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Abstract This paper proposes a parallel numerical algo-
rithm to simulate the flow and the transport in a discrete
fracture network taking into account the mass exchanges
with the surrounding matrix. The discretization of the Darcy
fluxes is based on the Vertex Approximate Gradient finite
volume scheme adapted to polyhedral meshes and to het-
erogeneous anisotropic media, and the transport equation
is discretized by a first-order upwind scheme combined
with an Euler explicit integration in time. The paralleliza-
tion is based on the single program, multiple data (SPMD)
paradigm and relies on a distribution of the mesh on the pro-
cesses with one layer of ghost cells in order to allow for a
local assembly of the discrete systems. The linear system
for the Darcy flow is solved using different linear solvers
and preconditioners implemented in the PETSc and Trili-
nos libraries. The convergence of the scheme is validated on
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two original analytical solutions with one and four intersect-
ing fractures. Then, the parallel efficiency of the algorithm
is assessed on up to 512 processes with different types of
meshes, different matrix fracture permeability ratios, and
different levels of complexity of the fracture network.
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1 Introduction
1.1 Hybrid dimensional flow and transport models

This article deals with the simulation of the Darcy flow
and transport in fractured porous media for which the frac-
tures are modeled as interfaces of codimension one. In
this framework, the d-1 dimensional flow and transport
in the fractures is coupled with the d dimensional flow
and transport in the matrix leading to the so called hybrid
dimensional Darcy flow and transport model.

For the Darcy flow model, we focus on the particular case
where the pressure is continuous at the interfaces between
the fractures and the matrix domain. This type of Darcy flow
model introduced in [3, 4] corresponds physically to pervi-
ous fractures for which the ratio of the normal permeability
of the fracture to the width of the fracture is large compared
with the ratio of the permeability of the matrix to the size of
the domain. Note that it does not cover the case of fractures
acting as barriers for which the pressure is discontinuous
at the matrix fracture interfaces (see [5, 22, 33] for discon-
tinuous pressure models). It is also assumed in our model
that the pressure is continuous at the fracture intersections.
It corresponds to the assumption that the ratio between the
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permeability at the fracture intersections and the width of
the fracture is large compared to the ratio between the tan-
gential permeability of each fracture and its length. We refer
to [24] and [40] for more general reduced models taking into
account discontinuous pressures at fracture intersections in
dimension d = 2.

The hybrid dimensional transport model is derived in [3]
in the case of a convection diffusion flux for the matrix
and fracture concentration. In this work, a purely advec-
tive model is considered. It requires the specification of the
transmission conditions at the matrix fracture interfaces and
at fracture intersections which, to our knowledge, have not
been done so far at the continuous level.

The discretization of the hybrid dimensional Darcy flow
model with continuous pressures has been the object of sev-
eral works. In [31], a cell-centered finite volume scheme
using a two-point flux approximation (TPFA) is proposed
assuming the orthogonality of the mesh and isotropic per-
meability fields. Cell-centered finite volume schemes can
be extended to general meshes and anisotropic permeability
fields using multipoint flux approximations (MPFA) follow-
ing the ideas of [1, 2, 39, 42]. In [3] and [29], a mixed
finite element (MFE) method is proposed, and control vol-
ume finite element methods (CVFE) using nodal unknowns
have been introduced for such models in [9, 28, 34, 35,
38]. The hybrid finite volume and mimetic finite difference
schemes, belonging to the family of hybrid mimetic mixed
methods [17], have been extended to hybrid dimensional
models in [6, 23] as well as in [12, 13] in the more general
gradient discretization framework [18]. Non-matching dis-
cretizations of the fracture and matrix meshes are studied in
[8, 16, 25] and [40].

Regarding the hybrid dimensional advective transport
model, an explicit first-order upwind scheme combined with
the MPFA Darcy fluxes is used in [1, 2] and [39]. At frac-
ture intersections, the authors neglect the accumulation term
and the concentration unknown is eliminated using the flux
conservation equation in order to avoid severe restrictions
on the time step caused by the small volumes. A CVFE
method is used in [38] with a first-order upwind approxima-
tion and a fully implicit time integration of the two-phase
flow model to avoid small time steps. Higher order methods
have also been developed in the CVFE method of [34] using
a MUSCL type second-order scheme for the saturation
equation and also in [29] where a discontinuous Galerkin
method is used for the transport saturation equation with an
Euler implicit time integration in the fracture network and
an explicit time integration in the matrix domain. In [26],
a streamline method is developed in 2D based on the
hybrid dimensional Darcy flow velocity field. The solu-
tion is very accurate for purely advective transport but this
method requires that the fractures be expanded and seems
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difficult to extend to the case of a complex 3D network in
practice.

1.2 Content and objectives of this work

In this work, we focus on the vertex approximate gradient
(VAG) scheme introduced in [19] for diffusion problems
and extended in [11-13] to hybrid dimensional Darcy flow
models. The VAG scheme uses nodal and fracture-face
unknowns in addition to the cell unknowns which can be
eliminated without any fill-in. Thanks to its essentially
nodal feature, it leads to a sparse discretization on tetrahe-
dral or mainly tetrahedral meshes. The VAG scheme has
the major advantage, compared with the CVFE methods of
[9, 35, 38] or [34], that it avoids the mixing of the control
volumes at the fracture matrix interfaces, which is a key fea-
ture for its coupling with the transport model. As shown in
[11] for two-phase flow problems, the VAG scheme allows
for a coarser mesh size at the matrix fracture interface for
a given accuracy. For the discretization of the transport
hybrid dimensional model, we will use in this work a sim-
ple first-order upwind scheme with explicit time integration.
The extension to second-order MUSCL type discretization
will be considered in a future work. Our main objective in
this paper is to develop a parallel algorithm for the VAG
discretization of hybrid dimensional Darcy flow and trans-
port models, and to assess the parallel scalability of the
algorithm.

Starting from the hybrid dimensional Darcy flow model
of [11] and [12], we first derive the hybrid dimensional
transport model for a general fracture network taking into
account fracture intersections and the coupling with the
matrix domain. Then, the VAG discretization of the Darcy
flow model is recalled and the VAG Darcy fluxes are used
to discretize the transport model with an upwind first-order
discretization in space and an Euler explicit time integra-
tion. A key feature of this discretization is the definition of
the control volumes which is adapted to the heterogeneities
of the porous medium. This can be achieved thanks to the
fact that, on the one hand, the VAG scheme keeps the cell
unknowns and, on the other hand, the VAG Darcy fluxes are
constructed independently of the definition of the control
volumes. In particular, the control volumes are constructed
in such a way that, at matrix fracture interfaces, the volume
is taken only in the fracture. Otherwise, the fracture will be
enlarged artificially and the front velocity will not be accu-
rately approximated in the fractures as it it the case for usual
CVFE methods. Note also that we do not eliminate the con-
centration unknowns at fracture intersections as was done in
[1, 39] and [2] for cell-centered discretizations. In the case
of a nodal discretization like the VAG scheme, this elimi-
nation is not possible since these unknowns are connected
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to the matrix and it is not needed since the size of the con-
trol volumes at fracture intersections is roughly the same as
the size of any control volume located at the matrix fracture
interface.

Our parallelization of the hybrid dimensional flow and
transport numerical model is based on the single program,
multiple data (SPMD) paradigm. It relies on a distribution
of the mesh on the processes with one layer of ghost cells
in order to allow for a local assembly of the discrete sys-
tems. The linear system for the Darcy flow is solved using
different linear solvers and preconditioners implemented in
the PETSc and Trilinos libraries.

In order to validate the convergence of the scheme, two
analytical solutions are constructed for the hybrid dimen-
sional flow and transport model. We consider the case of
a single non-immersed fracture as well as the case of four
intersecting fractures. The analytical solutions for the trans-
port model are obtained by integration of the matrix and
fracture equations along the characteristics of the veloc-
ity field taking into account source terms coming from the
matrix fracture transmission conditions. Then, we study
the parallel scalability of the Darcy flow and transport
solvers on up to 512 processes. Our numerical investigation
includes different levels of complexity of the fracture net-
work with a number of fractures ranging from a few to a
few hundreds. It covers different types of meshes namely
hexahedral, tetrahedral, and prismatic meshes as well as
a large range of permeability ratios between the fracture
network and the matrix domain. In addition, the influence
of the choices of the linear solver and of the precondi-
tioner is also studied for the solution of the Darcy flow
equation.

The paper is organized as follows. Section 2 recalls the
geometrical and functional setting introduced in [12] for
a general 2D fracture network immersed in a surround-
ing 3D matrix. Then, the hybrid dimensional Darcy flow
and transport models are introduced. In Section 3, the VAG
discretization is recalled for the Darcy flow model and
extended to the transport model. The parallel implementa-
tion of the scheme is detailed in Section 4. Section 5 is
devoted to the description of the test cases including the ana-
lytical solutions and to the numerical investigation of the
parallel scalability of the algorithm.

2 Hybrid dimensional Darcy flow and transport
model in fractured porous media
2.1 Discrete fracture network and functional setting

Let £2 denote a bounded domain of R? ,d = 2,3 assumed
to be polyhedral for d = 3 and polygonal for d = 2. To fix

ideas the dimension will be fixed to d = 3 when it needs to
be specified, for instance in the naming of the geometrical
objects or for the space discretization in the next section.
The adaptations to the case d = 2 are straightforward.

We consider the asymptotic model introduced in [3]
where fractures are represented as interfaces of codimension
1. Let I be a finite set and let I' = | J;,; I'; and its inte-
rior I' = I" \ T denote the network of fractures I'; C £2,
i € I, such that each I3 is a planar, polygonal, simply con-
nected, open domain included in an oriented plane P; of
R, 1t is assumed that the angles of I are strictly smaller
than 27 and that I; N Fj = () for all i # j. For all
i€l letusset X; =003, X = X;NX;, jel\{i},
Yio=2XiNo2, Xin =2\ (Ujel\{i} E,',j U Xio), and
T =i jyerxrizj Zij- Itis assumed that X o = I';N9$2
(Fig. 1).

We will denote by dt (x) the d — 1 dimensional Lebesgue
measure on I'. On the fracture network I", we define the
function space L3(I") = {v = (v))ier, vi € L2(I}),i € 1},

endowed with the norm ”v”2LZ(1") = D ier ||v,~||i2(m. Its

subspace H'!(I") is defined as the space of functions v =
(vj)ier such that v; € H! (I}),i € I with continuous traces
at the fracture intersections. The space H 1(I") is endowed

. 2 _ 2 .
with the norm ||v||H1(1,) = Y il ”U’”Hl(r,-) and its sub-
space with vanishing traces on Xy = Ui 7 2i,0 is denoted

by Hgo(r).

Let us also consider the trace operator y; from H 1 (£2)
to L?(I7) as well as the trace operator y from H'(£2) to
L?(I") such that (yv); = y;(v) foralli € I.

On $£2, the gradient operator from H'(£2) to L%(2)? is
denoted by V. On the fracture network I', the tangential
gradient V; acting from H'(I") to L2(I")4~! is defined by

Vv = (Vg viier,

where, for each i € I, the tangential gradient V, is defined
from H'(I}) to L?(I})¢~! by fixing a reference Cartesian
coordinate system of the plane P; containing I;. We also
denote by div, the divergence operator from Hgiy(I7) to
L*(I).

Ql Fl \Elo

3 ~ Y5 N

ol 220 Q,

Fig. 1 Example of a 2D domain with three intersecting fractures
I, I3, I3 and two connected components §21, §22

@ Springer
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The function spaces arising in the variational formulation
of the hybrid dimensional Darcy flow model are

V = {v e H'(£2) such thatyv € H'(I")},
and its subspace
VY = {v € Hj(£2) such thatyv € Hy, (IM)}.

The space V© is endowed with the following Hilbertian
norm

. 2 2 1/2
vllyo = (IIVVII72 gy + IVervlizapya-1) -

Let 24,0 € A denote the connected components of
2\ T, with A being the set of connected components of
2 \ T. Let us define the space Hyw(2 \ I') = {q,, =
(U 0)ac Al Qn.o € Haiv(£24)}. Using the orientation of P;,
we can define the two sides =+ of the fracture I;, for all
i € 1.Forallq,, € Hyy(2\T), let yfi q,, denote the nor-
mal trace of q,,, on the side & of I; with the normal oriented
outward from the side +. Let us define the Hilbert function
space

H(2,T) = {q, = @p,o)acA A5 = [@f;)ier |
4, € Hiw(2\T), q;; € L*(IH)*",
dive, (67.0) = Vel i Gn — Vs A € L2UD) 0 €1,

and its closed Hilbert subspace

W(2,T) {(qm,q,,»)eH(sz,m Z/Q @y o - VV

acA
- div(Qy ) V)dx+ 3 f @ - Voyiv
ier YT

+ [ dive, (@r) = Vo ; Gn — Yoy ) 7i0)AT(X)

= OVUGVO}. (1)

The last definition corresponds to imposing in a weak
sense the conditions Y ;; ynx,qy; = O on ¥ \ X and
Ynz 4y = Oon X; n,i € I, where yp,5; is the normal
trace operator on X; (tangent to [;) with the normal ori-
ented outward from /5, and using the extension of yn 5,q s
by zeroon X'\ X;.

2.2 Hybrid dimensional Darcy flow model

In the matrix domain §£2 \ T’ (resp. in the fracture net-
work I), let us denote by A,, € L®(£2)?*¢ (resp. Ay e
L®°(I")@=Dx(@=1)y the permeability tensor such that there
exist Ay > A,, > 0 (resp. Ay > A > 0) with

A €17 < (Am (0§, §) < 2§ forall e RY x € 2,

(resp. A ,162 < (Ay(0E, &) < AIER foralle € BRI,
xel).

@ Springer

We also denote by u the fluid viscosity which is assumed
constant and by dy € L°(I") the width of the fractures
assumed to be such that there exist Ef >d F > 0 with
dy <ds(x) <dyforallxer.

Given u € V, the strong formulation of the hybrid dimen-
sional Darcy flow model amounts to: find © € V and
(4. 47) € W(82, ') such thatu — it € V° and

div(q,, o) =0 on 24, a €A,

Uy :—%Vu on 2y, A,
divy, (q_f,i)_ylj:i Uy~ Vi G =0 onlyiel,
q; = —df%vziyiu onl;,iel.

(€3

The weak formulation of Eq. 2 amounts to: find u € V
such that u — it € V° and the following variational equation
is satisfied for all v € V©:

A (X)
/ Vu(x) - Vu(x)dx
2 M
A
+ / AL
r

The existence and uniqueness of the solution to Eq. 3
derives from the Lax Milgram theorem and a Poincaré
inequality stated in [12].

Veyu(x) - Veyv(x)dr(x) = 0. (3)

2.3 Hybrid dimensional transport model

Let y, be the normal trace operator on 952 with the nor-
mal oriented outward from 2. Let us define 02~ = {x €
02 | Y, ®) < 0}, Ty = (x € Ziol vax, s, < 0},
i € I, as well as the following subset of X' \ X:

TT=(xe T\ X! ) tax (X #0).

iel

We consider a linear, purely advective model with veloc-
ity g,, in the matrix domain and q  in the fracture network.
The matrix concentration is denoted by ¢, (cp, in each
connected component £2,, @ € A) and the fracture con-
centration, representing the average concentration in the
fracture width, is denoted by ¢ (cy,; in each fracture I3,
i € I). The 2D equation in the fracture network is as usual
obtained by integration of the 3D advection equation in
the width of the fractures. For a purely advective equation,
the transmission condition at the matrix fracture interfaces
states that the input normal flux in the matrix is obtained
using the upwind fracture concentration cy. At the frac-
ture intersection X' —, an additional unknown c f,£- must
be introduced and the transmission conditions state that the
normal fluxes sum to zero and that the input normal fluxes
are obtained using the upwind concentration ¢, x-.
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Let be given the input boundary conditions ¢, €
L>®0827),cy; € LOO(Z‘iTO), i € I, and the initial condi-
tions ¢? € L®(2\ T), c(} € L%(I). Let us denote by
¢ (x) the porosity in the matrix and by ¢ 7(x) the porosity

¢matcm,a +div(cm,aqm,a) =0
d’fdfatcf,i + din,- (Cf,iqf,i) = Vl:,r,' cmq,, + anicmqm
Vot omln)™ = cr (Y 1Gn) ™
(mzcribri)” = crx-(Vnzdyi)”
jel
(YnCm¥)~ = Cm(Yngm)™
mzicribyri)” = Cri(ynzdyi)~
em =Y

Cf:C

ENEHS

in the fracture network. The transport hybrid dimensional
model amounts to: find ¢, € L™ ((.Q \F) x (0, T)), cr €
L® (I x (0, 7)), and cfx- € L® (X~ x (0,T)), such
that:

on2y x (0, T),axc A

onl; x(0,T),iel,

onl; x(0,7),iel,

on (X \ Xio) x (0, 7),i el,
on (2 \ Z‘0) X (0’ T)’ (4)
ondf2 x (0,7),

onX;ox (0,T),iel,

on (2\T) x {r =0},

on I x {t =0},

where the notations a™ = max(a, 0) and a~ = min(a, 0)
are used for all a € R.

3 Vertex approximate gradient discretization
3.1 VAG discretization of the Darcy flow model

In the spirit of [19], we consider generalized polyhedral
meshes of §2 in the sense that the edges of the mesh are
linear but its faces are not necessarily planar. Roughly
speaking, each face is assumed to be defined by the union
of the triangles joining each edge of the face to a so called
face center. This definition has the advantage to include in
particular hexahedral cells with non planar faces.

Let M be the set of cells which are disjoint open poly-
hedral subsets of £2 such that  Jx s K = $£2. For each
K € M, itis assumed that there exists xg € K\ dK, the so-
called “center” of the cell K, such that K is star-shaped with
respect to Xx. We then denote by Fx the set of interfaces
of non zero d — 1 dimensional measure among the interior
faces KNL,L €¢ M \ {K}, and the boundary interface
K N 352, which possibly splits in several boundary faces.
Let us denote by

F=J 7«

KeM

the set of all faces of the mesh. Note that the faces are not
assumed to be planar, hence the term “generalized polyhe-
dral mesh”. For o € F, let &, be the set of interfaces of
non zero, d — 2 dimensional measure among the interfaces
o Nao’,o’ € F\ {o}. Then, we denote by

e=Jé&

oeF

the set of all edges of the mesh. Let V, =
U(e’e,)egz,e?&e, (e N e/) be the set of nodes of o. For each
K € M we define Vg = | Vs, and we also denote
by

v=J v

KeM

oeFk

the set of all nodes of the mesh. It is then assumed that
for each face o0 € F, there exists a so-called ‘“cen-
tre” of the face x, € o \ U,cg, e such that x, =
ZSEVG Bo.sXs, with Zsev(, Bss = 1, and By s > O for all
s € V,; moreover, the face o is assumed to be defined by
the union of the triangles 7, . defined by the face center X,
and each edge e € &,.

The mesh is also supposed to be conforming w.r.t. the
fracture network I in the sense that for each i € I there
exists a subset F; of F such that I'; = UUE]_—G_ o. We
will denote by F the set of fracture faces | J;.; Fr;. The
following notations will be used for convenience:

Ms={K e M|s €V},

My ={K e M|o € Fg},
Frs={o € Fr|s e V,},
and

.7‘—1‘,[( =Fx NFr.

This geometrical discretization of £2 and I” is denoted in the
following by D.

The VAG discretization was introduced in [19] for dif-
fusive problems on heterogeneous, anisotropic media. Its
extension to the hybrid dimensional Darcy model is based
on the following vector space of unknowns:

XDZ{vavs’va GR,KGM,SEV,GGfF},

@ Springer
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and its subspace with homogeneous Dirichlet boundary
conditions on 9£2:

X% = {v e Xp|vs =0 fors € Vor).

where V,,; = V N 352 denotes the set of boundary nodes,
and Vi, = V' \ 02 denotes the set of interior nodes.

A finite element discretization of V is built using a tetra-
hedral sub-mesh of M and a second-order interpolation at
the face centers X5, 0 € F \ Fr defined by the operator
I, : Xp — R such that

Io() = ) Bosvs.

seVy

The tetrahedral sub-mesh is defined by 7 = {Tk 5., € €
&, 0 € Fk, K € M} where Tk 4 . is the tetrahedron join-
ing the cell center xx to the triangle 7, . (see Fig. 2 for
examples of such tetrahedra).

For a given v € Xp, we define the function 77v € V
as the continuous piecewise affine function on each tetra-
hedron of 7 such that m7v(Xg) = vg, T7V(s) = v,
T7V(Xe) = Vo, and T7V(X,) = Iy/(v) for all K € M,
se€V,0 € Fr,and o’ € F\ Fr. The nodal basis of this
finite element discretization will be denoted by ng, 1s, s,
forK e M,seV,o0 € Fr.

The VAG discretization of the hybrid dimensional Darcy
flow model (2) is based on its weak formulation (3). Given

Vs /

Vs

Fig.2 Foracell K with one fracture face o in bold: cell unknown vg
located at X, fracture-face unknown v, located at X,,, node unknowns
vs, vy, face center x,+ of face o, triangle T, , (convex hull of e and
Xy ), triangle T,/ (convex hull of ¢’ and x,) and tetrahedron Tk 5/ '
(convex hull of Xk, X, and ')

@ Springer

Us, S € V,ys, it amounts to: find up € Xp with ug = ug for
all s € V,y; and such that for all vp € X% one has

Ay (X)
/ ———Vrnrup(X) - Vrrup(x)dx
2 M

A f(x)
+ [ df(®) TVrVﬂTMD(X) -Veymrop(X)dT(x)=0.
r

)

Following [12], this Galerkin finite element formulation
(5) can be reformulated in terms of discrete conservation
laws using the following definition of the VAG fluxes. For
all vp € Xp, the VAG matrix fluxes connect the cell K €
M to its nodes and fracture faces v € Vg U Fr k:

Ay (X)
Fkv(vp) = — / Vrrvp(x) - Vi, (X)dx
K M

- ¥

V' eVgUFr k

ay (g — vy) 6)

with ay | = [¢ 20Xy, (x) - Vi, (x)dx. The VAG frac-
ture fluxes connect the face o € JFr to its nodes s €
Ve

Ar(x)
Fys(vp) = — df(X)TerTTvD(X) -Veyns(X)dt(x)

= 3 a8 (v — ) @

s'eV,

A
L0 yne(x) - Veyng (X)dT(X)

with a5 = [ dp(x) m

(Fig. 3).
Then, the Galerkin finite element formulation (5) is
equivalent to: find up € Xp satisfying the following set

.

FK.s’ FK‘s

Ugr Us

Fig. 3 Matrix fluxes (in blue) and fracture fluxes (in red) inside a cell
K with a fracture face o (in bold). The matrix fluxes Fx , connect the
cell K to its nodes and fracture faces v € Vg U Fr k. The fracture
fluxes Fy s connect the face o to the nodes s € V, of o



Comput Geosci (2017) 21:595-617

601

of discrete conservation equations and Dirichlet boundary
conditions:

> Fsup)+ Y. Froup) =0, K e M
seVx oeFrk

Y Fostup)+ Y. —Fkq(up)=0, o € Fr
s€Vy KeM,

Y —Frswp)+ Y —Fosup) =0, s € Viu,
KeMg oeFrs
Ug Zﬁs, SGVex,.

3.2 First-order upwind discretization of the transport
model

3.2.1 Definition of control volumes

The VAG discretization of the hybrid dimensional transport
model combines the VAG matrix and fracture fluxes (6), (7)
with the following definition of the control volumes based
on partitions of the cells and of the fracture faces. These
partitions are respectively denoted, for all K € M, by

K = wg U U
SEVE\(Vex: UVr)

EK,S

and, for all o € Fr, by

U s

S€Vs \Vex:

0 =ws;U

Then, the control volumes are defined by wg for all cells
K € M, by w, for all fracture faces o € F, and by

o= ) oks

KeM;
for all nodes s € V;,; \ Vr, and by

for all nodes s € V- \V,,;. Note that this definition avoid the
mixing of the fracture and matrix rocktypes at the control
volumes s € Vr \ V., and o € Fr. This is exhibited in
Fig. 4 in comparison with an alternative choice mixing the
matrix and fracture rocktypes which artificially enlarges the

fractures. We refer to [12] for numerical comparisons on a
two phase flow model of these two types of choices of the
control volumes.

The same idea is applied for all nodes located at different
rocktype interfaces. In practice, for suchanode s € Vi, \Vr
(resp. s € Vr \ Vext), the set wk s (resp. wes) should be non
empty only for the cell(s) K (resp. fracture face(s) o) with
the largest permeability among those around the node s (see
[20] for details).

In practice, the above partitions of the cells and fracture
faces does not need to be built. It is sufficient to define the
matrix volume fractions

dx
ks =22 seVk\ Ve UVr), K € M,
fK dx

constrained to  satisfy ok > 0, and
2 seVi\(VortUVr) @K ,s < 1, as well as the fracture volume
fractions

B fwa,s d¢(x)d7(x)
[ dr®dT(x)

such that ays > 0, and ZSGVU\VM ®gs < 1. Then, the
porous volumes of the control volumes are set to

¢k = |1— Z

SGVK \(VF Uvext)

S € Vo \ Vext,0 € Fr,

Uo s

0K s /(Pm(x)dx, KeM
K

bo= (1= X s |dse [ $r0ar00. 0 € 7
S€Vs \Vex:r o

Ps = Z Olg,sdf’g/(f)f(X)d‘L'(X), s € Vr \ Vexs,
(76.7'-]*'5 o

b= 3 ans [ d0dx. €V Vi UV,
KeM; K

dr(x)d

with d, = Jo dr®dr(x)

' [, dt(x)

3.2.2 Time integration

For N € N*, let us consider the time discretization t° = 0 <
th <o < b <. < N = T of the time interval

Fig. 4 Example of choices of the control volumes at cells, fracture
face, and nodes, in the case of two cells K and L splitted by one frac-
ture face o (the width of the fracture has been enlarged in this figure).

The left figure exhibits the good choice with no mixing of fracture
and matrix rocktypes while the right figure exhibits the bad choice
enlarging artificially the fracture
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[0, T']. We denote the time steps by A" = "1 — " for all
n=0,---,N—1.

Given cs, 8 € Vs with arbitrary values on the set of
ouput boundary nodes

V:;(t = {s € Vext | FK,S(“'D)
> OVK € Msand Fy5(up) = 0Vo € Frs),

and ¢}, € Xp such that ¢ = ¢ for all s € V,y, the
transport discrete model amounts to find c%‘“ € Xp for
alln = 0,---, N — 1 satisfying the following discrete

conservation laws and Dirichlet input conditions

e
o+ D His(@p)+ Y Hio(cp)=0, KeM,
seVg GE}—I",K
R N N
o 0.8 - =0, ,
G0 T+ D Hos(cp)— Y Hko(dp)=0, o€ Fr
SEV{; KEM,,
1_.
¢cg+—cg_ZH (n)_ZH (@) =0 y
s A" K,s{¢p os(Cp)=0, S € Vi,
KeMg ceFrs
CéﬁLl:ES’ SGVex;,

with the following explicit upwind two point fluxes

Hg () = Fx v (up)t + ¢l Fx o (up)~
Hy () = ¢t Fos(up)t + ¢} Fos(up) ™. ®)

The solution of this explicit upwind scheme classically
satisfies the following maximum principle

m < ! 5Mf0rallueVU]—"pUM\V;;,,

=cy
with

0

M = max ® andm = min Cps

peVUFrUM\VE, PEVUFFUM\VE,

provided that the following Courant-Friedrichs-Lewy (CFL)
condition

At" < min(Atpng, Aty Aty), 9)

is satisfied with

Atpag = min 3
KeM ZSEV{( FKvS(uD)++ZU€]:F,K Fi o (up)*’

o

Al‘].' = min s
" eeFr ZSEVq Fo,s(”D)++Z[(gMa (=Fgo(up)*t

Aty = min 5 .
s€Vint Z[(EMS(_FK,S(MD))++Z(TE_7:FYS(_FO',S(MD))+

@ Springer

4 Parallel implementation in ComPASS

The hybrid dimensional Darcy flow and transport dis-
crete model is implemented in the framework of the code
computing parallel architecture to speed up simulations
(ComPASS) [15], which focuses on parallel high perfor-
mance simulation (distributed memory, message parsing
interface—MPI) adapted to general unstructured polyhedral
meshes (see [21]).

4.1 Mesh non overlapping and overlapping
decompositions

Let us denote by N, the number of MPI processes. The
set of cells M is partitioned into N, subsets M?, p =
1, ..., Np using the library METIS [32]. The partitioning of
the set of nodes V and of the set of fracture faces F is
defined as follows: assuming we have defined a global index
of the cells K € M let us denote by K(s),s € V (resp.
K (o), 0 € Fr) the cell with the smallest global index
among those of M (resp. M, ). Then we set

VP ={seV|K(s) € MP},
and
Ff={o € Fr|K(o) e MP}.
The overlapping decomposition of M into the sets
M”, p=1,.., Ny,

is chosen in such a way that any compact finite volume
scheme such as the VAG scheme can be assembled locally
on each process. Hence, as exhibited in Fig. 35, MP s
defined as the set of cells sharing a node with a cell of M?.
The overlapping decompositions of the set of nodes and of
the set of fracture faces follow from this definition:

V= J V. p=1,--- N,
KeM”

and

FP = U FxkNFr, p=1,---,Np.
KeM”

The partitioning of the mesh is performed by the master
process (process 1), and then, each local mesh is distributed
to its process. Therefore, each MPI process contains the
local mesh (Mp, Vp, ]—“?), p = 1,2,..., N, which is
splitted into two parts:

own mesh:(MP, VP, FP),
ghost mesh: (M \MP, VI\VP, Fl. \FP).
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Fig. 5 Ex.a.mple of mesh ML
decomposition

We now turn to the parallel implementation of the discrete
hybrid dimensional Darcy flow model (2) and transport
model (4).

4.2 Parallelization of the discrete hybrid dimensional
Darcy flow

On each process p = 1, ..., N, the local problem of the
discrete hybrid dimensional Darcy flow (2) is defined by the
set of unknowns u,, € YU ?‘; U M” and the set of
equations

Y Frsup)+ Y Fkqup)=0, KeM",
seVg oeFrk

Y Fosup)+ Y —Fko(up)=0, o €FL,
s€Vy KeM,
Y —Frsup)t+ Y
KeM; oeFrs
Us=1llg, SE Vex; N VP,

_Fa,s(”D) =0, seViu ﬂvpa

10)

Note that this includes the equations of the nodes s € V7, of
the fracture faces o € F IE and of the cells K e ﬂ”, both
those own cells in K € M? and the ghost cells K € MP\
M?P_ The set of equations can be rewritten as the following
rectangular linear system

Aé’v AP AL\ (UF by
— p

AL, A AL L uf =] 0 (11)
Afv Apf Afc Uén bcp

— 5P T =P — i
where U € RY s Ujf € RFT and Uf e RM denote
the vector of process p own and ghost unknowns at nodes,

fracture faces and cells, respectively. The above matrices
have the following sizes

) 5P =P v i
Agv c RV‘ xV AP c RV‘DX]‘—F AP c RV’ xM

A? ERF,—XV A[; RFFX.F[‘ A[’ RFPXMI

AP
AL, e RMOVT AP e RMUXFT Al e RMDM,

and b} € RV, bp e R’T, r l7 RM” denote the corre-
sponding right hand side vectors. The matrix A%, is a non
singular diagonal matrix and the cell unknowns can be eas-
ily eliminated without fill-in leading to the following Schur

complement system

P
AP<—1>=bP (12)
p
Uf
with
AL, AP Ab.
= (3 20 ) - (3 Yoo (s ).
bP AP
b? :=( Z)—( }56)<A )2,
by A
and
Ul = (AL 0l - AL UL — ALUD). (13)

The linear system (12) is built locally on each process p
and transfered to the parallel linear solver library PETSc [7]
or Trilinos [27]. The parallel matrix and the parallel vector
in PETSc or Trilinos are stored in a distributed manner, i.e.,
each process stores its own rows. We construct the following
parallel linear system

AU = b, (14)
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Fig. 6 Left: example of mesh 1 e
with n, = 20 where the red line f—'*"‘_'_’_’::d_.._ﬂ--——*-':::z:
is the fracture. Right: analytical I I B o 0 O o 5 e >
solution of (17) at time 77 = 0.5 #,#f"g%///::/::jjjgg
Y T
T T A e
= T e T | A s
[l LA 1 AT | A
LT LT | A L1
L1 L1 0 o S i P L+ k-
T e g
AT e T LT LT X
|~ | | 1 o
L L T L L1 3
B P s v g 0 g I L L1 —as
e T G L e
TR -
o ot g L .
1 | L A——1"T"] F
et 0 t
with v
process p the solution vector <U p> of own node and
A'R! rocess | S
A2R2 %grocess > fracture-face unknowns. Then, the ghost node unknowns
A = , Uy, b € ' \V?) and the ghost fracture-face unknowns
. : Uy, B € (]-'51\]-'1’1) are recovered by a synchronization
AP RTr }PTOCCSSN p step with MPI communications. This synchronization is
Ul | efficiently implemented using a PETSc or Trilinos matrix
v
Ul process 1 b2 } process 1 vector product
U2 . b } process 2 T su 5
U= UUZ process 2 b= . . - (15)
7 : :
. bN" )} processN,, where
Ul
Yy
where R?, p =1, 2, ..., N is arestriction matrix satisfying U}
Up U = UUZ
! v
RPU=|—]. U2
A f
f :
Uy
ix APRP p .
The matrix A”R”, the vector (U}’) and the vector b is the vector of own and ghost node and fracture-face

are stored in process p. unknowns on all processes. The matrix S, containing only 0
The parallel linear system (14) is solved using the  and 1 entries, is assembled once and for all at the beginning

GMRES or BiCGStab algorithm preconditioned by differ-  of the simulation.

ent type of preconditioners as discussed in the numerical Finally, thanks to Eq. 13, the vector of own and ghost cell

section. The solution of the linear system provides on each  unknowns U/ is computed locally on each process p.

1.05

10 — n, =100 || — n, =100
\\ — n, =200 — n, =200
— n, =400 1.00 — n, =400
0.8¢ 1 — n,; =800
— n, =1600
0.95¢ exact
0.6 \
S &
0.90
0.4-
02l : 0.85}
0.0 . R R R 0.80 . R R
0.0 0.2 0.4 0.6 0.8 1.0 0.40 0.45 0.50 0.55 0.60
xT x

Fig. 7 Left: analytical solution and numerical solutions along the fracture at time ¢ with n, = 100, 200, 400, 800, 1600. Right: zoom view of
left figure around x = 0.5
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Fig. 8 Relative L' errors and references in the matrix domain
and in the fracture at time f; between the analytical solution
and the numerical solutions as a function of the grid size n, =
100, 200, 400, 800, 1600

In conclusion, the parallel implementation of the discrete
hybrid dimensional Darcy flow can be summarized as:

Algorithm 1 Parallel implementation of the discrete hybrid
dimensional Darcy flow

1:  Assemble locally on each process the rectangular linear
system (11).

2: Compute locally on each process the Schur complement
(12) of (11).

3: Construct the parallel linear system (14) in PETSc or
Trilinos.

4: Solve the parallel linear system (14) to obtain the
solution at own nodes and fracture faces.

5: Communicate the solution at ghost nodes and fracture
faces from (15).

6: Compute locally on each process the solution at own
and ghost cells from (13).

4.3 Parallelization of the discrete hybrid dimensional
transport model

The parallel implementation of the transport model (4) with
an explicit upwind discretization of the fluxes consists of
the following four steps.

1. Compute the Darcy matrix and fracture fluxes defined
by Eqgs. 6 and 7.

2. Compute the maximum time step At satisfying the CFL
condition (9) and set At" = At foralln =0,--- , N —
2,and AtN"! =T — (N — DAt with N = [ £ 1.

3. Foreachtimestepn =0,1,...,N —2,

(a) Compute c'+1, ¢"*! and c'I’(H, seViuNVP, o e
F 111, K € M” solution of the following explicit

equations
Cn+1_cn —
¢K%+Z Hi s(ch)+ Y Hio(ch)=0, KeM",
seVk oeFrk
Cn+l_cn
¢6$+Z H, s(cp)— Z Hg o () =0, o€ FF,
SEVy KeM,
C"+1—Cn
g~ D His(cp)= Y Hos(cp)=0, s€ViuNV’,
KeMs 0€FTs
Cs:Es, SGVex,ﬂVp.

(16)

(b) Get the node and fracture-face ghost unknowns
AL et s € Vi N (V\VP), 0 € FP\FP
using the PETSc or Trilinos matrix vector product
with the matrix S defined in Eq. 15, as was done
for the Darcy flow solution U':

S Cy

1 1
r )
S l=s[%
c2 <y

Thanks to our mesh decomposition, step 1 and step 3a are
performed locally on each process. For step 2, the maxi-
mum time step At? is computed locally on each process
P, then the time step At is obtained using the MPI reduce
operation.

Fig. 9 Left: example of mesh
with n, = 20 where the red
lines account for the four
fractures. Right: stationary
analytical solution of Eq. 18

1.000e+00

—0.75

| Zo2s

ED.OUU@‘\‘OU
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Fig. 10 Left: stationary . ' - 10°

analytical solution in the four | fracture | —— o - matrix domain
fractures as a function of the x 0931 \ 2333:2% - ng):"le
coordinate. Right: relative L! 09+ ﬂ{‘ fracture 4 ——— | . RRRETION . -~ slope 112
errors and references in the 0.85 \ _ 10

matrix domain and in the 5 08k 1\\ ugJ

fracture network between the 075 3

stationary analytical and \ 102

numerical solutions as a ) \

function of the grid size 0651

nx = 100, 200, 400, 800 986701 02 03 04 05 06 07 08 09 1 107

5 Numerical experiments

All the numerical tests have been implemented on the
Cicada cluster of the University Nice Sophia Antipolis
consisting of 72 nodes (16 cores/node, Intel Sandy Bridge
E5-2670, 64GB/node). We always fix 1core per process and
16 processes per node. Thecommunications are handled by
OpenMPI 1.8.2 (GCC 4.9) andPETSc 3.5.3.

The first two test casesare designed in order to validate
the Darcy fluxes and theconvergence of the transport model
discretization on twoanalytical solutions including one frac-
ture for the first testcase and four intersecting fractures
for the secondtest case. In the remaining test cases, the
parallel scalabilityof our Darcy flow and transport solvers
is assessedwith different types of fracture networks and
meshes anddifferent matrix fracture permeability ratios.
In particular,the last test case applies our algorithm to a
complexfracture network with hundreds of fractures.

atcm,ot(xv v, 1)+ axcm,a(xv v, 1) =0
Cm,a(xa v,0) =0

Cm,] (09 yv t) = 1
Cm,Z(Oy yv t) = 1
em2(x, § +xtan(d), 1) = cy(x,1)

cr(0,1) =1
cr(x,0) =0

50 100 200 400 800

Ny

X

5.1 Numerical convergence for an analytical solution
with one fracture

Let us set 2 = (0, 1)2, and denote by (x, y) the Carte-
(1)
6 € (O, arctan (%)), Xy, = (1, }t +tan(9)). Let 2, =

{(x,y) cQly> §+xtan(9)}, and 2, = 2\ 21.We
consider a single fracture defined by I' = (x1,Xx3) =
0§21 N 052, with tangential permeability A y > 0, and width
dy > 0. The matrix permeability is isotropic and set to
A, = 1, the matrix and fracture porosities are setto ¢,, =
¢y = 1, and the fluid viscosity is set to 4 = 1. The pres-
sure solution isfixed to u(x, y) = 1 — x. In this case, the
transport model (4) reduces to the following system of equa-
tions which specifies our choice of the boundary and initial
conditions:

sian coordinates of x. We then define x; =

onf2, x (0, 7T), xa=1,2,
on 2., a=1,2,

on (1.1) x 0. 1),
on (0. ) x (0.7,
on (0, 1) x (0, T),

a7)

Lep(x.t) = Bmy (x, L1 xtan(0), t) on (0, 1) x (0, T),

on (0, 7),
on (0, ),

Fig. 11 Hexahedral mesh in the
matrix domain (left) and in the
fracture network (right) with

ny =32
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Fig. 12 Concentration in the
matrix domain and in the
fracture network obtained at
different times with the mesh
n, = 128. A threshold

concentration of 0.2 is used in _;0'5
the matrix domain £025
O,
(a)t=00
],
=075
-05
—?0,25
0,
(c)t=04
where £L = 9; + koy + B with 8 = Siz}% and k =  integrated along the characteristics of the matrix and fracture

Af cos?(9). It is assumed that k > 1. This system can be velocity fields leading to the following analytical solution:

0if r < x,
Cm,l(X,y,t)Z{ 1ift>x
0ifr<g,
B
cr(x, 1) =1 e ®BT@ 0 jf T <t<x,
1iftr>x,
. 1 0if r < x,
‘fye(0’4){ 1if 1 > x,
ema(x, y, 1) = 0ifr <x— 21

. Tan®)
ify € (3, 1 + tan(6)) 4y—1 4y—1 . 4y—1
f <4tan(9)’ '+ Tan® _x> if 1>~ fan@y-

Table 1 Number of linear

solver iterations vs. the number Np 2 4 8 16 32 64 128 256 512

of MPI processes obtained with

different linear solvers and GMRES + Boomer AMG 15 15 15 15 15 16 15 15 15

preconditioners for the mesh GMRES + Aggregation AMG 59 78 65 39 65 54 73 53 62

size ny = 128 GMRES + ILU(0) 751 707 655 644 648 634 633 624 613
BiCGStab + Boomer AMG 9 9 9 9 9 10 9 9 10
BiCGStab + ILU(0) 508 476 484 503 473 513 491 487 484
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Table 2 Linear solver setup

phase and solve phase N, 2 4 8 16 32 64 128 256 512

computation times vs. the

number of MPI processes GMRES Setup 341 201 163 117 113 119 121 192 293

obtained with different linear Boomer AMG Solve 26.3 15.6 14.8 72 5.2 3.8 25 52 9.6

solvers and preconditioners for GMRES Setup 47 19 16 15 23 29 44 66 113

the mesh size n, = 128 .
Aggregation AMG Solve 451 209 17.0 97 52 25 23 15 32
GMRES Setup 169 213 163 232 146 110 97 60 438
ILU(0) Solve 6723 5909 281.6 1639 714 307 167 83 40
BiCGStab Setup 380 233 150 103 91 94 128 148 2338
Boomer AMG Solve 371 213 115 74 41 29 25 44 100
BiCGStab Setup 189 199 165 221 143 124 94 58 39
ILU(0) Solve 1794 111.7 860 599 279 154 80 42 22

In the following numerical experiments, the parameters
are set to tan(6) = %, Ay =20and dy = 0.01. The mesh
is a topologically Cartesian n, x n, grid. Figure 6 shows an
example of the mesh with n;, = 20 as well as the analytical
solution in the matrix obtained at time ¢z = 0.5 chosen as
the final time of the simulation. The time step is defined by
the maximum time step allowed by the CFL condition (9).
Figure 8 exhibits the convergence of the relative L' errors
between the analytical solution and the numerical solution
at time ¢¢ both in the matrix domain and in the fracture as
a function of the grid size n, = 100, 200, 400, 800, 1600.
Figure 7 shows the analytical solution and the numerical
solutions obtained at time ¢y along the fracture. In both
cases, we can observe the expected convergence of the
numerical solution to the analytical solution with a higher
order of convergence in the fracture due to the fact that at
time 7 the analytical solution in the fracture is continuous
as exhibited in Fig. 7.

5.2 Numerical convergence for an analytical solution
with four intersecting fractures

Let 2 = (0, 1)2, X| = (O, %), 0 € (O, arctan (%)), X) =
(1, 4—1‘ —l—tan(@l)), X3 = (%, O), X4 = (% — tan(6,), 1), and

the intersection of x1x» and x3x4 equal to
1

4(1 + tan()) tan(6»))
1 + 3tan(0))).

(3 — tan(62),

Xo = (x0, Y0) =

It is assumed that 0;, 6, € (0, arctan (%))

We consider the four fractures I'T = (X1,Xg), [» =
(%0, X2), I3 = (x3,X0), [4 = (X0, X4), with tangential per-
meabilities Ay = Afo > 0,and Ag3 = Aygq > 0, and
with widths df’l = df,z > 0, and df,3 = df’4 > 0. 1Itis
assumed that A, = 1.

The fractures partition the domain £2 in the following
four subdomains

1 3

2= X:(x,y)e.Q|y>Z+xtan(91),x<Z—ytan(ez)},
1 3

)= x:(x,y)eQ|y>Z+xtan(91),x>Z—ytan(éz) ,
1 3

§23= x:(x,y)e.Q|y<Z+xtan(91),x<z—ytan(92) ,
1 3

4= x:(x,y)e.Q|y<Z+xtan(91),x>Z—ytan(ez) .

Let us set B = %, ki = Ay cos?(6y), Br = %(?),

_ . _ Af,3df’3 Sil‘l(@z) .
ky = A3 cos(02)sin(0r), r = Aridscos@) It is assumed
that k; > 1 and k,tan(6,) > 1. The matrix and fracture
porosities are set to ¢, = ¢y = 1 and the fluid viscosity is

setto u = 1 (Fig. 8).

Table 3 Number of linear
solver iterations vs. the matrix

fracture permeability ratio /T,f,
forn, =128 and N, =2, 128

Np=2 Np =128
Af/Ap 20 100 1000 20 100 1000
GMRES + Boomer AMG 15 15 16 15 15 15
GMRES + Aggregation AMG 59 - - 73 - -
GMRES + ILU(0) 751 - - 633 - -

“The solver does not converge in 1200 iterations
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Fig. 13 Total computation time . i T A—— u i i L
(left) and computation time for 10 — I_"ta't'me g 10%t — Ifansport tl;ne |
the transport model (right) vs. inear speedup ° inear speedup
the number of MPI processes for
the mesh size n, = 128 - 103 =5
L £ 10°t
[} (9]
= £
[ . [
10°
\\\ 102}
10* R N TSy Rar Ty gy,
2 4 8 16 32 64 128 256 512 2 4 8 16 32 64 128 256 512
Number of MPI processes Number of MPI processes
The pressure solution is set to #(x, y) = 1 — x. In that and initial conditions: find ¢y o(x, y, 1), ¢ = 1,---,4,
case, the transport mode reduces to the following sys-  cr1(x,1), cra(x,t), cr3(y, 1), cra(y,t), and co(t) suc
h del (4) red he followi a(x, 1), cpa(x, 1), cr3(y, 1), craly, 1), and co(z) such
tem of equations which specifies our choice of the boundary  that
atcm,a(-x9 y, 1)+ axcm,a(xs Y, H=0 on2y x (0, 7T),a=1,---,4,
Cm,a(x’}’:o):() Onga’a=1""’4v
em10,y,1) =0 on (4.1) % (0,7),
cn30,y,1) =0 on (0,1) x (0,7,
cm2 (3 = ytan(0y). y.t) = cpa(y. 1) on (yo.1) x (0, 7),
cma (3 —ytan@). y.1) = cp3(y.1) on (0, y0) x (0, T),
em3 (X, 3 +xtan(), 1) = cpi(x, 1) on (0, x0) x (0, T),
cma (x, 3+ xtan(@),1) = cra(x, 1) on (xo, 1) x (0,T),
Licri(,0) = Prem (x, 3 +xtan(@), 1) =0 on (0, x0) x (0, T), (18)
Licpo(x,t) — Bremo (x, 5 +xtan(@), 1) = 0 on (xp, 1) x (0, T),
Locp3(y, 1) — Pacms (3 — ytan(62), y, 1) = 0 on (0, yo) x (0, T),
Laca(y, 1) = Pacm1 (3 — ytan(62), y, 1) = 0 on (yo, 1) x (0, ),
cr2(x0, 1) = cg3(yo, 1) = co(t) on (0,7),
(r + Do) — cp1(xo,t) —rcpa(yo,t) =0 on (0, 7T),
cr1(0,0) =cra(l, 1) =1 on (0, T),
cp1(x,0) =0 on (0, xo),
cr2(x,00 =0 on (xp, 1),
cr3(y,0) =0 on (0, yo),
cra(y,0) =0 on (yo, 1),

Fig. 14 Example of tetrahedral
mesh of the matrix domain (left)
conforming to the fracture
network (right)
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Fig. 15 Concentration in the
matrix domain and in the
fracture network obtained at
different times for the
tetrahedral mesh. A threshold of
0.2 is used in the matrix domain

(a)t=00

(c)t=04

where £1 = 0; + k10x + 1 and Lo = 9; — k29, + Bo.
This system can also be integrated analytically along the
characteristics of the matrix and fracture velocity fields, but

B,
cri(x) =e M7,

1.000e400

!
o )
@ S
&

°
B

L
8

(d)t=05

it leads to complex computations. It is much easier to obtain
the stationary solution of this system which is defined in the
fractures by

B2
-5 1=y
cra(y)=e R ,
B B
o B0 +re—ﬁ(1—yo)
co = ,
0 r+1
_Pk AL _3f _3
crax)=e A5 cpe ™ + P e(rlx 4"2) — e(rlxo 4"2) ,
kir
B _B _n___ A poyp— P
ek” coe B0 4 kf_iz e( T~ T an@p) _e( 2Y0~ 3t an(@y)) Jify < }P
cr3(y) = 8 5 B Ay
el [ coe” R0 + kf—iz T T ) e(_rzyo_‘“‘l““‘“)l))>) if y > }1,
Table 4 Number of linear
solver iterations vs. the number Np 2 4 8 16 32 64 128 256 512
of MPI processes obtained with GMRES -+ Boomer AMG 11 12 12 12 12 12 12 12 12
d’ffere‘c‘lt,tl_‘“ear SfOIV‘;S and GMRES + Aggregation AMG 38 78 40 39 52 - 5 - 52
preconditioners 1or the
tetrahedral mesh GMRES + ILU(0) 1003 725 717 682 667 656 644 629 612
BiCGStab 4+ Boomer AMG 8 7 8 8 8 8 8 8 8
BiCGStab + ILU(0) 565 513 527 544 535 483 489 483 473

-The relative residual norm stagnates after a few iterations

Some future investigations are necessary
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Table 5 Linear solver setup
phase and solve phase Np 2 4 8 16 32 64 128 256 512

computation times vs. the GMRES

number of MPI processes Boomer AMG

obtained with different linear

solvers and preconditioners for GMRES )

the tetrahedral mesh Aggregation AMG
GMRES
ILU(0)
BiCGStab
Boomer AMG
BiCGStab
ILU(0)

Solve time

Solve time

Setup time 124 7.8 4.9 50 43 62 72 135 224
Solve time 8.0 55 29 1.7 1.1 09 14 31 69
Setup time 3.7 1.9 1.2 1.8 21 1.6 29 33 47
Solve time 19.7 209 5.1 27 20 - 1.5 - 3.0
Setup time 5.7 74 72 56 47 52 34 28 18

560.6 2544 150.0 66.5 30.1 152 7.7 41 28

Setup time  21.5 145 99 65 53 59 82 124 197
Solve time 24.0 102 6.1 3.5 1.8 15 21 43 95
Setup time 5.8 6.4 6.4 54 47 50 34 26 18

1104 630 390 192 116 54 28 14 12

-The residual norm stagnates after a few iterations

with r; = ’2—]‘ + %tan(@l) and rp = f—j + %, and in
the matrix by

Cm,1(x,y) =0,
cm2(x,y) =cra(y),

0 if y < 7

Cm,3(x» Y) = yf% : 1
cf1 | @y ) Y>3
cr3(y) if y < yo,

— 1
Cm 4 (¥, y) = cr2 (taﬁTﬁ)) if y > yp.

In the following numerical experiments, the parameters
are set to tan(6) = 3, tan(62) = 1. Ay = 200, As3 =
400, and df;; = dy3 = 0.01. The mesh is, as for the
previous test case, a topologically Cartesian n, X n, grid
exhibited in Fig. 9 for n, = 20. Figure 9 also shows the
stationary analytical solution in the matrix. The time step
is again defined by the maximum time step allowed by the
CFL condition (9) and the simulation time is chosen large
enough to obtain the numerical stationary solution.

Figure 10 exhibits the convergence of the relative L'
errors between the stationary analytical and the numerical
solutions both in the matrix domain and in the fracture as
a function of the grid size n, = 100, 200, 400, 800. We

can again observe the expected convergence of the numer-
ical solution to the analytical solution with a higher order
of convergence in the fracture network due to the fact that
the solution is continuous on each individual fracture as
exhibited in Fig. 10. This property is always true when look-
ing at the solution at the matrix time scale and could be
exploited in a future work by using an implicit time integra-
tion in the fracture coupled to an explicit time integration
in the matrix domain with a higher order discretization in
space in the spirit of what has been done in [29].

5.3 Fracture network with hexahedral meshes

The objective of this subsection and of the next subsection
is to investigate the parallel scalability of the algorithms
described in Section 4. In this subsection we consider a
topologically Cartesian mesh of size ny x ny x ny of the
cubic domain (0, 1)3 exhibited in Fig. 11 for n, = 32. The
mesh is exponentially refined at the interface between the
matrix and the fracture network exhibited in Fig. 12. The
permeabilities are isotropic and set to A y = 20 in the frac-
ture network and to A,, = 1 in the matrix. The porosities
are set to ¢, = ¢y = 1 and the fluid viscosity is set to
u = 1. The initial concentration is set to 0 both in the matrix
domain and in the fracture network and a value of 1 of the

Table 6 Number of linear
solver iterations vs. the matrix
fracture permeability ratio /T;
for the tetrahedral mesh and

N,=2,128

Np=2 N, =128
Ap/Ap 20 100 1000 20 100 1000
GMRES + Boomer AMG 11 13 12 12 13 12
GMRES + Aggregation AMG 38 - - 35 - -
GMRES + ILU(0) 1002 - - 644 - -

-The solver does not converge in 1200 iterations

@ Springer



612

Comput Geosci (2017) 21:595-617

Fig. 16 Total computation time

10°
(left) and computation time for 10%} —s Total time —e Transport time
transport model (right) vs. --+ Linear speedup --+ Linear speedup
number of MPI processes with
tetrahedral mesh 102} N 102
0 G
o 9]
£ £
[ o
10t .~ 10
10" 10°
2 4 8 18 32 64 128 256 512 2 4 8 16 32 64 128 256 512

Number of MPI processes

concentration is injected on the bottom boundaries of the
matrix and of the fracture network. The pressure is fixed to
u = 1 and yu = 1 on the bottom boundary and to u = 0
and yu = 0 on the top boundary. The remaining lateral
boundaries are considered impervious. Figure 12 exhibits
the tracer concentrations obtained with the mesh n, = 128
attimes t = 0, ¢t = 0.2, t = 0.4 and at the final simulation
time 7y = 0.5.

Table 1 presents the numbers of linear solver iterations
for the stationary pressure solution for a number of MPI pro-
cesses ranging from N, = 2 to N, = 512 and with the
mesh size n, = 128 corresponding to roughly 2.1 x 10°
cells, 2.1 x 10° nodes and 5.2 x 10* fractures faces. Both
the GMRES and BiCGStab linear solvers from the PETSc
library are tested combined with either the Boomer AMG
preconditioner from the Hypre library [30], the Aggregation
AMG preconditioner from the Trilinos library [27] or the
block Jacobi ILU(0) preconditioner from the Euclid library.
No restart is used for the GMRES linear solver. Table 2
shows the corresponding computation times both for the
setup phase of the preconditioner and for the solve phase of
the linear solver.

gz 0¢

0

(EvOLX) SXY-A
51

3.0
x-Axis (103

20
2 10
0.0

Fig.17 Prismatic mesh of the domain £2 defined by the tensor product
of a vertical 1D uniform mesh with a 2D triangular mesh

@ Springer
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According to these tables, the GMRES and the BiCGStab
linear solvers combined with the Boomer AMG precondi-
tioner are good choices for a number of processes N, <
128, while the BiCGStab linear solver combined with the
block Jacobi ILU(0) preconditioner is more efficient for
this test case for N, = 256 and N, 512. This was
expected since the Boomer AMG preconditioner requires a
sufficiently large number of unknowns per core to maintain
a good parallel scalability due to the high level of communi-
cations in particular in the setup phase of the preconditioner.
For this linear system, the number of unknowns per MPI
process is roughly 4100 for N, = 512 which is too small for
this type of preconditioner while the block Jacobi precon-
ditioner still maintains a good parallel scalability for such a
number of unknowns per MPI process. On the other hand, as
shown in Table 3, Boomer AMG exhibits an optimal scala-
bility while ILU(0) is not scalable in terms of iteration count
with respect to the ratio j\\_,: between the fracture and matrix
permeabilities. The same remark also holds in terms of scal-
ability with respect to the mesh size which means that the
ILU(0) preconditioner is only advantageous for small size
and mildly heterogeneous problems.

Tables 1 and 2 also clearly show that the BiCGStab lin-
ear solver outperforms the GMRES linear solver for cases

Producer (2938,1500)

(= N 4
Z Injector (4506,1063)
N
ot
=N
x
L)
@w» = F
%
<ot
> ~—
w b
[e=]
of Producer (3002,1256)
= : X . . .

o
o

1.0 2.0 3.0

X-Axis {(x10"3)

4.0 5.0

Fig. 18 Fracture network showing the location of the single injection
well and of the two production wells
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Fig. 19 Mean tracer 0.16 = . . . . . 5.0e+06
concentration in both production [ — Producer (2938,1500)
wells as a function of time (leff) 024 : v -~ Producer (3002,1256) || aoerosl [
defined as the ratio between the 0.12} N R T
well tracer flow rate and the well Lo = i
. . 0.10¢ ! ' = .
fluid flow rate (equal in our case ; | e 3.0e+06r [ | e matrix
to the well fracture-face tracer $0.08f ' '\ © ; --- fracture
concentration). Volume of tracer 0.06 ! “\ % 2.0e+06} — matrix+fracture
as a function of time in the ‘ : =
matrix domain, in the fracture 0.04¢ ," s
network and their sum (right) 0.021 :' Tl .. 1.0e+06 )
00— 15 3 4 5 6 7 8 0% T 33 456 T B
Years Years

requiring a large number of iterations due to the fact that the
cost of the orthogonalization procedure increases with the
dimension of the Krylov subspace. The Aggregation AMG
preconditioner yields a larger number of iterations com-
pared with the Boomer AMG preconditioner but has a much
lower setup time resulting for this test case in a total lower
CPU time. However, this implementation of the Aggrega-
tion AMG preconditioner seems to lack robustness with
respect to the matrix fracture permeability ratio as exhibited
in Table 3.

Next, Fig. 13 plots the total (Darcy flow and transport
models) computation time and the computation time for
the transport model only as a function of the number of
processes. In these runs, the GMRES linear solver is used
combined with the Boomer AMG preconditioner for N, <
128 and with the ILU(0) preconditioner for N, = 256, 512.
For the range 2-512 of the number of processes, it appears
that the computation time of the Darcy flow linear sys-
tem solution remains small compared with the transport
model computation time. This can be checked by compari-
son of the computation times in Table 2 and in Fig. 13. This
explains the good scalability obtained for both the total and
transport computation times thanks to the explicit nature of
the time integration scheme.

5.4 Fracture network with tetrahedral meshes

This test case considers tetrahedral meshes of the cubic
domain (0, 1)3 conforming to the fracture network. An
example of tetrahedral mesh showing both the matrix
domain and the fracture network is exhibited in Fig. 14. All
the physical parameters, initial and boundary conditions are
the same as for the previous test case. The mesh used in this
subsection contains about 6.2 x 10° cells, 9.7 x 10° nodes
and 7.1 x 10* fracture faces. Figure 15 exhibits the tracer
concentrations obtained with this tetrahedral mesh at times
t =0,t = 0.2, ¢t = 0.4 and at the final simulation time
Iy = 0.5.

As for the previous test case, Tables 4, 5, and 6 inves-
tigate the performance of the Darcy flow system linear

solution for both the GMRES and BiCGStab linear solvers
and for the same three preconditioners as in the previous
test case. The conclusions are basically the same as for
the hexahedral mesh test case. The Boomer AMG precon-
ditioner exhibits an optimal robustness with respect to the
matrix fracture permeability ratio X—iZ On the other hand, it
requires a rather high number of unknowns per MPI process
to maintain a good parallel scalability due to the high level
of communications in particular in the setup phase. The
ILU(0) preconditioner can be an interesting alternative but
only for small size and midly heterogeneous problems. The
aggregation AMG preconditioner from the Trilinos library
used in our test cases seems to lack robustness and we
did not manage to make it work better through tuning its
parameters.

Figure 16 plots the total (Darcy flow and transport mod-
els) computation time and the computation time of the
transport model only as a function of the number of pro-
cesses. In these runs, the GMRES linear solver is used
combined with the Boomer AMG preconditioner for N, <
128 and with the ILU(0) preconditioner for N, = 256, 512.
Compared with the previous subsection, an even better par-
allel scalability of the transport model computation time
is observed in the right Fig. 16. This can be explained by
the ratio of roughly 6 between the number of cells and
the number of nodes typical of a tetrahedral mesh. For a
topologically Cartesian mesh, this ratio is roughly 1. Since
the cell concentrations are computed locally in each process,

Pression
[ 8.094e+06

—6.0733e+6

—4.0528e+6

—2.0323e+6

E'I.'I839+04

Fig. 20 Pressure on the matrix domain
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9.864e-01

20.73979

0.4932

10.2466

0.000e+00

1.000e+00

-0.75

0.5

2025

0.000e+00

Fig. 21 Tracer concentration after 1 year of injection in the matrix domain (/eft) and in the fracture network (right)

this explains the better scalability observed for this tetrahe-
dral mesh compared with the previous hexahedral mesh. On
the left Fig. 16, it is observed that the linear system solu-
tion computation time is no longer small compared with the
transport computation time for N, = 256 and 512. Hence,
it significantly reduces the parallel efficiency of the simula-
tion for a large number of processes, say N, = 256, 512 in
this test case.

5.5 Application to a complex fracture network

In this subsection, our algorithm is applied to a com-
plex fracture network kindly provided by M. Karimi-Fard
and A. Lapene from Stanford University and TOTAL.
Figure 17 exhibits the mesh of the domain £2 =
(0, 5888.75) x (0,3157.5) x (0,250) (m) which contains
about 1.2 x 107 prismatic cells, 6.5 X 10° nodes and
5.13 x 10° fracture faces. This 3D mesh is defined by
the tensor product of a triangular 2D mesh with a uniform
vertical 1D mesh with 24 intervals. The fracture network
exhibited in Fig. 18 contains 581 connected components.
It is a set of 21376 x 24 faces of the 3D mesh defined
by the tensor product of a subset of 21,376 edges of
the triangular 2D mesh with the 1D vertical mesh. The
2D triangular mesh contains 517,540 cells and is refined
in the neighborhood of the fracture network down to an
average size of 3.5 m. Figure 18 also shows the location

2.686e-01

—0.20147

—~0.13431

—0.067157

E0.000@«‘00

of the injection well and of the two production wells. Each
well is vertical of radius r,, = 0.1 m and its center in
the horizontal plane is located at the middle of a fracture
edge in the 2D triangular mesh. In the vertical direction,
only the 12 fracture faces at the center of the 1D mesh
are perforated. The permeabilities are isotropic and set to
Ay = 107" (m?) in the fracture network and to A,, =
10~ (m?) in the matrix domain. The porosities are set to
¢m = ¢y = 0.1, the fracture width to dy = 1 m and the
fluid viscosity to o = 1073 Pas~!.

The initial concentration is set to 0 both in the matrix
domain and in the fracture network. A total volume of 5.0 x
10% m3 is injected in one year at the injector well with a
tracer concentration of 1. The pressures of each perforated
fracture face o of the producer wells are fixed to p,, = 0
and the flow rates are given by the Peaceman model

4o = Wis(ps — puw),

where p, is the pressure in the fracture face and W, the
well index of the fracture face. This well index is computed
following Peaceman methodology [14, 36, 37] by expand-
ing the fracture face as a box of size dx x dy x dz. The
analytical pressure solution obtained for a vertical well with
the well pressure p,,, the well radius r,, and the well flow
rate g, per unit length is imposed at the eight corners of
the box. Then, the flow rate g,,dz is imposed at the box

1.114e-01

0.083526

—0.055684

-0.027842

[0.000e+OO

Fig. 22 Tracer concentration at final time in the matrix domain (/eff) and in the fracture network (right)
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Fig. 23 Total computation time 102 102
in hours (left) and computation «—e Total time —e Transport time
time for transport model (right) -~ Linear speedup -- Linear speedup
vs. number of MPI processes
with prismatic mesh 10t} 10t}
S £
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£ €
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center and the pressure p. at the box center can be com-
puted analytically using the VAG scheme. We deduce the
well index

qudz
Pc — Pw

WI =

leading in this simple case to the analytical formula

_ 2mdzAy

log (:—g)

with
De 2rdz

ro = Xp | — ,

0 p C

and
4 (dxdz dxdy dzdy

C=- : L), D=0.5/dx?+d>.
3( i " d T ¥

The production lasts 8 years.

Figure 19 plots the mean tracer concentration in each
well as a function of time as well as the total volume of
tracer as a function of time in the matrix, in the fracture net-
work and their sum. Figure 20 exhibits the pressure solution
in the matrix domain and Figs. 21 and 22 show the tracer
concentration after one year of injection and at final time
both in the matrix domain and in the fracture network.

Figure 23 shows the total computation times with differ-
ent number of MPI processes N, = 16, 32, 64, 128, 256,
512. It is observed that the total computation time exhibits
a rather good scalability. In addition, the linear solver
(GMRES+Boomer AMG) for the pressure converges in

Number of MPI processes

no more than 25 iterations whatever the number of MPI
processes. Also, the comparison of the total and transport
computation times in Fig. 23 shows that the time for the
pressure solution remains small compared with the transport
computation time up to N, = 512.

6 Conclusion

This paper introduced a parallel VAG scheme for the simula-
tion of a hybrid dimensional Darcy flow and transport model
in a discrete fracture network taking into account the mass
exchanges with the matrix. The convergence of the scheme
was validated on two original analytical solutions for a flow
and transport model that includes fractures. The parallel
efficiency of the algorithm was studied for different com-
plexities of fracture networks, and a large range of matrix
fracture permeability ratios and different type of meshes.
The numerical results exhibit a very good parallel strong
scalability as expected from the explicit nature of the time
integration of the transport model with a better result on
tetrahedral meshes thanks to the communication free com-
putation of the cell unknowns. The Darcy flow solution is
remarkably robust using the Boomer AMG preconditioner
on all types of fracture networks, meshes, and for all per-
meability ratios that have been tested. On the other hand,
it requires as usual a rather high number of unknowns per
process to maintain a good parallel scalability. Future work
includes the extension of the parallel algorithm to hybrid
dimensional multiphase flow models and the use of a more
accurate second order MUSCL scheme for the transport
model.
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