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Abstract 10 

Expert judgment is widely used to inform forecasts (e.g. using the 5th, 50th and 95th percentile 11 

of some variable of interest) for a large variety of applications related to environment systems. 12 

This task can rely on Cooke’s classical model (CM) within the probabilistic framework, and 13 

consists in combining expert information after a preliminary step where experts are weighted 14 

using calibration and informativeness scores estimated using some seed questions for which the 15 

answers can be obtained. In the literature, an alternative model (PM) has been proposed using 16 

a different framework to process the information supplied by experts, namely possibility theory. 17 

In the present study, we assess whether both models perform similarly when the seed questions 18 

are different from those used to determine the scores, i.e. by taking the viewpoint of forecast. 19 

Using an extensive out-of-sample validation procedure, two aspects are investigated using 33 20 

expert datasets: 1) robustness to the set of calibration questions used to estimate the scores, i.e. 21 

whether the best and worst performing expert differs; 2) forecast performance, i.e. the degree 22 

of accuracy and informativeness of the derived forecast intervals. Regarding 1), the validation 23 

procedure shows that PM is less sensitive. Regarding 2), PM achieves more accuracy but with 24 

less informativeness when the averaging operator is used. Interestingly, the differences with 25 

CM only remain of moderate magnitude for the considered cases despite the conceptual 26 

dissimilarities of both models and their lack of agreement on the selection of the best 27 

performing expert. 28 

 29 
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1 Introduction 4 

Experts’ opinions are key ingredients to support the process of decision making (Sutherland 5 

and Burgman 2015; Aspinall 2010) and to inform forecasts for environmental systems 6 

especially when data are scarce and incomplete. See Burgman (2005) for an overview and 7 

discussion regarding conservation and environmental management, Knol et al. (2010) regarding 8 

environmental health impact assessment, Krueger et al. (2012) regarding environmental 9 

modelling, Drescher et al. (2013) for ecological research, and Lannoy and Procaccia (2014) 10 

from an industrial perspective.  11 

Since the original critiques of the practices (Moshleh and Bier 1988; see also Lin and Bier 12 

2008), a large variety of research studies have been proposed to structure the process of deriving 13 

information from experts (see Morgan et al. 1990; Cooke 2008; O’Hagan 2019 among others). 14 

The formalized treatment of experts’ judgments (or opinions) to inform decisions, forecasts, or 15 

predictions is named expert elicitation. Among the most popular protocol is the Classical Model 16 

(CM), originally developed by Cooke (1991). It is based on performance weighted aggregation, 17 

i.e. it proposes to aggregate (combine) experts’ opinions about a question of interest by pooling 18 

them using performance weights (scores), that are calibrated using the answers given by the 19 

experts to questions with answers known to the interviewers (termed as seed or calibration 20 

questions). CM has been applied in a large variety of different application domains (Cooke and 21 

Goossens 2008) and more specifically for environment systems (see some real case applications 22 

by Rothlisberger et al. 2012; Metcalf and Wallace 2013; Wittmann et al. 2015). Besides, the 23 

CM performance has been tested during extensive validation exercises (Colson and Cooke 24 

2017, 2018; Eggstaff et al. 2014; Lin and Cheng 2009).  25 

The pillar of CM is the use of probabilistic tools to process the information supplied by the 26 

experts. In situations of high degree of data/information scarcity, restricting the analysis to the 27 

use of only probabilities has, however, been criticized for inducing an appearance of more 28 

refined knowledge with respect to the existing uncertainty than is really present (Klir 1989); 29 

one problem being that randomness and lack of information can hardly be distinguished (see a 30 

detailed discussion by Dubois, 2010) when using only probabilities. Regarding the specific 31 

issue of expert knowledge representation, Dubois and Prade (1994) outline that the probability 32 
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setting may be often too “rich” to be currently supplied by individuals, because the 1 

identification of the probability distribution requires more information than what an expert is 2 

able to supply, which is often restricted to the 0.50 and 0.95 percentiles (or a prescribed mode): 3 

there are many probability distributions that have the prescribed percentiles. This means that 4 

the expert knowledge is pervaded by incompleteness: this lack of precision should be faithfully 5 

captured. Therefore, explicitly accounting for this imprecision has motivated the development 6 

of alternative uncertainty theories like Fuzzy sets, Dempster-Shafer theory, Possibility theory 7 

(see e.g. Dubois and Guyonnet 2011 and references therein). Some examples in the context of 8 

decision-making for environment systems are provided by Tacnet et al. (2014) with applications 9 

to natural risks.  10 

Adopting such alternative settings does not mean that probability theory is rejected, but aims at 11 

complementing it by leaving room for a flexible representation of imprecision in the supplied 12 

data. As outlined in the concluding remarks of Flage et al. (2014), testing different approaches 13 

for representing and characterizing uncertainties is of high interest to support decision making, 14 

because each method can capture different types of information and knowledge i.e. they can 15 

shed light to different aspects of the problem and bring different perspectives, and eventually 16 

help the decision making process. This has motivated the present comparative analysis between 17 

two distinct formalisms for informing forecast using expert judgements: probabilistic by 18 

focusing on CM, and an alternative setting by focusing on the one proposed by Sandri et al. 19 

(1995) within the possibility theory (Dubois and Prade 1988); termed as Possibilistic Model 20 

(PM). Further details on this type of information processing are provided in Sect. 2.2.  21 

PM has been applied in different contexts, namely for risk analysis of spaceflight systems and 22 

of chemical process plant (ESTEC and DSM dataset of the TU Delft expert judgment database, 23 

Cooke and Goossens 2008) by Sandri et al. (1995), and for information post-processing of 24 

nuclear computer codes (Destercke and Chojnacki, 2008; Baccou and Chojnacki 2014). From 25 

these previous studies, the following conclusions have been drawn. PM has shown to provide 26 

valuable complementary views on expert knowledge, by highlighting more easily the potential 27 

conflict between the experts and by measuring directly the reliability (such an information 28 

remains difficult to extract from a probability distribution). From a risk assessment perspective, 29 

the PM scores are defined based on concepts that are closely related to best estimate and 30 

uncertainty bounds (this is further discussed in Sect. 2.2): these are useful to decision makers 31 

in the context of risk assessments to understand most likely scenario and to investigate how 32 
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sensitivity their decisions are to different risk attitudes, as outlined by Hemming et al. (2020) 1 

for ecological applications. Finally, from a practical point of view, the workload for PM-based 2 

evaluation appears to be of reasonable magnitude (as outlined by Destercke and Chojnacki, 3 

2008). Besides, it can easily be checked by the experts, and does not lead to incoherencies as 4 

outlined by Sandri et al. (1995). This makes the PM procedure of evaluation easy to integrate 5 

in any risk and impact assessments.  6 

To date, comparison exercises have been conducted through a direct application of the 7 

respective models and by searching the reasons of the dissimilarities. To clarify the best 8 

practices, and to improve recommendations for using these approaches to support efficiently 9 

the decision-making process, the viewpoint of forecasts has to be addressed (see for instance 10 

the discussion by Rae and Alexander 2017 for safety analysis). Put into other words, examining 11 

whether both models, CM and PM, perform similarly when they are tested on questions that are 12 

different from the ones used to determine the scores, has to our best knowledge, never been 13 

tackled. In the present study, we aim at addressing this question by investigating two aspects: 14 

1) robustness to the set of calibration questions: in both models, experts who perform well on 15 

the seed questions are afforded more weights. Thus, we aim at assessing the sensitivity to the 16 

set of questions, i.e. whether the same experts are afforded the same weight when modifying 17 

the questions; 2) forecast performance, i.e. whether both models lead to as accurate and 18 

informative forecasts. 19 

The paper is organized as follows. After providing technical details on both models (Sect. 2), 20 

we formalize a comparison exercise based on an out-of-sample validation procedure (Sect. 3), 21 

which is applied in Sect. 4 on expert datasets that cover a large variety of situations. The 22 

comparison results are then discussed in Sect. 5. 23 

 24 

2 Methods 25 

2.1 Classical model 26 

We recall the main principles of the Classical Model (denoted CM). Full details and justification 27 

can be found in Cooke (1991). CM consists of two stages: 1) Calibration: experts are asked a 28 

set of questions (termed seed or calibration) for which the answers are known to the 29 

interviewers. These questions relate to the main questions of interest. Experts are scored based 30 

on their performance with respect to the calibration questions; 2) Aggregation: the experts’ 31 
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opinions are combined (aggregated) to inform the forecast regarding the questions of interest. 1 

The experts who performed well on the calibration questions (during the first stage) are afforded 2 

more weight (denoted WCM) in the final aggregation for the questions of interest. 3 

Formally, let us consider X the unknown variable, P a probability measure on X. The kth 4 

percentile, denoted qk, is the deterministic value x s.t. P(X≤x)=k/100, where k[0,100]. If B+1 5 

percentiles values have been given by an expert e (including the lower and upper bound), then 6 

the corresponding probability density pX=(p1,...,pB) is a histogram made of B inter-percentiles 7 

(the value of an inter-percentile being the difference between two successive qk values). For 8 

each of the seed variable, the expert is generally asked answers in the form of percentiles 9 

(typically 5th, 50th and 95th percentiles). At the end of this process, the information provided by 10 

each expert e is encoded by an empirical probability distribution denoted fe (one distribution 11 

per seed variable and per expert). The aggregation of the ne expert assessments is performed 12 

via a linear pooling, i.e. the weighted averaging of the probabilities provided by the experts (as 13 

recommended by Cooke et al. 2020) as follows: DMavgCM =
∑ 𝑊CM(𝑒).𝑓𝑒

𝑛𝑒
𝑒=1

∑ 𝑊CM(𝑒)
𝑛𝑒
𝑒=1

.  14 

Two main scoring measures are used to assess the ability of an expert to provide a well‐15 

calibrated and informative probability distribution. The first one, referred to as informativeness, 16 

(denoted InfCM) measures the degree to which the distribution pX provided by the expert for the 17 

variable X, is concentrated and to which it deviates from the least informative distribution, i.e. 18 

the uniform distribution q. It is based on the measure of distance between two probability 19 

distributions pX, q given by the relative entropy or KL (Kullback-Leibler) divergence (Kullback 20 

and Leibler 1951) formally defined as follows: 21 

 22 

KL(𝒑𝑋, 𝒒) =
1

𝑛
∑ 𝑝𝑖. log(

𝑝𝑖

𝑞𝑖
)𝑛

𝑖=1         (1) 23 

where n is the number of discretized values. 24 

 25 

The uniform distribution q is defined on the interval [l*, u*] whose bounds can be defined using 26 

the overshoot rule, i.e. 𝑙∗ = 𝑙 − 𝑘(𝑢 − 𝑙)/100, and 𝑢∗ = 𝑢 + 𝑘(𝑢 − 𝑙)/100, where l, and u are 27 

the minimum and maximum values of all answers provided by the experts, and k is a parameter 28 

that is here chosen at 10. 29 
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The informativeness is then calculated per calibration question, and the score of an expert 1 

corresponds to the average information taken across all calibration questions, as follows: 2 

 3 

Inf𝐶𝑀 =
1

𝑁
∑ KL(𝒑𝑖, 𝒒)𝑁

𝑖=1          (2) 4 

where 𝑁 is the number of calibration questions. Higher numbers represent distributions that 5 

show greater departure from a uniform distribution, i.e. they are more informative compared to 6 

the uniform distribution. 7 

 8 

The second score is the statistical accuracy, denoted CalCM, (also referred to as calibration 9 

score), and compares the adequacy between the information provided by the expert and the 10 

known values of the seed variables. Let us consider that the expert has given B percentiles 11 

(q1,…, qB) for N seed variables. On this basis, the following empirical distribution by 12 

r=(r1,…,rB, rB+1) can be defined as follows: 13 

- rj is the proportion of seed variables whose values are between qj and qj+1 for for j≠1 14 

and j≠B; 15 

- r1 (resp. rB+1) is the proportion of seed variables whose values are lower (respectively 16 

larger) than the percentile q1 (respectively qB). 17 

 18 

An expert is considered perfectly calibrated if the distribution of the proportions r matches the 19 

theoretical distribution derived from the proportions of seed variables within each theoretical 20 

inter-quantile range; e.g., for the 5th, 50th and 95th percentiles, the theoretical distribution of 21 

proportions is rth=(0.05,0.45,0.45,0.05). The comparison between rth and r can be done using 22 

the KL distance. The P-value of the chi‐square test (with B-1 degrees of freedom) is then used 23 

to derive the statistical accuracy, as follows: 24 

 25 

𝐶𝑎𝑙CM = 1 − 
𝐵−1
2 (2. 𝑁. KL(𝒓𝑡ℎ, 𝒓))       (3) 26 

Higher values indicate an expert's distribution closer to the theoretical distribution, i.e. better 27 

calibration. 28 

 29 

A global score WCM for each expert is then defined as follows: 30 

𝑊CM = 𝐶𝑎𝑙CM × 𝐼𝑛𝑓CM × 1𝛼(𝐶𝑎𝑙CM ≥ 𝛼)       (4) 31 
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where 1𝛼(𝐶𝑎𝑙CM ≥ 𝛼)=1 if 𝐶𝑎𝑙CM ≥ 𝛼, and is zero otherwise. The threshold  is estimated via 1 

an optimisation procedure (see Cooke, 1991 for more details), which aims at maximizing the 2 

score 𝐶𝑎𝑙CM × 𝐼𝑛𝑓CM of the “decision-maker” resulting from the linear pooling of all experts 3 

DMavgCM. 4 

2.2 Possibilistic model 5 

2.2.1 Representing expert knowledge 6 

Instead of relying on probabilities to represent expert knowledge, alternative mathematical 7 

frameworks rely on the use of an interval-valued representation: when the expert provides a 8 

lower and an upper bound of some unknown variable, interval is the simplest approach for 9 

representing the pieces of information. In most cases however, experts may provide more 10 

information by expressing preferences inside this interval. Such “nuanced” information can be 11 

conveyed using the possibility distributions, also referred to as fuzzy intervals or “nested 12 

intervals” (Zadeh 1978; Dubois and Prade 1988). A more detailed introduction to possibility 13 

theory as a framework for knowledge modelling is provided by Dubois and Prade (2015). 14 

This distribution is formally defined as a mapping 𝜋 ∶  ℝ →  [0; 1]. The possibility degree 15 

𝜋(𝑥)of a given parameter value x is the plausibility of this value given the state of knowledge; 16 

if 𝜋(𝑥) = 1, the value is considered totally possible (= plausible); if 𝜋(𝑥) = 0, the value is 17 

considered impossible. For instance, say that an expert has provided a best estimate b and an 18 

interval [a ; c], where she/he is certain that the true value is located. The preference of the expert 19 

is modelled by a degree of possibility ranging from 0 to 1. In practice, the most likely value b 20 

(referred to as the “core” of ) is assigned a degree of possibility equal to one, whereas the 21 

“certain” interval [a ; c] (referred to as the "support" of ) is assigned a nil degree of possibility, 22 

such that values located outside this interval are considered impossible. Linear segments are 23 

usually selected for the left and right sides of the possibility distribution, which either 24 

correspond to a trapezoidal (or triangular) distribution.  25 

Yet, as outlined by Sandri et al. (1995), a triangular (or trapezoidal) possibility distribution as 26 

afore-defined may be too restrictive in practice, because it may overlook the level of confidence 27 

that the expert is provided with the forecast interval, i.e. the interval whose bounds are defined 28 

by the 5th and 95th percentile is assigned a level of confidence of 90%. In the present study, we 29 

adopt a more generic definition of possibility distributions by interpreting them from a 30 
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probabilistic point of view: possibility distributions can be viewed as a set of nested intervals, 1 

each of them being assigned a level of confidence 1-(Baudrit and Dubois, 2006). These 2 

intervals, defined as 𝜋𝛼 = {𝑥, 𝜋(𝑥) ≥ 𝛼}, are called -cuts: they contain all the values that have 3 

a degree of possibility of at least  (lying between 0 and 1), and they formally correspond to 4 

the intervals with a level of confidence 1- as traditionally defined in the probability theory, 5 

i.e. 𝑃(𝑥 ∈ 𝜋𝛼) ≥ 1 − 𝛼. This means that the level of confidence can be interpreted as the 6 

smallest probability that the true value of X hits 𝜋𝛼  (e.g., from the point of view of the experts, 7 

the proportion of cases where 𝑥 ∈ 𝜋𝛼  from her/his experience). 8 

In the situation considered here, the experts provide their answers in the form of percentiles 9 

(typically 5th, 50th and 95 th percentiles). Based on the approach used by Destercke and 10 

Chojnacki (2008), the available knowledge is then represented by a possibility distribution  11 

that is constructed as follows: 12 

- the median value defines the core of ; 13 

- the interval defined by the 5th and 95th percentiles is interpreted as the -cut, with 14 

 15 

- the lower and upper bound (l*, u*) define the support of  : these are either provided by 16 

the experts or assumed to be linked to the minimum and maximum values of the answers 17 

given by the experts (as defined for CM, see Eq. 1);  18 

- linear segments are selected to link the bounds of the support, the 0.10-cut and the core. 19 

Figure 1a provides two examples of possibility distributions constructed based on the (q5-q50-20 

q95) triplets provided by two experts, namely (0.0, 0.5, 3.0), and (0.5, 3.0, 3.5), for the 21 

considered variable X. The lower and upper bound of the considered variable respectively 22 

reaches -0.5 and 4.0. Figure 1a also provides an illustration on the graphical advantage of this 23 

setting: it directly depicts the consensus between both sources of information (i.e. both experts) 24 

that is represented by the area where both distributions overlap; the area outside being a 25 

representation of the conflict between them (see also a discussion by Baccou and Chojnacki, 26 

2014). 27 
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 1 

Fig. 1 (a) Examples of two possibility distributions constructed based on the (q5-q50-q95) 2 

percentile triplets provided by two experts, namely (0.0, 0.5, 3.0) in black, and (0.5, 3.0, 3.5) 3 

in grey, for the considered variable X. The lower and upper bound of the considered variable 4 

respectively reaches -0.5 and 4.0. (b) Weighted averaging of the possibility distribution in (a) 5 

with weight of 70 and 30% (bold and dotted lines respectively indicate the resulting 6 

distribution before and after normalisation between 0 and 1). 7 

 8 

2.2.2 Scoring 9 

Similarly as for CM, two main scores are defined (Sandri et al., 1995). Let us consider X the 10 

variable of interest, and 𝜋𝑋 the possibility distribution constructed based on the percentiles 11 

supplied by the considered expert. The informativeness is then measured by comparing the 12 

imprecision of 𝜋𝑋 to the one of the possibility distribution of minimal information (defined as 13 

a flat possibility distribution (l*, u*) equal to 1.0 between l* and u*, and 0.0 outside). A measure 14 

of imprecision of 𝜋𝑋 is the area ∫ 𝜋𝑋(𝑥)d𝑥
+

−
. The informativeness is then defined as the 15 

complement to 1 of the ratio between both areas 𝐼(𝑋) = 1 − ∫ 𝜋𝑋(𝑥)d𝑥
+

−
/(𝑢∗ − 𝑙∗). For the 16 

considered expert, the informativeness score InfPM is estimated by averaging over all calibration 17 

questions as follows: 18 

 19 

𝐼𝑛𝑓𝑃𝑀 =
1

𝑁
∑ 𝐼(𝑋𝑖)

𝑁
𝑖=1          (5) 20 

 21 
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Figure 2a,b provides two examples, where the blue distribution is the flat possibility 1 

distribution, and the triangular ones give the respective information of both experts. In this 2 

example, the second expert is less informative than the first one (compare the area in Figure 2b 3 

to the one in Figure 2a).  4 

 5 

Let us consider x* the true (known) value of the variable of interest X. The calibration for PM 6 

can be understood as the extent to which the considered expert judges x* as the plausible true 7 

value of X: it is formally estimated as the degree of possibility 𝜋𝑋(𝑥∗) at x*. In our 8 

representation of expert knowledge (Sect. 2.2.1), this means that the closer 𝜋𝑋(𝑥∗) to one, the 9 

closer the core of 𝜋𝑋 to 𝑥∗. The calibration score is then derived by averaging over all 10 

calibration questions as follows: 11 

 12 

𝐶𝑎𝑙𝑃𝑀 =
1

𝑁
∑ 𝜋𝑋(𝑥𝑖

∗)𝑁
𝑖=1          (6) 13 

 14 

Figure 2c,d provides two examples of triangular possibility distributions, where the second 15 

expert is less calibrated than the first one (compare the degree of possibility in Figure 2d to the 16 

one in Figure 2c).  17 

 18 

Similarly as for CM, the objective is to pool the answers provided by a panel composed of ne 19 

experts regarding the question of interest and to derive an assessment using the weighted 20 

averaging of the possibility distributions DMavgPM = ∑ 𝑊PM(𝑒).(𝑒)/ ∑ 𝑊PM(𝑒)𝑛𝑒
𝑒=1

𝑛𝑒
𝑒=1 . The 21 

global score WPM is calculated by following the same principle of CM (Eq. 4 with an 22 

optimisation of the threshold ). Figure 1b provides an example of the possibility distribution 23 

derived from the weighted averaging of both possibility distributions of Figure 1a.  24 

 25 

2.2.3 Differences between PM and CM scores 26 

Conceptually, PM and CM scores are defined based on different considerations; see also Sandri 27 

et al. (1995) and Destercke and Chojnacki (2008) for a detailed analysis. On the one hand, 28 

CalPM measures how close the median value (here interpreted as the “best estimate” of the 29 



 11 

expert) is to the true value of the variable of interest, and can be interpreted as an accuracy 1 

measure similarly as for metrology. On the other hand, the interpretation of CalCM is closely 2 

related to the statistical interpretation of percentiles: when an expert provides q5, she/he actually 3 

says that there is a 5% chance that the true value is below q5. By providing the median q50, 4 

she/he actually says that a 50% percent chance the true value is below the median, etc. Viewing 5 

the expert’s assessments as statistical hypothesis (e.g. Colson and Cooke, 2018), CalCM is the 6 

P-value for assessing the goodness of fit between the statistical hypothesis and the data, i.e. it 7 

measures the degree to which the statistical hypothesis is supported by the data. In this sense, 8 

CalCM is a measure of “statistical” accuracy. Regarding the implementation, a second difference 9 

is that CalPM is calculated by averaging the degrees of possibility calculated per calibration 10 

question (instead of relying on the histogram based on all the answers for CM, see Eq. 3). This 11 

has advantages from a practical viewpoint: 1) it is less sensitive the number of calibration 12 

questions (contrary to CM as extensively by Eggstaff et al., 2014); 2) information can easily be 13 

extracted: checking the results is eased, as well as the interpretation, via the identification of 14 

the calibration questions where the considered expert performs well (or badly), as outlined by 15 

Destercke and Chojnacki (2008) and Baccou and Chojnacki (2014). Since CalCM is based on 16 

the distributions of the expert answers, such reasoning is more tedious to conduct.  17 

Regarding informativeness, there are some similarities in the score definition, which results in 18 

most cases to similar results in terms of ordering for weight attribution (see the application 19 

cases of Sandri et al., 1995): both scores measure how precise the experts are from the “least 20 

informative” expert, i.e. how far the expert distribution is from a distribution of minimal 21 

information. The amount of information is however defined differently, either using the 22 

uncertainty range (measured by the area below the possibility distribution for PM) or the 23 

relative entropy as a measure of statistical information measure for CM. From a practical 24 

perspective, PM appears to have an advantage in terms of result presentation and 25 

communication, because an area between distributions can directly be graphically depicted, 26 

which can ease the interpretation interpretable by non-specialists. 27 
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 1 

Fig. 2 Examples of expert-based information for a given variable X using possibility 2 

distribution (a,b): illustration of how informativeness is measured as the area between the 3 

blue- and the orange–coloured distribution; here expert (b) is less informative than (a). (c,d): 4 

illustration of how calibration is measured as the degree of possibility at the calibration value; 5 

here expert (d) is less calibrated than (c). 6 

 7 

3 Definition of the comparison exercise 8 

3.1 Procedure 9 

We aim at examining how both models perform when they are tested on out-of-sample data, 10 

i.e. questions that are different from the ones used to determine the scores. To do so, we focus 11 

on the out-of-sample validation procedure described by Colson and Cooke (2017), which 12 

consists in splitting the set of N calibration questions into training and test subsets. Colson and 13 

Cooke (2017) recommend to size the training subsets at k=80% of the set of calibration 14 

questions in order to reach a trade-off between expert performance on the training set and 15 

performance of the combinations on the test set. This procedure is performed by considering 16 

all combinations of seed questions with a size of 80% of the calibration set, i.e. 𝑁𝑖 =
𝑁!

(𝑘)!(𝑁−𝑘)!
 17 

where N! is the factorial of N and equals N(N-1)  (N-2)…321; for instance, an initial set 18 

of N=10 calibration questions implies considering Ni=45 different training sets sized at k=8 19 

(and NS=2 test questions). 20 
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We consider two different approaches for aggregating the expert opinions: 1) weighted 1 

averaging of the probabilities using the CM (DMavgCM), and the PM scores (DMavgPM) as 2 

described in Sect. 2; 2) using the information provided by the best selected expert using the CM 3 

(DMbestCM), or the PM (DMbestPM) scores. Though the second approach is less frequently used 4 

to inform forecast in practices, this can be informative from a methodological viewpoint 5 

regarding our objective of model comparison, because, as indicated by Cooke et al. (2020), the 6 

quality of the best expert is the main determinant for the validation procedure of Colson and 7 

Cooke (2017). 8 

The comparison is performed by adopting the viewpoint of statistical predictive modelling, and 9 

we propose to compare both models by relying on two commonly-used criteria in this domain, 10 

namely the stability of the model parameters with respect to changes of the training dataset (i.e. 11 

here the sensitivity of the performance-based weights to the calibration phase), and the 12 

predictability (here the capability to provide “satisfactory” forecasts); see e.g. Yu and Kumbier 13 

(2020). The first aspect, is related to the robustness to the set of calibration questions, and aims 14 

at assessing how the weights afforded to the experts are influenced by the set of calibration 15 

questions, i.e. the stability of the weights of each expert in the final aggregation depending on 16 

the set of questions. In particular, we focus on the worst and best performing expert and assess 17 

whether the same expert is systematically selected as the best (or the worst) performing one at 18 

each iteration of the validation procedure considering the three scores, calibration, 19 

informativeness and global. This is measured by the selection frequency defined as the number 20 

of times the considered expert is identified as the best (respectively worst) performing with 21 

respect to the considered score. In addition, we analyse whether PM and CM agrees on the best 22 

(worst) selected expert, by analysing the agreement frequency, which is defined as the number 23 

of times both models provide consistent selection results. 24 

The second aspect relates to the performance of PM and of CM to provide accurate and 25 

informative forecasts. Since the different models provide different interpretations and tools for 26 

processing the expert knowledge (knowledge representation, see Sect. 2.2.3), we propose to 27 

define a common setting of comparison by focusing on three different criteria. We adopt here 28 

a pragmatic approach, i.e. the viewpoint of the decision-maker by following the same spirit of 29 

the performance measures of the IDEA protocol (e.g., Hemming et al. 2018).  30 

We consider that the answers to the seed questions are range-coded i.e. answers are scaled 31 

between 0 and 1 using the lower and upper bound (l*, u*) of the considered variable, that are 32 
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defined as for computing Eq. 1 in Sect. 2.1. From the viewpoint of the decision-maker, we 1 

define the following three performance criteria that are estimated based on the forecast intervals 2 

at each of the Ni iterations of the validation procedure: 3 

- Accuracy of the forecast best estimate. It is intuitively understood as the degree to which 4 

predictions correspond with observed experimental results. To measure the accuracy of 5 

the considered expert, we rely on the average log-ratio error (McBride et al., 2012: Eq. 6 

5) as follows: 7 

 8 

𝐴𝐿𝑅𝐸 =
1

𝑁𝑖.𝑁𝑆
∑ ∑ |log10(

𝑥𝑖,𝑗+1

𝑏𝑖,𝑗+1
)|

𝑁𝑖
𝑗=1

𝑁𝑆
𝑖=1       (7) 9 

where NS is the number of calibration (seed) questions in the test dataset at the jth 10 

iteration of the validation procedure; xi,j is the true answer and bi,j is the best estimate 11 

provided by the expert (assumed to be the median for CM and the value with maximum 12 

degree of possibility for PM) for the ith calibration question of the test dataset at the jth 13 

iteration of the validation procedure. The ratio 
𝑥𝑖,𝑗+1

𝑏𝑖,𝑗+1
 is termed relative error. The lower 14 

ALRE, the more accurate the considered expert; 15 

- Imprecision of the forecast interval: it relates to the width w of the expert interval. For 16 

CM, this interval is defined by the lower and upper percentile (e.g. q95-q05). For PM, it 17 

relates to the width of the -cut of the possibility distribution, with the  value chosen 18 

to be consistent with the probabilistic approach, see Sect. 2.2 (e.g. =10% when the 19 

forecast interval with 90% confidence is provided by the experts). Imprecision is 20 

measured using the average score defined by Hemming et al. (2018): Eq. 7, as follows: 21 

 22 

𝐼𝑀𝑃 =
1

𝑁𝑖.𝑁𝑆
∑ ∑ |

𝑤𝑖,𝑗

𝑤i,j,max
|

𝑁𝑖
𝑗=1

𝑁𝑆
𝑖=1        (8) 23 

where wmax=u*-l*. The ratio 
𝑤i,j

𝑤i,j,max
 is termed relative interval width for the ith calibration 24 

question of the validation dataset at the jth iteration of the validation procedure. The 25 

lower IMP, the higher the informativeness of the considered expert; 26 

- Likelihood to miss the true seed value. It is understood as the degree to which the expert 27 

interval contains the true answer. We define the criterion MISS as one minus the 28 

frequency (considering all NS calibration questions at all Ni iterations of the validation 29 



 15 

procedure) that the true answer falls within the bounds of the forecast interval provided 1 

by the expert. 2 

 3 

3.2 Data 4 

We use the expert datasets from the post-2006 database1 analysed by Colson and Cooke (2017) 5 

by focusing on the datasets for which the experts provide a triplet of answers (e.g., 5th, 50th and 6 

95th percentiles). A total of 33 datasets are analysed; see a summary in Table 1. They cover a 7 

large spectrum of domains of application, namely natural hazards, environmental impact, 8 

climatic change, health risk, etc. These datasets are also diverse regarding the number of seed 9 

variables (with median value of 13 and inter-quartile of 5) and of experts (with median value 10 

of 11 and inter-quartile of 5), hence allowing to tackle a broad range of situations. 11 

 12 

Table 1 Description of the expert databases used in the comparison exercise 13 

N° Expert dataset Number 

of seed 

variables 

Number 

of experts 

1 all_CDC 14 48 

2 ArsenicD-R 10 9 

3 ATCEP_Error 10 5 

4 Biol_agents 12 12 

5 Brexit-Food 10 10 

6 CREATE 10 7 

7 CWD 10 14 

8 Daniela 7 4 

9 eBBP 15 14 

                                                 

1 Available at http://rogermcooke.net/rogermcooke_files/POST2006EJSTUDIES.ZIP  

http://rogermcooke.net/rogermcooke_files/POST2006EJSTUDIES.ZIP
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10 EffusiveErupt 8 14 

11 Erie_Carps 15 11 

12 FCEP_Error 8 5 

13 Gerstenberger 14 12 

14 GL-NIS 13 9 

15 Goodheart 10 6 

16 Hemophilia 8 18 

17 ICE_US+EU_June_22_2018 16 20 

18 IceSheet2012 11 10 

19 liander 10 11 

20 p6r 14 21 

21 PHAC_2009_T4 13 10 

22 PoliticalViolence_March17_CW 21 16 

23 puig-gdp 13 9 

24 puig-oil 20 8 

25 Raveem 18 8 

26 Sheep_Scab 15 14 

27 SPEED 16 14 

28 Tadini_Clermont_anon 13 12 

29 Tadini_Quito_anon 13 8 

30 TdC 17 18 

31 Topaz 16 21 

32 umd_nremoval 11 9 

33 USGSfinal 18 32 
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4 Application 1 

4.1 Detailed analysis of one expert dataset 2 

The expert dataset is provided by Gerstenberger et al. (2016) in the domain of probabilistic 3 

seismic-hazard assessment. It is available under the title “Gerstenberger” within the post-2006 4 

database. The dataset is composed of 14 calibration questions. Examples are provided in the 5 

electronic supplementary materials of Gerstenberger et al. (2016). The validation procedure 6 

described in Sect. 3.1 considers here 𝑁𝑖 =
𝑁!

(𝑘)!(𝑁−𝑘)!
=

14!

(11)!(14−11)!
= 364 training subsets with 7 

size at k=11 (80% of N=14). For each of the training subset, three questions are thus used to 8 

evaluate the forecast performance. A panel of 12 experts is considered. The experts are asked 9 

to provide the median and the 10th and 90th percentile.  10 

Let us first analyse the 364th iteration of the validation procedure for which the three first seed 11 

variables are used as test dataset, namely: the subducted distance, the rock uplift and the surface 12 

rupture length. Figure 3 provides an overview of the different answers (q10, q50, q90) using the 13 

probabilistic and the possibilistic representation. 14 

 15 

 16 

Fig. 3 (Top) Percentiles (q10, q50, q90) provided by the different experts (denoted Ex) for three 17 

seed questions of the Gerstenberger expert dataset (a,b,c). The blue and red lines respectively 18 

represent the information provided by the best performing expert according to the CM global 19 

score (Ex 10) and by the CM-based weighted averaging of all experts’ information. The 20 
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vertical green dashed line indicates the true value of the seed variable; (Bottom) Possibilistic 1 

representation of the expert answers. The blue distribution represents the information 2 

provided by the best performing expert (Ex 8). The red distribution represents the distribution 3 

resulting from the weighted averaging. 4 

 5 

Both models, CM and PM, were applied to estimate the calibration, informativeness and global 6 

scores (Fig. 4). This shows that the best expert according to CM and PM differ depending on 7 

the type of score: for calibration, CM identifies experts Ex 7 and Ex 10 as both leading to the 8 

maximum score value, whereas PM identifies Ex 5 as the best calibrated expert. Both models, 9 

however, agrees on the least calibrated expert, namely Ex 6 (Fig. 4a); for informativeness, CM 10 

and PM respectively identifies Ex 10 and Ex 2 as the most informative expert, and Ex 9 and Ex 11 

5 as the least informative expert (Fig. 4b). Finally, the analysis of the global score shows that 12 

both models agree on the least performing expert (Ex 6), but differ on the selection of the best 13 

performing expert, i.e. Ex 10 for CM and Ex 8 for PM (the corresponding distributions are 14 

outlined in blue in Fig. 3); interestingly, PM score for Ex 10 remains moderate-to-high.  15 
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 1 

Fig. 4. Performance score (normalized between 0 and 1) for each expert (denoted Ex) and 2 

both models, CM and PM, considering the Gerstenberger expert dataset: (a) Calibration; (b) 3 

Informativeness; (c) Global. 4 

 5 

Using the derived global scores, the information provided by the experts are aggregated via a 6 

weighted averaging procedure (by following the approach of DMavgCM and DMavgPM), resulting 7 

in the red-coloured distribution in Fig. 3a and Fig. 3b for CM and PM respectively. On this 8 

basis, we analyse the three aspects of forecast performance (see Sect. 3.1). The analysis of the 9 

relative errors with respect to the true seed value (vertical green-coloured dashed line in Fig. 10 

3), considering the four approaches for expert aggregation, DMavgPM, DMavgCM, DMbestPM, and 11 
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DMbestCM, shows that the three first types of forecasts are approximately as accurate with a 1 

minimum ALRE value (calculated for the three considered questions) of 0.022 for DMavgPM, 2 

and a maximum one of 0.030 for DMbestCM. The analysis of the relative interval width shows 3 

that for this forecast, selecting the best expert, whatever the model CM or PM, is the most 4 

informative, with IMP (calculated for the three considered questions) of the order of 0.2, but 5 

the forecast interval based on DMbestCM fails to contain one of the three true seed values as 6 

shown in Fig. 3a. The averaging approach, whatever the model CM or PM, both leads to 7 

similarly informative prediction interval (with IMP of the order of 0.6) without missing to 8 

contain the true (as shown by the red distributions in Fig. 3). 9 

 10 

Table 2 Expert selected as best and worst performing for the three scores considering each 11 

model, CM or PM, for the Gerstenberger expert dataset. The number in brackets provides the 12 

number of times the expert is selected for the 364 iterations of the validation procedure. 13 

 PM – Best CM – Best PM – Worst CM – Worst 

Calibration Ex 5 (49%) Ex 5 (24%) Ex 9 (38%) Ex 6 (72%) 

Informativeness Ex 2 (60%) Ex 10 (78%) Ex 5 (89%) Ex 1 (41%) 

Global Ex 8 (69%) Ex 10 (42%) Ex 9 (46%) Ex 6 (76%) 

 14 

The afore-described analysis is re-conducted 364 times by following the validation procedure 15 

of Sect. 3.1. We first analyse the robustness of the selection, i.e. the degree to which the expert 16 

identified as best (respectively worst) performing, differs across the different validation 17 

iterations. Table 2 shows that PM presents the lower sensitivity to the training dataset for the 18 

selection of the best expert (with respect to calibration and global score), whereas it is CM for 19 

the most informative one. This is reversed for the selection of the worst performing expert. We 20 

note that both models rarely agrees on the identification of the experts with the highest selection 21 

probability - expect for the best calibrated expert.  22 

This result is supported by the analysis in Table 3, which shows that the agreement between 23 

PM and CM on the selection of the best expert is low-to-moderate: for about 25% of the 364 24 

iterations, PM and CM both agree considering the calibration and the global score. For the worst 25 



 21 

performing expert, the agreement is higher of 40-50%. For informativeness, the agreement 1 

between PM and CM remains low. 2 

 3 

Table 3 Agreement frequency between PM and CM given the best and worst performing expert 4 

considering the three scores for the Gerstenberger expert dataset.  5 

 Best Worst 

Calibration 25% 52% 

Informativeness 16% 10% 

Global 24% 42% 

 6 

Second, we analyse the forecast performance considering all 364 iterations of the validation 7 

procedure (Fig. 5). Several observations can be made: 8 

- Fig. 5a shows that, in average, DMavgCM and DMavgPM both lead to quasi-similar relative 9 

errors (see red-coloured dot in Fig. 5a), but with a less disperse distribution for DMavgPM 10 

(as shown by the boxplots). The evaluation of ALRE using Eq. 3 shows that DMavgPM is 11 

the more accurate with an ALRE value of 0.021, but the difference with ALRE of 12 

DMavgCM remains moderate (<0.003). The approach DMbestCM is the least accurate (with 13 

ALRE value of 0.039 to be compared to 0.034 for DMbestPM); 14 

- Fig. 5b shows that DMbestPM, though the more accurate, leads to the least informative 15 

forecasts (with IMP=0.67 to be compared to the IMP ranging from 0.22 to 0.59 for the 16 

alternative approaches); 17 

- Finally, Fig. 5c shows that the forecast interval derived from DMavgPM includes the true 18 

seed values ~99% of the investigated cases. Fig. 5c also shows that there is a non-19 

negligible likelihood that the approach based on selecting the best expert misses the true 20 

seed value, which lies only 35 and 42% of the times within the forecast interval provided 21 

by DMavgCM and DMbestCM respectively. 22 

These results are valid for the considered expert judgement database and their generalisation to 23 

other situations is further investigated in Sect. 4.2. 24 

 25 
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 1 

Fig. 5 Forecast performance derived from the validation procedure applied to the 2 

Gerstenberger expert dataset. (a) Absolute value of the logarithm (base 10) of the relative 3 

error (see Eq. 7); (b) Relative interval width (see Eq. 8); (c) Number of times (over all 4 

validation iterations) that the true value of the seed variable is within (or outside) the forecast 5 

interval. 6 

 7 

4.2 Global analysis of multiple expert datasets 8 

The validation procedure described in Sect. 3.1 is applied to all of the 33 expert judgement 9 

databases described in Sect. 3.2. Regarding the calibration and the global score, Fig. 6 gives 10 

insights into the robustness to the training dataset by showing that PM systematically leads to 11 

higher selection frequency of the best performing expert; in particular the median value of the 12 

selection frequency exceeds 75%, hence showing that PM-based selection of the best expert is 13 

the least sensitive to the changes in the seed variables’ values. Considering the worst performing 14 

expert, this tendency is inverted and it is CM that leads to higher selection frequency, but the 15 

differences with PM appear to be smaller than those for the best performing expert (compare in 16 

particular the differences between the left and right pairs of boxplots in Fig. 6c). Regarding 17 

informativeness, the robustness of PM and of CM appears to be equivalent with high selection 18 

frequencies (larger than 75%).  19 
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 1 

Fig. 6 Selection frequency of the best and worst performing expert considering the different 2 

scores: Calibration (a); Informativeness (b); Global (c). 3 

 4 

Regarding calibration and global score, the analysis of the agreement frequency in Fig. 7 shows 5 

that PM and CM often disagree on the selection of the best and worst performing expert; 6 

compare for instance the median values of agreement frequency, which is ~40% for the best 7 

expert, and ~65% for the worst one (respectively blue and red boxplot in Fig. 7). Regarding 8 

informativeness, both models lead to more consistent results with median values of agreement 9 

frequency of >65%, and ~70% regarding the best and worst expert, respectively. 10 
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 1 

Fig. 7 Agreement frequency between PM and CM given the best and worst performing expert 2 

considering the three scores: Calibration (a); Informativeness (b); Global (c). 3 

 4 

Second, we analyse the criteria of forecast performance described in Sect. 3.1. Fig. 8 shows the 5 

differences between PM and CM for the three criteria. Several observations can be made:  6 

- PM leads to more accurate forecasts (Fig. 8a) whatever the aggregation operator, i.e. 7 

weighted averaging DMavg or based on the best selected expert DMbest, with 70% (i.e. 8 

23 cases) and 54% (i.e. 18 cases) of the cases with negative ALRE differences; 9 

- The differences in accuracy remain however of moderate magnitude: the median value 10 

is close to zero (reaching -0.0035 and -0.002 for DMavg and DMbest respectively); 11 

- DMavgPM leads to the least informative forecasts, with all the cases leading to positive 12 

IMP differences (Fig. 8b-left) with large differences (median value ~0.25); 13 

- Though the median value of the IMP differences is almost zero, we can note that 14 

DMbestPM can result in highly informative forecasts as shown by the long lower tail of 15 

the distribution in Fig. 8b-right; 16 

- Fig. 8c shows the higher likelihood for the DMavgPM forecast intervals to cover the true 17 

seed values (Fig. 8c-left), and to a lesser extent for DMbestPM as well.  18 

 19 



 25 

 1 

Fig. 8 Boxplots showing the differences between PM and CM considering the forecast 2 

performance criteria: (a) accuracy measured by ALRE; (b) imprecision of the forecast 3 

intervals measured by IMP; (c) likelihood to miss the true seed values measured by MISS. The 4 

mean and standard deviation are shown by the error-bars. 5 

 6 

5 Discussion 7 

Table 4 summarizes the main results of the comparison exercise.  8 

 9 

Table 4 Summary of the main results 10 

Criterion Main result 

Selection stability PM is more stable regarding the selection of the best performing 

expert considering the calibration and the global score. Both models 

are similarly highly stable considering informativeness. 

Agreement CM and PM only moderately agrees on the selection of the best and 

worst performing expert regarding the calibration and the global 

score. Agreement is higher for the selection of the more (or the least) 

informative expert. 

Forecast accuracy PM, whatever the aggregation approach, leads to more accurate 

forecast, but the difference with CM remains of moderate magnitude. 
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Forecast interval’s 

imprecision 

PM leads to more imprecise forecasts when the weighted averaging 

is used. 

Likelihood to miss 

the true value 

PM-based forecast intervals almost systematically contain the true 

value. 

 1 

The first result of this comparison exercise is the tendency of CM to be less stable than PM 2 

regarding the selection of the best performing expert. This result appears to be little influenced 3 

by the expert judgement database’s characteristics (number of calibration questions, and of 4 

experts): the P-value of the linear correlation between the selection frequency and the 5 

characteristics is well above the significance threshold at 5% (Table 5). This also suggests that 6 

neither increasing the number of calibration questions, nor the number of experts, might 7 

improve CM robustness. Finding alternative option for improving this aspect is here identified 8 

as a key aspect for further investigation in the future. 9 

 10 

Table 5 Linear (Pearson’s) correlation coefficient between the performance criteria and the 11 

characteristics of the expert judgement database’s characteristics. The number in brackets is the 12 

P-value of the test of for significance of the correlation coefficient. The numbers outlined in 13 

bold indicate that the P-value is below the significance threshold at 5%. 14 

 Number of calibration 

questions  

Number of experts 

 CM PM CM PM 

ALRE - DMavg -0.30 

(0.08) 

-0.23 

(0.19) 

-0.40 

(0.02) 

-0.39 

(0.02) 

IMP - DMavg -0.33 

(0.05) 

-0.09 

(0.59) 

-0.24 

(0.17) 

+0.06 

(0.71) 

MISS - DMavg -0.02 

(0.91) 

-0.29 

(0.10) 

+0.03 

(0.89) 

-0.38 

(0.03) 

Selection frequency 

of the best 

+0.17 

(0.35) 

-0.02 

(0.93) 

-0.28 

(0.11) 

-0.30 

(0.08) 
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performing expert 

using global scores 

Agreement 

frequency of the best 

performing expert 

using global scores 

+0.40 (0.02) +0.02 (0.92) 

 1 

The second result relates to the agreement of PM and CM. On the one hand, this appears to be 2 

high regarding informativeness: this is consistent with the fact that the mathematical models 3 

used to represent PM and CM informativeness share some similarities despite the differences 4 

in the theoretical backgrounds (as discussed in Sect. 2.2.3). On the other hand, the agreement 5 

remains minor-to-moderate for calibration. This was expected, as studied by Sandri et al. (1995) 6 

and Destercke and Chojnacki (2008), due to the manner that each score has been defined (as 7 

discussed in Sect. 2.2.3). By construction, PM-based calibration score is mainly focused on 8 

measuring the deviation from a reference value (i.e. a best estimate), whereas CM-based 9 

calibration score is mainly focused on the statistical distribution of seed values in relation to the 10 

inter-percentiles given by the expert. As an illustration, let us use the example in Sect. 4.1: Fig. 11 

9a shows the number of times the true seed value falls within the inter-percentile intervals 12 

considering experts Ex 7 and 10 (identified as the best calibrated one for CM), and expert Ex 5 13 

(identified as the best calibrated one for PM) considering the Gerstenberger expert dataset: for 14 

Ex 7 and 10, the proportions within the inter-percentile [10, 50%] and [50, 90%] are closer to 15 

the theoretical value of 40% and the proportions within the inter-percentile [0, 10%] and [90, 16 

100%] are closer to 10%. Fig. 9b shows the PM-based calibration scores (i.e. the degree of 17 

possibility), which indicates here that Ex 5 is better calibrated when using PM (compare the 18 

horizontal coloured lines showing the mean value for each expert). A possible solution to 19 

improve the low agreement on calibration is identified by analysing the linear correlation with 20 

the expert judgement database’s characteristics: the statistically significant positive linear 21 

coefficient of +0.40 between the agreement frequency and the number of seed questions (Table 22 

5) clearly indicates that increasing this number can lead to more consistent results between CM 23 

and PM.  24 



 28 

 1 

Fig. 9 (a) Proportion of seed variables falling within the inter-percentile intervals considering 2 

experts Ex 5, 7 and 10 for the Gerstenberger expert dataset. The horizontal dashed lines 3 

indicate the theoretical values; (b) Comparison of the degrees of possibility for each of the 4 

seed variables (denoted s) for experts Ex 5, 7 and 10. The mean value for each expert (i.e. PM 5 

calibration score, see Eq. 6) is outlined by the horizontal line. 6 

 7 

Finally, the comparison exercise also shows the higher accuracy of PM forecasts (especially 8 

when considering the weighted averaging procedure DMavgPM). This appears to be in agreement 9 

with the results of Flandoli et al. (2011), which compared CM with their approach named 10 

Expected Relative Frequency model, which rewards model ability in central value estimation 11 

accuracy (as measured here by ALRE). As afore-mentioned, PM-based calibration score should 12 

also improve this ability, since it is mainly focused on measuring the deviation from a reference 13 

value (i.e. a best estimate). This higher accuracy is however not systematic: PM with weighted 14 

averaging leads to more accurate forecasts considering 70% of the total number of cases. The 15 

accuracy measured by ALRE appears here to be anti-correlated with the number of experts (with 16 

a statistically significant linear coefficient of -0.39; see Table 5). This means that the PM-17 

derived forecasts become more accurate when increasing the size of the expert panel. This result 18 

related to the “wisdom of the crowd” effect raises however the question of the characteristics 19 

of the experts composing the panel (e.g. past experience, degree of expertise, etc.; see e.g. 20 

Burgman, 2015), which is out of scope of the present study. 21 
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The higher accuracy comes at the expense of a widening of the PM-derived forecasts as 1 

indicated by the high IMP values (see also the examples of aggregated possibility distributions 2 

in Fig. 3b). The advantage is that the true seed value systematically lies within the PM-derived 3 

forecast interval (as shown by the third performance criterion MISS), i.e. the decision-makers 4 

take “less risk” by relying on PM-based forecasts. The drawback of this “safer attitude” is 5 

clearly a loss of informativeness; a phenomenon closely related to the so-called “accuracy-6 

informativeness trade-off” (Yaniv and Foster, 1995). When the concern is not point forecasts 7 

(i.e. decision making based on best estimate), but interval forecasts, one danger is that the PM-8 

based bounds might be regarded as less useful or less meaningful by the decision-makers 9 

(Bolger and Onkal-Atay, 2004).  10 

Solutions to improve PM informativeness cannot be found in the characteristics of the expert 11 

judgement databases (number of experts and calibration questions): the examination of the 12 

linear correlation shows that PM informativeness is little influenced by these characteristics: 13 

the P-value remains well above the significance threshold of 5% (Table 5). Another explanation 14 

may be found by analysing how DMavgPM distributes weights to the expert answers in the 15 

aggregation. Considering the 33 tested expert datasets, Fig. 10 provides the percentage of 16 

experts (averaged over the validation iterations) whose global scores (before applying the 17 

thresholding approach) are within the range [0.5, 1.0]. This shows that a larger number of 18 

experts are assigned a moderate-to-high global score, i.e. a moderate-to-high contribution in the 19 

aggregated forecasts intervals. This is an indication of the lower discriminative capability of 20 

the PM global scores. Applying the thresholding approach of Sect. 2.2.2 minimizes this aspect, 21 

because some expert answers are discarded in the aggregated forecast interval, but does not 22 

fully solve the problem: alternative procedures should then be explored for instance by taking 23 

advantage of alternative aggregation operators (see e.g., Baccou and Chojnacki, 2014).  24 
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 1 

Fig. 10 Percentage of experts (averaged over the validation iterations) whose global scores are 2 

within the range [0.5, 1.0] considering PM and CM. 3 

 4 

Though CM calibration score is, by construction, focused on statistical accuracy (see Sect. 5 

2.2.3), CM appears, considering the results of our comparison exercise, to achieve a more 6 

satisfactory trade-off between both countervailing objectives (accuracy and informativeness), 7 

i.e. the forecast intervals are more informative (compared to PM) with a satisfactory level of 8 

accuracy (as indicated by the moderate differences with PM-based forecast intervals). Clearly, 9 

the price to pay is the higher likelihood to miss the true value. The analysis of the linear 10 

correlation (Table 5) shows that the number of seed variables and of experts are anti-correlated 11 

(with high statistical significance) with the informativeness and with the accuracy of DMavgPM 12 

(with a coefficient value of -0.33 and of -0.40), respectively: this provides evidence of a possible 13 

way for improving even more CM performance. 14 

 15 
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6 Concluding remarks and further work 1 

The objective of the present study is to compare Cooke’s classical model with the possibility 2 

model to inform forecasts by testing how modifying the set of seed questions affect their 3 

performance (robustness and forecast). Given the conceptual dissimilarities of both models (and 4 

more particularly regarding calibration), a priori differences in the results were expected. The 5 

out-of-sample validation performed on 33 expert datasets confirms it regarding the robustness 6 

to the training dataset, which appears to be higher for the possibility model. Regarding forecast 7 

performance, the possibility model achieves more accuracy but with less informativeness when 8 

the averaging operator is used. Interestingly, these differences only remain of moderate 9 

magnitude for the considered cases, and their performance can be viewed as equally 10 

satisfactory: this suggests that there is an interest of mixing the forecasts from both models; in 11 

particular to shed light on different aspects of the problem like maximizing deviation from a 12 

reference value or statistical accuracy. The question of combining the forecast intervals derived 13 

from different models constitutes a line for further investigations in the future, in particular by 14 

potentially incorporating complementary alternatives, like the likelihood-based of Flandoli et 15 

al. (2011) or the new measure of experts’ calibration by Hanea and Nane (2019). 16 

The comparison exercise was conducted by making widely-used assumptions related to the 17 

parametrisation of both models. We acknowledge that there is room for improvement; in 18 

particular a more careful attention should be paid to improving the weighting aggregation of 19 

the experts using the derived performance scores. In the aggregation, discarding some experts 20 

was performed via a thresholding approach based on performance maximisation (e.g., Colson 21 

and Cooke 2017). An alternative procedure may focus on criteria related to how knowledge is 22 

represented; for instance the aggregation procedure introduced by Pichon et al. (2014) 23 

iteratively selects the expert information based on the concepts of consistency/conflict and 24 

specificity. Further work could take advantage of the flexibility brought by the large spectrum 25 

of aggregation operators that the possibilistic framework offers (Dubois et al. 2016).  26 

Finally, we have translated, in the present study, experts’ answers about percentiles using 27 

degrees of possibility by using the links that exist with the probabilistic framework. Though 28 

valid and directly applicable to the existing expert judgement databases, feedback from decision 29 

makers about the operational use of this interpretation is currently lacking. The operational 30 

definition of possibilities, i.e. an explanation in natural language to a decision maker of the 31 

concepts, is a key ingredient for Possibility theory to reach an operative state, and future effort 32 



 32 

should be intensified in the direction, similarly as has been done for probabilities (see the 1 

discussion by Cooke, 2004). 2 
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