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Abstract 

Model uncertainties (related to the structure/form of the model or to the choice of “appropriate” 

physical laws) are generally integrated in environmental long running numerical simulators via 

scenario-like variables. By focusing on Gaussian Processes (GP), we show how different 

categorical covariance functions (exchangeable, ordinal, group, etc.) can bring valuable insights 

into the inter-dependencies of these scenarios. Supported by two real case applications (cyclone-

induced waves and reservoir modelling), we have proposed a cross-validation approach to 

select the most appropriate covariance function by finding a trade-off between predictability, 

explainability, and stability of the covariance coefficients. This approach can be effectively 

used to support (or contradict) some physical assumptions regarding the scenario-like input. 

Through comparison to tree-based techniques, we show that GP models can be considered a 

satisfactory compromise when only a few model runs (~100) are available by presenting a high 

predictability and a concise and graphical way to map the dependence.  
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1 Introduction 

High-resolution numerical simulators are key ingredients of environmental science in order to 

get deeper insights into the natural systems’ behavior. Some examples are Veeck et al. (2020) 

for hydrologic modelling; Zhao et al. (2013) for agricultural modelling; Vandromme et al. 

(2020) for landslide modelling; Abily et al. (2016) for urban flooding; Idier et al. (2020) for 

marine flooding, etc. To model the natural system, these simulators all have in common to 

involve a large spectrum of assumptions related to the system’s geometry, to the loading/forcing 

conditions acting on the system, to the system’s intrinsic physical law, to the properties’ values, 

etc. While most of these modelling assumptions can mathematically be represented by means 

of continuous variables (like geotechnical properties of a given soil formation, or time series of 

rainfall conditions at a given location, etc.), some of them involve scenario-like variables.  

This type of variable is assigned to different modelling scenarios like the choice in the 

structure/form of the model (e.g. 1D versus 2D modelling, Leandro et al., 2009), the selection 

of the physical processes regarded as “relevant and prominent” (e.g. account for spatial 

heterogeneity, Liu et al., 2017), the use of alternative physical laws (e.g. different soil water 

retention curves, Silva Ursulino et al., 2019), the system’s future evolution (e.g., future gas 

emission scenarios, Le Cozannet et al., 2015; or land use change, Mishra et al., 2018), etc.  

Depending on the modelling scenarios, the simulation results can differ, hence resulting in 

uncertainty. This category of uncertainty can be termed as structural since it is associated to 

the structure/form of the model or to the unambiguous choice of the “best” model to be used: 

this type of uncertainty should be understood with respect to parametric uncertainties, which 

are related to the difficulties in estimating the model input parameters (in a broad sense) due to 

the limited number, poor representativeness (caused by time, space and financial limitations), 

and imprecision of observations/data (e.g., Hill et al., 2013). 

A pragmatic approach for mathematically representing a scenario-like variable is via a 

categorical variable: a multi-level indicator that takes up a finite number of discrete values; 

each discrete level being associated to a different scenario (e.g. level a is associated to scenario 

a); see some real case applications in the domain of: safety analysis of radioactive waste 

disposal by Storlie et al. (2013); earthquake risk assessments by Rohmer et al. (2014); marine 
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flooding induced by sea level rise by Le Cozannet et al. (2015); reservoir engineering for CO2 

geological storage by Manceau and Rohmer (2016); pollution risk analysis and management by 

Lauvernet & Helbert (2020), etc. Characterizing and quantifying structural uncertainty by 

means of categorical multi-level variables raises however several practical questions regarding: 

(Q1) the dependence structure of the modelling scenarios: should each level (i.e. modelling 

scenario) of the considered categorical variable be treated equivalently with respect to the 

numerically simulated variable of interest? is there any dependence among the levels?, and can 

several levels be grouped?; 

(Q2) the prediction using categorical variables: how to derive a predictive statistical model 

when only a few model runs (of the order of 100s) are available because of too high computation 

time cost? What is the performance of the derived model? (e.g. does it explain well the 

observations? what is its predictive capability?). 

The objective of the present work is to explore how Gaussian Processes (Williams and 

Rasmussen, 2006), denoted GP, with mixed continuous/categorical inputs (e.g., Roustant et al., 

2020; Qian et al., 2008; Zhang et al., 2020) can bring valuable insights into the inter-

dependencies of the modelling assumptions, while fulfilling key characteristics like 

predictability (i.e. capability of the derived model of predicting “yet-unseen” input 

configurations) and explainability (i.e. capability of the derived model of representing the data). 

These characteristics are further detailed in Sect. 2.4. 

 

Figure 1 (a). Synthetic test function with continuous input variable x. Each color indicates a 

different level of the scenario-like (categorical) variable u. Each dot corresponds to a model run. 

(b) Correlation matrix for u derived from the GP-based analysis using 25 model runs. 
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The advantage of the GP-based method lies in the flexibility brought by the use of covariance 

functions (also known as kernels) which specify how similar (i.e. correlated) two instances of 

the variable of interest, e.g., y and y0, are expected to be at two input values u and u0 (i.e., in 

our case, at two levels of the scenario-like input). This “similarity” function can be encoded in 

different manners depending on the assumptions regarding the categorical variable (nominal/ 

ordinal, inter-dependence between the levels, interactions between given levels, etc.); see for 

instance Roustant et al. (2020); Lauvernet & Helbert (2020). Once fitted, the resulting 

correlation matrix provides the mapping of the dependence structure that can be used to support 

(or contradict) some physical assumptions regarding the scenario-like input’s influence.  

To illustrate the type of results that can be derived, Figure 1(a) depicts an unknown relation between 

a continuous and a categorical input variable with 5 levels (i.e. five scenarios). Figure 1(b) depicts 

the correlation matrix derived from the GP-based analysis given 25 model runs: this summarizes 

the interplay between the levels; a group of highly correlated levels are identified for u1-4 as well as 

the decreasing correlation of u5 with the others (from 25 to 15% considering u4 to u1). These 

observations are consistent with the test function. If the functional relation in Figure 1(a) had been 

known, this result would have been straightforward, but here the structure is unknown and can be 

learnt only with a limited number of numerical results (here with only 25 model runs). This result 

(that is further discussed in Sect. 3.1) depends on how the GP kernel is defined, which raises the 

question of covariance kernel model selection that is addressed in the present study by relying on a 

multi-criterion analysis. 

The present paper is organized as follows. Section 2 describes the different steps of the proposed 

procedure as well as the statistical methods. In this section, a multi-criterion approach for 

selecting the categorical covariance kernel model is detailed. Section 3 presents the application 

to the synthetic case (described in Figure 1) and to two real cases, namely for cyclone-induced 

wave numerical modelling (Rohmer et al., 2016), and for reservoir modelling of CO2 storage 

(Manceau and Rohmer, 2016). The results are then discussed in Section 4 based on which 

practical recommendations are defined. 

 

2 Methods 

2.1 Description of the procedure 

The proposed procedure holds as follows: 
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- Step 1: a series of random computer experiments are performed by running the 

expensive-to-evaluate environmental simulator considering a limited number of 

randomly selected input variables’ configurations; 

- Step 2: using the set of random computer experiments (training dataset), different 

hypotheses regarding the structure of the considered input categorical variable are tested 

and modelled by means of different GP kernel (covariance) formulations (see further 

details in Sect. 2.2 and 2.3); 

- Step 3: the question of selecting the most appropriate GP kernel is examined by 

analysing different aspects, i.e. by considering different criteria as described in Sect. 

2.4. The objective is to select the resulting GP model which can achieve a trade-off 

between the different criteria; 

- Step 4: since the practitioner is preferably interested in the dependence structure 

between the scenarios, the correlation matrix derived from the covariance matrix is 

analysed (see further explanation in Sect. 2.2): this summarizes the inter-dependencies 

between the levels (scenarios). This result can be confronted to some a priori physically-

based interpretation of the scenario-like variable’s influence that the practitioner may 

have before analysing the computer experiments. 

2.2 Gaussian Process for mixed continuous and categorical inputs 

Let us consider the set of d continuous input variables x=(x1,…,xd), and the set of J categorical 

inputs u=(u1,…uJ) with L1,…, LJ levels that represent the scenario-like inputs. The output y is 

then computed using the numerical environmental simulator f(.) as 𝑦 = f(𝐱, 𝐮) = f(𝐰).  

In the context of Gaussian Process (GP) modelling (also named as kriging, Williams and 

Rasmussen, 2006), the function f(.) is assumed to be a realization of a GP (Y(w)) with a constant 

mean m and a covariance function k(.,.), named kernel, that can be written as follows: 

∀𝐰,𝐰′, k(𝐰,𝐰′) = cov(𝑌(𝐰), 𝑌(𝐰′))       (1) 

Let denote (𝐰1, … ,𝐰𝑛) the training samples and 𝒚 = (y1 = f(𝒘1),… , y𝑛 = f(𝒘𝑛)) the 

corresponding results. The prediction at a new observation 𝐰∗ is given by the kriging mean 

𝑌̂(𝐰∗) as follows: 

𝑌̂(𝐰∗) = E(𝑌(𝐰∗)|𝑌(𝐰1) = 𝑦1, … , 𝑌(𝐰𝑛) = 𝑦𝑛) = 𝑚 + 𝒄𝐰∗ 
𝑇 . 𝐂−1. (𝒚 − 𝑚𝐈)  (2) 



 

 6 

where C is the covariance matrix between the points 𝑌(𝐰1),…,𝑌(𝐰𝑛) whose element is 

𝐶[i, j] = 𝑘(𝐰𝑖, 𝐰𝑗); 𝒄𝐰∗  is the vector composed of the covariance between Y(𝐰∗) and the 

points 𝑌(𝐰1),…, 𝑌(𝐰𝑛), and I is the vector of ones of length n. 

The prediction at 𝐰∗can be associated to an error estimate provided by the kriging variance 

𝜎̂2 given by: 

𝜎̂2(𝐰∗) = Var(𝑌(𝐰∗)|𝑌(𝐰1) = 𝑦1, … , 𝑌(𝐰𝑛) = 𝑦𝑛) = C(𝐰∗, 𝐰∗) − 𝑐𝐰∗ 
𝑇 . 𝐂−1. 𝑐𝐰∗  (3) 

Accounting for a mixture of input variables’ types - continuous or categorical (ordinal or 

nominal) - is made via the covariance function 𝑘(𝐰,𝐰′). Here, it is here assumed to be the 

tensor product of the covariance function for the continuous inputs 𝑘cont(𝐱, 𝐱
′) and the one for 

the categorical inputs 𝑘cat(𝐮, 𝐮
′) as 𝑘(𝐰,𝐰′) = 𝑘cont(𝐱, 𝐱

′)∏ 𝑘cat
𝑖 (𝑢𝑖, 𝑢

′
𝑖)

𝐽
𝑖=1 . Hence, the 

covariance function 𝑘cont can be described by kernel models that are commonly-used in the 

computer experiment community. In the present study, we restrict the analysis to the stationary 

two differentiable Matérn 5/2 model (Santner et al., 2003). The categorical covariance functions  

𝑘cat
𝑖  (𝑖 = 1,… , J) can be described in different manners depending on the assumption related to 

the scenario-like (categorical) input, as described in Sect. 2.3.  

In practices, 𝑘cat
𝑖  can be interpreted, under the homoscedastic assumption, as the kernel (up to 

a multiplicative constant) of the 1D section 𝑢𝑖 →  𝑌(𝒙, 𝑢𝑖 , 𝒖−𝑖) where x, and 𝒖−𝑖 =

(𝑢1, … , 𝑢𝑖−1, 𝑢𝑖+1, … 𝑢𝐽) are fixed. In practices, we preferably use the scaled form of the 

covariance, i.e. the correlation to ease the interpretation on the dependencies between the levels 

of the categorical variable (i.e. of the scenarios). With the same notations, the correlation kernel 

(derived from 𝑘cat
𝑖 ) is interpreted as the correlation of the 1D section 𝑢𝑖 →  𝑌(𝒙, 𝑢𝑖 , 𝒖−𝑖), 

whatever 𝒙 and 𝒖−𝑖. Thus the inspection of 𝑘cat
𝑖  reveals the correlation of the simulator output 

explained by the ith categorical input, the others being fixed. Note that such correlation does not 

depend on the other inputs, which is a result of constructing k(.,.) by tensor product. 

2.3 Covariance kernel models for categorical inputs 

The different options for defining a categorical covariance function are summarized in Table 1. 

For sake of clarity, we restrict the presentation to the case of a single input with L levels, which 

is hereafter denoted by u, because the kernel is constructed by tensor product of 1D categorical 

inputs (see Sect. 2.2). 
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Table 1. Different options for representing the scenario-like input variable using a kernel 

(covariance) model 

Assumption Interpretation of 

categorical variable  

Type of 

covariance 

matrix 

Symbol Equation 

No preference among the 

scenarios 

Each level acts similarly Compound 

Symmetry 

(also named  

Exchangeable) 

CS 4 

The variable of interest 

will act differently 

depending on the 

considered scenario, but 

without excluding inter-

level dependencies 

Each level has its own 

variance coefficient and a 

between-level structure 

exists 

General Gen 5 

The variable of interest 

may act similarly 

depending on some 

subsets of scenarios 

Some scenarios can be 

grouped based on expert 

information 

Group E 6 

A grouping is a realistic 

option, but cannot be 

unambiguously defined 

The grouping can be 

learnt from the data 

Low rank 

approximation 

LR 7 

The scenarios can be 

ordered 

The levels are discretized 

values of a latent ordinal 

variable 

Ordinal O 8 

 

When the practitioner assumes that no preference can be given to the L levels (i.e. all considered 

scenarios are considered as having the same influence), 𝑘cat can be described by an 

exchangeable covariance (Qian et al., 2008) - also named compound symmetry (denoted CS) - 

function as follows: 
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𝑘cat
CS (𝑢, 𝑢′) = {

𝜎2     if 𝑢 = 𝑢′ 
𝜌. 𝜎2 if 𝑢 ≠ 𝑢′ 

        (4) 

where 𝜌 is a unique correlation coefficient satisfying 𝜌 ∈ ]−
1

𝐿−1
, 1[. 

When the practitioner assumes that the variable of interest will act differently depending on the 

considered scenario, but without excluding some dependencies between these different 

responses, 𝑘cat can then be described by the most general (and complex) dependence structure 

where each pairwise coefficient can take a different value depending on the considered levels 

𝑢, 𝑢′. The covariance function reads as follows: 

𝑘cat
Gen(𝑢, 𝑢′) = {

𝑐𝑢,𝑢′  if 𝑢 ≠ 𝑢
′

𝑣𝑢      if 𝑢 = 𝑢′
        (5) 

The latter structure can be simplified by adding a priori information on the dependence between 

the levels; for instance by relying on expert-based information. A possible option is to assume 

that some scenarios perform similarly and that they can be grouped. Assume that the L levels 

of u are partitioned in G groups, and denote g(u) the group number corresponding to a given 

level u. Then, the covariance function can be written as (Roustant et al., 2020): 

𝑘cat
E (𝑢, 𝑢′) = 𝑘cat

Gen(𝑔(𝑢), 𝑔(𝑢′)) = {
𝑐𝑔(𝑢),𝑔(𝑢′) if g(𝑢) ≠ 𝑔(𝑢′)

𝑣𝑔(𝑢) if  𝑔(𝑢) = 𝑔(𝑢
′)

   (6) 

where for all i, j ∈ {1, … , G}, the terms 
𝑐𝑖,𝑖

𝑣𝑖
 are within-group correlation, and 

𝑐𝑖,𝑗

√𝑣𝑖√𝑣𝑗
(𝑖 ≠ 𝑗) are 

between-group correlations. The structure can be simplified by assuming that the correlation 

value for each pair of groups is unique by means of a compound symmetry matrix (Pinheiro & 

Bates, 2006). 

Instead of deriving the groups based on expert information, a possible option is to derive the 

groups from the data using a low rank approximation (Roustant et al. 2020) so that the 

covariance matrix can be defined as: 

𝑘cat
LR(𝑢, 𝑢′) = 𝐅. 𝐅T          (7) 

where the matrix F is of size Lq where q is low, with typical values of 2 or 3. 

When the practitioner assumes that the levels can be ordered, this means that the categorical 

variable can be described by an ordinal continuous variable that is not directly observed (i.e. it 

is said to be “latent”) and the levels are seen as discretized values of this ordinal variable (Qian 
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et al., 2008). The corresponding covariance function can be defined by taking advantage of the 

tools available for the continuous variables as follows: 

𝑘cat
O (𝑢, 𝑢′) = 𝑘̃cont(𝐹(𝑢), 𝐹(u

′))        (8) 

where F(.) is a one-dimensional non-decreasing function (also called warping) so that 

𝐹: {1, … , 𝐿} → ℝ, and 𝑘̃cont is a one-dimensional continuous kernel. 

2.4 Model selection 

As aforementioned, different kernel modelling choices can be made to represent the categorical 

variable associated to the scenario-like variable. This raises the question of selecting the most 

appropriate kernel covariance model. Depending on the modelling objective, different 

approaches exist for selecting an optimal model with respect to a specific criterion (Burnham 

and Anderson, 2002); for instance, a model that satisfactorily represents (i.e. explains) the 

relationships between inputs and outputs might not necessarily perform as well as for 

prediction. Therefore, we propose to examine different viewpoints on the problem of kernel 

selection by examining different criteria. This multi-criterion approach shares similarities with 

the data science framework proposed by Yu & Kumbier (2020), who advocate analysing three 

core principles, predictability, computability, and stability. To select the most appropriate 

kernel model (given the training dataset), we investigate whether the considered GP model is 

capable of: 

Predictability. It is related to whether the GP model is capable of predicting “yet-unseen” input 

configurations, i.e. samples that have not been used for training. This can be examined by using 

cross-validation approaches (e.g. Hastie et al., 2009). Two indicators are estimated.  

The first indicator, denoted Q², measures the deviation from the true output value. Given a test 

set T, Q² is defined as follows: 

𝑄2 = 1 −
∑ (𝑦𝑖 −𝑦̂𝑖 )

2
𝑖∈𝑻

∑ (𝑦𝑖 −𝑦̅ )
2

𝑖∈𝑻

  (9) 

where 𝑦̂𝑖 is the ith GP-based prediction of the model output 𝑦𝑖, and 𝑦̅ =
1

|𝑻|
∑ (𝑦𝑖)𝑖∈𝑻   is the 

average value for the test set. A coefficient Q² close to 1.0 indicates that the GP model is 

successful in matching the new observations that have not been used for the training.  
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The second criterion is the coverage of the prediction intervals (denoted PI) at the given 

confidence level  calculated on the test set T and holds as follows: 

𝐶𝐴 =
1

|𝑻|
∑ 𝟏(𝑦𝑖𝑃𝐼𝛼(𝒘𝑖))𝑖∈𝑻   (10) 

where 1A is the indicator function. CA evaluates whether the model output 𝑦𝑖 is within the 

bounds of the prediction interval computed at the input variables 𝒘𝑖 using the GP mean and 

variance (Eqs. 2&3). The GP-derived PI is “optimal” when CA reaches the theoretical value 

of . 

Explainability and simplicity. The former concept relates to whether the considered GP model 

is capable of representing the data, for instance by analysing the likelihood l. However, adding 

more model parameters results in increasing the explainability. To counterbalance this tendency 

(related to overfitting), a penalty term is generally introduced (see e.g., Höge et al., 2018) to 

select simpler model. Here, simplicity is understood with respect to the number of GP model 

parameters. By assuming that the true GP model exists and that is among the set of candidate 

GP models, we propose to rely on the Bayesian Information Crierion BIC (Schwarz, 1978) 

described as follows: 

𝐵𝐼𝐶 = 2 log(𝑙) + 𝑘. log(𝑛)          (11) 

where k is the number of parameters, n is the number of observations. 

Stability. We explore to which extend the kernel correlation matrix (derived from the covariance 

matrix) is stable to the perturbations in the training dataset. By following a cross-validation 

procedure, we evaluate the following error term: 

𝑒𝑟𝑟 =
1

𝑛𝑝
∑ (

1

𝑛cv
∑ (𝑐̂𝑖,0 − 𝑐̂𝑖,𝑗)²
𝑛cv
𝑗=1 )

𝑛𝑝
𝑖=1

        (12) 

where 𝑛𝑝 is the number of terms in the correlation matrix (by restricting to the non-diagonal 

elements in the upper triangular part of the matrix), 𝑛cv is the number of folds of the cross-

validation procedure, 𝑐̂𝑖,0 is the ith coefficient of the correlation matrix (read in the column order 

for instance) derived from the GP model fitted using the whole training dataset, 𝑐̂𝑖,𝑗 is the ith 

corresponding coefficient derived from the GP model fitted using the training dataset at the jth 

iteration of the cross validation procedure (i.e. for a 5-fold cross validation, this training dataset 

corresponds to the whole training dataset, from which 20% of the observations have been 

randomly removed). 
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3 Application 

In this section, we apply the GP-based procedure described in Sect. 2 to a synthetic test function 

(Sect. 3.1) and to two real cases, in the domain of cyclone-induced wave modelling (Sect. 3.2) 

and reservoir engineering (Sect. 3.3). For all GP models, we consider a Matérn 5/2 covariance 

matrix for the continuous variables. A GP model with constant trend is fitted using the R 

package kergp (Deville et al., 2018) by applying a pre- scaling and centering of the continuous 

input variables and of the variable of interest. The covariance parameters are estimated via a 

maximum likelihood approach using the derivative-free constrained optimiser by linear 

approximations named COBYLA developed by Powell (1994) with 250 randomly selected 

initial starts. The predictability and the stability are assessment via a 5-fold cross-validation 

procedure repeated 25 times. 

3.1 Synthetic case 

We first consider a synthetic test function using a modified version of the two-dimensional 

Branin function1 where one continuous variable u is assumed to reach only discrete values as 

follows: 

𝑦 =

{
 
 

 
 
ℎ(𝑥,−20),        𝑖𝑓 𝑢 = 1 

ℎ(𝑥, −10),       𝑖𝑓 𝑢 = 2

ℎ(𝑥,−7.5),        𝑖𝑓 𝑢 = 3

ℎ(𝑥,−5.0),        𝑖𝑓 𝑢 = 4

−5. ℎ(𝑥, 20), 𝑖𝑓 𝑢 = 5

  (13) 

where ℎ(𝑥, 𝑧) = (𝑧 −
5

4 ∗ 2
 𝑥2 +

5


 𝑥 −  6)

2

+  10. (1 −
1

8
) . cos(𝑥)  +  10, with 𝑥 ∈

[−5,10]. By construction, levels 1-4 are highly correlated (see Fig. 1a). Different categorical 

kernels are defined as follows: 

- Compound Symmetry (denoted CS): no preference is given to the scenarios i.e. to the 

levels of the categorical variable u; 

- General (denoted Gen): this is the most generic structure where the pairwise correlation 

coefficient differs from one level to another; 

                                                 

1 http://www.sfu.ca/~ssurjano/branin.html 

http://www.sfu.ca/~ssurjano/branin.html
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- Expert-based groups: levels are clustered based on expert information. We assume that 

two experts have given their opinions: the first one (denoted E) indicates a ‘realistic’ 

grouping of levels (i.e. consistent with the true function), and the second one (denoted 

EW) indicates a unrealistic grouping (i.e. (u1,u3), and (u2,u4,u5)); 

- Low rank approximation: groups of levels are identified through the data-driven low 

rank approach. A matrix rank of 2 is here tested (denoted LR2); 

- Ordinal variable: the levels are ordered by following the level index, and a continuous 

kernel is defined via a spline-based warping (kernel denoted O). As for the expert-based 

grouping, we assume that another expert does not know the intrinsic ordering and 

assumes an unrealistic ordering (denoted OW), i.e. u4<u2<u5<u3<u1. 

The training dataset is defined through random sampling by considering m points per level with 

m=4, 5 and 6, i.e. with different training dataset sizes of 20, 25 and 30 respectively.  

 

Fig. 2 depicts the GP-derived correlation matrices for each of the afore-described kernel 

assumptions using the training dataset of intermediate size (m=5). The application of the expert-

based and of the ordinal kernel assumptions (Fig. 2c,e) shows some consistent structures among 

the levels, namely the high-correlated group for u1 to u4 and the particular behaviour of u5. The 

magnitude of the inter-dependencies between the identified group and u5 slightly differs: 

assumption E indicates a low-to-moderate correlation (~10%), whereas assumption O indicates 

a decreasing correlation from 25 to 15% for u4-1. The structure of inter-level dependencies is here 

richer for the general (Fig. 2a) and the LR2-based GP models (Fig. 2b). Though the former 

assumption is hardly exploitable, the latter still allows identifying some interesting features, namely 

the particular behavior of u5, and a possible grouping of u2-4. In this case, the exchangeable 

assumption (i.e. compound symmetry CS) leads to a low-to-moderate inter-correlation 

coefficient of ~40% (not shown). 
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Figure 2. Correlation matrix for the synthetic test case (with m=5) considering different 

assumptions regarding the kernel associated to the categorical input variable denoted u. For the 

expert-based assumptions (c and d), the ordering of matrix coefficients follows the expert-based 

clustering, i.e. (u1-u4), and (u5). 

 

The four criteria for kernel model selection are examined in Fig. 3. For the sake of comparability 

between the different assumptions for m, we preferably plot the difference of BIC with the 

minimum one (named BIC). Several observations can be made: 

- The criterion Q² is commonly used in the computer experiment community to rank 

different models with respect to their predictive capability. In our case, basing the 

analysis on this unique criterion is difficult: at low size of the training dataset (m=4), 

models E, CS and O all minimize 1-Q², and show similar performance (see median 

values in Fig. 3b): selecting one of them is here hardly achievable. Besides, the model 
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associated to the unrealistic expert-based grouping EW turns to have a satisfactory 

predictive capability at low m value (though it should be noted that the width of the 

confidence interval is larger than the others); 

- For large enough m value - here m=6 - (i.e. with the largest size of the training dataset), 

the Q² criterion allows to identify model O as the most appropriate one with respect to 

the predictive capability (log10(1-Q²) is the lowest in Fig. 3b); 

- The other facet of predictability related to the coverage of the prediction intervals turns 

to be informative to discard kernel assumptions Gen and LR2 (because CA is here far 

larger than the level of the prediction interval), but hardly allows differentiating the 

other assumptions whatever m (Fig. 3c); 

- Explainability measured by BIC (Fig. 3a) appears here efficient to exclude the 

unrealistic assumptions OW and EW: they present very large BIC differences whatever 

m. For instance, Burnham & Anderson (2002) suggested a difference of the considered 

information criterion (relative to the minimum value) of at least 10 to support the 

ranking between model candidates with confidence; 

- BIC appears to be very informative to discriminate the kernel assumptions, and clearly 

selects the ordinal assumption as the most appropriate one.  

- The stability criterion (Fig. 3d) tends to suffer from the same sensitivity than Q² to the 

size of the training dataset, but has a higher discriminative power: at low m value (m=4), 

both kernel models CS and O are selected as very stable (because of low log10(err) 

values in Fig. 3d). It should however be noted that a high stability is also reached for 

EW. At a high enough m value, the ordinal assumption is then unambiguously selected 

as the one leading to the most stable correlation matrix. 
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Figure 3. Selection criterion for the synthetic test case considering different numbers of points 

per level m: (a) BIC difference with respect to the minimum value; (b) Predictability measured 

by 1-Q² (log10 scale); (c) Coverage measured by 1-CA. The horizontal dashed line corresponds 

to 5%, i.e. the threshold consistent with the level of the 95% prediction interval; (d) Stability 

error err (log10 scale). The three latter criteria are derived from the 5-fold cross validation 

repeated 25 times: the height of the barplot is the median value and the lower and upper bounds 

are defined using the 25th and 75th percentiles. 

 

From this analysis, we can conclude that the ordinal assumption allows to successfully fulfill 

three of the criteria (explainability, predictability, and stability) especially at high enough m 

value (m5). For coverage, the ordinal assumption is not ranked first, but CA appears of 

reasonable order of magnitude (median value of ~85%), i.e. with moderate deviation from the 

level of the 95% predictive interval. For low size of the training dataset (m=4), selecting 
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unambiguously EW and CS as valid assumptions turns to be difficult if the explainability 

criterion (BIC criterion) is not taken into account. This can partly be explained by the analysis 

of the EW-based correlation matrix (Fig. 2d), which reveals a quasi-homogeneous structure 

with correlation coefficients ranging from 44 to 56%, i.e. of the same order of magnitude than 

the CS assumption (of ~40%), hence indicating that both GP models should perform similarly. 

This suggests that at a low number of training points, the CS assumption remains the most 

reasonable assumption (when the goal is the joint maximization of predictability, stability and 

explainability). 

 

3.2 Real case application 1: cyclone-induced waves 

The first real case is based on Rohmer et al. (2016) and deals with the modelling of waves 

induced by cyclones at Sainte Suzanne city located in the North East of Reunion Island (Fig. 

4b). The aim is to analyse the evolution of the significant wave height Hs (maximum value over 

time) as a function of the cyclone characteristics. These are modelled by means of five scalar 

continuous input parameters, namely the maximum wind speed, the radius of maximum winds 

(i.e. the distance from the cyclone eye at which the maximum wind intensity is reached); the 

shift around the central pressure; the forward speed defined as the translation speed of the 

cyclone eye, and the landfall position, that both characterize the minimum distance and the 

relative position of the track to the studied site. A set of seven historical cyclone tracks are 

considered: these are randomly shifted (via the continuous input variable modelling the relative 

position of the track) from their original track so that they cross the centre of Reunion Island 

(see Fig. 4b): a categorical variable is here defined; each level corresponding to a given track. 

A series of 100 computer experiments were performed by randomly sampling the five scalar 

inputs using a Latin Hypercube Sampling approach combined with a maximin criterion 

(Johnson et al., 1990). The sampling of the cyclone tracks is done by sampling with 

replacement. 
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Figure 4. (a) Boxplot of the maximum significant wave height Hs (m) considering each cyclone 

track ordered according to the angle of approach from 0° to 180° (from the East – leftmost part, 

to the West – rightmost part); (b) Cyclone tracks used for modelling the waves at Saint Suzanne 

city (Reunion island). 

 

An a priori physical interpretation of the track influence speculates that Hs is strongly related 

to the angle of approach of the cyclone in the vicinity of the studied site, which increases from 

0° (East direction) to 180° (West direction); 90° being the North. This was confirmed by the 

sensitivity analysis of Rohmer et al. (2016). Despite the spatial variability of the track (as 

illustrated in Fig. 4b), the effect of the track scenarios could be summarized by a scalar 

continuous input, i.e. in relation to the angle of approach. The analysis of the boxplots in Fig. 

4a seems to support this hypothesis; in particular, the median value of the maximum Hs appears 

to increase as the angle of approach increases from 0 to 90° (from Gael to Dumile cyclone). 

Yet, the tendency from 90° to 180° (from Dumile to Banzi cyclone) is less clear, especially for 
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Banzi; the difficulty in the interpretation may here be related to the complexity of this cyclone 

track compared to the quasi linear shape of the others (Fig. 4b). To support the evidence of the 

angle of approach’s influence, a more rigorous analysis is here needed: the validity of this 

hypothesis is further investigated using a GP model with different categorical kernels as 

follows: 

- Compound Symmetry (denoted CS): no preference is given to the tracks; 

- General (denoted Gen): this is the most generic structure where the pairwise correlation 

coefficient differs from one level to another; 

- Expert-based groups (denoted E): levels are clustered based on expert information. A 

first assumption relies on the selection of two groups: one composed of the 4 cyclones 

(Gael, Giovanna, Hollanda, and Dumile) coming from the north-eastern (NE) quadrant 

and another one composed of 3 tracks (Bejisa, Haliba, and Banzi) coming from the 

north-western (NW) quadrant (Fig. 4). A second assumption based on three groups is 

also tested by differentiating the track whose angle is quasi at 90° (North), namely 

Dumile cyclone (Fig. 4). In addition, two assumptions are made regarding the link 

between the groups by specifying a general (assumption E2 and E3), or a compound 

symmetry covariance (assumption E2cs and E3cs); 

- Low rank approximation: groups of levels are identified through the low rank approach 

with a assumed rank of 2 or of 3 (assumptions LR2 and LR3); 

- Ordinal variable: the levels are ordered following the angle of approach, and a 

continuous kernel is defined via a spline-based warping (kernel denoted O).  

 

Fig. 5 depicts the GP-derived correlation matrices for each of the afore-described kernel 

assumptions. Fig. 5a reflects the hypothesis of a single group without any preference among 

the tracks. The derived correlation appears to be high (~80%). The application of alternative 

kernel assumptions show some consistent structures among the cyclone tracks. Two groups of 

cyclones appear to be highly correlated (coefficient >75%), namely the ones coming from NE, 

and the ones coming from NW as shown by Fig. 5b (General formulation), and Fig. 5e,f (E2 

and E2cs). The high correlation among these groups is also indicated by the other assumptions: 

(1) the low rank approximation, LR2 and LR3 (Fig.5c, d) - but these assumptions lead to a richer 

inter-dependency structure; (2) to a lesser extent,the expert-based assumption E3cs (Fig. 5h). 

However, we can note that there is an ambiguity for Dumile cyclone (see in particular, Fig. 5g), 
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which is either highly correlated with the NE cyclones (E2, E2cs) or with the NW cyclones 

(LR3, E3cs). The different assumptions all suggest a moderate correlation (of the order of 40-

60%) between groups of cyclones coming from NE and NW. These observations are consistent 

with the ordinal assumption (Fig. 5h), which indicates a decreasing correlation from Gael (the 

track with the lowest angle of approach) to Banzi cyclone (the track with the largest angle of 

approach), and a central role of Dumile, with a decreasing correlation either with the NE or with 

the NW cyclones. 

 

 

Figure 5. Correlation matrix for the cyclonic test case considering different assumptions 

regarding the kernel associated to the categorical input variable.  

 

The four criteria of kernel model selection are examined in Fig. 6. Regarding explainability and 

simplicity, the ordinal assumption O appears to be the most appropriate: the derived GP model 

presents the minimum BIC value and the differences with the alternative models is large; here 

larger than 20. Regarding predictability, the ordinal assumption also leads to the best model 

regarding this criterion. Yet, it should be noted that the predictability of the expert-based model 
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candidates (E2, E2cs, E3, E3cs) remains of moderate-to-high degree (with median value of Q² 

around 90%). Regarding CA, the use of E3cs allows to reach the level of the 95% prediction 

interval, but alternative assumptions (E2, E2cs, E3cs, CS and O) lead to a satisfactory coverage 

of the prediction intervals as well. Finally, Fig. 6d indicates the poor stability of Gen and LR3 

kernel, i.e. the high sensitivity of the correlation coefficients’ estimates, which may be related 

to the high number of coefficients to estimate (respectively 21 and 11). This also shows the 

satisfactory stability of two alternative assumptions, i.e. the expert-based ones and the ordinal 

one. 

 

Figure 6. Selection criterion for the application case 1: (a) BIC; (b) Predictability measured by 

1-Q²; (c) Coverage measured by 1-CA. The horizontal dashed line corresponds to 5%, i.e. the 

threshold consistent with the level of the 95% prediction interval; (d) Stability error err. Criteria 

(b-d) are derived from a 5-fold cross validation repeated 25 times: the height of the barplot is 

the median value and the lower and upper bounds are defined using the 25th and 75th percentiles. 
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On this basis, it can be concluded that the ordinal assumption allows to reach a satisfactory 

trade-off between the four criteria. This appears to be consistent with the afore-described 

physical intuition; the “latent” continuous variable being here related to the angle of approach. 

Figure 7a summarizes this dependence via the spline-based warping function F(.) used to set-

up the ordinal covariance kernel model 𝑘cat
O  (see Eq. 8): this shows a strong link between NE 

cyclones Gael-Giovanna (and to a lesser extent, for Hollanda as well), and a quasi-linear 

increasing influence to Banzi. This warping is the basis for computing the correlation matrix 

(Fig. 5i). To ease the interpretation, let us focus on a single row of Fig. 5i, i.e. the pairwise 

correlation between Gael track with the others. Fig. 7b provides a clear indication of a highly 

correlated group of cyclones coming from NE (within the red-coloured envelope), with 

correlation coefficient exceeding 80%, with decreasing correlation with those coming from 

NW. The analysis of the correlations derived from the cross-validation iterations (for each 

repetitions) - grey lines in Fig. 7b - confirms this result: more than 75% of the cross-validation-

derived results show high correlation (>75%) of Dumile with the NE cyclones, hence in 

agreement with E2 assumption (Fig. 5e).  

Compared to O, the analysis of E2 performance criteria shows that this assumption can also be 

considered a reasonable one with very satisfactory stability of the correlation coefficients (Fig. 

6d), though the criterion values appear to be higher. The stability criterion appears to be lower 

than for O, which may be related to the lower number of correlation coefficients to be estimated 

(of 2 for E2 assumption, and of 7 for O assumption). 
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Figure 7. (a) Spline-based (un-normalized) warping function F (see Eq. 8) used in the ordinal 

assumption for the cyclone case. (b) Pairwise correlation between Gael track with the other 

ones. The red-coloured envelope indicates cyclones coming from North-East (denoted NE). 

The grey-coloured curves are the correlations derived at each iteration of the 5-fold cross-

validation procedure (repeated 25 times). The red dashed line indicates the median value. 

 

3.3 Real case application 2: CO2 geological storage 

The second real case application corresponds to the modelling of the long term fate of stored 

CO2 in a deep aquifer on a potential project in the Paris basin (France) as described by Manceau 

and Rohmer (2016). The injection of 30 Mt of CO2 during 30 years in the lower Triassic 

sandstone formation at approximately 1,000m depth was numerically simulated and the 

evolution of the quantity of mobile CO2 for a time period of 150 years after the injection stops 

was investigated as a function of:  

- two continuous input variables, namely the porosity and the intrinsic permeability of the 

aquifer rock formation;  

- four categorical input variables related to: the scenarios of permeability anisotropy 

(“minor”, “medium”, and “large”), the scenarios of regional hydraulic gradient 
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(“absence” and “activated”), the scenarios related to the capillary effect (“absence” and 

“activated”), and the physical laws used to model the relative permeability as a function 

of CO2 saturation (ten choices) as depicted in Fig. 8. Due to the importance of the latter 

parameter (as shown by Manceau and Rohmer, 2016), the following analysis focuses 

on this variable. 

A series of 100 computer experiments were performed by randomly sampling both scalar inputs 

using a Latin Hypercube Sampling approach combined with a maximin criterion. The sampling 

of the categorical variables is done by sampling with replacement. 

 

 

Figure 8. (a) Boxplot of the amount of mobile CO2 considering each physical law index (1-10). 

Colors indicate the expert-based grouping of the laws. (b) Maximum residual saturation of CO2 

for each law. Relative permeability law used in the reservoir test case: (c) water; (d) CO2. 

 

Contrarily to the case described in Sect. 3.2, the physical intuition on an a priori influence of 

scenario-like variable related to the relative permeability laws is harder to give: this is related 

to the richness of the information associated to the process of residual trapping that is related 

to different aspects: (1) the capacity of the porous medium to allow the flow of the gaseous 

phase in the presence of another phase: this is represented as a function of the saturation (see 
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examples in Fig. 8c). This capacity is associated to a potential hysteretic effect resulting in a 

non-unique dependence over time; (2) the capacity of the alternative phase (water) that is 

represented by another function of the saturation (Fig. 8d); (3) the considered phase (gaseous 

or aqueous) progressively becomes isolated when its saturation decreases in a porous medium. 

This leads to a saturation that cannot be reduced: these specific saturations are called residual 

situation for the gaseous phase (Fig. 8b) and irreducible saturation for the aqueous phase. 

To help in the formulation of a physically-based assumption about the inter-dependencies, 

boxplots in Fig. 8a allow to identify some specific law behaviours especially for law 1; some 

tendency can also be noticed when ordering the laws in a specific order with respect to the 

median values of the variable of interest. To get a clearer picture, we test the validity of these 

observations via the proposed GP-based approach by defining different categorical kernels as 

follows: 

- Compound Symmetry (denoted CS): no preference is given to the physical laws; 

- General (denoted Gen): the most generic dependence structure; 

- Expert-based groups: the grouping should account for the three facets of the CO2 flow 

in porous media, i.e. by integrating the three pieces of information depicted in Fig. 8b-

d: dissimilarities in both the imbibition, the drainage curve’s shape and in the residual 

trapping model. On this basis, the following grouping is proposed: (law 2; law 10); (law 

6-9), (law 1); (law 3); (law 4); (law 5). In addition, an assumption is made regarding the 

link between the groups by specifying a general or a compound symmetry covariance 

(assumption respectively denoted E and Ecs); 

- Low rank approximation: groups of levels that are identified through the low rank 

approach. A rank of 2 and of 6 (i.e. of the same number of the expert-based groups) are 

tested (kernel respectively denoted LR2 and LR6); 

- Ordinal variable: the levels are ordered with respect to the value of the maximum CO2 

residual saturation (Fig. 8b), and a continuous kernel is defined via a spline-based 

warping (assumption denoted O).  

 

The other categorical variables are respectively assigned a Compound Symmetric kernel for the 

regional hydraulic gradient and for the capillary effect. Owing to the “natural” ordering of the 

levels of the categorical variable for the permeability anisotropy, an ordinal kernel with spline-
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based warping is defined. A logarithm (base 10) transformation of the variable of interest is 

applied due to high asymmetry in the variable histogram. 

 

Fig. 9 depicts the GP-derived correlation matrices for each of the afore-described kernel 

assumptions. Some consistent structures can be noticed regarding law 1, which appears to be 

anti-correlated with the others as shown in Fig. 9a (general assumption), and in Fig. 9b,c (low 

rank approximation LR2 and LR6). The specificity of law 1 is also outlined by the expert-based 

grouping in Fig. 9d, which indicates here a moderate positive correlation of 35-40%. This is in 

agreement with the ordinal assumption (Fig.9f) which indicates that the pairwise correlation 

coefficients of law 1 with the others (see last row of Fig. 9f) rapidly decreases. Though 

disagreeing on the correlation magnitude, LR2, Gen, and E models all suggest a moderate 

correlation among all laws except for law 1. The assumption LR6 also suggests the particular 

behaviour of law 5, which goes in the same direction as the expert-based clustering of 

considering it as a belonging to a single group. The assumption Ecs (i.e. using a CS between-

group covariance assumption) leads to a less complex correlation structure and clearly 

highlights the grouping of law 6-9 (as suggested by the experts, see also the purple-coloured 

laws in Fig. 8), which is in agreement with the group of highly correlated laws as outlined by 

Fig. 9f (though the size of the group is larger and includes law 2 and 4 as well).  

To summarize, the inspection of the correlation matrices is here more difficult than for the 

cyclonic application case (Sect. 3.2), where all assumptions more or less agree regarding the 

information supplied by the modellers. Still, this inspection highlights the specificities of law 1 

and law 5 (LR6 assumption), that both strongly differ from the other laws: this is suggested by 

the irreducible water saturation (red curve in Fig. 8c,d): law 1 is even more different with an 

irreducible water saturation associated to a large maximum gas residual saturation, which seems 

to explain why the model behaves so specifically when this law is accounted for. 
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Figure 9. Correlation matrix for the reservoir test case considering different assumptions 

regarding the kernel associated to the categorical input variable. For the expert-based 

assumptions (d and e), the ordering of matrix coefficients follows the expert-based clustering, 

i.e. (law 2; law 10); (law 6-9), (law 1); (law 3); (law 4); (law 5). For the ordinal assumption (f), 

ordering of matrix coefficients follows the ordering of the maximum residual saturation of CO2. 

 

The four criteria for kernel model selection are examined in Fig. 10. For the considered case, 

we show that the expert-based (Ecs, i.e. with the simplified correlation structure between the 

groups) and the CS assumption both lead to GP models that satisfactorily fulfill the four criteria, 
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with a slightly higher performance for the simpler structure of CS. This means that the expert-

based grouping of laws, in particular of laws 6-9 (in purple in Fig. 8), is informative (in the 

sense that it leads to a competitive GP model), but only makes a slight difference with the 

simpler structure especially regarding explainability (with BIC difference ~10) and regarding 

stability (due to the lowest number of CS correlation coefficients, namely of 1). From this 

analysis, it can be concluded that, given the 100 simulation results, there is only a mild evidence 

supporting the assumption of the structure associated to the permeability laws that was intuited 

from the analysis of the boxplots in Fig. 8a and of the curve similarities (Fig. 8b-d). Similarly 

as for the synthetic case, additional simulation results should here be performed in order to 

discriminate unambiguously the most appropriate kernel assumption. 

 

Figure 10. Selection criterion for the application case 2: (a) BIC; (b) Predictability measured 

by 1-Q²; (c) Coverage measured by 1-CA. The horizontal dashed line corresponds to 5%, i.e. 

the threshold consistent with the level of the 95% prediction interval; (d) Stability error err. 
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Criteria (b-d) are derived from a 5-fold cross validation repeated 25 times: the height of the 

barplot is the median value and the lower and upper bounds are defined using the 25th and 75th 

percentiles. 

 

4 Summary, Discussion and Further works 

Model uncertainties (related to the structure/form of the model or to the unambiguous choice 

of “appropriate” physical laws) are generally integrated in environmental models via scenario-

like variables, i.e. categorical variables. In the present study, we have explored the applicability 

of GP meta-modelling in order to:  

- Inform on the structure of dependence for scenario-like inputs (research question Q1) 

using different formulations of the categorical covariance function (exchangeable, 

ordinal, group, etc.); 

- Derive a predictive statistical model using a limited number of computer experiments, 

i.e. 100-200 (research question Q2) that satisfactory fulfil predictive capability, 

explainability and stability of parameters’ estimates.  

Regarding Q1, we discuss the added value of the approach in Sect. 4.1, as well as its limitations. 

Regarding Q2, we compare in Sect. 4.2 the GP-based procedure with popular modelling 

alternatives, namely tree-based methods, with respect to predictability as well as from a 

practical viewpoint. Different lines for further research works are also outlined. 

4.1 Selecting the dependence structure 

We have proposed to rely on a multiple-criterion selection approach to provide indications on 

which kernel model is the most appropriate to represent the dependence structure of the 

scenario-like inputs. By construction, the proposed framework should provide a level of 

sufficient flexibility to critically analyse the different physically-based assumptions: the 

advantage of testing and confronting each assumption to one another is to keep the procedure 

transparent to the practitioner. This flexibility is well shown in the cyclone application case 

(Sect. 3.2), where the proposed procedure allows us to confront an a priori physically-based 

assumption (i.e. the cyclone track effect can be summarized by a scalar ordinal variable) to 

alternative views on the dependence structure, and to support the evidence of the a priori 

assumption.  



 

 29 

Yet, the procedure does not ensure that a unique model is selected: multiple assumptions may 

eventually turn to be valid (with respect to the four selection criteria) or a trade-off may be 

difficult to find. In the reservoir case, the application (Sect. 3.3) only moderately supports the 

evidence of some dependence structure; the compound symmetric and the expert-based kernel 

model perform similarly with respect to the four selection criteria. Though this result is 

informative per se, in particular in situations where the practitioner is preferably interested in 

explaining the numerical results, additional investigations are necessary to confirm this 

conclusion. This is shown in the synthetic case (Sect. 3.1), where the ordinal assumption was 

also successfully identified provided that a minimum number of training samples are available.  

On the one hand, if additional model runs are computationally affordable, a possible option is 

to rely on an adaptive sampling strategy. This question deserves however further investigation 

in the presence of a mixture of continuous and categorical variables, and could be based on 

recent advances in the context of optimization by Pelamatti et al. (2019) and Munoz Zuniga and 

Sinoquet (2020). On the other hand, if additional model runs are not possible, an option is to 

aggregate the information provided by the “plausible” GP models (i.e. the ones that 

satisfactorily fulfil the criteria) while accounting for some weight reflecting their “plausibility” 

(with respect to the selection criteria). This option can take advantage of adequate averaging 

techniques developed, for instance, within the Bayesian framework as proposed by Zhang & 

Taflanidis (2019) for uncertainty quantification, and by Ginsbourger et al. (2008) for 

optimization problems.  

4.2 Comparison to a popular alternative 

It should be acknowledged that GPs are not the first statistical modelling option that comes to 

mind when addressing the problem of scenario-like variables. A popular approach relies on 

tree-based methods like regression decision trees, denoted DT (Breiman, 1984), and random 

forest regression, denoted RF (Breiman, 2001), which both natively handle categorical 

predictors without having to first transform them (e.g., by using feature engineering techniques) 

because they are based on binary recursive partitioning. Examples of real case applications are 

provided by Jaxa-Rozen and Kwakkel (2018) and Rohmer et al. (2018).  

From a practical viewpoint, the advantage of DT is to provide the structure of dependence (as 

well as the interactions) with a graphical presentation of the results in the form of a tree, which 
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greatly eases the interpretation. For instance, in the cyclone real case application, Fig. 11a gives 

the tree structure derived from the analysis of the cyclone real case. 

 

Figure 11. (a) Tree structures derived from the analysis of the cyclone real case; (b-d) Tree 

structures considering three iterations of the 5-fold cross validation procedure. The decision 

rule is provided on each respective branch. The leaf (bottom node) are coloured according to 

the mean of the variable of interest (scaled value of HS); the number in percentage provides the 

number of samples falling in each leaf. The track name associated to the ‘Track’ node 

corresponds to the two first letters of the cyclone names provided in Fig. 4. The green rectangle 

outlines a particular grouping of tracks. 
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However, we note, from the analysis of Fig. 11, that several differences between the structure 

constructed using the DT trained using the whole dataset (Fig. 11a) and the ones at each 

iteration of the cross-validation procedure (i.e. using three DT models setup with “perturbed” 

training database, Fig. 11b-d); in particular for the leftmost part related to the track variable 

(outlined by a green rectangle), the grouping of tracks are similar for Fig. 11a and Fig. 11c, but 

differs for Fig. 11b and is even absent for Fig.11d. This high sensitivity of the derived structure 

(to the changes in the training dataset) has already been identified in the literature (Breiman, 

2001): in addition to bringing some confusion regarding the scenario dependencies, the 

drawback is also a poorer predictability: this is shown by the low Q² values for each test case 

in Table 2. 

 

Table 2. Predictability measured by the Q² indicator for different statistical models. For the 

synthetic case with different points per level m, Q² is derived from the leave-one-out cross-

validation procedure. For the application cases 1 and 2, Q² is derived from the 5fold cross-

validation procedure (repeated 25 times): the median values are given together with and the 25th 

and 75th indicated in brackets. 

Model Regression 

Decision Tree 

Regression Random 

Forest 

Gaussian Process 

Synthetic case 

(m=4) 

-0.12 [-0.17, -0.08] 0.61 [0.58, 0.65] 0.96 [0.94, 0.97] 

Synthetic case 

(m=5) 

0.07 [-0.01, 0.19] 0.72 [0.68, 0.74] 0.98 [0.97, 0.98] 

Synthetic case 

(m=6) 

0.26 [0.18, 0.31] 0.77 [0.76, 0.80] 0.98 [0.97, 0.99] 

Application case 1 0.51 [0.47, 0.55] 0.60 [0.58, 0.62] 0.92 [0.91, 0.93] 

Application case 2 0.23 [0.15, 0.28] 0.44 [0.42, 0.46] 0.93 [0.92, 0.94] 

 

On the other hand, RF achieves a higher predictive capability by adding a random character to 

the DT construction process at two levels: (1) each tree is constructed using a different bootstrap 

sample; (2) each node is split using the best among a subset of input parameters randomly 
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chosen at that node: this is confirmed by Table 2. Yet, the high predictability comes at the 

expense of losing some interpretability, i.e. the ability to represent the structure via the easily 

understandable tree representation (RF being an ensemble of randomized DT models) though 

some developments are available to extract some meaningful rules from RF (see e.g. Fokkema, 

2020). We acknowledge that there is room for improving the comparison exercise; in particular, 

we have used commonly-used parametrisations of the tested tree-based methods: further works 

should include more advanced developments like the enhancement of RF for smooth non-linear 

relations (Friedberg et al., 2018), and adequate splitting rules for categorical inputs (see an 

extended discussion by Wright and König, 2019). 

To conclude, GP models can be seen as a good compromise considering the results on the test 

cases, because:  

(1) They clearly achieve the higher predictability with Q² value >90% given a moderate 

size of the training dataset (typically 100-200), whatever the considered case (Table 2), 

while achieving features of high interest (explainability, simplicity, stability) provided 

that the kernel function is appropriately selecting; 

(2) The correlation matrices (Figs. 2,5,9) derived from the kernel function provide a concise 

and graphical way to get insights into the inter-dependencies among the scenarios (using 

the formal interpretation provided in Sect. 2.2). 

These results highlight the added values of our GP-based approach and show that it can be 

considered a valuable tool to complement the toolbox of any geo-scientist in order to both 

explore and characterize model uncertainties related to scenario-like inputs. 
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Software availability 

Software name: kergp 

Developers: Yves Deville, David Ginsbourger, Olivier Roustant.  

Contributors: Nicolas Durrande 

Maintainer: Olivier Roustant roustant@insa-toulouse.fr  

System requirements: Windows, Linux, Mac 

Program language: R 

Availability: https://cran.r-project.org/web/packages/kergp/index.html 

License: GPL-3.0 

Documentation: https://cran.r-project.org/web/packages/kergp/kergp.pdf 
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