou de la Mosson, en particulier les genres Moitessieria et Paladilhia qui ont été décrit à partir d'échantillons récoltés sur le bassin versant du Lez.

Les mollusques souterrains du bassin du Lez sont répartis actuellement en trois familles : les Moitessieriidae, seule famille ne comportant que des espèces souterraines ; les Hydrobiidae, famille qui regroupe beaucoup d'espèces mais dont la monophylie (l'intégrité, « l'unité » systématique) est remise en cause (Swarovska 2006); les Amnicolidae, dont seules les Bythinelles (genre Bythinella) ont des représentants en Languedoc-Roussillon. Les précédentes études ont fourni une première liste d'espèces présentes dans le karst du Lez. Toutefois, les échantillonnages étaient très ponctuels et ne visaient ni la biogéographie (distribution des espèces dans le milieu souterrain) ni l'écologie (différences entre populations d'une même espèce en fonction des hydrosystèmes).

Une phase de terrain réalisée entre 2008 et 2010 a permis d'augmenter significativement le nombre de stations échantillonnées pour les mollusques. Une analyse biogéographique est ainsi rendue possible, montrant d'une part la pérennité des faunes dans le temps et d'autre part leur homogénéité au sein d'une même masse d'eau. De là, une première signature taxonomique des aquifères a pu être proposée (Prié 2009). Par ailleurs, la morphométrie fine des coquilles a montré qu'on pouvait distinguer différentes populations au sein d'une même espèce. La signification des différences observées reste hypothétique : soit il s'agit d'écotypes, c'est-à-dire de populations qui se distinguent morphologiquement en raison de l'influence de l'environnement mais qui restent connectées génétiquement, soit de phylotypes, c'est-à-dire de populations isolées physiquement les unes des autres. Quoiqu'il en soit, la présence de différences significatives entre les formes semble indiquer un isolement des eaux (en cas de mélange des eaux, les différentes formes se mélangeraient également) notamment dans le cas des eaux provenant du causse de l'Hortus.

Enfin, malgré les difficultés rencontrées pour échantillonner des animaux vivants et pour les séquencer, quelques séquences ont pu être obtenues, celles-ci illustrant une très forte structuration biogéographique. Une première cartographie des masses d'eau peut ainsi être proposée en regroupant entre elles les zones hydrographiques qui présentent une faune identique (Figure 161). On suppose alors une continuité hydrologique entre ces zones et un isolement par rapport aux zones contiguës présentant un assemblage malacologique différent.

Figure 161 : Assemblages faunistiques correspondant à chacune des masses d'eau identifiées par leur signature taxonomique.

L'échantillonnage mis en place permet de caractériser les grandes masses d'eau des bassins du Lez et de l'Hérault à partir de leur signature taxonomique (assemblages d'espèces). Toutefois, cette signature est trop grossière pour permettre d'apporter des données nouvelles sur l'alimentation de la source du Lez en elle-même.Une seconde approche a donc été développée sur la base de la morphométrie fine des coquilles au sein d'une même espèce. Cette approche a permis d'augmenter la résolution pour la zone hydrologique du Causse de l'Hortus, permettant par exemple de distinguer les écoulements vers le nord-est (Vidourle) des écoulements vers le sud-ouest (Lamalou – Hérault).

La source du Lez constitue le site le plus important pour cette étude. C'est aussi le site le plus riche, d'après les données issues de la littérature (laquelle est antérieure à la mise en place du pompage). Toutefois, le suivi mis en place n'a pas permis de récolter de coquilles au niveau du rejet du débit réservé. Il est probable que les pompes broient ce matériel et qu'il ne soit pas restitué par cet exutoire. Les données intégrées dans cette étude se basent sur la littérature et les récoltes effectuées dans les laisses de crues (Prié 2003). Pour compléter l'étude et avancer sur l'origine des faunes collectées au niveau de la source du Lez, il faudrait soit organiser une plongée dans la source pour récolter directement dans le réseau, soit mettre en place un protocole permettant d'échantillonner ces eaux en période de crue (dérivation de la source par exemple).

Pour tenter de collecter des données supplémentaires sur les espèces présentes dans les eaux de la source du Lez, nous mettons actuellement en œuvre une approche par l'ADN environnemental, cette technique ayant pour objectif de reconstituer la signature taxonomique des eaux à partir des traces d'ADN laissées par les organismes qui y vivent. Cette approche beaucoup plus puissante devrait permettre d'augmenter considérablement le nombre de marqueurs en prenant en compte non seulement les mollusques, déterminés alors génétiquement et non plus morphologiquement, mais potentiellement toute source de vie souterraine.

8.7. ASSEMBLAGE DES NOUVELLES CONNAISSANCES

L'ensemble de ces nouvelles connaissances sur l'hydrosystème LEZ sont regroupées dans la base de donnée relative à l'Observatoire MEDYCYSS_Observatoire Multi Echelle de la DYnamique des Crues et de l'hYdrodynamique Souterraine en milieu karStique (<u>www.medycyss.org</u>)_qui couvre un territoire plus vaste que l'hydrosystème Lez et a servi de support pour le stockages des données et informations obtenues dans le cadre de ce projet.

Toutes les données spatiales connues (sols, géologie, couvert végétal, etc...) ainsi que l'instrumentation ont été recensées. L'ensemble des documents produits dans le cadre de ce projet ou en lien avec l'hydrosystème du Lez sont accessibles au format pdf.

Pour chacun des points de mesure, sont associés son code de station, ses coordonnées, le bassin hydrographique associé, l'organisme qui tient à disposition les données, le lien où on peut les récupérer ainsi que la date de disponibilité de la mesure (données hydrométriques, pluviométriques, piézométriques, d'humidité du sol, de chimie des eaux souterraines et superficielles, logs géologiques, ...).

Source des données : HydroSciences Montpellier, BRGM, ONEMA, Agglomération de Montpellier/Veolia, Conseil général de l'Hérault, Service de Prévision des Crues, Direction Régionale de l'Environnement de l'Aménagement et du Logement, CNRS, Météo France, ADES, Bassin Rhône Méditerranée, Banque HYDRO...

9. Conclusion et perspectives

Les données nouvelles acquises dans le cadre de l'Atelier 1 du projet de recherche « Gestion multi-usages des aquifères karstiques méditerranéens, le Lez, son bassin versant et son bassin d'alimentation associé au système karstique du Lez » participent notablement à l'amélioration des connaissances hydrologiques, hydrogéologiques, hydrauliques et écologiques de l'hydrosystème karstique du Lez; ces nouvelles informations permettant en effet de mieux définir la structure et le fonctionnement de ce système complexe. Ces connaissances seront complétées par des données hydrochimiques interprétées dans le cadre de l'Atelier 2, notamment dans une perspective d'estimation de la vulnérabilité de l'aquifère du Lez. L'ensemble des données issues des Ateliers 1 et 2 permettra en outre de mieux contraindre les modèles numériques développés dans le cadre de l'Atelier 4 de ce projet.

La géologie de l'hydrosystème du Lez a été précisée par la réalisation de coupes géologiques qui apportent des éléments de compréhension à la fois sur la géologie et l'hydrogéologie à l'échelle régionale. Le modèle géologique tridimensionnel réalisé sur la base de ces coupes permet en effet de visualiser la structure géologique complexe de l'hydrosystème du Lez, ce qui constitue un élément clef pour la modélisation hydrogéologique du Lez tant sur le plan conceptuel (avec le rattachement de certains pôles hydrochimiques à des compartiments spécifiques) que sur le plan numérique puisque certaines hypothèses considérées dans les simulations pourront être vérifiées.

L'acquisition de différentes données portant sur l'hydraulique du fleuve Lez a permis de modéliser les crues à l'aide du modèle hydraulique SIC ; la reconstitution des apports intermédiaires, importants dans certains cas, est envisagée afin d'aboutir à des résultats plus probants. Ces aspects seront étudiés soit par modélisation des apports par un modèle hydrologique des affluents, soit par assimilation de données; ces résultats seront exposés dans le rapport de synthèse de l'Atelier 4 du présent projet. Cette étude sera poursuivie au-delà du projet en cours avec pour objectif, à terme, l'acquisition efficace, précise et rapide des données géométriques et physiques des berges des lits mineurs et moyens au moyen d'un scanner terrestre 3D couplé à une centrale inertielle et un GPSD.

Sur le plan hydrogéologique, la reconstitution du débit naturel de la source du Lez est une base solide pour caractériser l'évolution de la ressource en eau en fonction de scénarios climatiques futurs ; en effet, cette chronique permet d'ores et déjà de caler les modèles et de tester leur efficience sur près de quarante ans, ce qui est un préalable nécessaire à l'étude de la réponse hydrogéologique de l'hydrosystème aux forçages climatiques futurs. L'analyse des débits naturels de la source du Lez reconstitués sur la période 1962-2008, a également permis de montrer que les volumes prélevés annuellement sont inférieures à la recharge annuelle. Les réserves sollicitées par les pompages en période de basses eaux sont reconstituées dès les premières pluies automnales. Dans ce contexte, la gestion active actuelle du système karstique ne conduit pas à une surexploitation de la ressource, ce qui permet de conclure au bon état, du point de vue quantitatif, de la masse d'eau souterraine

FRDG113 associée à la source du Lez malgré son exploitation par une gestion active. Concernant la délimitation précise des limites hydrogéologiques du bassin d'alimentation de la source du Lez, les différentes opérations de traçage ont permis de préciser la limite ouest du bassin hydrogéologique du Lez et de la situer au Nord Ouest de l'anticlinal qui affecte le flanc sud du Pic Saint Loup alors que cet anticlinal était considéré jusqu'à présent comme une limite imperméable. Afin de préciser cette limite du côté de Viols le Fort où l'anticlinal permet l'affleurement de terrains moins perméables, d'autres opérations de traçage seront répétées prochainement (printemps-été 2012) du fait des fortes perturbations rencontrées lors des derniers traçages en raison de l'évènement pluvieux de mars 2011. Les informations apportées par les traçages et le suivi hydrodynamique de l'hydrosystème karstique permettent toutefois de proposer des limites distinctes pour l'unité hydrogéologique drainée par la source du Lez, suivant que l'aire d'influence de la source du Lez est considérée en régime d'écoulement naturel (période de moyennes et hautes eaux), ou en période d'étiage lorsque l'influence des pompages à gros débits est prépondérante sur l'hydrodynamique du système karstique. Ces limites du bassin d'alimentation de la source du Lez seront présentées dans le rapport complémentaire qui intégrera les informations issues des traçages et de la réponse hydrodynamique des nouveaux forages réalisés dans le cadre de cette étude.

D'un point de vue écologique, la source du Lez constitue un site important et riche, comme l'attestent les données issues de la littérature (laquelle est antérieure à la mise en place du pompage). Toutefois, le suivi mis en place dans le cadre de ce projet n'a pas permis de récolter de coquilles au niveau du rejet du débit réservé. Il est probable que les pompes broient ce matériel et qu'il ne soit pas restitué par cet exutoire. Les données intégrées dans cette étude se basant sur la littérature et les récoltes dans les laisses de crues, il faudrait soit organiser une plongée dans la source pour récolter d'échantillonner ces eaux en période de crue (dérivation de la source par exemple) pour préciser l'origine des faunes collectées au niveau de la source du Lez. Pour collecter des données supplémentaires sur les espèces présentes dans les eaux de la source du Lez, une approche par l'ADN environnemental vient d'être mise en place afin de reconstituer la signature taxonomique des eaux au moyen des traces d'ADN laissées par les organismes qui y vivent.

Les analyses hydrochimiques ont été confrontées aux réponses hydrodynamiques, ce qui a permis de proposer un nouveau modèle conceptuel de circulations associées à différents compartiments et qui intègre notamment des circulations profondes. Comptetenu des singularités hydrogéochimiques des eaux s'écoulant à la source du Lez, une caractérisation des pôles géochimiques participants aux écoulements a été réalisée par une approche inédite basée sur i) l'analyse des éléments majeurs et en trace ainsi que des terres rares, et ii) un multi-traçage isotopique (isotopes stables de l'eau et du carbone, Strontium, Bore et Lithium). Cette méthode a permis d'identifier des flux d'origine profonde associés à certains compartiments et les résultats préliminaires (campagnes d'étiage et de hautes eaux réalisées en 2009 et 2010) mettent en évidence l'évolution de la minéralisation à la source du Lez depuis la minéralisation rencontrée en période de basses eaux (rapport Cl/Sr et rapport isotopique ⁸⁷Sr/⁸⁶Sr plus faibles que pour les eaux s'écoulant en crue) vers un pôle plus minéralisé et enrichi en Sr en période de hautes eaux. L'origine de ce pôle sera défini plus précisément dans le cadre de l'Atelier 2 du présent projet.

Des flux d'infiltrations associés à des circulations rapides ainsi qu'à des interactions entre eaux de surface et eaux souterraines ont été mis en évidence. Le suivi actuellement mené sur l'hydrosystème du Lez à l'aide des traceurs émergents a permis d'identifier la vulnérabilité de ce dernier vis-à-vis des pressions anthropiques existantes ; à cet effet, un « screening » de différents paramètres a été mis en place depuis septembre 2010 et a été renforcé depuis les crues du printemps 2011 au niveau de la source du Lez et des sources du Lirou, de Restinclières et de Fleurette. Les premières investigations ont permis d'identifier des contaminations anthropiques sur l'hydrosystème du Lez, notamment en période de crue, ce qui confirme la vulnérabilité de la ressource en eau de l'aquifère du Lez. Le rôle des pertes a également été précisé, ainsi que la vulnérabilité du système face aux pressions anthropiques et aux changements climatiques. Ces deux derniers points seront plus largement détaillés dans le rapport de synthèse de l'Atelier 2 du projet.

10. Bibliographie

Aubry N., Crinquant N. & Dufour A., 2005. Caractérisation hydraulique et hydrologique du bassin versant urbain du Verdanson. *Rapport de projet d'ingénieur soutenu le 3 Mars 2005, Agro M.*

Audra P., Mocochain L., Camus H., Gilli E., Clauzon G. & Bigot J. 2004. The effect of the Messinian Deep Stage on karst development around the Mediterranean Sea. Examples from Southern France. *Geodinamica Acta*, *17(6)*, *389-400*.

Aunay, B. et Le Strat, 2002. Introduction à la géologie des Corbières. Rapport BRGM/RP-51595-FR.

Bailly-Comte V, Jourde H., Pistre S. 2009. Conceptualization and classification of groundwater-surface water hydrodynamic interactions in karst watersheds *Journal of Hydrology*, 376, 456-462.

Bakalowicz M. 1986. La karstification : processus, modèles et exemples. 9ième cong. Internat. Spéléologie, Barcelone, 3, pp. 59-63.

Barbarand J., Lucazeau F., Pagel M. & Séranne M. 2001. Burial and exhumation history of the south-eastern Massif Central (France) constrained by apatite fission-track thermochronology. *Tectonophysics*, 335(3-4), 275-290.

Batiot-Guilhe C., Prié V., Seidel J.L., Ladouche B. & Dorfliger N., 2010. Protocole d'échantillonnage pour les eaux de surface et les eaux souterraines considérant les données existantes et les points faisant l'objet d'un suivi par ailleurs (Délivrable L2.1., AT1 et AT2). *Projet Gestion multi-usages des aquifères karstiques méditerranéens. Le Lez, son bassin versant et le bassin d'alimentation associé au système karstique du Lez, 28 pages.*

Baudrimont A-F. et Dubois, P. 1977. Un bassin mésogéen du domaine péri-alpin : le Sud-Est de la France. Bull. Cent. Rech. Explor. – Prod. Elf-Aquitaine -, 261-306.

Baume J.P. & Belaud G., 2002. Réalisation d'un modèle hydraulique du Lez. Série Irrigation « Rapports » 2002-03 ; 1038, CEMAGREF ENGREF.

Bénédicto, E.A. 1996. Modèles tectono-sédimentaires de bassins en extension et style structural de la marge passive du Golfe du Lion (partie nord). Thèse de Doctorat Européen, Université de Montpellier II, Montpellier.

Berard, P. 1983. Etude des relations entre la source du Lez et son réservoir aquifère - Définition des unités hydrogéologiques. *Montpellier, BRGM: 22 p.*

Bernardin F., Pallard B., Sarteel M., Malaterre P.O. & Colin F., 2010. Amélioration de la modélisation hydraulique du Lez. *Projet d'ingénieur 2009-2010 SupAgro, Spécialisation Gestion de l'Eau, des Milieux Cultivés et de l'Environnement.*

Bernasconi S.M., 1999. Interstitial water chemistry in the western Mediterranean, *Proceedings of the Ocean Drilling Program, Scientific Results, 161, 426-432.*

Bertrand, A., 2004. Atlas préliminaire de répartition géographique des mollusques souterrains de France (Mollusca : Rissoidea : Caenogastropoda). *Documents malacologiques, Hors série n°2: 82.*

Bicalho C., 2010. Hydrochemical characterization of transfers in karst aquifers by natural and anthropogenic tracers. Example of a Mediterranean karst system, the Lez karst aquifer (Southern France). *Thèse, AgroParisTech, 133 pages.*

Bicalho C. C., Batiot C., Seidel J. L., Van Exter S. & Jourde H., 2010. Investigation of Groundwater dynamics in a Mediterranean karst system by using multiple geochemical tracers. *Advances Res. Karst Media, 1, 157-162.*

Bicalho C. C., Batiot-Guilhe C., Seidel J.-L., Van-Exter S. & Jourde H., 2009. Hydrogeological functioning of a complex Mediterranean karst system by multivariable tracing. *37th IAH Congress, Hyderabad (India),6-12 Sept.*

Bicalho C., Batiot-Guilhe C., Seidel J.L., Taupin J. D., Patris N., Van Exter S. & Jourde H., 2011c. A conceptual model for groundwater circulation by using isotopic (δ^{18} O, δ^{2} H and 87 Sr/ 86 Sr) and geochemical tracers in a Mediterranean karst system. *Congrès H2Karst, 9^{ième} Colloque d'Hydrogéologie en Pays Calcaire, Besançon (France), 1-3 septembre 2011.*

Bicalho C., Batiot-Guilhe C., Seidel J.L., Taupin J.D., Patris N., Van-Exter S. & Jourde H. 2011-b. Isotopic (δ^{18} O, δ^{2} H, δ^{13} C_{TDIC} and 87 Sr/ 86 Sr) and geochemical monitoring of a Mediterranean karstic system: chemical evolution and hydrodynamics of groundwaters. *(soumis à Chemical Geology).*

Bicalho C., Batiot-Guilhe C., Seidel J.L., Van-Exter S. & Jourde H., 2011-a. Geochemical evidence of water source characterisation and hydrodynamic responses in a karst aquifer. (*Soumis à Journal of Hydrology*)

Blanc J.J., 1995. Etapes et facteurs de la spéléogénèse dans le SE de la France. *Karstologia, 26, 2, 13-25.*

Blum A., 2004. L'état des eaux souterraines en France. Aspects quantitatifs et qualitatifs. *Etudes et Travaux, IFEN N°43, ISBN 2-911089-74-X, 36 pages.*

Bodeur Y. 1976. Evaluation de l'amplitude du décrochement cévenol par le décalage des faciès récifaux portlandiens des environs de Ganges (Hérault). C. R. Acad. Sc. Paris, t. 282 (8 mars 1976).

Boinet, N., 2002 - Inventaire spéléologique du causse de l'Hortus - Livre I. *Club Loisir Plein Air, Montpellier, 506 pp.*

Borgetto C., 2003. Modélisation hydraulique du Lez. Série Irrigation « Mémoires d'études » 2003-02 ; 1103, CEMAGREF.

Boronkay A., 2006. Modélisation pluie/débit du bassin versant du Lez. Stage Cemagref – SupAgro.

Bosser S., 2009. Caractérisation d'un aquifère karstique méditerranéen, à partir des données hydrochimiques et hydrogéologiques disponibles. *Rapport de stage de MASTER 2 GERE, Univ. Montpellier 2, 73 p.*

Bourdet, D., 2002. Well Test Analysis: The Use of Advanced Interpretation Models. *Elsevier, New York, 426p.*

Brigham, W.E., 1970. Planning and analysis of pulse-tests. J. Pet. Technol. 1, 618–6241, Trans., AIME, 249.

Calcagno, A., Chilès, J.P., Courrioux, G., Guillen, A., 2008. Geological Modèleling from field data and geological knowledge. Part I. Phys. Earth Planet. Interiors (2008), doi:10.1016/j.pepi.2008.06.013.

Camus H. 2003. Vallées et réseaux karstiques de la bordure carbonatée sud-cévenole : relations avec la surrection, le volcanisme et les paléoclimats. *Thèse, Univ. Bordeaux III, France. 720 pp.*

Chevrel A., Doumenc H., Eljanati M., Fuvelle C. & Marie P., 2004. Modélisation hydraulique du Lez.

Clauzon, G.1982. Le canyon messinien du Rhône : une preuve du « dessicated deepbasin model » [Hsü, Cita et Ryan, 1973]. Bull. Soc. Géol. France, XXIV (3) : 597-610.

Clauzon G., Suc J.P., Popescu S.M., Marunteanu M., Rubino J.L., Marinescu F. & Melinte M.C. 2005. Influence of Mediterranean sea-level changes on the Dacic Basin (Eastern Paratethys) during the late Neogene : the Mediterranean Lago facies deciphered. *Basin Research*, *17*, *487-462*.

Combes P.-J. & Bardossy G., 1994. Typologie et contrôle dynamique des bauxites tethysiennes. C.R.A.S., 318(3), 359-366.

Conroux Y., 2007. Caractérisation du fonctionnement hydrodynamique de l'aquifère karstique du Lez à l'état naturel. Mémoire Master 2, Univ. Avignon 2, 151 p.

Cordonnier, T. 2010. Synthèse géologique de la zone autour de l'aquifère karstique du Lez, allant de l'Hérault au Vidourle et de la Méditerranée à la Montagne des Cagnasses. Mémoire de stage de 2ème année

Culver D.C. & Sket B., 2000. Hotspots of subterranean biodiversity in caves and wells. *Journal of Cave and Karst Studies*, 62(1):11–17.

Danielopol, D. L., Pospisil, P. & Rouch, R., 2000. Biodiversity in groundwater : a large-scale view. *Trends in Ecology and Evolution 15(6): 223-224.*

DDE Hérault, BCEOM, 1999. Étude des crues de l'Hérault.

Debrand-Passard, S. et Courbouleix, S. 1984. Synthèse géologique du Sud-Est de la France. Mem. BRGM Fr., n° 126.

Dejean C., Mauris F. & Malaterre P.O., 2010. Etude des singularités sur le Lez (Montpellier et alentours). *Fichier schéma seuils sur le Lez avec photos.ppt.*

Diop, S. & P. Rekacewicz 2004 - Atlas mondial de l'eau. Une pénurie annoncée. Paris, 63 pp.

DIREN, 2002. Crues du bassin Lez-Mosson 10-13 Décembre 2002, analyse de l'événement.

DIREN, 2002. Phase a : recueil et validation des données Bassin versant du Lez, Mars 2002. Languedoc-Roussillon Conseil Général de l'Hérault association climatologique de l'Hérault RHEA.

Dreybrodt W. & Gabrovsek F., 2003. Basic processes and mechanisms governing the evolution of karst. *Speleogenesis and Evolution of Karst Aquifers, 1(1), unpaginated.*

Dubois P. & Delfaud J., 1989. Le Bassin du Sud Est. Dans: Dynamique et méthodes d'étude des bassins sédimentaires, Editions Technip, Paris, 277-297.

Dubois, P., Yapaudjian, L., Bodeur, Y. 1975. Excursion dans le Jurassique moyen et supérieur des Grands Causses et du Bas-Languedoc. 9e Congr. Int. Sédiment. (Nice), exc. 21.

Durand V., Leonardi V., Deffontaines B. & Macquar J.C. 2009. Fluid transfers in a carbo-gaseous aquifer through the local tectonic and geodynamic history. *Journal of the Geological Society of London, 166, 1–12.*

El-khatib, N.A.F., 1991. New Correlation for Time Lags and Pressure Response Amplitude in Pulse-test Analysis. *S.P.E Paper 21404, Middle East Oil Show, Bahrain.*

Falkner, G., Ripken T. E. J. & Falkner M., 2002. Mollusques continentaux de France. Liste de référence annotée et bibliographie. *IEGB-SPN/MNHN, Paris, 350 pp.*

Ferreira, D., 2005. Biodiversité aquatique souterraine de France : Base de données, patrons de distribution et implications en termes de conservation. Lyon, Université Claude Bernard - Lyon: 234 pp.

Fleury, P., Ladouche, B., Conroux, Y., Jourde, H., Dörfliger, N., 2009. Modelling the hydrologic functions of a karst aquifer under active water management – the Lez spring. *Journal of Hydrology*, 365, 235–243.

Gabrovsek F. & Dreybrodt W., 2010. Karstification in unconfined limestone aquifers by mixing of phreatic water with surface water from a local input; a model. *Journal of Hydrology*, 386(1-4), 130-141.

Gibert, J. & L. Deharveng, 2002 - Subterranean ecosystems: a truncated functional biodiversity. *BioScience*, *52* (*6*): 473-481.

Giot, D., Roure, F., Elmi, S., Lajat, D. et Steinberg, M. 1991. Découverte d'accidents distensifs majeurs d'âge Jurassique sur la marge continentale du bassin du sud-est, Ardèche, France (Programme GPF). Compte rendu de l'Académie des Sciences, Paris, 312, 747-754.

Gottis M. 1957. Contribution à la connaissance géologique du Bas-Languedoc. Faculté des Sciences de l'Université de Montpellier

Grier M., 2002. Etude Hydraulique du Lez. *Rapport de 3^{ème} année Ingénieur GREF, Août 2002.*

Guillo S., 2011. Stage INSA Strasbourg en cours.

Humphreys W. F., 2000. Relict faunas and their derivation. *In : Wilkens H. Culver D. C. and Humphreys W. F. (Eds.) Subterranean Ecosystems. Ecosystems of the World 30, Elsevier, Amsterdam, pp. 417-432.*

Husson E. 2010. Remplissages karstiques et variations du niveau de base : Exemple des paléokarsts de la région de Ganges (34). *Mémoire Master 2, Université de Montpellier 2, 51 pp.*

Jazayeri M., Jourde H. & Massonnat G., 2011. Influence of observation scale on the hydrodynamic analysis of well tests in a fractured reservoir. Case of the Lez karst system, Montpellier, France, *Journal of Hydrology, 403 (2011) 321–336.*

Joseph C., Rodier C., Soulte M., Sinegre F., Baylet R. & Deltour P., 1988. "Approche des transferts de pollution bactérienne dans une crue karstique par l'étude des paramètres physico-chimiques." *Revue des sciences de l'eau. 1-2, 73-106.*

Jourde H., Lafarre A & Mazzilli N., 2011. Flash flood mitigation as a positive consequence of anthropogenic forcing on the groundwater resource in a karst catchment. *H2Karst, 9th Conference on Limestone Hydrogeology, Besançon, 1-3 Septembre*

Jourde H., Roesch A., Guinot V. & Bailly-Comte V., 2007. Dynamics and contribution of karst groundwater to surface flow during Mediterranean flood. *Environ. Geology*, 51(5), 725-730.

Kaufmann G., Romanov D. & Hiller T. 2010. Modeling three-dimensional karst aquifer evolution using different matrix-flow contributions. *Journal of Hydrology, 388(3-4), 241-250.*

Ladouche B, Dörfliger N., Pouget R., Petit V., Thiery D., Golaz C. (2002) caractérisation de du fonctionnement des systèmes karstiques nord-montpelliérains. Rapport du programme 1999-2001. BRGM/RP 51584-FR

Ladouche B, Maréchal J.C., Dörfliger N., Lachassagne P., Lanini S., Le Strat (2005) P. -Pompages d'essai sur le système karstique des Cent Fonts (Cne de Causse de la Selle, Hérault), Présentation et interprétation des données recueillies. BRGM/RP 54426-FR

Lafare A., 2007. Etude du comportement hydrodynamique de l'aquifère karstique de la source du Lez lors d'évènement de crue par une approche hydrologique, hydrogéologique et hydrochimique. *Mémoire Master 2 R2E, Univ. Montpellier 2, 58 p.*

Lajaunie, C., Courrioux, G. and Manuel, L., 1997, Foliation fields and 3d cartography in geology: principles of a method based on potential interpolation: Mathematical Geology 29, 571-584.

Laurent T., 2011. Utilisation de traceurs émergents pour caractériser les flux souterrains et la vulnérabilité au sein d'aquifères karstiques. Application à l'hydrosystème du Lez. *Mémoire Master 2 R2E, Univ. Montpellier 2, 65 pages.*

Leonardi V., Tissier G. & Jourde H. (2011). Eléments de Genèse des karsts périméditerranéens : Impact de la tectonique sur l'évolution des drains karstiques (Karsts Nord-Montpelliérains). *H2Karst, 9th Conference on Limestone Hydrogeology, Besançon, 1-3 Septembre*

Le Strat P., Duvail C. 2008. Contribution à la connaissance du Tortono-messinien sur le pourtour du Golfe du Lion. Géodynamique et paléogéographie de l'aire méditerranéenne au Mio-Pliocène : interférence eustatisme-tectonique. Villeurbanne 5 et 6 mai 2008.

Malard F., 1995. Contribution à l'étude biologique de la qualité des eaux souterraines karstiques: application à un site atelier nord-montpelliérain (bassin de la source du Lez). *Diplôme de Doctorat, Université Lyon 1, 400 pp.*

Malard F., J. Gibert & R. Laurent, 1997. L'aquifère de la source du Lez : un réservoir d'eau ... et de biodiversité. *Karstologia, 30: 49-54.*

Margat J. 2008. L'eau des Méditerranéen. Ed. L'Harmattan, Paris, 289 pp.

Marjolet G. & Salado J., 1978. Le système karstique de la source du Lez. *Méditerranée, n°1 et 2, 71- 83.*

Mauris F., 2010. Modélisation hydraulique d'un fleuve côtier traversant la ville de Montpellier et ses alentours : le Lez. *Stage ENSE3.*

Mba Mpondo T., 1971. Contribution à l'étude des variations des teneurs en chlore des eaux souterraines de quelques karsts de la région languedocienne. *Thèse, Univ. Montpellier 2, 102 p.*

Mocochain L., Clauzon G., Bigot J.-Y. & Brunet P. 2006. Geodynamic evolution of the peri-Mediterranean karst during the Messinian and the Pliocene: evidence from the Ardèche and Rhône Valley systems canyons, Southern France. *Sediment. Geol., 188–189, 219–233.*

Monnier N., 2011. Stage ENSE3 en cours.

Olivet, J.L., Beuzart, P., Auzende, J.M., Bonnin, J. 1984. Cinématique de l'Atlantique Nord et Central. Publication CNEXO, 54.

Olivet, J.L., Mattauer, M., Beuzard, P. 1992. Une nouvelle cinématique de la plaque ibérique et des Pyrénées : avancée ou recul ? 14ème Réunion des sciences de la Terre, Toulouse : 117.

Peybernes B. & Combes P.-J., 1999. Paléosurfaces d'érosion et paléokarsts dans la série de passage Crétacé/Tertiaire des Corbières occidentales (Aude, France). *C.R.AS.*, 329(11), 815-822.

Prie V., 2005. Répartition de *Heraultiella exilis* (Paladilhe, 1867) (Gastropoda, Caenogastropoda, Rissooidea). *MalaCo, 1: 8-9.*

Prie V., 2006. Moitessieriidae du Nord-Montpelliérain : Morphospecies et microrépartition. *Mémoire de Master II. Montpellier, Ecole pratique des Hautes Etudes : 44 pp.*

Prie V., 2009. Les mollusques souterrains comme traceurs des hydrosystèmes : application aux hydrosystèmes karstiques des massifs nord-montpelliérains. *Karstologia 52: 7-16.*

Pulido-Leboeuf P., Pulido-Bosch A., Calvache M. L., Vallejos Á. & Andreu J. M., 2003. Strontium, SO4/Cl and Mg/Ca ratios as tracers for the evolution of seawater into coastal aquifers: the example of Castell de Ferro aquifer (SE Spain). *C. R. Geosciences*, 335, 14, 1039-1048.

Quiers M., Batiot-Guilhe C., Bicalho C., Seidel J.L. & Perrette Y., 2011. The fluorescence spectroscopy of Dissolved Organic Matter (DOM): a tool to characterize rapid infiltration flows and vulnerability in karst systems. Application to the Lez hydrosystem). *Congrès H2Karst, 9^{ième} Colloque d'Hydrogéologie en Pays Calcaire, 1-3 septembre, Besançon.*

Roesch, A., Jourde, H., 2006. Incidence d'une gestion active de la ressource en eau en milieu karstique sur le risque hydrologique. Exemple du Fleuve Lez (Montpellier, France), *GIRE3D Conference, Marrakech, May 2006.*

Rouch R. & Danielopol D. L., 1987. L'origine de la faune aquatique souterraine, entre le paradigme du refuge et le modèle de la colonisation active. *Stygologia 3(4): 345-372.*

Rouch R. & Danielopol D.L., 1997. Species richness of Microcrustacea in subterranean freshwater habitats. Comparative analysis and approximate evaluation. *Internationale Revue der gesamten Hydrobiologie 82: 121-145.*

Rubino J.L., 2005 - in Association des Sédimentologistes français. Presqu'île de Giens, 7 - 10 octobre. Excursion E8/E9. Les systèmes oligo-miocènes carbonatés et clastiques de Basse-Provence.

Rubino, J.L. (2002) in Besson D. et al. (2002) - Le néogène du bassin d'avant-pays rhodano-provençal. Congrès strati 2002 excursion 5-6-7 juillet 2002.

Ryan, W.B.F. 1973. Geodynamic implications of the Messinian crisis of salinity. In: C.W.Dooger. (Ed.), Messinian Events in the Mediterranean, North-Holand, Amsterdam, pp. 26-38.

Salado J. & Marjolet G., 1975. Contribution à l'étude de l'aquifère karstique de la source du Lez (Hérault). Etude du chimisme des eaux de la source du Lez et de son bassin. *Tome IX – FASC II. Mémoire du Centre d'Etudes et de Recherches Géologiques et Hydrogéologiques. Univ. des Sciences et Techniques du Languedoc (Montpellier II). 101p.*

Sanchis, E. and Séranne, M. 2000. Structural style and tectonic evolution of a polyphase extensional basin of the Gulf of Lion passive margin: the Tertiary Alès basin, southern France. Tectonophysics 322, 219-242.

Sandre & BRGM, 2004. Base de Données du Référentiel Hydrologique Français version 2 (BD RHF V1®). Service d'Administration Nationale des Données et Référentiels sur l'Eau. Limoge ; <u>http://sandre.eaufrance.fr/</u>, consulté en 2009.

Sandre, 2007. Base de données sur l'hydrographie. Service d'Administration Nationale des Données et Référentiels sur l'Eau. Limoge ; <u>http://sandre.eaufrance.fr/</u>, consulté en 2009.

Selles A., Leonardi V., Bailly-Comte V. & Jourde H., 2011. Influence des relations karst/rivière sur la restitution plurimodale d'un traçage artificiel : Cas du Causse d'Aumelas. *H2Karst, 9th Conference on Limestone Hydrogeology, Besançon, 1-3 Septembre.*

Thiery D., Berard P. & Camus A. 1983. Captage de la source du Lez : étude des relations entre la source et son réservoir aquifère. *Ed. BRGM, 83 SGN 167 LRO, 95 pp.*

Vengosh A., 1998. The isotopic composition of anthropogenic boron and its potential impact on the environment. *Biological Trace Element Research, 66, 1-3, 145-151.*

Annexe 1

Coupes géologiques

Carte de situation des coupes sériées (partie nord)

Carte de situation des coupes sériées (partie sud)

Coupe interprétative, de direction NW-SE, entre la ville de Sète et le village d'Adissan

Ere géologique	Stratigraphie	Perméable	Imperméable	Ere géologique	Stratigraphie	Perméable	Imperméable
Tertiaire	pM_Pliocène marneux pC / pT_Pliocène calcaire m_Miocène mC_Miocène calcaire g_Oligocène e7 (g)_Eocène / Oligocène e6_Eocène supérieur e5_Eocène moyen e3-4_Eocène inférieur e1-2_Vitrollien			Secondaire	j8-9_Tithonien Séquanien Argovien / Rauracien j5_Oxfordien Jurassique Moyen Toarcien Domérien Carixien 12_Sinémurien 11. Hettangien		
Secondaire	C 6-7_ Maastrichien n3_Hauterivien n2_Valanginien			Primaire	II_Hettangien Trias		
	n1_Berriasien			Roche éruptive	Basalte		

Légende stratigraphique

Localisation géologique du trait de coupe

Coupe interprétative, de direction NW-SE, entre le village de Montpeyroux et la ville de Villeneuve-les-Maguelones

2 km

Ere géologique	Stratigraphie	Perméable	Imperméable	Ere géologique	Stratigraphie	Perméable	Imperméable
Tertiaire	pM_Pliocène marneux pC / pT_Pliocène calcaire m_Miocène mC_Miocène calcaire g_Oligocène e7 (g)_Eocène / Oligocène e6_Eocène supérieur e5_Eocène moyen e3-4_Eocène inférieur e1-2_Vitrollien			Secondaire	j8-9_Tithonien Séquanien Argovien / Rauracien j5_Oxfordien Jurassique Moyen Toarcien Domérien Carixien 12_Sinémurien 11 Hettangien		
Secondaire	C 6-7_ Maastrichien n3_Hauterivien n2_Valanginien				Trias Socle		
	n1_Berriasien			Roche éruptive	Basalte		

Légende stratigraphique

Localisation du trait de coupe

Ere geologique	Stratigraphie	Perméable	Imperméable	Ere géologique	Stratigraphie	Perméable	Imperméable
Tertiaire	 pM. Pliocène marneux pC / pT. Pliocène calcaire m Miocène mC. Miocène calcaire g Oligocène e7 (g). Eocène / Oligocène e6. Eocène supérieur e5_Eocène moyen e3-4. Eocène inférieur e1-2. Vitrollien 			Secondaire	j8-9_Tithonien Séquanien Argovien / Rauracien j5_Oxfordien Jurassique Moyen Toarcien Domérien Carixien I2_Sinémurien 11 Hettangien		
Secondaire	C 6-7 Maastrichien n3 Hauterivien n2_Valanginien				Trias Socie		
	n1 Berriasien		Roche éruptive	Basalte			

Légende stratigraphique

Situation géologique du trait de coupe

Ere g eologique	Stratigraphie	Permeable	Im perméable	Ere géologique	Stratigraphie	Perméable	Imperméable
Tertiaire	pM Pliocène marneux pC / pT Pliocène calcaire m Miocène mC Miocène calcaire g Oligocène e7 (g)_Eocène / Oligocène e6 Eocène supérieur e5 Eocène moyen e3 4_Eocène inférieur e1-2 Vitrollien			Secondaire	j8-9_Tithonien Séquanien Argovien / Rauracien j5_Oxfordien Jurassique Moyen Toarcien Domérien Carixien 12_Sinémurien 11_Hettangien		
Secondaire	C 6-7 Maastrichien n3 Hauterivien				Trias		
	n 2 Valanginien			Primaire	Socle		
	n1_Berriasien			Roche éruptive	Basalte		

Légende stratigraphique

Situation géologique du trait de coupe

Ere géologique	Stratigraphie	Perméable	Imperméable	Ere géologique	Stratigraphie	Perméable	Imperméable
Tertiaire	pM_Pliocène marneux pC / pT_Pliocène calcaire m_Miocène mC_Miocène calcaire g_Oligocène e7 (g)_Eocène / Oligocène e6_Eocène supérieur e5_Eocène moyen e3-4_Eocène inférieur e1-2_Vitrollien			Secondaire	j8-9_Tithonien Séquanien Argovien / Rauracien j5_Oxfordien Jurassique Moyen Toarcien Domérien Carixien 12_Sinémurien 11 Hettangien		
Secondaire	C 6-7_Maastrichien n3_Hauterivien n2_Valanginien			Primaire	Trias		
	n1_Berriasien			Roche éruptive	Basalte		1. N

Légende stratigraphique

Localisation géologique du trait de coupe

Coupe interprétative, de direction SW-NE, entre le Mas de Vedel et le village de Gailhan Bassin de St-Gély-du-Fesc 0990 3X 0113 SW 81 Mas de Vedel Source du Lez Bassin d'Assas 19 ² 5 3 20 21 0 m 1000 2000 3000 -4000 -2km

Ere g éologique	Stratigraphie	P erméable	im perméable	Ere géologique	Stratigraphie	Perméable	Imperméable
Tertraire	 pM Pliocène marneux pC / pT Pliocène calcaire m Miocène mC Miocène calcaire g Oligocène e7 (g)_Eocène / Oligocène e6 Eocène superieur e5 Eocène moyen e3 4_Eocène inférieur e1-2 Vitrollien 			Secondaire	j8-9_Tithonien Séquanien Argovien / Rauracien j5_Oxfordien Jurassique Moyen Toarcien Domérien Carixien I2_Sinémurien I1_Hettangien		
	C 6-7 Maastrichien n3 Hauterivien				Trias		
Secondaire	n2 Valanginien			Primaire	Socle		
	n1_Berriasien			Roche éruptive	Basalte		

Légende stratigraphique

Localisation géologique du trait de coupe

Tertiane	g Oligocène e7 (g) Eocène / Oligocène e6 Eocène supérieur e5 Eocène moyen e3 4 Eocène inférieur e1 2_Vitrollien		Secondaire	Jurassique Moyen Toarcien Domérien Carixien I2_Sinémurien I1 Hettangien	
	C 6-7 Maastrichien n 3_Hauterivien			Trias	
Secondaire	n2 Valanginien		Primaire	Socle	
	n1 Berriasien		Roche éruptive	Basalte	

Légende stratigraphique

Localisation géologique du trait de coupe

Localisation géologique du trait de coupe

Coupes « hydrogéologiques » interprétatives, croisées sur la source du Lez

Projet Lez – GMU : synthèse des connaissances

SE

Age	Série	Etage	Phases tectoniques	Evènements Géné	raux de la zone Languedocienne du bassin du Sud-Est
	aire	Holocène		-18000 ans niveau marin à -120m NGF ; -600 ans niv	veau marin à 0m NGF
		Pleistocène		Chutes multiples du niveau marin à -120m NGF et ré	gime glaciaire-interglaciaire
	LIOCEI	Plaisancien	-	Invasion de la mer Pliocène => remblayage pliocène	des "rias" messinien
5,3		Zancléen	-		
Ma		Messinien		Crise Messinienne et chute spontanée du niveau ma	arin à -1500m (-800m à Agde) => Karst Messinien réactivant d'ancie
	OCENE	Tortonien	NEO-ALPINE	 Tectonique gravitaire (bassin de Teyran) Paroxysme de l'orogène alpine avec la mise en p sédimentaire par les vieux socles (Cévennes, Mgr. 	place des nappes et poinçonnement à la périphérie du bourrelet a ne Noire) => décalage de la Paléosurface Fondamentale
	Ē	Serravalien	RENE		
		Langhien	N PYF	Ouverture des fossés Miocènes en liaison avec	
18 Ma		Burdigalien	SSIOL	la rotation de la Corse et la sardaigne (ouverture bassin algéro-provençal)	
		Aquitanien	PRE		-Creation de la Paléosurface Fondamentale avec le t
	CENE	Chattien	DE COM	Ouverture des fossés Oligocènes (remplissage à l'accomodation) en liaison avec le bombement péri-	-Alterites = Terra Rossa (Karst remplis de Terra Rossa)
30 Ma	OLIGO	Stampien	HASE I	alpin (effondrement + érosion chaîne Pyrénéo- Provençale)	
		Priabonien	đ		
	ENE	Bartonien		-Paroxysme de l'orogène Pyrénéen en L-RO	-Création de la morphologie des hauts niveaux (chaîne
45 Ma	EOC	Lutétien		-Paléocène: séries à microcodium	=> Pli de Montpellier, Pic St-Loup, Causse de Viols-le <i>Pyrénéen</i>)
		Yprésien		(calcification filaments champignons)	-Altérites = sidérolithique à dragées de quartz (Karst remp -Augmentation de la karstification
	EOC.	Thanétien		-Début de l'orogène Pyrénéo-alpin sous sa configuration Pyrénéene ; continentalisation	-début de la karstification liée à la morphologie des hauts niv Pyrénées
65 Ma	PAL	Danien			

	Variation eustatique
ns réseaux kartsiques	
Ilpin de la couverture	
oombement péri-alpin	
<i>Pyrénéo-Provençale)</i> -Fort <i>(chevauchement</i> lis de sidérolithique)	
eaux / Emersion des	

Annexe 2 Calcul des conductivités hydrauliques à l'aide des mesures réalisées sous succion contrôlée

<u>Extrait de</u> : Vandervaere, J.P., 1995. Caractérisation hydrodynamique du sol in situ par infiltrométrie à disques. Analyse critique des régimes pseudopermanents, méthodes transitoires et cas des sols encroûtés. Thèse de Doctorat de l'Université Joseph Fourier de Grenoble - INPG, 329 p.

Reynolds et Elrik (1991) et Ankeny et al. (1991) proposent de déterminer la conductivité hydraulique à partir de la solution de Wooding (1968) en couplant les flux obtenus en un même point à différents potentiels, pour déterminer K_0 et Φ_0 .

En reprenant l'hypothèse d'une relation exponentielle entre K et h (Gardner, 1958), l'expression du potentiel d'écoulement se réduit à une forme particulièrement simple :

$$\Phi_0 = \frac{K_0 - K_i}{\alpha}$$
(2)

où $K_i \ll K_0$ si le sol est, initialement, suffisamment sec. L'expression de Wooding (1968), pour un potentiel h_0 permet d'aboutir à l'expression suivante :

$$q_0 = K_s \exp\left(\alpha h_0 \right) \left(1 + \frac{4}{\pi r \alpha}\right) \quad (3)$$

soit, sous forme logarithmique :

$$\ln q_0 = \ln \left\{ K_s \left(1 + \frac{4}{\pi r \alpha} \right) \right\} + \alpha h_0 \tag{4}$$

avec $K_s = K_0 \exp(-\alpha h_0)$ (5)

où les inconnues sont K_s et α . Les équations (1) et (4) permettent d'écrire finalement :

$$K_{0} = \frac{\exp\left(\ln q_{0} - \alpha h_{0}\right)}{1 + \frac{4}{\pi r \alpha}} \exp\left(\alpha h_{0}\right)$$
(6)

Reynolds et Elrick (1991) et Ankeny et al. (1991) proposent d'effectuer des mesures successives de q_0 à deux (ou plus) potentiels différents et de reporter les couples (h_0 , lnq_0) sur un graphique. La pente de la droite passant par deux points (ou plusieurs

couples de points) consécutifs permet d'obtenir la valeur de α tandis que son ordonnée à l'origine (h = 0)

$$Ordonn\acute{e} = \ln\left\{K_{s}\left(1 + \frac{4}{\pi r\alpha}\right)\right\}$$
(7)

permet de calculer K_s.

Dans la pratique, les valeurs successives q_i correspondant aux potentiels h_i sont obtenues en un même point ce qui permet de s'affranchir des effets de la variabilité spatiale du sol. Les potentiels sont appliqués dans un ordre croissant afin d'éviter tout problème lié à l'hystérésis. En revanche, la méthode ne permet pas d'obtenir la sorptivité puisque seule les teneurs en eau initiale et finale (correspondant ici au dernier potentiel imposé) peuvent être mesurées.

Si l'expression (4) est exactement vérifiée, les points successifs lnq_i-h_i doivent être parfaitement alignés. Or, dans la pratique, ceci est rarement vérifié, ce qui revient à considérer α comme une fonction de h. Afin de rendre compte des variations de α avec h, et le non-alignement des points lnq_i-h_i , Reynolds et Elrick (1991) et Ankeny et al. (1991) proposent de considérer la fonction K(h) comme une exponentielle par morceaux. Pour deux potentiels h_i et h_j ($h_i < h_j$), suffisamment proches pour que α puisse être considéré comme prenant une valeur αij constante sur l'intervalle $\Delta h_{ij} = [h_i; h_i]$, l'expression (4) peux s'écrire :

$$\ln q_i = \ln \left\{ K_{ij} \left(1 + \frac{4}{\pi r \alpha} \right) \right\} + \alpha_{ij} h_i \qquad (8a)$$
$$\ln q_j = \ln \left\{ K_{ij} \left(1 + \frac{4}{\pi r \alpha} \right) \right\} + \alpha_{ij} h_j \qquad (8b)$$

où K_{ij} est un paramètre n'ayant de sens physique que si $h_j = 0$, et dans ce cas, K_{ij} peut être associé à K_s , conductivité hydraulique à saturation.

Dès lors, l'équation (6) de la conductivité prend la forme :

$$K(h_m) = \frac{\exp\left[\ln q_i - \alpha_{ij}(h_m - h_i)\right]}{1 + \frac{4}{\pi r \alpha}}$$
(9)

avec $h_m = \frac{h_i + h_j}{2}$

Compte tenu des hypothèses concernant en particulier le fait de considérer la fonction K(h) comme une exponentielle par morceaux, les équations (8) et (9) ne sont vérifiées sur l'intervalle Δh_{ij} que si l'on a les égalités suivantes :

$$\frac{K_j}{K_i} = \frac{\Phi_j}{\Phi_i} = \frac{q_j}{q_i} = \exp(\alpha_{ij}\Delta h_{ij})$$
(10)

et les coefficients α_{ij} sont calculés de la façon suivante :

$$\alpha_{ij} = \frac{\ln\left(\frac{q_j}{q_i}\right)}{\Delta h_{ij}}$$
(11)

Le développement mathématique utilisé par Ankeny et al. (1991) introduit l'approximation suivante :

$$\Phi(h_j) - \Phi(h_j) \approx \left[K(h_i) + K(h_j) \right] \frac{\Delta h_{ij}}{2}$$
(12)

qui revient à linéariser la fonction $\Phi(h)$ entre h_i et h_j . L'expression de α_{ij} de Reynolds et Elrick (1991)

$$\alpha_{ij} = \frac{\ln\left(\frac{K_j}{K_i}\right)}{\Delta h_{ij}}$$
(13)

est ainsi remplacée par

$$\alpha_{ij} = \frac{2(K_j - K_i)}{\Delta h_{ij}(K_i + K_j)} = \frac{2(q_j - q_i)}{\Delta h_{ij}(q_i + q_j)}$$
(14)

Dès lors, en reprenant l'équation (3) :

$$K_{i} = \frac{\pi r (q_{j} - q_{i})}{\pi r \left(\frac{q_{j}}{q_{i}} - 1\right) + 2\left(\frac{q_{j}}{q_{i}} + 1\right) (h_{j} - h_{i})}$$
(15)

Annexe 3 Données disponibles à la source du Lez

	année																I
	1946	1947	1948	1949	1950	1951	1952	1953	1954	1955	1956	1957	1958	1959	1960	1961	196
VGF/64.91m	362	365	366	365	365	365	366	365	365	365	366	365	365	365	366	365	365
VGF/64.98m	362	365	366	365	365	365	366	365	365	365	366	365	365	365	366	365	365
it vasque mesuré																	308
y (interpolé)																	
3F(compilé)																	
(pompé+gravitaire)																	
interpolé																	
évé(compilé)																	
	362	365	366	365	365	365	366	365	365	365	366	365	365	365	366	365	365
	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	196
VGF/64.91m	365	365	160														
VGF/64.98m	365	365	365	366	365	365	365	366	365	365	365	366	365	365	365	366	365
it vasque mesuré					285	145											
vy (interpolé)																	
iF(compilé)																	
(pompé+gravitaire)					39				211	304	365	366	365	365	365	366	365
interpolé																	
évé(compilé)									153	304	365	366	365	365	365	366	365
	365	365	365	366	365	365	365	366	365	365	365	366	365	365	365	366	365
	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	200
VGF/64.91m																	
VGF/64.98m	127																
it vasque mesuré																	
y (interpolé)							275	365	366	365	365	365	365				
iF(compilé)	366	365	365	365	366	365	365	365	366	365	365	365	366	365	365	365	366
(pompé+gravitaire)	366	365	365	365	366	365	66	12	12	12	12	365	366	365	365	365	366
interpolé							275	365	366	365	365						
évé(compilé)	366	365	365	365	366	365	365	365	366	365	365	365	366	365	365	365	366
	366	365	365	365	366	365	365	365	366	365	365	365	366	365	365	365	366
	2003	2004	2005	2006	2007	2008	2009										
VGF/64.91m																	
VGF/64.98m																	
it vasque mesuré																	
vy (interpolé)																	
iF(compilé)	365	366	365	365	365	366	263										
(pompé+gravitaire)	365	366	365	365	365	366	263										
interpolé																	
évé(compilé)	365	366	365	365	365	366	263										
	365	366	365	365	365	366	263										

Tableau 1. Synthèse des données disponibles à la source du Lez

année								
1951	1952	1953	1954	1955	1956	1957	1958	1959
2130	1783	1885	2068	2130	1594	2154	1471	1850
365	286	232	319	342	325	320	298	357
année								
1966	1967	1968	1969	1970	1971	1972	1973	1974
2007	2233	1962	2817	1995	2342	2689	2547	3062
293	158	263	330	256	296	361	159	241
année								
1981	1982	1983	1984	1985	1986	1987	1988	1989
1067	1461	1120	1618	1364	1704	2253	2011	2149
148	163	82	124	89	148	173	142	45
						3675	2345	1551
année								
1996	1997	1998	1999	2000	2001	2002	2003	2004
3225	2674	1707	1812	2022	2435	2272	2348	2143
294	106	115	112	78	133	231	215	219
2596	3080	2077	1989	2037	2953	2097	2321	1942

Figure A 1. Caractéristiques de la courbe de tarage de la source du Lez établie sur la base des données collectées entre 1962 et 1963 (débit de débordement et hauteur de débordement au dessus du seuil)

Figure A 2. Caractéristiques de la courbe de tarage de la source du Lez établie sur la base des données collectées entre 1969 et 1970 (débit de débordement et hauteur de débordement au dessus du seuil)

Figure A 3. Source du Lez : relation établie entre les charges piézométriques mesurées à la vasque et dans le forage n°4 de la chambre de captage (période 1983-1984)

Statistiques	descriptives :						
Variable	Observations	Minimum	Maximum	Movenne	Ecart-type		
	17	100.000	19700.000	7671.176	6346,218	•	
Hv>	17	0.020	0.640	0.321	0.200	_	
Régression	non linéaire de la	a variable Q0.38_	.l/s :				
Coefficients	d'ajustement :			Régression r	non linéaire (Q	0.38_l/s)	
Observations	s 17.000		20000				
DDL	15.000		10000				
R²	1.000		18000 +				×
SCF	168380.720		16000 +				×
MCF	11225 381		14000 +			×	
RMCE	105 050		9 12000			×	
Itárationa	2 000		8 10000			×	
iterations	3.000		10000 +		×		
			ā 8000 +		× 1		
L .			6000 +				
Paramètres	du modèle :		4000 -	•			
			2000				
Paramètre	Valeur	Ecart-type					
pr1	39764.521	304.452	0	01 02	0.3 0.4	0.5	
pr2	1.598	0.011	0	0.1 0.2	0.3 0.4 Hvs	6 0.5	0.6 0.7
Equation du	modèle :			•	Mesure —	Modèle	
Q0.38_I/s = 3 Prédictions e	39764.5205352283 et résidus :	3*(Hv>^1.597905 ⁻	17709671)				
Observation	s Hv> (m)	Q0.38_l/s l	Préd(Q0.38_l/s)	Résidus			
Obs2	0.020	100	77	23			
Obs3	0.040	280	232	48			
Obs4	0.080	800	703	97			
Obs5	0.120	1470	1343	127			
Obs6	0.160	2260	2127	133			
Obs7	0.200	3160	3038	122			
Obs8	0.240	4150	4066	84			
Obs9	0.280	5240	5201	39			
Obs10	0.200		0-01	00			
	0.320	6440	6438	2			
Obs11	0.320	6440 7740	6438 7772	2 -32			
Obs11 Obs12	0.320 0.360 0.400	6440 7740 9120	6438 7772 9197	2 -32 -77			
Obs11 Obs12 Obs12	0.320 0.360 0.400	6440 7740 9120	6438 7772 9197	2 -32 -77			
Obs11 Obs12 Obs13 Obs14	0.320 0.360 0.400 0.440	6440 7740 9120 10590	6438 7772 9197 10709	2 -32 -77 -119			
Obs11 Obs12 Obs13 Obs14	0.320 0.360 0.400 0.440 0.480	6440 7740 9120 10590 12180	6438 7772 9197 10709 12307	2 -32 -77 -119 -127			
Obs11 Obs12 Obs13 Obs14 Obs15	0.320 0.360 0.400 0.440 0.480 0.520	6440 7740 9120 10590 12180 13880	6438 7772 9197 10709 12307 13986	2 -32 -77 -119 -127 -106			
Obs11 Obs12 Obs13 Obs14 Obs15 Obs16	0.320 0.360 0.400 0.440 0.480 0.520 0.560	6440 7740 9120 10590 12180 13880 15680	6438 7772 9197 10709 12307 13986 15744	2 -32 -77 -119 -127 -106 -64			
Obs11 Obs12 Obs13 Obs14 Obs15 Obs16 Obs17	0.320 0.360 0.400 0.440 0.480 0.520 0.560 0.600	6440 7740 9120 10590 12180 13880 15680 17620	6438 7772 9197 10709 12307 13986 15744 17579	2 -32 -77 -119 -127 -106 -64 41			

Figure A 4. Courbe de tarage théorique du déversoir du Lez pour un coefficient de débit K= 0.38 (formule seuil déversoir noyé)

Figure A 5. Courbe de tarage théorique du déversoir du Lez pour un coefficient de débit K= 0.42 (formule seuil déversoir noyé)

Statistiques descriptives :

Variable	Observations	Minimum	Maximum	Moyenne	Ecart-type
Q0.34_l/s	17	89.000	17630.000	6862.882	5679.230
Hv>	17	0.020	0.640	0.321	0.200

Régression non linéaire de la variable Q0.34_l/s :

Q0.34_l/s = 35594.6583297642*(Hv>^1.59858805203302)

Prédictions	et résidus :	
-------------	--------------	--

Observations	Hv>	Q0.34_l/s	Préd(Q0.34_l/s)	Résidus
Obs2	0.020	89.000	68.459	20.541
Obs3	0.040	250.000	207.326	42.674
Obs4	0.080	710.000	627.881	82.119
Obs5	0.120	1310.000	1200.535	109.465
Obs6	0.160	2020.000	1901.518	118.482
Obs7	0.200	2830.000	2716.563	113.437
Obs8	0.240	3720.000	3635.783	84.217
Obs9	0.280	4690.000	4651.770	38.230
Obs10	0.320	5760.000	5758.687	1.313
Obs11	0.360	6920.000	6951.769	-31.769
Obs12	0.400	8160.000	8227.023	-67.023
Obs13	0.440	9470.000	9581.037	-111.037
Obs14	0.480	10890.000	11010.851	-120.851
Obs15	0.520	12420.000	12513.856	-93.856
Obs16	0.560	14030.000	14087.736	-57.736
Obs17	0.600	15770.000	15730.411	39.589
Obs18	0.640	17630.000	17439.999	190.001

Figure A 6. Courbe de tarage théorique du déversoir du Lez pour un coefficient de débit K= 0.34 (formule seuil déversoir noyé)

ĺ		39764.521	43971.727	35594.658
		1.598	1.599	1.599
		l/s	l/s	l/s
	H (m)	Q0.38_GingerV2	Q0.42_GingerV2	Q0.34_GingerV2
	0.01	25	28	23
	0.02	77	85	68
	0.03	147	162	131
	0.04	232	256	207
	0.05	332	366	296
	0.06	444	490	396
	0.07	568	627	507
	0.08	703	776	628
	0.09	848	936	758
	0.1	1004	1108	897
	0.11	1169	1291	1045
	0.12	1343	1483	1201
	0.13	1526	1686	1364
	0.14	1718	1898	1536
	0.15	1919	2119	1715
	0.16	2127	2349	1902
	0.17	2343	2588	2095
	0.18	2567	2836	2295
	0.19	2799	3092	2503
	0.2	3038	3356	2717
	0.21	3284	3628	2937
	0.22	3538	3908	3164
	0.23	3798	4196	3397
	0.24	4066	4492	3636
	0.25	4340	4794	3881
	0.26	4620	5105	4132
	0.27	4908	5422	4389
	0.28	5201	5747	4652
	0.29	5501	6078	4920
	0.3	5807	6417	5194
	0.31	6120	6762	5474
	0.32	6438	7114	5759
	0.33	6763	7473	6049
	0.34	7093	7838	6345
	0.35	7430	8210	6646
	0.36	7772	8588	6952
	0.37	8119	8972	7263
	0.38	8473	9363	7579
	0.39	8832	9760	7901
	0.4	9197	10163	8227
	0.41	9567	10572	8558
	0.42	9942	10988	8894
	0.43	10323	11409	9235
	0.44	10709	11836	9581
	0.45	11101	12269	9931
	0.46	11498	12708	10287
	0.47	11900	13152	10646
	0.48	12307	13602	11011
	0.49	12/19	14058	11380
	0.5	13136	14520	11753

Figure A 7. Relation hauteur/débit de débordement théorique du seuil déversoir du Lez en fonction du coefficient de débit K (0.34 ;0.38 ;0.42)

Figure A 8. Evolution du débit de débordement théorique du seuil déversoir du Lez [(Q0.38Ginver) calculé à partir de la relation Hvasque =f(Hpiézo forage, cf. Figure A 3] et du débit de débordement déduit de la chronique de débit mesuré par la station hydrométrique de la DIREN

Il a été dit plus haut que la consommation moyenne annuelle est de 30.000 m³ par jour soit 350 l/sec. C'est cependant une moyenne : en Octobre 1960 par exemple la consommation moyenne mensuelle fût de 400 l/sec. Or, un décret fixe le débit minimum qui doit être laissé dans le lit du Lez en aval du captage = ce débit est de I60 l/sec. Prenons donc l'exemple d'un débit de semi-étiage à la source, soit 600 l/sec. et de la consommation du mois d'Octobre 1960, soit 400 l/sec. Si le décret fixant le débit minimum à laisser en aval du captage est respecté, le service des Eaux dispose d'une marge excédentaire de 40 1/sec. seulement. Il est bien évident qu'en période d'étiage, non seulement le décret n'est plus respecté, mais encore le déficit peut atteindre le chiffre de IOO 1/sec. La distribution est alors coupée durant la nuit pour permettre le remplissage des réservoirs; le - 8 dernier rationnement en date s'est effectué tout au long des mois d'Août et Septembre 1961.

Figure A 9. extrait de la Thèse de George B., (1963)

Annexe 4

Détail de la procédure de reconstitution des débits naturels de la source du Lez
Moyenne	e de Mo	dHEV2_	_34_128	3j									
	mois												
année	1	2	3	4	5	6	7	8	9	10	11	12	moy
1962						1117	522	190	248	1669	2870	1671	1184
1963	5655	5591	3115	4255	2199	1658	997	472	2435	1619	4743	3216	2972
1964	3402	4743	7127	5134	3059	2186	750	300	2226	2359	2482	2751	3034
1965	2730	2573	3235	1563	762	403	98	15	767	3536	2802	2183	1719
1966	2155	3634	2884	2914	2479	1469	705	343	214	994	796	549	1581
1967	1792	4123	3844	1866	1700	871	254	136	43	0	145	339	1242
1968	197	1627	1395	1986	2584	2945	1654	936	1375	908	1218	1678	1538
1969	3211	3457	6523	5139	4308	2255	1151	430	570	2901	3396	2458	2981
1970	6099	3428	2242	2086	2051	923	446	228	112	864	725	828	1663
1971	3600	4318	3341	5379	4105	2183	1237	520	138	951	1134	1193	2327
1972	6507	8119	6224	4144	2903	3011	1432	629	2496	2405	2220	2320	3515
1973	4296	2692	1782	1890	1158	1326	624	249	136	227	1240	2271	1485
1974	3969	4311	5490	4517	3028	1694	995	409	1896	1529	1089	960	2478
1975	955	1961	2318	1437	1845	1891	793	1375	759	409	1060	2262	1419
1976	1825	4321	3541	4178	2686	1211	577	246	2178	4532	6347	3779	2938
1977	5617	4369	3066	2117	2892	1918	914	571	264	782	1301	2636	2195
1978	3279	3802	3357	2726	4595	2125	985	538	99	0	843	3190	2122
1979	6289	4439	2851	2408	1318	753	349	133	47	2140	4170	1929	2222
1980	2227	1946	2032	2891	2683	1750	804	876	507	242	1204	698	1485
1981	986	745	2012	2652	1321	917	1197	383	188	241	54	2004	1062
1982	2797	3301	2286	3026	1272	566	274	98	20	10	1750	1754	1415
1983	776	1319	2513	1692	1570	717	286	118	3	13	162	1044	850
1984	1146	1237	1735	2098	2196	1684	733	543	481	702	3063	4149	1648
1985	2183	1809	1539	1409	1601	973	468	223	61	6	0	1070	942
1986	1149	4623	3569	3126	2283	921	412	146	7	1250	1165	1309	1643
1987	1635	4282	2938	2650	1582	754	539	285	108	1425	2947	5186	2014
1988	5156	3791	1878	2888	2289	1000	605	239	47	256	1874	1241	1764
1989	1139	1065	1030	1995	2020	819	460	198	438	696	1841	1941	1136
1990	900	1892	11.37	2219	1423	714	412	129	22	1172	1173	1244	1029
1991	1485	1431	2739	2042	2100	997	434	188	29	237	790	551	1084
1992	888	1122	1451	900	1305	1927	842	428	673	924	473	650	964
1993	551	718	1318	2110	3611	1499	798	402	516	1228	3727	3143	1639
1000	2147	3802	2447	1340	1340	573	205	110	836	3203	4033	2536	1956
1004	1687	1207	629	598	695	273	130	68	811	2207	1875	4380	1210
1996	8243	7569	5751	4192	3100	1710	703	344	554	1170	1534	5958	3404
1007	7436	3709	2033	1074	467	1041	407	312	172	406	1035	4206	1028
1007	4421	2630	1437	2256	2900	2021	938	474	142	8	7	190	1447
1000	2767	12033	1207	1007	3168	1410	742	354	61	985	2631	1652	1525
2000	1156	816	1231	15/6	1864	015	/ 42	220	372	1552	2031	2/80	1075
2000	1791	2044	404	2440	1004	552	297	120	322	2720	1200	2403	1073
2001	000	1/02	1005	1044	1200	1101	500	103	1727	2123	1725	7471	1025
2002	309 1667	2704	2000	2362	1362	670	315	100	1025	2133	1120	0721	1320 2710
2003	4007	2500	2990 2505	2000	2009	1550	702	607	750	2400 690	529	3121	2016
2004	4003	3000	5095	3210	2900	002	192	274	2012	1510	1265	707	2010
2005	130	102	1075	300 1000	1097 E04	99Z	000	2/4	2913 1205	1019	1200	197	1020
2006	∠408 040	3089 1205	10/0	1239	1744	152	45	107	1325	1200	129	1060	11/5
2007	848	1305	1100	15/1	1711	910	422	197	135	350	135	1062	100
2008	2308	2070	1247	2144	2934	1005	640	244	650	1044	1007	2200	2064
moy	2906	2976	2000	2480	2130	1200	642	341	628	1241	1807	2298	1780

Table Ann. 1. Etape 1 : Moyennes (mensuelles et annuelles en l/s) des débits simulés par le modèle de transfert (ModHE_0.34Ging_128j) construit sur la chronique Qnaturel(Q0.34Ginger_valide)

Moyenne	de Moc	HEV2_	34_256	j									
	mois												
année	1	2	3	4	5	6	7	8	9	10	11	12	moy
1962							541	268	304	1681	2854	1621	1254
1963	5535	5528	3114	4107	2236	1822	1017	537	2493	1623	4703	3110	2961
1964	3358	4678	7163	5094	2988	2022	1036	463	2233	2413	2423	2640	3035
1965	2725	2607	3216	1542	793	417	216	68	766	3515	2765	2095	1724
1966	2019	3673	3008	2836	2429	1478	802	359	293	1031	789	531	1590
1967	1745	4122	3827	1774	1544	987	432	149	59	31	145	337	1245
1968	192	1611	1371	1962	2524	2904	1667	899	1383	1011	1259	1636	1531
1969	3194	3433	6441	5048	4236	2112	1331	568	694	2922	3390	2381	2977
1970	5965	3326	2328	2022	2156	1052	420	257	170	897	715	808	1670
1971	3550	4293	3284	5224	4047	2301	1166	625	303	996	1132	1178	2327
1972	6427	8045	6107	3876	2893	3252	1590	667	2488	2467	2222	2220	3502
1973	4280	2693	1792	1813	1233	1452	574	298	148	266	1254	2252	1498
1974	3913	4222	5401	4345	3115	1663	1105	551	1952	1528	1087	891	2469
1975	962	2045	2274	1431	1771	1904	843	1372	752	473	1048	2262	1425
1976	1833	4246	3462	4140	2637	1195	676	341	2271	4514	6261	3624	2920
1977	5419	4361	3262	2087	2903	2063	923	582	298	877	1295	2614	2215
1978	3213	3716	3307	2692	4581	2179	1015	468	281	100	838	3171	2124
1979	6230	4324	2701	2265	1493	973	339	178	70	2164	4136	1870	2215
1980	2103	1800	2276	2871	2662	1726	769	946	580	294	1184	696	1489
1981	988	705	2017	2638	1296	853	1197	489	210	222	106	2004	1064
1982	2768	3253	2184	2935	1346	606	300	196	60	11	1739	1737	1414
1983	740	1248	2502	1761	1532	631	381	137	82	18	161	1036	851
1984	1135	1208	1689	2074	2191	1660	718	588	497	791	3032	4090	1640
1985	2121	1700	1530	1555	1641	960	468	230	119	38	7	1064	950
1986	1137	4578	3488	3041	2175	993	525	201	93	1252	1154	1280	1640
1987	1574	4257	2939	2583	1495	838	627	346	138	1426	2929	5134	2010
1988	5030	3660	1788	3025	2362	1140	534	265	160	275	1867	1220	1769
1989	1096	1009	1054	2038	1981	816	428	194	569	703	1823	1904	1134
1990	851	1861	1107	2321	1374	716	402	172	94	1176	1164	1217	1031
1991	1430	1391	2787	1995	2087	952	474	234	109	264	784	540	1086
1992	866	1083	1469	882	1276	1925	871	408	644	1012	491	623	962
1993	517	769	1312	2081	3589	1441	754	350	723	1262	3699	3078	1634
1994	2034	3819	2461	1447	1301	615	326	92	878	3286	4882	2434	1949
1995	1559	1114	923	650	686	287	144	54	855	2193	1847	4307	1223
1996	8135	7512	5555	4065	3169	2007	876	383	655	1196	1527	5897	3407
1997	7328	3618	1846	1032	832	1178	395	288	160	443	1940	4166	1931
1998	4350	2522	1333	2262	3127	2032	867	440	240	101	22	189	1452
1999	2751	1178	1244	1907	3229	1425	642	380	185	1039	2613	1620	1520
2000	1086	735	593	1599	1853	898	435	238	462	1572	929	2445	1073
2000	4693	3956	4210	2310	1301	696	478	268	341	2710	1288	685	1903
2002	820	1494	1947	1900	1633	1077	541	487	1760	2212	1686	7346	1915
2003	4521	2656	2803	2517	1574	630	355	146	1095	2441	41.37	9595	2713
2004	4407	3434	3401	3659	2996	1491	826	663	852	714	520	1406	2027
2004	738	700	489	955	1117	981	572	267	2940	1519	1234	703	1015
2006	2532	3730	1848	1146	526	338	96	207	1317	1273	703	854	1182
2000	8/18	1366	1172	1553	1671	018	437	206	100	375	733	1044	872
2007	2275	1636	1176	2152	2955	510	-57	200	100	575	100	1044	2043
2000	2848	2036	2635	2461	2300	1325	678	377	717	1268	170/	2251	1781
moy	2040	2000	2000	2-701	2170	1020	010	511	111	1200	1754	2201	1701

Table Ann. 2. Etape 1 : Moyennes (mensuelles et annuelles en l/s) des débits simulés par le modèle de transfert (ModHE_0.34Ging_256j) construit sur la chronique Qnaturel(Q0.34Ginger_valide).

mois nois 5 6 7 8 9 10 11 12 moy 1962 5535 5528 3114 4107 2236 1822 1017 537 2493 1623 4703 3110 2961 1964 3356 4678 7163 5094 2924 1036 463 2233 2413 2423 2440 3035 1966 2072 207 316 1542 733 417 216 68 766 3515 2765 2095 1734 1966 1774 1422 327 174 1544 987 432 149 593 311 1553 317 2450 333 1011 1259 1636 1331 1566 642 222 2300 2381 1297 131 131 131 131 131 131 131 131 131 131 131 131 131 131 13	Moyenne	e de Mod	IHEV2_	34_366	J									
annee 1 2 3 4 5 6 7 8 9 10 11 12 Moy 1962 553 5528 3114 4107 226 1822 1017 537 2493 1623 4703 4112 1254 1965 2725 2607 3216 1542 273 417 802 359 293 1031 789 531 1500 1967 7745 4122 2827 1774 1644 987 331 145 337 1245 338 1011 1259 1636 1531 1968 192 1611 1371 1962 2524 2004 1667 899 1333 1011 1259 1636 1531 1970 5965 3328 2222 1620 1331 1333 1452 1506 667 2248 2467 2222 2203 352 1482 16105 1518 <td< th=""><th>,</th><th>mois</th><th></th><th></th><th></th><th></th><th></th><th>-</th><th></th><th></th><th>10</th><th></th><th>10</th><th></th></td<>	,	mois						-			10		10	
1962 541 268 304 1681 2284 1621 1254 1964 3555 5528 3114 4107 2236 1822 1017 537 2493 1623 4703 3110 2961 1964 3355 4678 7163 5094 2988 2022 1036 483 2233 2413 2423 2460 3051 2765 2095 1724 1966 2101 3673 3008 2836 2429 1478 682 311 1550 533 3961 1531 1566 691 333 1011 1259 1636 1531 1970 5965 3226 2328 2022 1166 152 303 961 132 1718 3550 132 1718 350 132 1278 1481 266 1252 1481 1269 1494 1497 1414 1414 1414 1414 1414 1414 1414 <th>année</th> <th>1</th> <th>2</th> <th>3</th> <th>4</th> <th>5</th> <th>6</th> <th></th> <th>8</th> <th>9</th> <th>10</th> <th>11</th> <th>12</th> <th>moy</th>	année	1	2	3	4	5	6		8	9	10	11	12	moy
1964 353 528 3114 4107 2236 1822 1017 537 2493 1623 473 2433 2440 3035 1966 2725 2607 3216 1542 773 417 216 68 766 3515 2765 2095 1724 1966 2714 4122 3826 223 1031 789 531 1353 1453 337 1245 1968 192 1611 1371 1962 2524 2004 1667 899 1383 1011 1259 1636 1531 2781 1745 808 1670 1970 5965 3326 2328 2222 1500 667 2480 2667 2222 2203 502 1758 808 1670 1971 3610 333 4262 1333 1426 1435 1155 1653 1372 158 268 1438 1479 2616	1962	5505		0444	44.07	0000	4000	541	268	304	1681	2854	1621	1254
1966 272 203 2413 2413 2433 2413 2441 3443 2640 3035 1966 2019 3673 3008 2836 2429 1478 802 359 293 1031 789 531 1565 1966 2019 3673 3008 2836 2224 1467 802 359 131 145 337 1245 1966 2161 1371 1962 2524 2004 1667 809 138 145 368 664 222 3200 2381 2977 1970 566 3262 2222 150 667 2488 2467 2222 220 350 1977 5420 6433 1722 1813 1733 1468 1231 1468 1477 1548 2864 1422 1448 2642 1242 1459 1469 1483 1372 752 4733 148 2621	1963	5535	5528	3114	4107	2236	1822	1017	537	2493	1623	4703	3110	2961
1966 2/25 2007 3/216 1942 7/33 417 216 68 7/60 315 2785 2095 11/24 1966 192 1611 1377 1544 987 432 149 59 31 145 337 1245 1968 192 1611 1371 1962 2242 2904 1667 899 1383 1011 1259 1636 1531 1968 1944 4333 6441 5044 222 2166 1052 420 257 170 897 758 681 670 1971 3550 4293 3284 5224 4047 2301 1166 627 2489 148 2467 2222 2203 502 1987 340 2252 1488 1974 3913 4262 1435 1165 1663 1431 1271 1048 262 1422 1454 2222 1451 </td <td>1964</td> <td>3358</td> <td>4678</td> <td>/163</td> <td>5094</td> <td>2988</td> <td>2022</td> <td>1036</td> <td>463</td> <td>2233</td> <td>2413</td> <td>2423</td> <td>2640</td> <td>3035</td>	1964	3358	4678	/163	5094	2988	2022	1036	463	2233	2413	2423	2640	3035
1966 2019 3673 3008 2836 2429 1476 802 359 293 1031 789 531 1245 1966 192 1611 1371 1962 2524 2904 1667 899 1383 1011 1259 1636 1531 1970 5965 3326 2322 2156 1052 420 257 170 897 715 808 1670 1971 3550 4293 3284 5224 4047 2301 1166 625 303 996 1132 1178 2327 1972 6427 8045 6107 3876 2893 3252 1590 667 2488 2467 2222 2200 3502 1580 1670 3812 4268 1975 962 2045 2741 431 1771 1904 433 1377 131 426 1252 1528 1614 1361 1262	1965	2725	2607	3216	1542	793	417	216	68	766	3515	2765	2095	1724
1966 192 161 337 1243 347 149 59 31 145 337 1245 1966 3194 3433 6441 5048 2524 2004 1667 899 1383 1011 1259 1636 1531 1969 3194 3433 6441 5048 2328 2022 2156 1052 420 257 170 897 1132 1178 2277 1972 6427 8045 6107 3876 2893 3252 1500 667 2488 2467 2222 2220 3502 1973 3142 5401 3435 3115 1663 1105 511 152 1281 1048 2262 1425 1425 1475 1425 1473 1364 337 1252 161 1636 151 1562 1482 161 164 161 164 161 161 161 1625 1425	1966	2019	3673	3008	2836	2429	1478	802	359	293	1031	789	531	1590
1966 192 1611 137 1962 2024 2904 16b7 899 1383 1011 1299 1636 1531 1970 5965 3326 2328 2022 2156 1052 420 257 170 897 715 808 1670 1971 6427 8045 6107 3876 2893 1222 1176 2222 2020 550 1973 4280 2693 1792 1813 1233 1452 574 298 148 266 1254 2222 2200 507 1975 962 2045 2274 1431 1711 1904 843 1271 4514 6261 3622 2222 1087 891 2469 1976 9433 3262 2242 1363 370 2274 1431 1721 4514 6261 3624 2920 1661 1879 292 166 18371 1215	1967	1745	4122	3827	1774	1544	987	432	149	59	31	145	337	1245
1905 3194 3433 6441 5048 2412 1331 568 694 2922 3390 2381 2977 1970 5956 3228 2222 2156 1052 420 3977 715 808 1670 1971 3550 4293 3284 5224 4047 2301 1166 625 303 996 1132 1178 2327 1972 6427 8045 6107 3876 2898 3252 1590 667 2488 2467 2222 2220 300 2351 2468 148 266 1254 2252 1488 1976 562 2045 2247 1431 1711 1904 843 1372 752 473 1048 262 1422 1976 333 716 3307 2691 4561 2777 1071 4514 6580 294 1184 696 1489 1976	1968	192	1611	13/1	1962	2524	2904	1667	899	1383	1011	1259	1636	1531
1970 5965 3326 2022 2130 1032 420 237 170 897 713 808 167 1971 5550 4233 3284 5224 4047 2222 2220 3502 1973 4260 2693 1792 1813 1233 1452 574 298 144 266 1254 2252 1498 1974 3913 4222 5401 4345 3115 1663 1105 551 1922 423 1048 2262 1425 1975 913 4246 3462 2140 2637 1195 676 341 2271 4514 6261 3624 2202 1977 5419 4361 3262 288 877 1295 2614 2215 1978 2103 1800 2276 2871 2633 1497 89 210 222 106 2044 1689 1480 1480	1969	3194	3433	6441	5048	4236	2112	1331	568	694	2922	3390	2381	2977
1977 6429 3224 4047 2301 1166 620 303 396 1132 1178 232 1972 6427 8045 6107 3876 2893 3252 1590 667 2488 2467 2222 2220 3502 1973 4280 2693 1792 1813 1233 1452 574 298 148 266 1254 2252 1498 1975 962 2045 2274 1431 1771 1904 843 1372 752 473 1048 2262 1425 1976 1833 4246 3462 2140 2637 1923 582 298 877 1295 2614 2215 1976 3213 3716 3307 2692 4581 2179 1015 468 281 100 838 3171 1215 1980 2103 1800 2276 2871 2662 1726 769 946 580 294 1144 696 1489 1981 <td>1970</td> <td>2902</td> <td>3320</td> <td>2320</td> <td>2022</td> <td>2100</td> <td>1052</td> <td>420</td> <td>257</td> <td>170</td> <td>097</td> <td>617</td> <td>000</td> <td>1070</td>	1970	2902	3320	2320	2022	2100	1052	420	257	170	097	617	000	1070
1972 6427 60435 6107 3876 2933 3252 1580 667 2488 2467 2222 2220 3500 1973 4220 2693 1792 1813 1233 1452 574 298 148 266 1252 1248 2252 1498 1975 962 2045 2274 1431 1771 1904 843 1372 752 473 1048 266 1262 1262 1423 1976 952 2045 2277 1205 1403 973 339 178 70 2164 4136 1870 215 1980 2103 1300 276 2871 2666 300 1946 580 294 1184 696 1489 1981 988 705 2017 2638 1296 853 1197 489 210 222 106 2044 1648 1981 986 70	1971	3550	4293	3204	5224 2070	4047	2301	1100	020	303	990	1132	11/0	2321
1974 4260 2093 1743 208 148 2060 1294 2252 1494 1974 3913 4222 2404 5314 1711 1904 843 1372 752 473 1048 2262 1425 1976 1833 4246 3462 2462 2637 1195 676 341 2271 4081 3624 2262 1977 5419 4361 3262 2087 2003 2063 923 582 298 877 1295 2614 2215 1976 3213 3716 3307 2692 4581 1705 648 821 100 383 3171 1212 1979 6230 4324 2701 2265 1493 973 339 178 70 2164 4136 1870 2215 1806 1870 2172 1416 1666 100 188 101 1808 2701 2262 1761 1532 631 381 137 82 1806 1481 1016 <td>1972</td> <td>0427</td> <td>0045</td> <td>4700</td> <td>30/0</td> <td>2093</td> <td>3232</td> <td>1590</td> <td>007</td> <td>2400</td> <td>2407</td> <td>4054</td> <td>2220</td> <td>3502</td>	1972	0427	0045	4700	30/0	2093	3232	1590	007	2400	2407	4054	2220	3502
1975 9913 4222 5401 4345 3115 1003 1195 1952 1007 631 2463 1976 1833 4246 3462 4140 2637 1195 676 341 2271 4514 6261 3622 1425 1976 1833 4246 3462 2087 2903 2063 923 582 298 877 1295 2614 2215 1978 3213 3716 3307 2692 4581 2179 1015 468 281 100 838 3171 2124 1978 2210 1800 2276 2871 2662 1726 769 946 580 294 1184 696 1489 1981 988 705 2171 1532 631 381 137 82 18 161 1036 6851 1984 1135 1208 1681 2901 1221 174	1973	4280	2693	1792	1813	1233	1452	574	298	148	200	1254	2252	1498
1970 902 2043 22/4 1431 1771 1944 643 1372 732 732 743 1048 2262 1423 1976 1833 426 3462 440 2637 1195 676 341 2271 4514 6261 3624 2920 1977 5419 4361 3262 2087 2903 2063 923 582 298 877 1295 2614 2215 1978 3213 3716 300 2063 923 188 70 2164 4136 1870 2215 1980 023 2768 3253 2184 2935 1346 606 300 196 60 11 1733 1414 1983 740 1248 2502 1761 1532 631 381 137 82 18 161 1036 551 1984 1135 1208 1689 2074 2111	1974	3913	4222	0401	4345	3113	1003	042	1070	1952	1526	1007	091	2409
1975 1633 4240 3424 2087 2087 2083 2023 522 298 877 1295 2614 2215 1976 5419 4361 3262 2087 2003 2063 223 522 298 877 1295 2614 2215 1976 6230 4324 2701 2265 1493 973 339 178 70 2164 4136 1870 2215 1980 2103 1800 2276 2871 2662 1726 769 946 580 294 1184 696 1489 1981 988 705 2017 2038 1294 853 1197 489 210 220 106 2004 1064 1982 2768 3253 2184 2035 1346 606 300 196 60 11 1739 1737 1414 1983 740 1248 503 1660 </td <td>1975</td> <td>902</td> <td>2045</td> <td>2274</td> <td>1431</td> <td>1//1</td> <td>1904</td> <td>043 676</td> <td>1372</td> <td>102</td> <td>413</td> <td>1046</td> <td>2202</td> <td>1420</td>	1975	902	2045	2274	1431	1//1	1904	043 676	1372	102	413	1046	2202	1420
1977 5419 4361 3262 2083 2903 2003 923 562 258 677 1295 2014 2215 1978 3213 3716 307 2692 4581 2179 1015 468 281 100 888 3171 2124 1980 2103 1800 2276 2871 2662 1726 769 946 580 294 1184 696 1489 1981 988 705 2017 2638 1296 853 1197 489 210 222 106 2004 1064 1982 2768 3253 2184 2935 1346 606 300 196 60 11 1737 1414 1983 740 1248 2502 1761 1532 6311 313 137 82 118 161 103 4516 450 1061 1984 1137 4578 348	1976	1833	4246	3462	4140	2637	1195	676	341	2271	4514	6261	3624	2920
1979 5213 3716 3307 2692 4361 2179 1013 466 261 1000 636 3171 2121 1979 6230 4324 2701 2265 1493 973 339 178 70 2164 4136 1870 2215 1980 2103 1800 2276 2871 2662 1726 769 946 580 294 1184 696 1489 1981 988 705 2017 2638 1296 853 1197 489 210 222 106 2004 1064 1982 2768 3253 2184 2935 1346 606 300 196 60 11 1739 1737 1414 1983 740 1248 2902 1761 1530 1555 1641 960 468 230 119 38 7 1064 950 1985 2121 1700 1530 1555 1641 960 468 138 1426 2929 51	1977	5419	4301	3262	2087	2903	2063	923	282	298	8//	1295	2014	2215
1979 6230 4424 2/01 2265 1443 973 333 176 776 177 1414 1983 770 1248 2502 1761 1552 631 381 137 873 383 1064 606 111 1739 1737 1414 1985 12121 1700 1553 1641 960 468 230 119 38 7 1064 950 138 1420 1460 1460 147 138 1426 2929 5134 2010	1970	3213	3710	3307	2092	4001	2179	1015	400	201	100	4426	3171	2124
1980 2103 1800 2276 2017 2632 1726 769 946 580 294 1164 696 1439 1981 988 705 2017 2638 1296 853 1197 489 210 222 106 1064 1064 1982 2768 3253 2184 2935 1346 606 300 196 60 11 1739 1737 1414 1983 740 1248 2502 1761 1532 631 381 137 82 18 161 1036 851 1984 1137 4578 3488 3041 2175 993 525 201 93 1252 1154 1280 1640 1987 1574 4257 2939 2583 1495 838 627 346 138 1426 2929 5134 2010 1988 5030 3660 1788 3025 2362 1140 534 265 160 275 1867 1220 176	1979	0230	4324	2701	2200	1493	973	339	1/0	70	2104	4130	1070	2213
1961 966 705 2017 2038 1296 633 1197 4469 210 222 100 2004 1004 1982 2768 3253 2184 2935 1346 606 300 196 60 11 1737 1414 1983 740 1248 2502 1761 1532 631 381 137 82 18 161 1036 851 1984 1135 1208 1689 2074 2191 1660 718 588 497 791 3032 4090 1640 1985 2121 1700 1530 1555 1641 960 468 230 119 38 7 1064 950 1986 1036 660 1788 3025 2362 1440 545 160 275 1867 1220 1769 1989 1096 1009 1054 2038 1881 647	1960	2103	705	2270	2071	2002	052	1107	940	210	294	104	2004	1469
1962 2760 5235 2164 2935 1346 606 300 196 600 11 1739 11414 1983 740 1248 2502 1761 1532 631 381 137 82 18 161 1036 851 1984 1135 1208 1689 2074 2191 1660 718 588 497 791 3032 4090 1640 1985 2121 1700 1530 1555 1641 960 468 230 119 38 7 1064 950 1986 1137 4578 3488 3041 2175 993 525 201 93 1252 1154 1280 1640 1987 1574 4257 2939 2583 1495 838 627 346 138 1426 2929 5134 2010 1988 1096 1091 154 2038 1981 816 428 194 169 703 1823 1904 1134 <	1901	900	2052	2017	2030	1290	605	200	409	210	11	1720	2004	1004
1965 740 1246 2302 1701 1352 631 331 1351 125 161 1036 631 1984 1135 1208 1689 2074 2191 1660 718 588 497 791 3032 4090 1640 1985 2121 1700 1530 1555 1641 960 468 230 119 38 7 1064 950 1986 1137 4578 3488 3041 2175 993 525 201 93 1252 1154 1280 1640 1987 1574 4257 2939 2583 1495 838 627 346 138 1426 2929 5134 2010 1988 1009 1054 2038 1981 816 428 194 569 703 1823 1904 1134 1990 851 1861 1107 2321 1374 716 402 172 94 1164 1217 1031 1991 14	1902	2700	3203	2104	2935	1540	621	201	190	00	10	161	1/3/	051
1964 1135 1206 1689 2074 2191 1600 716 536 497 791 3032 4090 1640 1985 2121 1700 1530 1555 1641 960 468 230 119 38 7 1064 950 1986 1137 4578 3488 3041 2175 993 525 201 93 1252 1154 1280 1640 1987 1574 4257 2939 2583 1495 838 627 346 138 1426 2929 5134 2010 1988 1096 1009 1054 2038 1981 816 428 194 569 703 1823 1904 1134 1990 851 1861 1107 2321 1374 716 402 172 94 1176 1164 1217 1031 1991 1430 1391 2787 1995 2087 952 474 234 109 264 784 540 10	1903	140	1240	2002	1/01	1002	1660	301	137	407	701	101	1030	100
1965 2121 1700 1535 1641 900 465 250 119 35 17 1064 935 1986 1137 4578 3488 3041 2175 993 525 201 93 1252 1154 1280 1640 1987 1574 4257 2939 2583 1495 838 627 346 138 1426 2929 5134 2010 1988 5030 3660 1788 3025 2362 1140 534 265 160 275 1867 1220 1769 1990 851 1861 1107 2321 1374 716 402 172 94 1176 1164 1217 1031 1991 1430 1391 2787 1995 2087 952 474 234 109 264 784 540 1086 1992 866 1083 1447 1301 615 326 92 878 3286 4882 2434 1949 199	1904	2121	1200	1009	2074	2191	1000	110	200	497	20	3032	4090	1640
1980 1137 4378 3436 3041 2173 393 323 201 353 1232 1134 1232 1134 1230 1134 1230 1134 1230 1134 1230 1134 1232 1134 1230 1134 1232 1134 1232 1134 1232 1134 1232 1134 1232 1134 1232 1134 1232 1134 1169 138 1426 2929 5134 2010 1988 1096 1009 1054 2038 1981 816 428 194 569 703 1823 1904 1134 1990 851 1861 1107 2321 1374 716 402 172 94 1176 1164 1217 1031 1991 1430 1391 2787 1995 2087 952 474 234 109 264 784 540 1086 1992 866 1083 1469 882 1276 1925 871 408 644 1012 <td>1905</td> <td>1127</td> <td>4579</td> <td>2/00</td> <td>2041</td> <td>2175</td> <td>900</td> <td>400 525</td> <td>201</td> <td>03</td> <td>1252</td> <td>1157</td> <td>1290</td> <td>1640</td>	1905	1127	4579	2/00	2041	2175	900	400 525	201	03	1252	1157	1290	1640
1987 1374 4237 2383 2383 1493 538 627 546 138 1426 2529 5134 2010 1988 5030 3660 1788 3025 2362 1140 534 265 160 275 1867 1220 1769 1989 1096 1009 1054 2038 1981 816 428 194 569 703 1823 1904 1134 1990 851 1861 1107 2321 1374 716 402 172 94 1176 1164 1217 1031 1991 1430 1391 2787 1995 2087 952 474 234 109 264 784 540 1086 1993 517 769 1312 2081 3589 1441 754 350 723 1262 3699 3078 1634 1994 2034 3819 2461 1447 1301 615 326 92 878 3286 4882 2434 <	1900	157	4070	3400	3041	2175	993	525	201	120	1406	2020	120U	2010
1985 3050 3050 1765 3052 2302 1140 334 203 1000 273 1801 1220 1735 1989 1096 1009 1054 2038 1981 816 428 194 569 703 1823 1904 1134 1990 851 1861 1107 2321 1374 716 402 172 94 1176 1164 1217 1031 1991 1430 1391 2787 1995 2087 952 474 234 109 264 784 540 1086 1992 866 1083 1469 882 1276 1925 871 408 644 1012 491 623 962 1993 517 769 1312 2081 3589 1441 754 350 723 1262 3699 3078 1634 1994 2034 3819 2461 1447 1301 615 326 92 878 3286 4882 2434	1000	5020	4207	2939	2005	2262	1140	524	265	160	275	2929	1220	1760
1990 851 1861 1107 2321 1374 716 402 172 94 1176 1164 1217 1031 1991 1430 1391 2787 1995 2087 952 474 234 109 264 784 540 1086 1992 866 1083 1469 882 1276 1925 871 408 644 1012 491 623 962 1993 517 769 1312 2081 3589 1441 754 350 723 1262 3699 3078 1634 1994 2034 3819 2461 1447 1301 615 326 92 878 3286 4882 2434 1949 1995 1559 1114 923 650 686 287 144 54 855 2193 1847 4307 1223 1996 8135 7512 5555 4065 3169 2007 876 383 655 1196 1527 5897 340	1900	1006	1000	1054	2023	1081	816	128	10/	560	703	1823	1220	113/
1991 1430 1391 2787 1995 2087 952 474 234 109 264 784 540 1086 1992 866 1083 1469 882 1276 1925 871 408 644 1012 491 623 962 1993 517 769 1312 2081 3589 1441 754 350 723 1262 3699 3078 1634 1994 2034 3819 2461 1447 1301 615 326 92 878 3286 4882 2434 1949 1995 1559 1114 923 650 686 287 144 54 855 2193 1847 4307 1223 1996 8135 7512 5555 4065 3169 2007 876 383 655 1196 1527 5897 3407 1997 7328 3618 1846 1032 832 1178 395 288 160 443 1940 4166 19	1000	851	1861	1107	2000	137/	716	402	172	0/J	1176	1164	1217	1031
1991 1430 1381 2767 1993 2007 352 474 234 109 204 764 340 1060 1992 866 1083 1469 882 1276 1925 871 408 644 1012 491 623 962 1993 517 769 1312 2081 3589 1441 754 350 723 1262 3699 3078 1634 1994 2034 3819 2461 1447 1301 615 326 92 878 3286 4882 2434 1949 1995 1559 1114 923 650 686 287 144 54 855 2193 1847 4307 1223 1996 8135 7512 5555 4065 3169 2007 876 383 655 1196 1527 5897 3407 1997 7328 3618 1846 1032 832 1178 395 288 160 443 1940 4166 19	1001	1/20	1201	2797	1005	2097	052	402	224	100	264	794	540	1031
1332 500 1000 1403 1403 1523 611 400 644 1012 431 623 362 1993 517 769 1312 2081 3589 1441 754 350 723 1262 3699 3078 1634 1994 2034 3819 2461 1447 1301 615 326 92 878 3286 4882 2434 1949 1995 1559 1114 923 650 686 287 144 54 855 2193 1847 4307 1223 1996 8135 7512 5555 4065 3169 2007 876 383 655 1196 1527 5897 3407 1997 7328 3618 1846 1032 832 1178 395 288 160 443 1940 4166 1931 1998 4350 2522 1333 2262 3127 2032 867 440 240 101 22 189 1452	1002	866	1083	1/60	882	1276	1025	871	204 408	644	1012	/04	623	062
1994 2034 3819 2461 1447 1301 615 326 92 878 3286 4882 2434 1949 1995 1559 1114 923 650 686 287 144 54 855 2193 1847 4307 1223 1996 8135 7512 5555 4065 3169 2007 876 383 655 1196 1527 5897 3407 1997 7328 3618 1846 1032 832 1178 395 288 160 443 1940 4166 1931 1998 4350 2522 1333 2262 3127 2032 867 440 240 101 22 189 1452 1999 2751 1178 1244 1907 3229 1425 642 380 185 1039 2613 1620 1520 2000 1086 735 593 1599 1853 898 435 238 462 1572 929 2445 <td< td=""><td>1003</td><td>517</td><td>760</td><td>1409</td><td>2081</td><td>3580</td><td>1925</td><td>754</td><td>350</td><td>723</td><td>1262</td><td>3600</td><td>3078</td><td>163/</td></td<>	1003	517	760	1409	2081	3580	1925	754	350	723	1262	3600	3078	163/
1354 2654 515 2461 1441 1361 616 526 52 616 5266 4062 2464 1345 1995 1559 1114 923 650 686 287 144 54 855 2193 1847 4307 1223 1996 8135 7512 5555 4065 3169 2007 876 383 655 1196 1527 5897 3407 1997 7328 3618 1846 1032 832 1178 395 288 160 443 1940 4166 1931 1998 4350 2522 1333 2262 3127 2032 867 440 240 101 22 189 1452 1999 2751 1178 1244 1907 3229 1425 642 380 185 1039 2613 1620 1520 2000 1086 735 593 1599 1853 898 435 238 462 1572 929 2445	1000	2034	3810	2461	1447	1301	615	326	92	878	3286	4882	2434	1004
1333 1111 323 636 636 207 876 383 655 2133 1641 4361 1322 1996 8135 7512 5555 4065 3169 2007 876 383 655 1196 1527 5897 3407 1997 7328 3618 1846 1032 832 1178 395 288 160 443 1940 4166 1931 1998 4350 2522 1333 2262 3127 2032 867 440 240 101 22 189 1452 1999 2751 1178 1244 1907 3229 1425 642 380 185 1039 2613 1620 1520 2000 1086 735 593 1599 1853 898 435 238 462 1572 929 2445 1073 2001 4693 3956 4210 2310 1301 696 478 268 341 2710 1288 685 1903 <td>1004</td> <td>1559</td> <td>1114</td> <td>023</td> <td>650</td> <td>686</td> <td>287</td> <td>144</td> <td>54</td> <td>855</td> <td>2103</td> <td>1847</td> <td>4307</td> <td>1223</td>	1004	1559	1114	023	650	686	287	144	54	855	2103	1847	4307	1223
1997 7328 3618 1846 1032 832 1178 395 288 160 443 1940 4166 1931 1998 4350 2522 1333 2262 3127 2032 867 440 240 101 22 189 1452 1999 2751 1178 1244 1907 3229 1425 642 380 185 1039 2613 1620 1520 2000 1086 735 593 1599 1853 898 435 238 462 1572 929 2445 1073 2001 4693 3956 4210 2310 1301 696 478 268 341 2710 1288 685 1903 2002 820 1494 1947 1900 1633 1077 541 487 1760 2212 1686 7346 1915 2003 4521 2656 2803 2517 1574 630 355 146 1095 2441 4137 9595	1996	8135	7512	5555	4065	3160	2007	876	383	655	1106	1527	5897	3407
1998 4350 2522 1333 2262 3127 2032 867 440 240 101 22 189 1452 1999 2751 1178 1244 1907 3229 1425 642 380 185 1039 2613 1620 1520 2000 1086 735 593 1599 1853 898 435 238 462 1572 929 2445 1073 2001 4693 3956 4210 2310 1301 696 478 268 341 2710 1288 685 1903 2002 820 1494 1947 1900 1633 1077 541 487 1760 2212 1686 7346 1915 2003 4521 2656 2803 2517 1574 630 355 146 1095 2441 4137 9595 2713 2004 4407 3434 3401 3659 2996 1491 826 663 852 714 520 1406	1997	7328	3618	1846	1032	832	1178	395	288	160	443	1940	4166	1931
1999 2751 1178 1244 1907 3229 1425 642 380 185 1039 2613 1620 1520 2000 1086 735 593 1599 1853 898 435 238 462 1572 929 2445 1073 2001 4693 3956 4210 2310 1301 696 478 268 341 2710 1288 685 1903 2002 820 1494 1947 1900 1633 1077 541 487 1760 2212 1686 7346 1915 2003 4521 2656 2803 2517 1574 630 355 146 1095 2441 4137 9595 2713 2004 4407 3434 3401 3659 2996 1491 826 663 852 714 520 1406 2027 2005 738 700 489 955 1117 981 572 267 2940 1519 1234 703	1998	4350	2522	1333	2262	3127	2032	867	440	240	101	22	189	1452
1000 1086 735 593 1599 1853 898 435 238 462 1572 929 2445 1073 2001 4693 3956 4210 2310 1301 696 478 268 341 2710 1288 685 1903 2002 820 1494 1947 1900 1633 1077 541 487 1760 2212 1686 7346 1915 2003 4521 2656 2803 2517 1574 630 355 146 1095 2441 4137 9595 2713 2004 4407 3434 3401 3659 2996 1491 826 663 852 714 520 1406 2027 2005 738 700 489 955 1117 981 572 267 2940 1519 1234 703 1015 2006 2532 3730 1848 1146 526 338 96 33 1317 1273 703 854	1999	2751	1178	1244	1907	3229	1425	642	380	185	1039	2613	1620	1520
2001 4693 3956 4210 2310 1301 696 478 268 341 2710 1288 685 1903 2002 820 1494 1947 1900 1633 1077 541 487 1760 2212 1686 7346 1915 2003 4521 2656 2803 2517 1574 630 355 146 1095 2441 4137 9595 2713 2004 4407 3434 3401 3659 2996 1491 826 663 852 714 520 1406 2027 2005 738 700 489 955 1117 981 572 267 2940 1519 1234 703 1015 2006 2532 3730 1848 1146 526 338 96 33 1317 1273 703 854 1182 2007 848 1366 1172 1553 1671 918 437 206 199 375 733 1044	2000	1086	735	593	1599	1853	898	435	238	462	1572	929	2445	1020
2002 820 1494 1947 1900 1633 1077 541 487 1760 2212 1686 7346 1915 2003 4521 2656 2803 2517 1574 630 355 146 1095 2441 4137 9595 2713 2004 4407 3434 3401 3659 2996 1491 826 663 852 714 520 1406 2027 2005 738 700 489 955 1117 981 572 267 2940 1519 1234 703 1015 2006 2532 3730 1848 1146 526 338 96 33 1317 1273 703 854 1182 2007 848 1366 1172 1553 1671 918 437 206 199 375 733 1044 873 2008 2275 1636 1176 2152 2955 2043 2043 2043 mov 2848 2936 <t< td=""><td>2000</td><td>4693</td><td>3956</td><td>4210</td><td>2310</td><td>1301</td><td>696</td><td>478</td><td>268</td><td>341</td><td>2710</td><td>1288</td><td>685</td><td>1903</td></t<>	2000	4693	3956	4210	2310	1301	696	478	268	341	2710	1288	685	1903
2003 4521 2656 2803 2517 1574 630 355 146 1095 2441 4137 9595 2713 2004 4407 3434 3401 3659 2996 1491 826 663 852 714 520 1406 2027 2005 738 700 489 955 1117 981 572 267 2940 1519 1234 703 1015 2006 2532 3730 1848 1146 526 338 96 33 1317 1273 703 854 1182 2007 848 1366 1172 1553 1671 918 437 206 199 375 733 1044 873 2008 2275 1636 1176 2152 2955 2043 2043 2043 mov 2848 2936 2635 2461 2143 1325 678 377 717 1268 1794 2251 1784	2002	820	1494	1947	1900	1633	1077	541	487	1760	2212	1686	7346	1915
2004 4407 3434 3401 3659 2996 1491 826 663 852 714 520 1406 2027 2005 738 700 489 955 1117 981 572 267 2940 1519 1234 703 1015 2006 2532 3730 1848 1146 526 338 96 33 1317 1273 703 854 1182 2007 848 1366 1172 1553 1671 918 437 206 199 375 733 1044 873 2008 2275 1636 1176 2152 2955 2043 2043 mov 2848 2936 2635 2461 2143 1325 678 377 717 1268 1794 2251 1784	2003	4521	2656	2803	2517	1574	630	355	146	1095	2441	4137	9595	2713
2005 738 700 489 955 1117 981 572 267 2940 1519 1234 703 1015 2006 2532 3730 1848 1146 526 338 96 33 1317 1273 703 854 1182 2007 848 1366 1172 1553 1671 918 437 206 199 375 733 1044 873 2008 2275 1636 1176 2152 2955 2043 2043 mov 2848 2936 2635 2461 2143 1325 678 377 717 1268 1794 2251 1781	2004	4407	3434	3401	3659	2996	1491	826	663	852	714	520	1406	2027
2006 2532 3730 1848 1146 526 338 96 33 1317 1273 703 854 1182 2007 848 1366 1172 1553 1671 918 437 206 199 375 733 1044 873 2008 2275 1636 1176 2152 2955 2043 2043 mov 2848 2936 2635 2461 2143 1325 678 377 717 1268 1794 2251 1781	2004	738	700	489	955	1117	981	572	267	2940	1519	1234	703	1015
2007 848 1366 1172 1553 1671 918 437 206 199 375 733 1044 873 2008 2275 1636 1176 2152 2955 2043 mov 2848 2936 2635 2461 2143 1325 678 377 717 1268 1794 2251 1781	2006	2532	3730	1848	1146	526	338	96	33	1317	1273	703	854	1182
2008 2275 1636 1176 2152 2955 2043 mov 2848 2936 2635 2461 2143 1325 678 377 717 1268 1794 2251 1781	2007	848	1366	1172	1553	1671	918	437	206	199	375	733	1044	873
mov 2848 2936 2635 2461 2143 1325 678 377 717 1268 1794 2251 1781	2008	2275	1636	1176	2152	2955	010	.07	200		0/0	.00	1044	2043
	mov	2848	2936	2635	2461	2143	1325	678	377	717	1268	1794	2251	1781

Table Ann. 3. Etape 1 : Moyennes (mensuelles et annuelles en l/s) des débits simulés par le modèle de transfert (ModHE_0.34Ging_366j) construit sur la chronique Qnaturel(Q0.38Ginger_valide).

	mois												
année	1	2	3	4	5	6	7	8	9	10	11	12	moy
1962						1268	624	243	248	1422	2618	1587	1135
1963	6007	6138	3433	4653	2534	1705	1128	513	2426	1750	4686	3196	3154
1964	3580	5202	7844	5727	3421	2537	889	307	2564	2665	2479	2987	3340
1965	2989	2813	3584	1847	863	452	111	3	844	3626	2871	2202	1846
1966	2368	3993	3270	3293	2662	1594	717	353	220	849	569	467	1680
1967	1943	4466	4325	2110	1831	990	247	128	52	0	129	327	1360
1968	197	1775	1555	2176	2514	2477	1381	789	997	721	1007	1640	1431
1969	3596	3956	7271	5762	4518	2520	1259	481	444	2599	3289	2462	3175
1970	6666	4114	2519	2421	2199	991	487	246	58	714	635	737	1805
1971	3654	4637	3395	5899	4487	2208	1366	565	123	884	957	1153	2428
1972	7029	9167	6979	4687	3231	3239	1600	663	2685	2656	2329	2375	3865
1973	4627	3053	1909	2129	1372	1343	701	266	151	120	1112	2405	1591
1974	4442	4730	6145	5243	3394	1967	1141	403	1777	1614	1126	1067	2740
1975	1144	2183	2685	1649	1994	2024	853	1445	864	307	961	2286	1529
1976	1900	4716	3860	4417	2902	1320	644	305	2477	4765	6223	3964	3110
1977	6176	5004	3480	2419	2799	1777	761	411	213	618	1150	2893	2296
1978	3636	4119	3754	3028	5111	2450	1106	699	140	0	800	3358	2344
1979	6396	4565	3006	2619	1390	723	366	133	57	2132	4236	2021	2289
1980	2333	2247	2263	3152	2756	1716	836	934	571	222	1070	681	1561
1081	888	737	2086	2811	1208	034	1170	363	180	120	7	2167	1068
1082	3150	3654	2556	3268	1200	623	310	46	1	0	1872	1586	1522
1083	608	1217	2561	1608	1511	762	205	1/2	2	2	30	1088	8/2
1004	1204	12/6	1005	2264	2251	1700	295	514	475	669	2102	1000	1742
1004	2220	1062	1726	1504	1611	1056	733 510	257	475	11	0	4303	1020
1905	1200	1902	2062	2207	2544	1030	476	201	0	1206	1202	11/9	1754
1900	1290	4000	2200	2006	1705	962	620	201	9 102	1200	2066	5171	2111
1000	5264	4000	2075	2900	2450	002	656	220	123	112	2900	1202	1076
1900	1004	4120	2075	1000	2409	900	474	200	44 267	407	1901	1010	1124
1909	1230	2005	1204	2072	1994	650	202	126	207	497	1240	1910	1044
1990	900	2005	2002	2072	2002	1000	392	200	20	1211	1240	1200	1041
1991	001	1017	3003	2270	2093	1090	407	200	31	020	357 401	404 520	067
1992	400	720	1037	952	1200	1950	801	417	100	930	401	529 2405	907
1993	400	120	1410	2200	3097	15/5	840	509	430	1099	3021	3185	1007
1994	2244	4238	2795	1384	1387	659	191	123	874	3211	5231	2649	2065
1995	1809	1480	714	566	628	252	122	75	904	2494	2022	4491	1299
1996	9056	8519	6395	4802	3452	1800	845	382	644	1262	1474	5970	3707
1997	8058	4074	2253	1375	443	833	341	213	141	342	1981	4623	2051
1998	4985	2946	1693	2575	2874	1978	959	531	172	9	3	195	1570
1999	2988	1385	1441	2245	3147	1482	794	397	84	974	2530	1636	1594
2000	1148	902	566	1501	1710	802	458	239	279	1467	917	2421	1037
2001	5029	4190	4588	2693	1242	572	328	126	244	2300	1199	581	1914
2002	892	1420	1997	1733	1503	893	390	382	1651	2055	1605	7485	1841
2003	4890	2732	3240	2592	1350	645	312	122	699	1935	3633	9183	2618
2004	4596	3553	3989	3573	3028	1686	896	618	709	641	461	1326	2087
2005	733	674	546	979	1076	937	591	274	3140	1661	996	722	1025
2006	2523	3957	2041	1356	753	179	62	0	1279	1275	673	862	1229
2007	929	1439	1272	1532	1524	826	376	195	106	187	698	1105	845
2008	2558	1949	1442	2245	3135								2270
moy	3107	3259	2930	2720	2228	1326	668	353	658	1193	1749	2315	1868

Moyenne de ModHEV2_38_128j

Table Ann. 4. Etape 1 : Moyennes (mensuelles et annuelles en l/s) des débits simulés par le modèle de transfert (ModHE_0.38Ging_128j) construit sur la chronique Qnaturel(Q0.38Ginger_valide).

Moyenn	e de Mo	odHEV2	2_38_25	56j									
	mois												
année	1	2	3	4	5	6	7	8	9	10	11	12	moy
1962									598	1574	2724	1602	1757
1963	5762	5930	3351	4349	2496	1896	1404	799	2575	1938	4691	3109	3167
1964	3414	4958	7858	5635	3370	2111	1216	631	2968	2930	2493	2806	3358
1965	2846	2810	3575	1837	899	476	329	191	1019	3648	2929	2114	1885
1966	2054	3832	3437	3320	2645	1494	895	502	412	1033	697	481	1719
1967	1838	4396	4288	2012	1478	962	531	428	221	67	179	358	1378
1968	200	1724	1515	2110	2433	2426	1407	757	1051	894	1185	1719	1448
1969	3532	3882	7080	5554	4372	2196	1469	703	959	2832	3496	2461	3207
1970	6374	3820	2519	2225	2323	1300	715	362	139	862	748	758	1837
1971	3523	4570	3306	5567	4244	2362	1285	756	465	1152	1185	1203	2452
1972	6822	8999	6783	4133	2812	3394	2171	1103	2852	2795	2478	2352	3871
1973	4486	3006	1996	1972	1404	1571	822	402	155	245	1206	2427	1634
1974	4365	4565	5879	4800	3406	1773	1394	718	2105	1833	1229	968	2741
1975	1036	2265	2665	1717	1835	2022	946	1536	908	436	1014	2323	1554
1976	1954	4613	3695	4208	2762	1241	733	516	2754	4952	6344	3785	3116
1977	5640	4805	3628	2485	2993	2055	974	640	284	841	1305	2930	2371
1978	3536	3937	3563	2836	4973	2578	1226	596	404	223	1055	3375	2352
1979	6286	4435	2684	2168	1482	1129	654	371	115	2220	4250	2022	2305
1980	2082	1831	2469	3114	3002	1692	771	987	749	453	1148	709	1582
1981	902	700	2047	2766	1326	799	1127	508	300	201	91	2135	1079
1982	3172	3576	2357	2932	1390	691	452	277	126	128	1884	1666	1539
1983	703	1164	2456	1812	1590	649	360	153	247	63	126	1075	866
1984	1288	1312	1790	2233	2263	1824	764	599	499	897	3272	4366	1759
1985	2289	1714	1541	1731	1895	1229	559	267	169	115	86	1182	1062
1986	1285	4765	3736	3196	2253	1019	606	426	285	1331	1290	1196	1761
1987	1503	4398	3199	2832	1571	845	752	611	278	1484	2990	5135	2119
1988	5176	3836	1775	3148	2600	1541	724	349	194	282	2047	1407	1915
1989	1182	1105	1125	2106	2095	871	410	201	464	609	1881	1937	1164
1990	856	1871	1178	2255	1410	750	365	213	147	1313	1322	1260	1071
1000	1514	1476	3087	2226	2121	986	505	288	231	288	659	477	1154
1001	858	1120	1520	924	1255	1986	908	436	722	1070	489	635	003
1002	465	790	1408	227	3740	1548	746	320	710	1262	3873	3178	1697
100/	2071	2028	2675	1560	1/05	758	136	2/8	1006	3237	5284	2502	2085
1005	1537	1072	10/5	770	0/2	320	450	70	077	253/	2004	2332 1382	1331
1006	97/7	9270	6092	1306	2212	2230	1285	7/9	050	1/09	1624	5800	27/5
1007	7977	2072	19/0	4390	965	2339	776	202	104	276	2020	J090 4611	2095
1008	1017	2752	1264	2219	2268	2201	1002	422	245	206	152	2011	2005
1000	2020	1201	1004	2004	2155	1512	744	422	100	200	2717	1609	1600
2000	2930	690	605	2004	1042	065	277	302	202	1600	2/1/	2426	1000
2000	1051	009	4074	1047	1942	700	5//	199	302	0001	1022	2430	10/1
2001	4854	4195	4374	2428	1184	739	1001	435	431	2368	1233	2005	1944
2002	123	1410	20074	1009	1492	034 1005	441	404	1//2	2100	1042	1200	1007
2003	4857	2034	20/1	2528	1700	1005	439	153	894	2040	3083	9116	2007
2004	4417	3282	3362	3925	3326	2010	938	690	985	833	605	1338	2139
2005	732	679	520	987	1146	997	567	249	3126	1733	1047	559	1026
2006	24/6	4030	2195	1223	481	362	217	254	1324	1329	681	795	1262
2007	859	1508	1316	1584	1483	854	409	236	221	303	768	1131	885
2008	2503	1890	12/9	2206	3161	4410	76.1	4=0	000	1000	10.1-	0000	2212
moy	2989	3135	2836	2629	2244	1416	794	478	822	1333	1847	2301	1902

Table Ann. 5. Etape 1 : Moyennes (mensuelles et annuelles en l/s) des débits simulés par le modèle de transfert (ModHE_0.38Ging_256j) construit sur la chronique Qnaturel(Q0.38Ginger_valide).

IVIOVENNE DE IVIODEEVZ 38 3661	nne de ModHEV2 38 366	Si
--------------------------------	-----------------------	----

	mois												
année	1	2	3	4	5	6	7	8	9	10	11	12	moy
1962													
1963	5748	6199	3394	4311	2323	1590	780	425	1816	1951	4255	2172	2822
1964	3083	4812	7918	5740	3208	2255	1037	593	2450	2243	2487	3100	3236
1965	3066	2961	3587	1693	868	608	280	197	867	2776	2168	1717	1727
1966	1788	3723	3301	3270	2725	1595	1017	357	344	677	844	420	1657
1967	2110	4793	4571	2032	1415	763	282	164	104	449	793	445	1472
1968	139	1872	1622	2184	2771	2726	1404	521	608	511	732	900	1327
1969	3585	4275	7545	5795	4525	2113	981	369	374	1905	2835	2527	3062
1970	6834	4094	2406	1987	2349	1164	771	508	411	1127	516	576	1887
1971	3712	4984	3488	5619	4495	2265	985	348	234	1408	953	1348	2468
1972	7711	9744	7184	4053	2605	3056	1732	763	1778	2814	2490	2099	3814
1973	4522	3151	2140	1862	1339	1747	953	443	352	670	681	2305	1674
1974	4613	4885	6194	4931	3229	1529	895	405	1794	1706	1555	1549	2760
1975	1396	2390	2815	1704	1909	2421	1033	1297	674	430	860	2350	1602
1976	2049	5031	4002	4338	2792	1116	437	223	2461	4074	4910	3256	2876
1977	5765	4746	3334	2101	2691	2305	1259	722	540	834	769	2425	2280
1978	3491	4291	3695	2769	4929	2426	964	449	454	585	978	3352	2357
1979	6937	5139	2812	2090	1230	835	403	296	752	2404	3803	1903	2367
1980	2043	1884	2323	3098	3057	1907	1173	910	572	435	536	614	1544
1981	1197	974	2179	2915	1418	734	977	390	203	171	241	2521	1163
1982	3511	3869	2515	3024	1405	507	201	111	555	473	1605	1001	1547
1983	461	1043	2448	1969	1835	687	280	229	91	46	333	989	867
1984	1314	1373	1809	2279	2599	2012	778	280	252	385	2579	3536	1599
1985	1825	1813	1447	1551	2099	1235	596	638	370	158	193	908	1066
1986	1377	5133	3970	3267	2284	849	308	146	242	1011	1237	676	1684
1987	1430	4517	3240	2804	1526	663	551	342	169	841	2509	4084	1872
1988	4922	3771	1597	2904	2773	1296	731	567	529	754	1725	1043	1877
1989	1449	1269	1133	2161	2163	847	353	311	115	222	874	1054	994
1990	815	1826	1135	2148	1429	704	302	236	127	601	719	938	907
1991	1550	1544	3100	2273	1985	843	395	151	184	280	492	714	1124
1992	1057	1296	1596	954	1293	1840	738	285	355	498	347	231	872
1993	134	848	1517	2354	4347	1920	726	187	114	311	2104	2282	1406
1994	2232	4154	2700	1453	1169	521	323	405	734	2286	4186	1983	1828
1004	1114	853	660	648	888	410	648	400	310	1063	900	2810	906
1996	8398	8459	6073	4120	3373	1872	930	491	1075	2213	1684	5144	3642
1000	8038	4143	1656	562	256	0072	600	388	1068	905	1154	3643	1944
1008	4616	2736	1246	2144	200	2292	985	478	849	523	108	317	1629
1000	3515	1866	1511	2762	3615	165/	628	228	2/1	607	1155	1034	1533
2000	1078	871	502	1680	2156	1004	020 451	220	1/6	710	/30	1/60	000
2000	1070	1201	4472	2425	017	280	105	142	140	1612	430	622	1764
2001	4040	4301	447Z	2430	917	309	195	142	415	1412	907	022 6574	1620
2002	1165	2462	2007	2012	1570	004	402	215	1/26	1412	2240	7052	2226
2003	4400 2004	2402	2047	2291	2422	004 1910	419 951	313	006	1147	2240	000	2230
2004	2901	2001	5063	3497	343Z	1010	004 550	90Z	300	1247	500	300	044
2005	020 2544	145	209	1005	1289	1031	20∠ 140	208 70	2021 770	1347	54Z	290	911
2006	2044	4213	2300	1203	400	499	112	100	0//	1221	031	301	1189
2007	540	1339	1247	1/15	1//2	930	335	103	39	144	0.1.1	169	791
2008	2003	2024	1296	2284	3445	1000	005	000	700	4070	4.440	4040	2347
moy	3008	3279	2867	2599	2277	1368	685	388	703	1076	1412	1912	1798

Table Ann. 6. Etape 1 : Moyennes (mensuelles et annuelles en l/s) des débits simulés par le modèle de transfert (ModHE_0.38Ging_366j) construit sur la chronique Qnaturel(Q0.38Ginger_valide).

woyenne		1EV2_42	_128j										
onnéo	mois	0	2	4	F	6	7	0	0	10	11	10	
annee	1	2	3	4	5	0070	1120	520	9	10	2002	12	moy
1962	7704	7065	1511	6207	2775	2212	1201	539 727	308	1000	2983	2006	1548
1903	4706	7900	4044	7516	3//3	2343	1391	131	2944	2005	2030	3900	4099
1904	4720	2712	10007	2674	4010	4400	242	10	3097	2000	2030	3023	4423
1905	4075	5715	2057	4005	1400	999	1020	692	400	4110	5031	2407	2370
1900	3195	5540	5269	4220	2022	1960	1020	195	409	993	577	407	1701
1068	136	2160	1886	2041	2001	3821	2120	1/2/	2004	1337	1106	10/2	1004
1900	4422	4740	0020	7/25	5210	2004	2139	062	2094	2/07	2006	2020	1995
1909	443Z 830/	5/82	3372	2621	3380	1244	2170	903	182	750	5900 653	2920	2/10
1071	1020	5046	1611	7900	62/1	2000	2202	10/7	102	1102	053	1222	2410
1072	4030	11246	9622	6629	5454	4720	2303	004	2162	2006	2262	2660	3203
1972	5000	2011	2552	2159	2264	4729	1120	994 447	2102	2090	2303	2000	4903
1973	5900	5001	2000	3100	4204	2056	1050	447 609	2140	4757	1220	2020	2130
1974	5207	2715	2272	2010	4391	3030	1952	1752	2140	1/0/	1320	1334	3048
1975	1719	2715	5575	2010	2090	2022	1010	744	1159	433	0700	3039	1907
1970	2392	0929	5125	0200	4123	2430	1310	711	2193	5149	1020	4002	3949
1977	4227	6729	4000	3309	4070	2288	1134	1427	524 417	542	1038	3200	3002
1970	4337	5205	4920	4109	0020	3204	1520 576	1437	417	2500	920	4220	3070
1979	2074	2726	4321	4201	2490	191	370	109	770	2009	1161	2429	2110
1900	10074	3720	2000	4130	3070	2240	1410	1479	220	220	1101	2722	2110
1901	1222	1040	2000	3713	1002	1420	1000	494	220	313	1000	2122	1407
1982	3817	4522	3310	4901	2000	11/1	183	153	0	0	1989	1410	1990
1983	100	1//8	3599	1993	1620	1331	407	2/4	3 000	705	0	1114	1062
1984	1339	15/5	2405	3121	2/15	2047	1251	/12	828	705	3007	4703	2085
1985	2517	2552	2693	2075	1907	1247	683	438	165	28	1200	1442	1307
1980	1575	0313	5034	4393	3400	1009	808	471	29	1491	1308	1184	2301
1987	2056	6015	4046	3/6/	2/5/	1651	958	464	171	1655	3478	6358	2/60
1988	6960	2012	3300	4478	3318	983	889	600	49	C0	2101	1430	2479
1989	1442	1600	1/2/	2201	2402	1032	690	629	502	715	1814	1929	1388
1990	1073	2571	1804	2388	1590	850	556	307	23	1271	1210	1444	1248
1991	1986	2228	3811	2942	2/16	1650	900	465	94	269	864	658	1545
1992	1184	16/7	2022	1156	1476	2177	853	476	1008	967	399	365	1143
1993	449	809	1699	2724	4150	1892	1186	11/2	605	1312	3964	3643	1973
1994	2874	5649	3890	1781	1854	1273	195	208	987	3824	5742	2982	2582
1995	2372	2691	1069	704	789	357	160	175	776	2271	1875	5006	1517
1996	11086	10515	8334	6873	5471	2535	1306	695	741	1309	1548	7223	4792
1997	9975	5100	3341	3120	943	1040	386	240	270	438	2055	5116	2660
1998	5780	3672	2443	3910	3557	2405	1283	1060	464	35	0	223	2060
1999	3768	1641	1809	3061	4179	1769	1327	862	279	994	2739	1764	2020
2000	1384	1403	884	1491	1793	816	5/6	499	449	1693	950	2426	1199
2001	6020	5107	5875	3831	2268	1081	742	160	335	2990	1450	731	2538
2002	1492	2172	2398	1946	1865	1281	5//	623	2142	2587	1897	9414	2374
2003	6039	3615	4805	4293	1/34	1111	582	358	1279	2755	4647	11546	3571
2004	6205	4823	6476	5101	3841	2401	1517	1082	802	521	348	1582	2889
2005	892	903	801	1305	1247	1200	807	485	3821	1949	1238	1175	1316
2006	3625	5061	2528	1832	1705	396	161	0	1657	1343	646	812	1625
2007	1183	1655	1560	1793	2093	1148	544	456	124	236	725	1104	1048
2008	3063	2257	1888	2667	3673								2716
moy	3917	4228	3871	3690	3022	1906	1042	626	876	1391	1949	2702	2425

Table Ann. 7. Etape 1 : Moyennes (mensuelles et annuelles en l/s) des débits simulés par le modèle de transfert (ModHE_0.42Ging_128j) construit sur la chronique Qnaturel(Q0.42Ginger_valide).

Movenne	de ModHEV2	42	256i

	mois												
année	1	2	3	4	5	6	7	8	9	10	11	12	moy
1962										2172	3181	1853	2396
1963	6730	6945	4019	5243	3273	2655	2263	1758	3683	2594	5715	3558	4009
1964	3925	5943	9425	7109	4534	3122	2469	1818	4435	4035	3085	3357	4430
1965	3478	3448	4478	2498	1622	1112	1054	817	1522	4081	2883	2102	2421
1966	2246	4672	4057	4162	3432	2189	1451	1194	1127	1648	946	683	2300
1967	2203	5136	4855	2300	1731	1392	1104	1209	1051	493	233	224	1807
1968	169	1971	1681	2447	2678	3163	2005	1238	2024	1756	1619	2211	1909
1969	4188	4496	8170	6542	4973	2758	2432	1834	2422	4495	4369	2893	4129
1970	7295	4254	3211	3103	3371	2192	1626	1114	794	1120	959	880	2487
1971	4356	5333	4181	6554	5022	2930	2077	1842	1547	2198	1753	1663	3272
1972	7917	10097	7725	4974	3798	4637	3599	2772	4227	3429	2781	2588	4858
1973	5355	3554	2631	2660	2184	2360	1513	1131	670	519	1398	2820	2227
1974	4817	5374	6660	5562	4030	2513	2503	1905	3233	2591	1853	1221	3509
1975	1357	2727	3161	2181	2230	2249	1243	1989	1321	879	1278	2958	1961
1976	2456	5492	4414	5391	3533	2084	1636	1415	3685	5666	6653	4059	3858
1977	6435	5595	4590	3399	4416	3091	1942	1522	1014	1086	1371	3208	3129
1978	4024	4578	4155	3404	5661	3331	2043	1593	1284	899	1660	4368	3078
1979	7857	5412	3356	2592	2124	1936	1808	1458	741	2630	4808	2316	3073
1980	2429	2280	3118	4025	3922	2447	1248	1562	1276	987	1555	959	2148
1981	1256	945	2609	3371	1561	1026	1506	887	719	674	416	2637	1473
1982	3610	4181	2713	3696	1832	1273	1211	1105	667	581	2043	1362	2006
1983	521	1378	3047	2028	1593	860	687	450	647	429	227	1088	1079
1984	1228	1423	2053	2581	2388	1833	1071	1012	960	1331	3648	4461	1999
1985	2301	1914	1959	2196	2331	1683	1059	615	441	374	283	1474	1384
1986	1498	5711	4411	3659	2464	1500	1238	1310	1037	2127	1529	1221	2285
1987	1693	5209	3758	3433	2078	1411	1274	1317	938	2129	3384	5894	2694
1988	6154	4447	2407	4020	3237	2481	1645	1179	722	530	2340	1516	2548
1989	1290	1187	1354	2147	2309	1150	714	472	967	1022	2021	1880	1376
1990	827	2191	1413	2475	1539	976	624	485	408	1544	1304	1429	1260
1991	1651	1731	3554	2619	2560	1395	915	786	748	808	1205	745	1559
1992	1073	1345	1861	995	1267	1947	1033	647	982	1170	620	539	1122
1993	376	869	1638	2615	3768	1530	812	607	1217	1807	4300	3591	1931
1994	2327	4677	3206	2057	1925	1404	1093	783	1464	3854	5316	2652	2546
1995	1637	1404	1593	1344	1677	904	371	218	909	2164	1816	4467	1546
1996	9772	9346	7174	5304	4242	3610	2836	2360	2227	1957	1963	6727	4785
1997	8904	4518	2268	1594	1631	2542	2027	1213	426	422	1962	4759	2685
1998	5264	3118	1562	2788	3967	3132	2025	1136	639	593	549	647	2114
1999	3575	1521	1553	2237	3736	1834	1216	895	676	1522	3099	1902	1984
2000	1229	813	754	1612	2074	1105	561	335	597	1829	1163	2294	1200
2001	5192	4722	5207	2852	1727	1417	1553	1438	1214	3072	1512	607	2533
2002	961	1933	2480	2112	1718	1058	647	826	2369	2753	1902	8312	2263
2003	5351	3213	3735	3589	2527	2187	1484	1013	1760	2920	4497	10405	3566
2004	5059	4019	4445	5464	4712	3447	2193	1562	1587	1198	881	1654	3015
2005	864	895	680	1165	1265	1245	771	475	3529	1954	1325	823	1246
2006	3229	4889	2793	1624	989	759	723	856	2065	1416	622	536	1687
2007	835	1705	1638	1822	1800	958	596	522	500	571	923	1140	1079
2008	2788	1988	1428	2244	3296								2354
Total	3428	3669	3417	3213	2799	2018	1464	1171	1477	1826	2151	2580	2434

Table Ann. 8 . Etape 1 : Moyennes (mensuelles et annuelles en l/s) des débits simulés par le modèle de transfert (ModHE_0.42Ging_256j) construit sur la chronique Qnaturel(Q0.42Ginger_valide).

Moyenn	e de Mo	dHEV2_	42_366	ij									
	mois												
année	1	2	3	4	5	6	7	8	9	10	11	12	moy
1962												1814	1814
1963	6889	6896	3830	5086	3097	2512	2193	1673	3743	2708	6006	3684	3999
1964	3950	6003	9222	6782	4171	3081	2691	1736	4443	3758	3489	3735	4413
1965	3758	3561	4360	2340	1531	1180	1126	826	1589	4173	3019	2148	2463
1966	2343	4608	3924	3929	3154	2112	1654	1297	1082	1628	1174	897	2301
1967	2298	5229	4792	2110	1631	1432	1068	1101	807	541	645	558	1830
1968	242	1983	1682	2362	2598	3083	1912	1149	1933	1675	1621	2187	1864
1969	4178	4584	8148	6395	4710	2717	2406	1706	2261	4338	4666	3117	4099
1970	7625	4280	3153	2986	3178	1962	1734	1221	935	1367	1249	941	2547
1971	4401	5326	4059	6362	4875	2737	1971	1693	1396	2381	1856	1860	3228
1972	8210	10124	7484	4723	3673	4516	3413	2420	4008	3733	3382	2911	4862
1973	5439	3550	2634	2630	2112	2315	1591	1053	731	758	1622	2839	2267
1974	4794	5280	6523	5450	3834	2363	2350	1673	3327	2589	2111	1592	3478
1975	1654	2805	3141	2025	2086	2354	1284	1960	1225	869	1402	3044	1983
1976	2449	5457	4343	5278	3440	1999	1513	1305	3679	5663	6644	4157	3812
1977	6540	5697	4398	3141	4069	3086	2168	1588	1279	1342	1591	3322	3174
1978	4019	4588	4122	3284	5531	3147	1847	1517	1274	1122	1883	4359	3052
1979	7978	5396	3340	2552	2092	1797	1551	1189	972	3118	5068	2339	3103
1980	2300	2330	3052	3800	3662	2150	1501	1621	1430	972	1544	1030	2131
1081	1471	1138	25002	3285	1506	008	1486	856	706	594	486	2760	1/05
1082	3656	4135	2637	3630	1707	1184	1082	916	776	746	2224	1503	2015
1083	5/2	1/68	2007	1038	1/87	783	660	530	656	325	358	1170	1077
108/	130/	1/17	2015	2525	2300	1754	000	005	030	1350	3563	4504	1077
1095	22/2	2022	2013	2020	2000	1520	060	900	504 657	1000	212	4504	1400
1086	1552	5602	2000 //318	3500	2221	1/28	11/18	110/	007	2202	1715	1/71	2260
1007	1955	5255	2652	2252	1050	1920	1222	1212	792	2205	2577	6069	2203
1000	6040	1269	2201	3200	2120	2225	1523	1012	202	2100	2/09	1522	2093
1900	1269	4300	1265	2000	2226	1020	662	550	1022	1033	1095	1040	1070
1909	1300	1313	1305	2090	1420	014	606	500	1032	1020	1900	1049	1070
1001	1604	1702	2440	2505	2410	1200	000	290	400	705	1202	1493	1212
1991	1094	1200	J400 1001	2010	2410	1200	1012	004 501	130	1102	600	000 540	11001
1992	1241	1399	1001	937	1204	1091	1013	201	973	1192	699	549	1120
1993	399	4700	1001	2003	3003	1400	1002	047	1170	1/12	4140	3405	1091
1994	2522	4700	3204	1905	1/02	1320	1092	932	1030	3650	0100	2000	25/4
1995	1561	1457	1586	1220	1486	715	732	509	1042	2165	1/9/	4373	1558
1996	9635	9088	6839	5045	4093	3447	2660	2151	2220	2592	2426	6904	4751
1997	9028	4353	2148	1606	1562	2410	1763	1037	933	1032	2233	4658	2/2/
1998	5106	2977	1481	2814	3860	2908	1774	1029	1054	946	594	591	2090
1999	3661	1667	1558	2272	3655	1726	1095	785	732	1568	3107	1863	1977
2000	1321	964	882	1570	1967	936	583	504	729	1813	1086	2215	1217
2001	5215	4686	5049	2687	1619	1430	1451	1278	1199	3332	1805	787	2536
2002	1122	1909	2411	1996	1579	1077	739	917	2276	2660	1919	8295	2249
2003	5271	3066	3627	3471	2439	2048	1357	1065	2099	3369	4461	10253	3553
2004	5003	3864	4400	5252	4384	3255	1932	2036	1959	1491	902	1821	3022
2005	1096	996	738	1153	1236	1225	740	460	3545	1936	1215	811	1259
2006	3231	4861	2679	1465	1006	883	861	716	1908	1663	770	710	1709
2007	866	1683	1570	1692	1695	1049	667	505	432	575	976	1196	1071
2008	2825	2003	1401	2194	3218								2333
moy	3501	3681	3353	3094	2667	1929	1435	1148	1523	1932	2266	2666	2434

Table Ann. 9. Etape 1 : Moyennes (mensuelles et annuelles en l/s) des débits simulés par le modèle de transfert (ModHE_0.42Ging_366j) construit sur la chronique Qnaturel(Q0.42Ginger_valide).

Moyenne	de QMo	yMODC	234										
	mois												
année	1	2	3	4	5	6	7	8	9	10	11	12	moy
1962		/ 0	<u> </u>				501	242	285	16//	2859	1638	1245
1963	5575	5549	3115	4157	2224	1/6/	1010	515	2474	1622	4/16	3146	2965
1964	3373	4699	/151	5108	3012	2077	941	408	2230	2395	2443	2677	3035
1965	2726	2596	3222	1549	783	412	177	50	767	3522	2777	2124	1722
1966	2065	3660	2966	2862	2445	1475	770	354	267	1019	791	537	1587
1967	1761	4123	3833	1804	1596	948	372	144	54	21	145	337	1244
1968	194	1616	1379	1970	2544	2918	1663	911	1381	977	1246	1650	1533
1969	3199	3441	6468	5079	4260	2160	1271	522	652	2915	3392	2406	2978
1970	6010	3360	2299	2043	2121	1009	429	247	150	886	719	815	1668
1971	3566	4302	3303	5275	4066	2261	1190	590	248	981	1132	1183	2327
1972	6453	8070	6146	3965	2896	3172	1537	654	2491	2447	2221	2253	3507
1973	4285	2693	1789	1839	1208	1410	591	282	144	253	1249	2258	1494
1974	3932	4251	5430	4402	3086	1673	1068	504	1933	1528	1088	914	2472
1975	960	2017	2289	1433	1796	1899	826	1373	754	452	1052	2262	1423
1976	1830	4271	3488	4153	2654	1201	643	309	2240	4520	6290	3676	2926
1977	5485	4363	3197	2097	2900	2015	920	579	286	845	1297	2621	2208
1978	3235	3745	3324	2703	4586	2161	1005	492	220	66	840	3177	2123
1979	6250	4363	2751	2313	1434	900	343	163	62	2156	4147	1889	2218
1980	2144	1849	2195	2878	2669	1734	780	922	556	276	1191	697	1488
1981	988	718	2015	2642	1305	874	1197	454	202	228	88	2004	1064
1982	2778	3269	2218	2965	1321	592	291	163	47	11	1743	1742	1414
1983	752	1272	2505	1738	1545	659	349	131	56	16	162	1039	851
1984	1139	1218	1704	2082	2192	1668	723	573	492	761	3042	4110	1642
1985	2141	1736	1533	1506	1627	965	468	228	100	28	5	1066	947
1986	1141	4593	3515	3069	2211	969	487	183	65	1251	1158	1290	1641
1987	1594	4265	2939	2605	1524	810	598	325	128	1426	2935	5151	2011
1988	5072	3703	1818	2979	2338	1093	558	256	122	269	1869	1227	1768
1989	1111	1028	1046	2024	1994	817	438	195	525	701	1829	1916	1134
1990	868	1871	1117	2287	1390	715	405	158	70	1174	1167	1226	1030
1991	1448	1404	2771	2010	2091	967	461	219	82	255	786	544	1085
1992	873	1096	1463	888	1286	1926	862	415	654	983	485	632	962
1993	528	752	1314	2090	3596	1460	768	367	654	1251	3708	3100	1636
1994	2072	3843	2457	1411	1314	601	286	98	864	3288	4899	2468	1952
1995	1602	1145	825	633	689	282	143	59	840	2198	1857	4334	1221
1996	8171	7531	5620	4107	3149	1911	848	370	621	1187	1529	5918	3406
1997	/364	3649	1908	1046	/10	1132	399	296	164	431	1938	4179	1930
1998	4373	2561	1368	2260	3051	2029	891	451	207	70	1/	189	1450
1999	2/5/	1187	1262	1937	3209	1420	675	371	144	1021	2619	1631	1522
2000	1109	762	557	1581	1857	903	455	235	432	1565	935	2459	1074
2001	4722	3952	4246	2356	1280	648	448	242	338	2716	1295	699	1903
2002	850	1464	1926	1915	1652	1085	528	476	1749	2207	1699	/38/	1918
2003	4533	2672	2866	2465	1504	644	342	134	10/1	2446	4152	9637	2/13
2004	4472	3456	3466	3529	2967	1514	814	645	818	/06	523	1414	2024
2005	/38	/01	496	947	1111	985	581	269	2931	1519	1244	734	1018
2006	2510	3/16	1857	1177	548	276	79	22	1320	1277	/11	872	1180
2007	848	1346	1177	1559	1684	917	432	203	178	366	734	1050	871
2008	2286	1646	1200	2149	2948	1010	000	0.0	0.0-	10-0	4700	00.07	2050
moy	2867	2950	2642	2469	2139	1312	666	365	697	1259	1798	2267	1781

Table Ann. 10. Moyenne des débits simulés par les modèles de transfert (ModHE_0.34Ging_128j ; ModHE_0.34Ging_256j ; ModHE_0.34Ging_366j , cf. Etape 1) construit sur la chronique Qnaturel_Q0.34 (moyennes mensuelles et annuelles en l/s)

	mois												
année	1	2	3	4	5	6	7	8	9	10	11	12	moy
1962													
1963	5680	6089	3393	4438	2451	1730	1104	579	2273	1880	4544	2826	2997
1964	3359	4991	7873	5701	3333	2301	1047	510	2661	2613	2486	2965	3311
1965	2967	2861	3582	1792	877	512	240	130	910	3350	2656	2011	1819
1966	2070	3849	3336	3294	2677	1561	876	404	325	853	703	456	1685
1967	1964	4552	4395	2052	1575	905	353	240	126	172	367	377	1403
1968	179	1790	1564	2156	2573	2543	1397	689	886	709	975	1420	1402
1969	3571	4038	7298	5703	4472	2276	1236	518	592	2445	3207	2483	3148
1970	6625	4010	2481	2211	2290	1152	657	372	203	901	633	690	1843
1971	3630	4730	3396	5695	4409	2279	1212	556	274	1148	1031	1235	2449
1972	7187	9303	6982	4291	2883	3230	1834	843	2439	2755	2433	2275	3850
1973	4545	3070	2015	1988	1372	1554	825	370	219	345	999	2379	1633
1974	4473	4727	6073	4991	3343	1756	1144	509	1892	1718	1303	1195	2747
1975	1192	2279	2722	1690	1912	2156	944	1426	815	391	945	2320	1562
1976	1968	4787	3852	4321	2819	1226	605	348	2564	4597	5826	3668	3034
1977	5860	4852	3481	2335	2828	2046	998	591	346	764	1075	2749	2316
1978	3554	4115	3671	2878	5004	2484	1098	581	333	269	944	3362	2351
1979	6540	4713	2834	2293	1367	896	475	267	308	2252	4096	1982	2320
1980	2153	1987	2352	3121	2939	1772	927	944	630	370	918	668	1562
1981	996	804	2104	2831	1347	823	1094	420	228	164	113	2274	1103
1982	3278	3700	2476	3075	1391	607	324	145	227	200	1787	1418	1536
1983	621	1175	2488	1826	1645	700	312	174	113	37	166	1051	858
1984	1299	1344	1835	2292	2371	1876	780	464	408	650	3014	4069	1700
1985	2151	1830	1575	1626	1879	1173	558	387	207	95	93	1090	1052
1986	1320	4928	3856	3286	2360	972	463	258	179	1183	1243	1017	1733
1987	1511	4491	3213	2847	1627	790	641	430	190	1240	2822	4797	2034
1988	5154	3909	1816	3075	2611	1275	704	401	256	383	1908	1278	1889
1989	1289	1210	1154	2086	2084	844	411	252	282	443	1499	1636	1097
1990	859	1901	1204	2158	1400	701	353	195	98	1042	1094	1159	1006
1991	1563	1546	3090	2258	2066	973	455	216	149	243	569	552	1138
1992	936	1203	1551	943	1268	1925	816	379	614	833	413	465	944
1993	362	786	1445	2294	3931	1681	773	339	421	891	3199	2882	1587
1994	2182	4110	2723	1466	1321	646	317	259	871	2911	4900	2408	1993
1995	1487	1135	806	665	819	331	307	187	730	2031	1704	3895	1178
1996	8734	8449	6183	4440	3346	2004	1020	540	890	1628	1594	5668	3698
1997	7991	4063	1916	968	521	1065	572	298	437	541	1722	4292	2026
1998	4840	2812	1434	2346	3134	2190	1012	477	422	246	118	265	1602
1999	3147	1544	1432	2170	3306	1559	721	336	169	955	2134	1456	1578
2000	1092	820	558	1612	1936	889	429	236	269	1262	790	2109	1002
2001	4909	4255	4478	2519	1115	567	391	234	363	2093	1113	587	1874
2002	759	1399	2048	1878	1524	833	411	348	1485	1878	1519	7115	1773
2003	4738	2609	2886	2472	1528	818	410	197	1010	1708	3185	8451	2507
2004	4304	3214	3478	3665	3262	1838	896	736	867	612	477	1215	2044
2005	764	699	525	990	1171	988	570	244	2963	1580	862	526	987
2006	2514	4067	2179	1280	572	347	130	108	1160	1277	662	653	1227
2007	776	1429	1278	1610	1593	872	373	178	122	211	693	1002	840
2008	2574	1954	1339	2245	3247								2276
moy	3021	3224	2878	2649	2250	1370	716	407	732	1197	1656	2186	1858

Moyenne de QMoyMODQ38

Table Ann. 11.Moyenne des débits simulés par les modèles de transfert (ModHE_0.38Ging_128j ; ModHE_0.38Ging_256j ; ModHE_0.38Ging_366j , cf. Etape 1) construit sur la chronique Qnaturel_Q0.38 (moyennes mensuelles et annuelles en l/s)

Movenne	de QMovMOD	0.42
1110 y 011110	ao amoymob	

	mois												
année	1	2	3	4	5	6	7	8	9	10	11	12	moy
1962												1823	1823
1963	7108	7269	4131	5572	3382	2503	1949	1389	3457	2436	5873	3716	4036
1964	4200	6300	9571	7135	4441	3553	2299	1371	3992	3549	3137	3639	4422
1965	3770	3574	4528	2504	1529	1097	841	551	1339	4124	2978	2236	2418
1966	2595	4940	3979	4105	3369	2272	1375	1058	872	1423	899	689	2279
1967	2333	5336	4972	2351	2064	1564	862	831	668	345	308	313	1807
1968	183	2041	1750	2517	2831	3356	2018	1270	2017	1589	1449	2113	1923
1969	4266	4610	8452	6790	5181	3156	2339	1501	1804	4110	4314	2976	4122
1970	7771	4672	3245	3237	3276	1799	1399	936	637	1079	954	873	2481
1971	4532	5535	4294	6908	5413	2825	2117	1594	1047	1924	1521	1619	3261
1972	8315	10489	7947	5442	4308	4628	3098	2062	3799	3353	2842	2720	4895
1973	5565	3672	2606	2816	2187	2148	1411	877	573	501	1394	2829	2208
1974	4959	5548	6964	6063	4085	2644	2268	1425	2900	2313	1761	1383	3512
1975	1576	2749	3225	2072	2304	2408	1212	1901	1235	727	1268	3014	1970
1976	2433	5626	4627	5651	3699	2173	1489	1143	3386	5493	6694	4256	3873
1977	7052	6007	4496	3283	4185	2822	1748	1274	939	990	1333	3245	3102
1978	4127	4810	4401	3626	5906	3247	1803	1516	992	674	1489	4317	3069
1979	8110	5638	3674	3135	2237	1510	1312	945	606	2752	5004	2361	3092
1980	2631	2782	3017	4017	3718	2284	1388	1554	1165	728	1420	937	2132
1981	1317	1044	2689	3456	1583	1148	1600	746	551	527	313	2706	1478
1982	3695	4279	2889	4076	1898	1210	1025	725	481	442	2085	1455	2004
1983	559	1542	3221	1986	1567	991	602	421	435	251	195	1124	1073
1984	1320	1472	2157	2742	2468	1878	1103	876	924	1152	3593	4556	2020
1985	2353	2163	2228	2131	2155	1486	904	622	421	294	198	1480	1367
1986	1542	5905	4588	3851	2771	1599	1065	992	658	1940	1517	1292	2285
1987	1868	5493	3819	3484	2262	1458	1185	1031	631	1984	3480	6107	2716
1988	6388	4776	2699	4140	3225	1896	1345	1021	556	549	2340	1489	2526
1989	1367	1367	1482	2146	2312	1067	689	553	833	921	1940	1886	1379
1990	951	2328	1553	2415	1520	913	595	461	296	1457	1273	1455	1260
1991	1777	1914	3618	2690	2565	1442	922	685	526	624	1124	754	1552
1992	1166	1474	1921	1029	1316	2005	966	568	988	1110	573	484	1131
1993	408	878	1666	2641	3857	1636	927	809	998	1610	4137	3566	1932
1994	2574	5009	3453	1915	1847	1335	793	641	1327	3842	5525	2774	2567
1995	1857	1851	1416	1089	1317	658	421	301	909	2200	1830	4615	1541
1996	10164	9650	7449	5740	4602	3197	2267	1736	1730	1953	1979	6951	4776
1997	9302	4657	2586	2107	1379	1997	1392	830	543	631	2084	4844	2691
1998	5383	3256	1829	3171	3795	2815	1694	1075	719	525	381	487	2088
1999	3668	1610	1640	2523	3857	1776	1213	847	562	1361	2982	1843	1994
2000	1311	1060	840	1558	1945	952	574	446	592	1779	1066	2312	1205
2001	5476	4838	5377	3123	1871	1309	1248	958	916	3131	1589	708	2536
2002	1192	2005	2429	2018	1721	1139	654	789	2263	2667	1906	8674	2295
2003	5554	3298	4055	3784	2233	1782	1141	812	1712	3015	4535	10735	3563
2004	5422	4235	5107	5272	4312	3034	1881	1560	1449	1070	710	1685	2975
2005	951	931	740	1208	1249	1223	773	473	3632	1946	1259	936	1274
2006	3362	4937	2667	1640	1234	680	582	524	1877	1474	679	686	1674
2007	961	1681	1589	1769	1863	1052	602	494	352	460	875	1146	1066
2008	2892	2083	1572	2368	3396								2468
moy	3615	3859	3547	3333	2831	1948	1313	982	1296	1712	2107	2650	2434

Table Ann. 12. Moyenne des débits simulés par les modèles de transfert (ModHE_0.34Ging_128j ; ModHE_0.42Ging_256j ; ModHE_0.42Ging_366j , cf. Etape 1) construit sur la chronique Qnaturel_Q0.42 (moyennes mensuelles et annuelles en l/s)

Figure A 10. Comparaison des débits simulés [1963-2008] par les modèles de transfert developés lors des étapes 1 et 2, cf texte.

Moyenr	ne de Mo	dDirV2C	238Sa										
	mois												
année	1	2	3	4	5	6	7	8	9	10	11	12	Total
1962											2567	1536	2043
1963	4876	4871	2617	3807	2162	3263	2445	1929	3261	1979	4494	3308	3233
1964	3138	4597	6113	4554	3199	2482	1368	1360	2954	2724	2330	2497	3102
1965	2370	2272	2964	1458	912	1188	580	322	1134	3531	2642	2223	1798
1966	1850	3373	2472	2887	2815	2085	1333	866	649	1539	1160	664	1796
1967	1762	3635	3204	1684	1795	1038	728	692	368	133	288	354	1293
1968	190	1531	1098	1835	2612	3512	2163	1604	1965	1257	1861	1935	1793
1969	3104	3242	5632	4513	3877	2516	1691	1470	1477	3348	3151	2314	3027
1970	5443	2823	2108	1873	2269	1202	876	578	447	1235	874	860	1713
1971	3311	3502	3072	4652	3838	3256	2331	1402	731	1393	1284	1321	2500
1972	5932	6943	5338	3390	2608	3740	2351	1391	3292	2709	2247	2429	3516
1973	3938	2190	1852	1681	1231	1776	938	498	211	485	909	2160	1487
1974	3209	3828	4693	3719	2756	2000	1863	1219	3003	1819	1375	908	2522
1975	1005	1840	2139	1362	1721	2447	1354	2062	1119	678	1016	2197	1577
1976	1538	3963	2950	3695	2304	1298	1119	881	2738	4427	5596	3390	2813
1977	4840	3650	2993	2082	3784	2931	2069	1467	753	1342	1647	2704	2520
1978	3014	3261	2866	2551	4098	2392	1650	835	445	258	994	3044	2114
1979	5457	3557	2455	1921	1523	1470	932	497	177	2466	3436	1908	2143
1980	1895	1529	1972	2660	2934	2246	1211	1361	830	590	1114	637	1581
1981	866	690	1814	2357	2080	1796	2137	956	624	631	339	2096	1372
1982	2390	2981	1890	2517	1291	1309	796	831	380	243	1624	1431	1461
1983	650	1255	2034	1721	1845	1092	692	421	359	197	258	1010	960
1984	965	1051	1546	1709	2590	2065	1031	865	718	940	3101	3868	1705
1985	1928	1545	1340	1411	2416	1941	953	512	275	188	202	997	1141
1986	1025	4045	2957	2740	1853	1001	568	453	390	1514	1110	1055	1542
1987	1376	3765	2444	2370	1478	1094	1784	1232	793	1882	2616	4293	2084
1988	4592	2881	1584	2771	2692	2121	1260	788	425	694	2033	1165	1913
1000	1079	870	923	1028	1745	883	437	409	907	907 902	1805	1531	1117
1990	766	1661	963	2119	1625	1767	1013	768	420	1497	1109	1275	1244
1000	1201	1236	2467	1850	2087	1312	703	768	553	582	761	550	1182
1001	795	963	1252	802	2007	3051	2126	1257	1167	1170	737	1250	1473
1002	702	813	1202	2002	3374	21/6	13/1	63/	071	1/51	37/18	2765	1776
1004	1979	2506	10/9	1626	1720	1201	957	500	1202	2212	4020	2/05	2010
1005	1/0/	0/6	813	872	1304	710	338	160	1072	21/1	1820	2473	1305
1006	7295	6225	5015	2690	2202	2759	1060	105	1072	1264	1023	5740	2440
1990	6224	3129	1670	1004	1220	2100	1640	020	1070	505	1047	3051	21/2
1000	2640	2120	1156	2006	2000	2123	1200	505	9422	282	1900	2821	1402
1990	2420	2200	1100	2000	3009	2010	1097	620	340 277	204 1220	231	1424	1492
1999	2430	610	F00	1/09	3721	2020	000	614	022	1000	2490	1434	1030
2000	904	2222	2050	1000	2340	10/1	900	014	933	1022	1213	2313	1322
2001	4100	3232	3000	2224	2121	1047	1001	910	040	2775	1294	705	2121
2002	805	1331	1682	2129	2109	2304	10/9	918		2383	18/2	1165	2169
2003	3833	2444	25/4	2381	1/2/	1423	706	248	1454	2140	3795	8156	2578
2004	3831	2949	2966	3274	3038	2290	1062	966	1360	1144	809	1335	2082
2005	626	664	503	906	1315	1464	(((396	3104	1534	1345	/47	1112
2006	2481	2977	1916	1160	616	357	261	265	1432	1203	/62	804	1174
2007	765	1194	1073	1603	2526	1931	912	491	468	607	900	892	1112
2008	2044	1420	1033	1992	3421								1989
Total	2565	2575	2324	2284	2332	1970	1257	868	1109	1476	1801	2168	1895

Table Ann. 13. Débits simulés par le modèle de transfert (ModDirV2Q38, cf. Etape 2) construit sur la chronique QDirenNat_Q0.38 (moyennes mensuelles et annuelles en l/s)

Moyenn	ie de Mo	dDirV2C	Q34Sa										
	mois												
année	1	2	3	4	5	6	7	8	9	10	11	12	Total
1962							659	378	489	2095	3344	1804	1470
1963	5070	4983	2738	3921	2097	2273	1414	1020	2955	1817	4515	3406	2997
1964	3244	4685	6269	4478	2896	2154	1243	729	2693	2706	2616	2584	3016
1965	2599	2395	2911	1396	886	694	339	148	1112	4244	3403	2455	1880
1966	2165	3732	2703	2761	2429	1597	977	520	467	1328	1070	644	1685
1967	1860	3735	3286	1548	1829	1130	591	215	111	108	463	533	1269
1968	268	1602	1146	1879	2439	2692	1460	1021	1398	995	1839	1753	1536
1969	3196	3356	5782	4480	3789	2274	1465	786	803	3052	3262	2348	2881
1970	5555	3067	2310	1895	2251	1080	471	313	243	1226	899	923	1682
1971	3282	3433	2787	4707	3721	2663	1425	923	483	1112	1593	1363	2281
1972	5956	7150	5447	3440	2869	3634	1664	787	3049	3081	2583	2338	3483
1973	4048	2370	1744	1649	1275	1481	561	331	181	506	1363	2217	1473
1974	3466	3758	4871	3933	2890	1734	1279	752	2487	1621	1204	893	2397
1975	1079	1960	2073	1255	1777	2167	1022	1631	878	644	1130	2075	1472
1976	1505	3884	2832	3619	2189	1160	702	547	2749	5169	6282	3685	2848
1977	5266	4205	3170	2019	3343	2191	1123	722	509	1560	1843	2815	2391
1978	3101	3331	2982	2580	4155	2044	1032	586	377	151	875	2912	2006
1979	5067	3276	2319	2142	1643	1178	462	266	137	2803	3765	1830	2067
1980	1977	1822	2215	2568	2548	1706	857	1135	671	462	1539	791	1522
1981	896	711	1814	2277	1637	1229	1423	635	403	405	173	2012	1139
1982	2345	2932	1887	2514	1345	673	405	293	108	82	2387	1909	1394
1983	842	1349	2117	1770	1676	769	487	259	143	170	420	1168	929
1984	1059	1108	1595	1769	2681	1957	941	794	704	920	3764	4137	1787
1985	2115	1727	1568	1664	1945	1193	603	349	216	238	324	1154	1089
1986	1143	3992	2815	2764	1949	1026	593	267	286	1505	1399	1384	1576
1987	1486	3905	2467	2343	1435	915	941	489	258	1782	3040	4509	1952
1988	4423	3058	1731	2934	2669	1445	709	449	338	576	2289	1223	1814
1989	1176	1012	1064	1992	1610	725	420	334	685	799	2186	1856	1154
1990	924	1770	1058	2122	1289	887	539	375	219	1638	1460	1458	1139
1991	1422	1424	2660	1831	2006	978	580	429	264	462	884	591	1127
1992	844	1013	1244	771	1673	2334	1081	645	1044	1302	720	1126	1150
1993	745	906	1255	2072	3356	1530	893	556	927	1518	4263	2816	1738
1994	1969	3709	2193	1629	1521	817	498	188	1352	3850	5210	2864	2136
1995	1847	1440	1079	763	801	384	202	118	1336	3059	2438	4477	1499
1996	7633	6677	5123	3869	3515	2386	1179	613	1046	1559	2181	5668	3448
1997	6418	3172	1819	1310	1406	1420	499	446	266	607	2682	4499	2043
1998	3889	2360	1400	2472	2943	1839	831	517	372	273	271	408	1460
1999	2409	980	1262	1954	3407	1462	762	512	307	1642	3277	1751	1648
2000	1191	867	753	1630	1975	940	568	434	775	1711	1513	2864	1271
2001	4364	3311	3797	2253	1856	958	784	413	495	2922	1423	877	1951
2002	893	1423	1744	1819	1674	1364	687	660	1974	2317	2108	7398	2012
2003	3888	2581	2607	2485	1640	665	396	222	1171	2306	4478	8193	2556
2004	3814	3175	3338	3459	2808	1519	878	870	1156	1287	1065	1499	2069
2005	741	723	505	928	1068	946	526	295	3263	1553	1658	905	1089
2006	2647	3142	1662	1075	608	414	143	46	1376	1368	958	1367	1221
2007	1102	1454	1054	1501	1736	1019	512	288	411	497	923	1007	955
2008	2186	1524	1137	2102	3085			'		-	-		2013
Total	2676	2703	2399	2312	2181	1459	800.8	528.4	928	1544	2110	2315	1825

Table Ann. 14. Débits simulés par le modèle de transfert (ModDirV2Q34, cf. Etape 2) construit sur la chronique QDirenNat_Q0.34 (moyennes mensuelles et annuelles en l/s)

Moyenr	ne de Mo	dDirV2G	242Sa										
	mois												
année	1	2	3	4	5	6	7	8	9	10	11	12	Total
1962										2330	3453	1937	2566
1963	5239	5180	2959	4285	2585	2975	2068	1643	3449	2237	4855	3740	3415
1964	3526	4958	6753	5025	3544	2768	1708	1343	3332	3296	3008	2832	3499
1965	2805	2605	3261	1772	1241	1106	656	440	1330	4468	3660	2624	2163
1966	2313	3881	2984	3275	3094	2182	1307	920	793	1668	1278	822	2030
1967	1974	3862	3487	1766	2079	1327	827	598	469	330	521	583	1471
1968	310	1626	1198	1942	2612	3039	1744	1303	1643	1286	2133	2093	1740
1969	3476	3564	6073	4808	4214	2712	1910	1302	1371	3607	3691	2640	3280
1970	5810	3293	2508	2286	2696	1560	929	656	506	1348	1075	1044	1972
1971	3395	3587	2948	4966	4135	3237	2049	1434	994	1558	1960	1650	2650
1972	6209	7453	5745	3765	3191	4256	2458	1585	3758	3534	2962	2683	3951
1973	4358	2676	2039	2051	1637	1866	948	612	406	589	1513	2361	1750
1974	3653	3929	5077	4200	3174	2190	1793	1308	2984	2072	1503	1074	2737
1975	1193	2084	2354	1501	2019	2480	1312	1942	1189	841	1346	2303	1712
1976	1732	4122	3053	3849	2434	1492	1002	933	3090	5560	6680	3987	3149
1977	5502	4470	3612	2698	4235	3031	1757	1206	883	1817	2162	3102	2867
1978	3357	3504	3169	2836	4561	2566	1508	1011	710	470	1192	3197	2336
1979	5315	3474	2469	2285	1910	1681	1031	717	425	2920	3991	2003	2345
1980	2114	1920	2334	2949	3042	2262	1160	1390	955	739	1825	1003	1805
1981	1020	806	1914	2443	2022	1616	1789	876	664	658	390	2200	1372
1982	2549	3107	2028	2652	1472	965	725	664	370	257	2436	1995	1589
1983	899	1396	2204	1893	2044	1093	698	433	316	371	530	1262	1094
1984	1113	1152	1650	1866	2813	2304	1185	1005	931	1119	4093	4465	1976
1985	2378	1867	1715	1875	2608	1799	1018	575	370	397	403	1264	1354
1986	1221	4094	2944	2899	2133	1220	843	621	604	1786	1515	1473	1763
1987	1537	4005	2616	2582	1705	1223	1301	891	626	2015	3173	4713	2187
1988	4650	3285	1923	3217	3250	2080	1303	817	602	778	2460	1416	2143
1989	1268	1071	1125	2117	1866	933	592	445	795	962	2339	2024	1294
1990	995	1842	1169	2283	1695	1331	838	593	398	1831	1642	1613	1348
1991	1532	1508	2771	2065	2258	1276	779	686	510	672	986	677	1309
1992	893	1053	1307	863	1980	2753	1364	897	1234	1463	942	1377	1344
1993	950	997	1377	2228	3678	1889	1127	750	1073	1787	4615	3160	1972
1994	2153	3843	2395	1925	2013	1264	838	491	1526	3967	5411	3127	2400
1995	2000	1562	1267	1212	1438	881	413	222	1364	3172	2575	4656	1734
1996	7883	7009	5547	4363	4245	3193	2095	1393	1609	1934	2474	5972	3971
1997	6751	3423	2052	1553	1847	2178	1224	953	450	671	2748	4693	2377
1998	4141	2545	1533	2654	3310	2506	1361	872	503	455	473	594	1741
1999	2543	1053	1309	2040	3735	1799	1062	739	514	1832	3519	1984	1849
2000	1308	911	791	1833	2449	1394	808	556	898	1903	1697	3059	1470
2001	4550	3500	4052	2539	2356	1410	1341	891	873	3178	1593	959	2267
2001	972	1491	1902	2000	2000	1783	894	875	2220	2590	2342	7700	2253
2003	4190	2830	2012	2833	2110	1358	920	595	1272	2416	4603	8494	2883
2003	4052	3361	3633	3843	3557	2321	1503	1227	1433	1595	1303	1687	2000
2004	844	810	618	1085	1364	1231	705	411	3306	1720	1735	1022	1243
2005	2740	3356	1953	1355	831	534	302	204	1617	1480	1005	1365	1243
2000	1125	1511	1224	1607	2180	1200	716	<u>∠</u> 34 <u>/</u> 77	563	667	1067	1159	1120
2007	2202	1603	1220	2200	2525	1299	110	477	505	007	1007	1150	2170
Total	2811	2855	2501	2576	2526	1010	1200	880	1222	1700	2222	2517	2119
iotai	2044	2000	2031	2010	2000	1919	1200	000	1220	1190	2020	2017	2110

Table Ann. 15. Débits simulés par le modèle de transfert (ModDirV2Q42, cf. Etape 2) construit sur la chronique QDirenNat_Q0.42 (moyennes mensuelles et annuelles en l/s)

	Janvie	r	Févrie	r	Mars		Avril		Mai		Juin	
Paramètres	QMOY_MODQ38	ModDirV2Q38Sa										
Minimum	120	118	230	346	292	270	288	361	339	421	192	159
Décile 0.1	595	582	941	748	1012	843	1086	1030	951	1117	533	939
Décile 0.2	884	788	1299	1027	1395	1117	1449	1229	1212	1378	679	1175
1er Quartile	1060	930	1513	1215	1522	1251	1598	1354	1327	1501	765	1259
mediane	2259	1968	2750	2231	2486	1986	2250	1950	1987	2146	1200	1809
3ème quartiles	4284	3704	4368	3458	3671	2940	3391	2972	2996	2920	1865	2427
Décile 0.8	4895	4149	4754	3795	3974	3271	3772	3222	3226	3141	2052	2667
Décile 0.9	6410	5513	5944	4887	5611	4466	4859	4050	3831	3880	2442	3305
Maximum	11777	10597	12473	12154	10114	8265	7586	6628	6837	6515	4672	6360
nb valeurs journalières	1395	1426	1294	1300	1426	1426	1380	1380	1426	1426	1350	1350
Moyenne	2977	2565	3216	2575	2878	2324	2649	2284	2250	2332	1370	1970
Ecart-type	2389	2016	2185	1765	1833	1457	1455	1213	1197	1100	766	973
	Juillet		Août		Septen	nbre	Octobr	e	Novem	bre	Décem	bre
Paramètres	QMOY_MODQ38	ModDirV2Q38Sa	QMOY_MODQ38	ModDirV2Q38Sa		ModDirV2Q38Sa	QMOY_MODQ38	ModDirV2Q38Sa	QMOY_MODQ38	ModDirV2Q38Sa	QMOY_MODQ38	ModDirV2Q38Sa
Minimum	60	177	21	80	3	29	5	60	34	66	40	69
Décile 0.1	290	541	150	323	110	264	152	243	211	361	429	543
Décile 0.2	360	705	193	445	160	349	257	390	490	655	630	711
1er Quartile	400	776	219	488	182	384	318	515	592	817	745	824
mediane	647	1131	343	749	320	602	791	1131	1126	1369	1505	1554

Ecart-type	399	649	291	530	1035	1240	1326	1436	1501	1458	2119	2033
Table Ann. 16. Comp	araiso	n des :	statisti	iques d	descrip	otives	mensı	lelles (des dé	bits m	odélis	és par
les deux approches d	le moa	élisati	on mis	, ses en	, oeuvr	e dans	s cette	étude	(débi	t en l/s	. coefi	, ficient
			d	e débi	t K=0.	38).			`		,	

3ème quartiles

nb valeurs journalières

Décile 0.8

Décile 0.9

Maximum

Moyenne

	Janvier		Février		Mars		Avril		Mai		Juin	
Paramètres	amoy_moda42	ModDirV2Q42Sa	amoy_moda42	ModDirV2Q42Sa	amoy_moda42	ModDirV2Q42Sa	amoy_moda42	ModDirV2Q42Sa	amoy_modq42	ModDirV2Q42Sa	amoy_modq42	ModDirV2Q42Sa
Minimum	87	188	263	511	463	449	608	619	654	616	435	467
Décile 0.1	705	787	1129	929	1292	1033	1363	1217	1338	1358	888	998
Décile 0.2	1081	1012	1619	1293	1745	1348	1824	1517	1578	1639	1119	1169
1er Quartile	1281	1162	1839	1475	1949	1498	1990	1638	1696	1763	1211	1247
mediane	2791	2327	3313	2535	3092	2216	2886	2254	2489	2371	1744	1716
3ème quartiles	5366	4090	5265	3756	4582	3266	4295	3306	3729	3297	2540	2415
Décile 0.8	5998	4547	5783	4114	4898	3545	4810	3545	4031	3520	2742	2615
Décile 0.9	7769	5800	7132	5086	6601	4814	6096	4375	4713	4179	3294	3153
Maximum	13836	10522	15399	11537	12770	8929	9244	6724	8211	6315	6336	6364
nb valeurs journalières	1426	1426	1300	1300	1426	1426	1380	1380	1426	1426	1350	1350
Moyenne	3615	2844	3859	2855	3547	2591	3333	2576	2831	2586	1948	1919
Ecart-type	2850	2025	2558	1789	2142	1511	1803	1234	1386	1097	958	882

	Juillet		Août		Septerr	nbre	Octobre	Э	Novem	bre	Décem	bre
Paramètres	amoy_modq42	ModDirV2Q42Sa	QMOY_MODQ42	ModDirV2Q42Sa	QMOY_MODQ42	ModDirV2Q42Sa	QMOY_MODQ42	ModDirV2Q42Sa	amoy_modq42	ModDirV2Q42Sa	amoy_modq42	ModDirV2Q42Sa
Minimum	266	278	159	176	124	161	78	188	120	149	23	301
Décile 0.1	598	653	463	426	374	351	374	384	345	492	559	765
Décile 0.2	744	758	554	525	476	428	516	548	688	964	829	1001
1er Quartile	800	810	602	572	512	465	588	648	843	1125	977	1124
mediane	1225	1089	875	781	789	689	1217	1411	1551	1882	1834	1950
3ème quartiles	1654	1506	1247	1111	1435	1414	2211	2251	2842	3145	3397	3231
Décile 0.8	1814	1639	1366	1226	1759	1834	2569	2633	3391	3534	3861	3651
Décile 0.9	2216	1958	1651	1473	3065	2876	3599	3724	4709	4728	5829	4918
Maximum	3901	3264	3484	3523	9415	8795	12900	10761	9682	9298	17784	14828
nb valeurs journalières	1395	1395	1395	1395	1350	1350	1395	1425	1350	1380	1422	1426
Moyenne	1313	1200	982	880	1296	1223	1712	1790	2107	2323	2650	2517
Ecart-type	627	524	487	440	1349	1260	1679	1595	1818	1681	2599	2034

Table Ann. 17. Comparaison des statistiques descriptives mensuelles des débits modélisés parles deux approches de modélisation mises en oeuvre dans cette étude (débit en l/s, coefficient
de débit K=0.42, i.e. borne supérieure).

	Janvier		Février		Mars		Avril		Mai		Juin	J
Paramètres	aMoY_MODQ34	ModDirV2Q34Sa	aMoY_MODQ34	ModDirV2Q34Sa	aMoY_MODQ34	ModDirV2Q34Sa	αΜΟΥ_ΜΟDΩ34	ModDirV2Q34Sa	amoy_moda34	ModDirV2Q34Sa	amoy_moda34	ModDirV2Q34Sa
Minimum	126	186	321	425	240	348	265	365	203	501	79	279
Décile 0.1	608	715	886	871	918	925	1058	1037	915	1045	521	660
Décile 0.2	895	911	1190	1220	1291	1217	1329	1297	1176	1301	682	803
1er Quartile	1042	1053	1373	1383	1421	1359	1472	1409	1296	1404	742	866
mediane	2218	2154	2531	2337	2266	2035	2130	2004	1888	1961	1167	1264
3ème quartiles	4197	3837	4039	3564	3403	3022	3186	3008	2851	2833	1773	1890
Décile 0.8	4780	4298	4383	3913	3698	3289	3480	3274	3050	3057	1906	2055
Décile 0.9	6103	5560	5459	4926	5082	4529	4471	4058	3631	3645	2324	2587
Maximum	10907	10243	11422	11162	9413	8451	6807	6312	6309	5932	4619	5593
nb valeurs journalières	1426	1426	1300	1300	1426	1426	1380	1380	1426	1426	1350	1350
Moyenne	2867	2676	2950	2703	2642	2399	2469	2312	2139	2181	1312	1459
Ecart-type	2226	1969	1967	1734	1651	1443	1335	1191	1116	1040	749	786

	Juillet		Août		Septerr	bre	Octobre)	Novem	bre	Décem	bre
Paramètres	amoy_moda34	ModDirV2Q34Sa	amoy_moda34	ModDirV2Q34Sa	amoy_moda34	ModDirV2Q34Sa	QMOY_MODQ34	ModDirV2Q34Sa	amoy_moda34	ModDirV2Q34Sa	amoy_moda34	ModDirV2Q34Sa
Minimum	26	62	5	34	0	0	0	16	0	3	3	133
Décile 0.1	261	383	95	202	51	144	25	170	135	341	462	637
Décile 0.2	345	457	150	272	83	196	140	327	555	805	740	826
1er Quartile	385	496	173	295	99	224	244	437	687	918	834	970
mediane	593	711	299	457	196	393	902	1169	1302	1672	1636	1741
3ème quartiles	882	1046	463	656	796	1080	1715	1971	2491	2907	2860	2984
Décile 0.8	955	1132	503	719	1185	1592	1974	2341	2938	3263	3266	3382
Décile 0.9	1152	1378	663	938	2155	2538	2923	3448	4121	4483	4908	4614
Maximum	2336	2518	2710	3239	7011	8465	10325	10716	8138	9202	15268	14588
nb valeurs journalières	1414	1423	1426	1426	1380	1380	1426	1426	1380	1380	1426	1426
Moyenne	666	801	365	528	697	928	1259	1544	1798	2110	2267	2315
Ecart-type	394	410	308	360	1086	1214	1435	1568	1630	1651	2194	1991

Table Ann. 18. Comparaison des statistiques descriptives mensuelles des débits modélisés parles deux approches de modélisation mises en oeuvre dans cette étude (débit en l/s, coefficient
de débit K=0.34, i.e. borne inférieure).

Moyenne de QLezNatV2_(Q0.34_ctGinger2)

	mois												
année	1	2	3	4	5	6	7	8	9	10	11	12	Moy
1962							659	378	489	2095	3344	1804	
1963	5070	4983	2738	3921	2097	2273	1414	1020	2955	1817	4515	3406	2997
1964	3244	4685	6269	4478	2896	2154	1243	729	2693	2706	2616	2584	3016
1965	2599	2395	2911	1396	886	694	339	148	1112	4244	3403	2455	1880
1966	2165	3732	2703	2761	2429	1597	977	520	467	1328	1070	644	1685
1967	1860	3735	3286	1548	1829	1130	591	215	111	108	463	533	1269
1968	268	1602	1146	1879	2439	2692	1460	1021	1398	995	1839	1753	1536
1969	3196	3356	5782	4480	3789	2274	1465	786	803	3052	3262	2348	2881
1970	5555	3067	2310	1895	2251	1080	471	313	243	1226	899	923	1682
1971	3282	3433	2787	4707	3721	2663	1425	923	483	1112	1593	1363	2281
1972	5956	7150	5447	3440	2869	3634	1664	787	3049	3081	2583	2338	3483
1973	4048	2370	1744	1649	1275	1481	561	331	181	506	1363	2134	1466
1974	4261	5134	5351	4328	3247	2001	1312	752	3327	1993	1299	1170	2830
1975	1561	3469	3655	2199	1754	2706	1075	1678	1456	718	1115	2373	1969
1976	2008	4929	3447	3917	2522	1149	702	921	3114	5245	5360	3714	3072
1977	5596	4316	4129	3009	4112	3226	1920	823	509	2338	3134	4276	3113
1978	4288	4506	4130	3441	4870	2659	1023	586	377	151	875	2865	2471
1979	3930	2387	1883	1989	1565	1178	462	266	137	2532	2415	1583	1691
1980	2106	1904	2585	2772	1876	1551	857	1135	671	462	1539	791	1517
1981	896	711	1814	2277	1637	1229	1423	635	403	405	173	2012	1139
1982	2345	2932	1887	2514	1345	673	405	293	108	82	2387	1909	1394
1983	842	1349	2117	1770	1676	769	487	259	143	170	420	1168	929
1984	1059	11030	1595	1769	2681	1957	941	794	704	920	3764	4137	1787
1985	2115	1727	1568	1664	1945	1193	603	349	216	238	324	1154	1089
1986	1143	3992	2815	2764	1949	1026	593	267	286	1505	1399	1384	1576
1987	1486	3905	2467	2343	1435	915	Q41	<u>180</u>	258	1782	3792	5103	2072
1988	5435	3117	1786	3038	3367	1635	709	400	338	900	2782	1238	2062
1989	1441	1012	1064	2176	1824	725	420	334	685	799	2168	1018	1213
1990	924	2544	1058	2122	1289	887	539	375	219	1638	1485	2510	1290
1991	2160	2530	3940	2783	2507	978	580	429	264	462	884	591	1504
1992	844	1013	1244	771	1673	2373	1298	645	1044	1313	844	1126	1183
1993	745	906	1255	2072	3273	1484	893	556	927	1543	4912	3069	1804
1994	2606	4659	2463	1596	1521	817	498	188	1352	3877	4587	2978	2244
1995	1999	1563	1079	763	801	384	202	118	1336	3223	3086	4636	1602
1996	6836	4704	4183	2958	3017	1863	1219	613	1209	2119	2734	5970	3120
1997	5636	2764	1658	1310	1406	1477	499	446	266	607	3117	4638	1984
1998	3700	2548	1424	2675	3426	2210	831	517	372	273	271	408	1557
1999	2279	980	1162	1813	3491	1432	762	512	307	1846	3531	1741	1659
2000	1191	867	753	1630	2072	940	568	434	785	1819	2050	3803	1413
2001	5606	3058	3772	2180	1856	958	784	413	495	3751	1566	877	2111
2002	893	2578	2708	2358	1881	1644	687	660	2622	3151	2882	5605	2303
2003	2784	2258	2827	2000	1528	665	306	222	985	3070	4882	5482	2281
2003	2464	2815	3440	3561	2806	1510	878	870	1144	2470	2536	2188	2231
2005	741	723	505	928	1068	946	526	205	3306	1984	3105	1327	1200
2005	3710	1202	1700	1075	608	<u>41</u> 4	143	<u>2</u> 95 46	1581	2881	2107	2526	1673
2003	1102	1454	105/	1501	1726	1010	512	288	<u>/</u> 11	<u>407</u>	2107	1007	955
2008	2186	1524	1137	2102	3085	1013	012	200		131	525	1007	555
Mov	2745	2825	2530	2404	2248	1517	825 5	539.8	987.6	1718	2293	2384	1918
				= .0 7			0_0.0	000.0	551.5		00		

Table Ann. 19. Débits naturalisés de la source du Lez (borne inférieure), valeurs moyennes mensuelles et annuelles en l/s

Moyenne d	e QLezNatV2_	_(Q0.42_	_ctGinger2)
-----------	--------------	----------	-------------

	mois												
année	1	2	3	4	5	6	7	8	9	10	11	12	Moy
1962													
1963		5345	2959	4285	2585	2975	2068	1643	3449	2237	4855	3740	3234
1964	3526	4958	6753	5025	3544	2768	1708	1343	3332	3296	3008	2832	3499
1965	2805	2605	3261	1772	1241	1106	656	440	1330	4468	3660	2624	2163
1966	2313	3881	2984	3275	3094	2182	1307	920	793	1668	1278	822	2030
1967	1974	3862	3487	1766	2079	1327	827	598	469	330	521	583	1471
1968	310	1626	1198	1942	2612	3039	1744	1303	1643	1286	2133	2093	1740
1969	3476	3564	6073	4808	4214	2712	1910	1302	1371	3607	3691	2640	3280
1970	5810	3293	2508	2286	2696	1560	929	656	506	1348	1075	1044	1972
1971	3395	3587	2948	4966	4135	3237	2049	1434	994	1558	1960	1650	2650
1972	6209	7453	5745	3765	3191	4256	2458	1585	3758	3534	2962	2683	3951
1973	4358	2676	2039	2051	1637	1866	948	612	406	589	1513	2536	1765
1974	5038	6096	6367	5087	3753	2340	1774	1308	4073	2265	1613	1357	3402
1975	1798	4053	4280	2490	2005	3100	1329	1965	1736	912	1320	2807	2304
1976	2294	5862	4030	4613	2877	1457	1002	1223	3695	6283	6396	4366	3659
1977	6684	5104	4869	3489	4851	3749	2304	1248	883	2813	3685	5067	3726
1978	5077	5344	4872	4025	5785	3063	1481	1011	710	470	1192	3373	3023
1979	4617	2704	2079	2207	1734	1681	1031	717	425	2951	2737	1712	2047
1980	2326	2075	2891	3115	2106	1831	1160	1390	955	739	1825	1003	1781
1981	1020	806	1914	2443	2022	1616	1789	876	664	658	390	2200	1372
1982	2549	3107	2028	2652	1472	965	725	664	370	257	2436	1995	1589
1983	899	1396	2204	1893	2044	1093	698	433	316	371	530	1262	1094
1984	1113	1152	1650	1866	2813	2304	1185	1005	931	1119	4093	4465	1976
1985	2378	1867	1715	1875	2608	1799	1018	575	370	397	403	1264	1354
1986	1221	4094	2944	2899	2133	1220	843	621	604	1786	1515	1473	1763
1987	1537	4005	2616	2582	1705	1223	1301	891	626	2015	3834	5193	2282
1988	5435	3117	1929	3065	3367	2063	1303	817	602	1055	2845	1395	2246
1989	1508	10/1	1125	2259	1979	933	592	445	795	962	2256	1940	1322
1990	995	2548	1169	2283	1695	1331	838	593	398	1831	1661	2526	1481
1991	2168	2530	3940	2783	2507	1276	119	686	510	6/2	986	6//	1621
1992	893	1053	1307	863	1980	2781	1526	897	1234	1469	1039	1377	1369
1993	950	997	1377	2228	3468	1771	1127	750	1073	1802	4912	3069	1962
1994	2606	4659	2463	1747	2013	1264	838	491	1526	3975	4587	2978	2412
1995	2053	1019	1207	1212	1430	1062	413	1202	1504	3200 2110	3000	4030	1793
1990	0030 5626	4704	4103	2900	3017	1003	1009	1393	1540	2119	2134	5970 4650	3200 2222
1000	2700	2704	1520	1555	2452	2103	1224	955	430 502	455	472	4039 504	1720
1000	2368	1053	1100	1880	3402	1682	1062	730	503	400	473	1845	1781
2000	1308	011	701	1833	2333	130/	808	556	004	1021	2134	3803	1561
2000	5606	3058	3772	2341	2356	1410	1341	801	904 873	3790	1677	9200	2342
2001	972	2587	2708	2358	1921	1842	894	875	2685	3221	2882	5605	2377
2002	2784	2289	2827	2292	1899	1358	920	595	1076	3088	4882	5482	2460
2004	2464	2815	3449	3561	2924	2321	1503	1227	1390	2599	2580	2234	2420
2005	844	810	618	1085	1364	1231	705	411	3409	2081	3195	1390	1425
2006	3730	3393	1810	1355	831	534	392	294	1733	2887	2122	2532	1792
2007	1135	1511	1224	1697	2189	1299	716	477	563	667	1067	1158	1139
2008	2292	1603	1230	2209	3525								
Моу	2869	2997	2742	2641	2577	1918	1210	888	1279	1944	2454	2569	2175

Table Ann. 20. Débits naturalisés de la source du Lez (borne supérieure), valeurs moyennes mensuelles et annuelles en l/s

	Janvier	Février	Mars	Avril	Mai	Juin
Paramètres	QLezNat	QLezNat	QLezNat	QLezNat	QLezNat	QLezNat
Minimum	186	425	348	365	501	279
Décile 0.1	715	871	925	1058	1027	660
Décile 0.2	913	1297	1224	1343	1287	803
1er Quartile	1059	1553	1368	1479	1401	866
Médiane	2313	2417	2150	2145	1985	1257
3ème quartiles	3733	3732	3413	3122	2970	2049
Décile 0.8	4243	4146	3722	3355	3229	2291
Décile 0.9	5511	5186	4676	4129	3792	2785
Maximum	13408	11162	8451	6312	7798	5593
nb valeurs journalières	1426	1300	1426	1380	1426	1350
Moyenne	2745	2825	2539	2404	2248	1517
Ecart-type	2010	1736	1518	1211	1131	859

QLezNat_V2(Q0.34_ctGingerV2)

	Juillet	Août	Septembre	Octobre	Novembre	Décembre
Paramètres	QLezNat	QLezNat	QLezNat	QLezNat	QLezNat	QLezNat
Minimum	62	34	0	16	3	133
Décile 0.1	383	202	144	170	341	637
Décile 0.2	457	272	196	327	809	826
1er Quartile	496	295	224	437	957	995
Médiane	711	457	394	1278	2043	1946
3ème quartiles	1054	662	1286	2483	3224	3259
Décile 0.8	1144	729	1704	2870	3443	3598
Décile 0.9	1413	984	2653	4033	4562	4516
Maximum	3031	3239	10043	8943	10459	16358
nb valeurs journalières	1423	1426	1380	1426	1380	1426
Moyenne	825	540	988	1718	2293	2384
Ecart-type	469	383	1334	1640	1680	1834

Table Ann. 21. Statistiques descriptives des débits naturalisés (bornes inférieurs) de la sourcedu Lez (valeurs en l/s)

	Janvier	Février	Mars	Avril	Mai	Juin
Paramètres	QLezNat	QLezNat	QLezNat	QLezNat	QLezNat	QLezNat
Minimum	188	511	449	619	616	467
Décile 0.1	784	928	1033	1236	1332	998
Décile 0.2	999	1370	1348	1532	1608	1164
1er Quartile	1143	1632	1493	1665	1724	1245
Médiane	2391	2515	2302	2333	2263	1668
3ème quartiles	3863	4002	3682	3344	3292	2434
Décile 0.8	4373	4465	4032	3640	3502	2651
Décile 0.9	5824	5760	5103	4538	4189	3253
Maximum	13408	11537	8929	7520	9434	6364
nb valeurs journalières	1395	1296	1426	1380	1426	1350
Moyenne	2869	2997	2742	2641	2577	1918
Ecart-type	2091	1866	1649	1295	1192	914
	Juillet	Août	Septembre	Octobre	Novembre	Décembre

QLezNat_V2(Q0.42_ctGingerV2)

	Juillet	Août	Septembre	Octobre	Novembre	Décembre
Paramètres	QLezNat	QLezNat	QLezNat	QLezNat	QLezNat	QLezNat
Minimum	278	176	161	188	149	301
Décile 0.1	653	426	351	383	487	759
Décile 0.2	758	525	428	544	983	990
1er Quartile	810	572	465	639	1156	1115
Médiane	1086	781	689	1480	2159	2136
3ème quartiles	1492	1125	1490	2631	3342	3421
Décile 0.8	1631	1244	1853	3034	3614	3758
Décile 0.9	1992	1496	2963	4391	4773	4879
Maximum	3264	3523	10841	10785	10459	16358
nb valeurs journalières	1395	1395	1350	1395	1350	1395
Moyenne	1210	888	1279	1944	2454	2569
Ecart-type	551	454	1412	1722	1711	1879

Table Ann. 22. Statistiques descriptives des débits naturalisés (bornes supérieurs) de la sourcedu Lez (valeurs en l/s)

Annexe 4

Détail de la procédure de simulation du niveau piézométrique du drain karstique de la source du Lez

Période 1975-1982	moio											
	111015		2	4	F	6	7	0	0	10	- 14	40
Donnees	28/1	2	3 20/1	2765	2460	1796	083	8 702	9	1/01	2125	2440
Débit módian (Lez naturel estimé)	2505	2152	2025	2614	2400	1204	903	601	410	551	1921	2440
Debit Min (Lez natural antimá)	2000	405	3023	2014	2002	1004 FOF	206	201	413	21	1021 2	400
Debit Min (Lez naturel estime)	527	420	0550	012	700	505	290	201	40	21	3	133
Debit Max (Lez naturei estime)	8269	6686	6552	6297	1198	4236	2765	3239	8905	8926	/245	/556
Débit (décile 0.1) (Lez naturel estime)	786	587	14/6	1704	1214	752	403	258	126	65	156	680
Débit (décile 0.9) (Lez naturel estime)	5502	5131	4395	4118	4571	3116	2028	1775	2037	4835	4542	4478
Période 1975-1982	ie											
	mois											
Données (en l/s)	1	2	3	4	5	6	7	8	9	10	11	12
Débit moyen de Preievement	980	995	1051	1053	1011	1005	901	804	//9	782	853	888
Débit médian de Prélevement	991	991	1024	1036	1036	1022	921	795	763	760	848	897
Débit Min de Prélèvement	626	715	778	318	0	574	542	392	405	300	476	582
Débit Max de Prélèvement	1324	1363	1381	1449	1407	1513	1250	1106	1082	1100	1141	1354
Débit (décile 0.1) de Prélèvement	802	869	932	912	900	798	701	678	667	430	664	727
Débit (décile 0.9) de Prélèvement	1143	1131	1250	1283	1220	1171	1076	960	938	1026	1050	1044
Période 1975-1982	-											
(calculé en prenant la valeur absolue)	mois	_	_									
Données (en l/s)	1	2	3	4	5	6	7	8	9	10	11	12
Débit moyen de Sollicitation_Q34	24	38	1	2	6	38	131	237	319	267	127	35
Débit médian de Sollicitation_Q34	0	0	0	0	0	0	41	232	340	224	0	0
Débit Maxde Sollicitation_Q34	509	452	67	318	295	540	579	737	862	946	1037	735
Débit Minde Sollicitation_Q34	0	0	0	0	0	0	0	0	0	0	0	0
Débit (décile 0.1) de Sollicitation_Q34	81	223	0	0	0	156	423	548	670	707	589	77
Débit (décile 0.9) de Sollicitation_Q34	0	0	0	0	0	0	0	0	0	0	0	0
Période 1975-1982												
	mois											
Données (en m, NGF)	1	2	3	4	5	6	7	8	9	10	11	12
Piézo H_Lez (moyenne)	65.2	65.3	65.6	65.5	65.3	64.6	63.6	63.1	62.4	63.3	63.8	64.4
Piézo H_Lez (médiane)	65.5	65.7	65.6	65.5	65.3	65.0	63.6	63.2	62.4	63.0	65.1	65.3
Piézo H_Lez (minimum)	60.1	59.8	65.0	64.4	63.4	62.1	61.0	59.9	58.7	59.0	59.4	59.0
Piézo H_Lez (maximum)	67.4	66.9	66.8	66.7	67.3	66.0	65.9	65.7	67.7	67.6	67.1	67.2
Piézo H_Lez (décile 0.1)	63.2	62.3	65.1	65.1	64.3	63.2	61.9	60.9	59.6	60.1	60.4	60.9

Table Ann. 23. Période 1975-1982 : débits moyens mensuels interannuels et statistiques descriptives de la source du Lez (naturel estimé, QLez Nat_V2(Q0.34_ctGingerV2), des prélèvements et du débit de sollicitation des réserves (calculé par Eq. 1)

Période 1983-2007												
QLezNat_V2(Q0.34_ctGingerV2)	mois											
Données en l/s	1	2	3	4	5	6	7	8	9	10	11	12
Débit moyen (Lez naturel estimé)	2394	2302	1986	1995	2037	1209	660	423	854	1714	2410	2667
Débit médian (Lez naturel estimé)	1914	2055	1694	1825	1758	1039	618	395	365	1353	2200	2161
Débit Min (Lez naturel estimé)	414	472	348	365	501	279	62	34	0	16	171	142
Débit Max (Lez naturel estimé)	13408	7858	7755	6308	6289	4015	3031	1953	10043	8943	10459	16358
Débit (décile 0.1) (Lez naturel estimé)	724	784	775	904	924	573	355	169	162	191	337	658
Débit (décile 0.9) (Lez naturel estimé)	5061	4147	3628	3255	3611	2073	1014	659	2238	3662	4830	5251
Période 1983-2007												
	mois											
Données (en l/s)	1	2	3	4	5	6	7	8	9	10	11	12
Débit moyen de Prélèvement	1055	1069	1090	1102	1148	1256	1263	1160	1115	1068	1042	1037
Débit médian de Prélèvement	1049	1059	1080	1105	1143	1253	1279	1193	1135	1073	1044	1039
Débit Min de Prélèvement	161	670	635	711	94	811	768	661	391	640	603	605
Débit Max de Prélèvement	1419	1387	1458	1529	1532	1606	1610	1529	1425	1376	1577	1335
Débit (décile 0.1) de Prélèvement	929	934	956	971	1011	1085	1072	904	942	936	908	906
Débit (décile 0.9) de Prélèvement	1205	1207	1227	1233	1292	1428	1433	1339	1273	1197	1158	1164
Période 1983-2007												
(calculé en prenant la valeur absolue)	mois	_	_	_	_	_	_	_	_	_	_	_
Données (en l/s)	1	2	3	4	5	6	7	8	9	10	11	12
Débit moyen de Sollicitation_Q34	16	99	68	86	54	62	287	624	744	600	268	144
Débit médian de Sollicitation_Q34	16	0	0	0	0	0	205	661	779	791	0	0
Débit Min de Sollicitation_Q34	1	741	768	978	849	852	1103	1192	1178	1217	1169	1015
Débit Max de Sollicitation_Q34	31	0	0	0	0	0	0	0	0	0	0	0
Débit (décile 0.1) de Sollicitation_Q34	4	397	303	369	218	280	776	959	1019	1010	884	647
Débit (décile 0.9) de Sollicitation_Q34	28	0	0	0	0	0	0	240	452	0	0	0
Période 1983-2007												
	mois	_	_	_	_	_	_	_	_	_	_	_
Données (en m, NGF)	1	2	3	4	5	6	7	8	9	10	11	12
Piézo H_Lez (moyenne)	63.4	63.7	63.3	63.3	63.2	60.1	53.8	49.4	51.3	58.3	61.7	62.8
Piézo H_Lez (médiane)	65.0	65.1	65.1	64.8	64.8	61.6	54.5	48.3	49.3	62.0	65.1	65.1
Piézo H_Lez (minimum)	49.0	50.9	48.3	50.5	50.1	45.4	39.6	37.2	37.0	42.7	41.0	38.8
Piézo H_Lez (maximum)	67.9	66.9	66.3	66.1	66.2	65.6	65.3	64.5	66.7	67.5	67.6	69.1
Piézo H_Lez (décile 0.1)	59.3	59.9	56.9	60.2	58.2	51.7	45.8	41.9	42.4	46.3	47.7	55.1
Piézo H Lez (décile 0.9)	66.0	65.7	65.6	65.4	65.4	65.1	62.1	58.1	65.2	65.5	65.9	66.4

Table Ann. 24. Période 1983-2007 : débits moyens mensuels interannuels et statistiques descriptives de la source du Lez (naturel estimé, QLez Nat_V2(Q0.34_ctGingerV2), des prélèvements et du débit de sollicitation des réserves (calculé par Eq. 1)

Période 1975-1982												
QLezNat_V2(Q0.42_ctGingerV2)	mois											
Données	1	2	3	4	5	6	7	8	9	10	11	12
Debit moyen (Lez naturel estime)	3295	3635	3370	3129	2856	2183	1353	1137	1180	1886	2498	2815
Débit médian (Lez naturel estimé)	2802	3417	3472	2943	2262	1801	1179	907	734	774	1998	2352
Débit Min (Lez naturel estimé)	628	511	1219	1101	627	811	614	469	291	205	183	301
Débit Max (Lez naturel estimé)	9978	8041	7840	7520	9434	4980	3169	3523	10841	10785	8738	9120
Débit (décile 0.1) (Lez naturel estimé)	910	701	1586	1852	1309	1037	780	659	360	276	364	903
Débit (décile 0.9) (Lez naturel estimé)	6553	6103	5194	4671	5427	3609	2328	2025	2283	5773	5174	5275
Période 1975-1982												
	mois											
Données (en l/s)	1	2	3	4	5	6	7	8	9	10	11	12
Débit moyen de Prélèvement	980	995	1051	1053	1011	1005	901	804	779	782	853	888
Débit médian de Prélèvement	991	991	1024	1036	1036	1022	921	795	763	760	848	897
Débit Min de Prélèvement	626	715	778	318	0	574	542	392	405	300	476	582
Débit Max de Prélèvement	1324	1363	1381	1449	1407	1513	1250	1106	1082	1100	1141	1354
Débit (décile 0.1) de Prélèvement	802	869	932	912	900	798	701	678	667	430	664	727
Débit (décile 0.9) de Prélèvement	1143	1131	1250	1283	1220	1171	1076	960	938	1026	1050	1044
Période 1975-1982												
(calculé en prenant la valeur absolue)	mois											
Données (en l/s)	1	2	3	4	5	6	7	8	9	10	11	12
Débit moyen de Sollicitation_Q42	10	28	0	0	0	3	8	35	125	131	77	18
Débit médian de Sollicitation_Q42	0	0	0	0	0	0	0	0	14	0	0	0
Débit Maxde Sollicitation_Q42	373	344	0	88	63	251	205	397	621	867	952	554
Débit Minde Sollicitation_Q42	0	0	0	0	0	0	0	0	0	0	0	0
Débit (décile 0.1) de Sollicitation_Q42	0	139	0	0	0	0	0	127	408	512	358	0
Débit (décile 0.9) de Sollicitation_Q42	0	0	0	0	0	0	0	0	0	0	0	0
Période 1975-1982												
	mois											
Données (en m, NGF)	1	2	3	4	5	6	7	8	9	10	11	12
Piézo H_Lez (moyenne)	65.2	65.3	65.6	65.5	65.3	64.6	63.6	63.1	62.4	63.3	63.8	64.4
Piézo H_Lez (médiane)	65.5	65.7	65.6	65.5	65.3	65.0	63.6	63.2	62.4	63.0	65.1	65.3
Piézo H_Lez (minimum)	60.1	59.8	65.0	64.4	63.4	62.1	61.0	59.9	58.7	59.0	59.4	59.0
Piézo H_Lez (maximum)	67.4	66.9	66.8	66.7	67.3	66.0	65.9	65.7	67.7	67.6	67.1	67.2
Piézo H_Lez (décile 0.1)	63.2	62.3	65.1	65.1	64.3	63.2	61.9	60.9	59.6	60.1	60.4	60.9
Piézo H_Lez (décile 0.9)	66.5	66.4	66.1	66.0	66.2	65.7	65.3	65.1	65.3	66.3	66.1	66.2

Table Ann. 25. Période 1975-1982 : débits moyens mensuels interannuels et statistiques descriptives de la source du Lez (naturel estimé, QLez Nat_V2(Q0.42_ctGingerV2), des prélèvements et du débit de sollicitation des réserves (calculé par Eq. 1)

Période 1983-2007												
QLezNat_V2(Q0.42_ctGingerV2)	mois											
Données en l/s	1	2	3	4	5	6	7	8	9	10	11	12
Débit moyen (Lez naturel estimé)	2450	2342	2064	2128	2295	1578	1010	708	1040	1848	2487	2739
Débit médian (Lez naturel estimé)	2002	2079	1806	1978	2060	1458	957	669	594	1518	2205	2161
Débit Min (Lez naturel estimé)	464	583	449	619	616	467	278	176	161	252	314	315
Débit Max (Lez naturel estimé)	13408	7858	7755	6308	6289	4539	3031	2180	10043	8994	10459	16358
Débit (décile 0.1) (Lez naturel estimé)	792	840	883	1081	1271	908	562	356	342	389	481	778
Débit (décile 0.9) (Lez naturel estimé)	5061	4182	3641	3308	3676	2407	1512	1087	2321	3716	4945	5302
Période 1983-2007												
	mois											
Données (en l/s)	1	2	3	4	5	6	7	8	9	10	11	12
Débit moyen de Prélèvement	1055	1069	1090	1102	1148	1256	1263	1160	1115	1068	1042	1037
Débit médian de Prélèvement	1049	1059	1080	1105	1143	1253	1279	1193	1135	1073	1044	1039
Débit Min de Prélèvement	161	670	635	711	94	811	768	661	391	640	603	605
Débit Max de Prélèvement	1419	1387	1458	1529	1532	1606	1610	1529	1425	1376	1577	1335
Débit (décile 0.1) de Prélèvement	929	934	956	971	1011	1085	1072	904	942	936	908	906
Débit (décile 0.9) de Prélèvement	1205	1207	1227	1233	1292	1428	1433	1339	1273	1197	1158	1164
Période 1983-2007												
(calculé en prenant la valeur absolue)	mois											
Données (en l/s)	1	2	3	4	5	6	7	8	9	10	11	12
Débit moyen de Sollicitation_Q42	74	53	65	25	22	109	327	478	436	194	103	60
Débit médian de Sollicitation_Q42	0	0	0	0	0	0	321	509	583	0	0	0
Débit Min de Sollicitation_Q42	650	672	876	710	734	940	992	1009	974	1013	881	822
Débit Max de Sollicitation_Q42	0	0	0	0	0	0	0	0	0	0	0	0
Débit (décile 0.1) de Sollicitation_Q42	321	243	289	44	0	420	689	771	776	682	555	272
Débit (décile 0.9) de Sollicitation_Q42	0	0	0	0	0	0	0	57	0	0	0	0
Période 1983-2007												
	mois	_	_	_	_	_	_	_	_	_	_	
Données (en m, NGF)	1	2	3	4	5	6	7	8	9	10	11	12
Piézo H_Lez (moyenne)	63.4	63.7	63.3	63.3	63.2	60.1	53.8	49.4	51.3	58.3	61.7	62.8
Piézo H_Lez (médiane)	65.0	65.1	65.1	64.8	64.8	61.6	54.5	48.3	49.3	62.0	65.1	65.1
Piézo H_Lez (minimum)	49.0	50.9	48.3	50.5	50.1	45.4	39.6	37.2	37.0	42.7	41.0	38.8
Piézo H_Lez (maximum)	67.9	66.9	66.3	66.1	66.2	65.6	65.3	64.5	66.7	67.5	67.6	69.1
Piézo H_Lez (décile 0.1)	59.3	59.9	56.9	60.2	58.2	51.7	45.8	41.9	42.4	46.3	47.7	55.1
Piézo H_Lez (décile 0.9)	66.0	65.7	65.6	65.4	65.4	65.1	62.1	58.1	65.2	65.5	65.9	66.4

Table Ann. 26. Période 1982-2007 : débits moyens mensuels interannuels et statistiques descriptives de la source du Lez (naturel estimé, QLez Nat_V2(Q0.42_ctGingerV2), des prélèvements et du débit de sollicitation des réserves (calculé par Eq. 1)

Annexe 5 Tableau des traçages historiques (période 1956-1977) réalisés sur le système karstique du Lez avant cette étude

	Injectio	on						Conditions d'expérimentation et résultats techniques						
Point d'injection	Altitude	х	Y	Date	Quantité	Point de	Distance	Traçeur	Débit perte	Débit résurgence	tps moyen	vitesse moyenne	conditions hydrologique	Source
A strange sector de Adres ha l	eau (m)	2	2	10/05/10054	(kg)	reapparition	(m)	5 1	(l/s)	(I/s)	(h)	(m/h)	S	
Artigues perte de Mirabei	1/6	? 720 F	? 100 A	10/06/1961	20	Source du Lez	21000	Fluoresceine	0,08	2000	2952	7,1	Secheresse	
Crotto do la Equisió Monnaio	r	720,5	100,4	1968	1.2	Source du Lez	7 800	Fluoresceine	2		6 Jours	26.6		C. DROGUE - FABRIS H.
Perte du ruisseau de Pouzet	r 220	r 712 35	176 35	14/09/1909	3	Source du Lez	7 000	Fluoresceine	5	3.000	15 à 4 iours	70 à 210		G MARIOLET (CERH)
Perte du Thalweg à - 200m source du	64	721,47	158,7	sept-73		Source du Lez	200	uranine		5 000	10	20		G. MARJOLET (CERGH)
Brestalou de Claret à 16,5km de source du Lez	?	?	?	10/04/1976 à 11h00	8	Source du Lez	16 500	uranine	40	3 000	340	48	Décrue	G. MARJOLET (CERGH)
Brestalou de Lauret à 13,3km de source du Lez	85	731,06	172,06	27/04/1976 à 11h00	5	Source du Lez	13 300	uranine	10	1 500	26 jours	21	Décrue	G. MARJOLET (CERGH)
Perte du Thalwegà - 200m source du Lez	64	721,47?	158,7?	3/05/1977 à 16h30	0,35 à 1	Source du Lez	200	uranine	1	4 000	19	10,5	Décrue	G. MARJOLET (CERGH)
Perte sur la faille de Corconne, du Brestalou, de Claret	?	?	?			Source du Lez	16 000	Fluoresceine			15 jours			A.GUISSART - S.C.M. (1954)
Perte près de Pompignan du ruisseau d'Artigues, affluent du Rieumassel	?	722,8	173,25			Source du Lez	19 700	Fluoresceine			122 jours			C.E.R.H C.A.F. (1961)
Perte sur faille Corconne du ruisseau d'Yorgues	?	?	?			Source du Lez	4 000	Fluoresceine			58 jours			C.E.R.H C.A.F. (1961)
						Source des Fontanilles	15 400	Fluoresceine		1000	672	≥22,9	Crue	
Lamalou amont perte du Moulin du Rouet	180	?	?	15/11/1963	15	Source du Lez (?)	11 500	Fluoresceine		5000			Crue	H. PALOC BRGM Juillet 1966
	_	2	_	4 4 /00 /40 00	4.2	Source du Lez	8 900	F I	2		40.1	26.6		
Grotte de la Fausse Monnale	r	r	r	14/09/1969	1,3	Event du Lirou	8 900	Fluoresceine	2		10 Jours	36,6		CAUMONT (CLPA)
						Source du Lez	7 000			3 000	1,5 à 4 jours	70 à 210		
						Source du Gour Noir	5 500			50	1,5 à 3 jours	80 à 150		
Perte du ruisseau de Pouzet	220	712,35	176,35	05/06/1972	3	Source de la Fleurette	6 200	Fluoresceine	5	50	1,5 à 4 jours	57 à 172		G. MARJOLET (CERH)
						Source de la Restinclières	7 000			50	1,5 à 4 jours	65 à 200		
						Event du Lirou	700	Fluoresceine			336	2,08	Crue	
Siphon aval du grand Boulidou des Matelles	90	717,8	160,4	16/12/1956	2	Source du Lez (?)	4000	Fluoresceine			24	166,6	Sécheresse	H. PALOC BRGM Juillet 1966
						Boulidou de Viala	800	Fluoresceine	50 à 100		17	47,05	Crue	
Perte du Brestalou Boulidou B2 du mas de Vedel	123	?	?	19/2/1957 à 22h00	11	Source du Lez	16500	Fluoresceine	50 à 100	3000	312	52,9	Crue	A. GUISSART (S.C.M.) BRGM Juillet 1966

Centre scientifique et technique Service EAU 3, avenue Claude-Guillemin BP 36009 – 45060 Orléans Cedex 2 – France – Tél. : 02 38 64 34 34