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Abstract: Continuous geodetic measurements in landslide prone regions are necessary to
avoid disasters and better understand the spatiotemporal and kinematic evolution of landslides.
The detection and characterization of landslides in high alpine environments remains a challenge
associated with difficult accessibility, extensive coverage, limitations of available techniques, and the
complex nature of landslide process. Recent studies using space-based observations and especially
Persistent Scatterer Interferometry (PSI) techniques with the integration of in-situ monitoring
instrumentation are providing vital information for an actual landslide monitoring. In the present
study, the Stanford Method for Persistent Scatterers InSAR package (StaMPS) is employed to process
the series of Sentinel 1-A and 1-B Synthetic Aperture Radar (SAR) images acquired between 2015 and
2019 along ascending and descending orbits for the selected area in the French Alps. We applied the
proposed approach, based on extraction of Active Deformation Areas (ADA), to automatically detect
and assess the state of activity and the intensity of the suspected slow-moving landslides in the study
area. We illustrated the potential of Sentinel-1 data with the aim of detecting regions of relatively low
motion rates that be can attributed to activate landslide and updated pre-existing national landslide
inventory maps on a regional scale in terms of slow moving landslides. Our results are compared to
pre-existing landslide inventories. More than 100 unknown slow-moving landslides, their spatial
pattern, deformation rate, state of activity, as well as orientation are successfully identified over an
area of 4000 km2 located in the French Alps. We also address the current limitations due the nature
of PSI and geometric characteristic of InSAR data for measuring slope movements in mountainous
environments like Alps.

Keywords: landslide; InSAR; PSI; French Alps; inventory mapping; limitations; slope; aspect

1. Introduction

Landslides are among the most widespread geological hazards that pose a major threat to human
life, infrastructure and natural environment in most mountainous regions with steep slopes. The slope
failure refers to a variety of processes that results in mass wasting down a slope that includes a broad
spectrum of ground movements such as rock falls, mudflows, debris flow, artificial fill or a combination
of these materials. It may occur in different modes of movements: falling, toppling, sliding, spreading,
and flowing, or a combination of these [1]. Gravity is the primary driving factor but there are also
other factors controlling the landslide triggering mechanism that favours slope to failure such as heavy
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rainfall, river erosion, earthquake, snowmelt, volcanic eruption, slope cut etc. The terms “landslide”,
“mass movement”, “slope movement”, “slope instability”, and “slope failure” are used as synonyms in
this study.

A high quality surface displacement field of landslides is important to provide insights into their
geometries and mechanical properties [2]. Therefore, monitoring its surface motion over a wide area
of space is a key challenge in order to quantify any potential landslide risk [3]. Landslide inventory
databases and maps are documenting the identification of landslide processes including the spatial
distribution and characteristics such as geometry, volume, total length of area, causal factors, temporal
frequencies, and sliding rates of different types of past landslide activities [4,5]. This information might
also provide a clue to the locations of future mass movements that are very helpful in predicting the
landslide susceptibility and vulnerability in order to support local authorities for hazard mitigation [6–8].
In addition, it can also provide input for other applications including land-use planning; developing and
refining emergency response plans; as well as prioritizing mitigation measures [9]. However, landslide
maps may have different resolutions and details depending on the purpose of the inventory, scales, data
collection method, and characteristics of the available imagery [10,11]. In France, for example, national
landslide databases provided by French Geological Survey (BRGM) are mostly based on historical
records, field inventory and detailed geomorphological formation surveys and aerial orthophotos.

Landslide inventories can be prepared using a variety of conventional and innovative techniques
depending on the extent of the study area. Visual interpretation of landslides, geomorphological field
mapping as well as stereoscopic imagery techniques are considered as traditional methods based on
landform analysis and are only useful over small areas. In addition, these old methods are inevitably
subjective [12], cumbersome, time-consuming, prone to error, and most importantly difficult to perform
over densely vegetated areas [13,14]. Especially in hilly and mountainous terrain, in-situ methods
for analyzing the stability of landslides are not always practical for systematic investigation of slope
movements at the regional scale [5]. For these very reasons, the innovative methods and recent
technologies help to overcome some of the drawbacks of conventional mapping practices. The modern
application of multiple remote sensing technologies including Synthetic Aperture Radar (SAR), optical
as well as Light Detection and Ranging (LiDAR) measurements, which represents very valuable
complementary data sources relative to conventional mapping and monitoring methods. Especially,
the emerging space industry and new technologies will help in reducing the time and resources for
systematic updating of landslide inventories over very large areas.

The application of InSAR techniques for detecting and monitoring long-term mass movements has
been well documented for different landslide typologies in the last decade owing to its broad spatial
coverage, high spatio-temporal resolution and its operational ability during all-weather conditions.
For example, the traditional differential InSAR method has been employed for monitoring slow-moving
landslides on the order of dm/yr [15–20], whereas multi-temporal InSAR methodologies based on the
analysis of SAR data stack such as small baseline subsets (SBAS) InSAR [21–23] and Persistent Scatterer
Interferometry (PSI) [4,24–29] techniques enable detecting extremely slow slope movements on the
order of mm/yr. On the other hand, despite its success in landslide kinematics investigations, these
multi-temporal InSAR techniques still have certain limitations including severe temporal decorrelation
due to the presence of vegetation and soil surface change, unwrapping errors, DEM errors, and
atmospheric artifacts. Furthermore, several studies have demonstrated the effect of interferometric
pairs selection on the InSAR displacement estimates [30,31].

Different methodologies based on InSAR-derived displacements combined with in-situ
observations have been proposed by the scientific community for better assessment of landslide
activities on local and regional scales (e.g., [24,25,27]). These methodologies combine thematic data such
as topographic indications, geological units, land use, and optical images with ground deformation rates
obtained by in-situ measurements and PSI analyses [32,33]. Jointly using InSAR-derived deformation
maps and DEM gradient maps is also an effective and systematic way of detecting potential active
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slow-moving landslide candidates by setting a threshold of topographic slopes based on in-situ
geological investigations (e.g., [34–36]).

Other proposed methodology aim at fast and systematic identification of actives clusters of
the deformation areas derived from InSAR products. These active clusters are corresponding to the
spatially aggregated moving points so-called “anomalous areas” [37]. This approach has been proposed
by Meisina et al. [37] for slope movements and subsidence detection and its geological interpretation
for civil protection purposes. These areas have been called Active Deformation Areas (ADA) since
Barra et al. [38]. ADA maps represent critical areas characterized by active ground motions [37,39].
This approach has been followed by Solari et al. 2018 [40] for geohazard mapping by deriving moving
areas in Canary Islands (Spain) using a simple and reproducible approach. Tomas et al. [41] presented a
methodology to extract and classify ADA [38] and relate them to different potential types of geological
procedures in a semi-automatic way based on several thematic layers.

The selection procedure of active deformation areas proposed by [37,42–45] is based on a standard
deviation (σvel) threshold of the deformation map obtained by PS-InSAR technique. Those areas
affected by active deformation velocities higher than a critical threshold are considered as potential
geohazard risk zones.

Numerous slope instabilities have occurred at different scales in the French portion of the European
Alpes over more than a century. Shallow and deep-seated slope failures of different types and rapid/slow
mass movements have been documented over large areas in this region. Especially, slow-moving
landslide deformations at the level of millimeter or centimeter are giving a good indication for the
future slope instabilities. Within the frame of landslide reduction strategies and risk assessment,
it is very essential to work for a cost-effective way of zoning susceptible areas for systematic and
proper territorial land-use planning. The systematic information on type, pattern, its relation with the
morphological and geological characteristics, spatio-temporal evolution, its level of risk, orientation,
rate of sliding, and boundaries is lacking in the study area.

For this reason, in the present study we first introduce mean velocity field for the study area
(Figure 1) and the method for automatic detection of slow-moving landslides using these InSAR-PSI
products. We then investigate spatial pattern and boundaries of slow-moving mass movements in
the high alpine environments in France using InSAR-PSI time series algorithm by combining ADA
extraction methodology and classifying them by PSI-derived ground deformation velocity and DEM
gradient based on terrain slope and aspect. We also discuss the limitations due to InSAR viewing
geometry and local topography for landslide detection and monitoring in mountainous regions.
With this goal, we investigated the effect of the principal morphological indices such as local terrain
slope and terrain aspect angles on the detection sensitivity of down-slope motions on the direction of
line-of-sight by simulating downslope unit deformations evenly distributed along the different slope
and aspect angles.
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Figure 1. Landslide inventory map of the study area and Sentinel–1 A/B synthetic aperture radar data
coverage used in the present study overlain on the 30-m shaded topography (ALOS (AW3D30) DEM
data). Rectangles labeled with track numbers (Ascending tracks 88 and descending track 66) indicate
the coverage of the IW SAR (Synthetic Widescan Aperture Radar) images. Magenta and black arrows
indicate the satellite’s line-of-sight look and flight directions, respectively. Black rectangle indicates the
selected study area shown in Figure 3. Magenta dash-line indicates the border between Italy, France and
Switzerland. Black dots show the location of landslide events provided by BRGM (French Geological
Survey). The inset map shows the location of the study area.

2. Study Area

Previous Measurements of Slope Movements in the French Alps

Over the last few decades, numerous studies on detection and monitoring of landslide activities
based on different techniques have been conducted by various specialists in the French Alps. In this
section, we will highlight only the studies including remote sensing-based approaches carried out
in the study area. Most of these studies are focused on either an individual landslide activity on a
local scale or multiple slope movements in specific locations. Among these studies, the space-borne
techniques using optical and radar images provide valuable insights to investigate landslide kinematics.
For instance, the monitoring of deformation pattern of La Clapière landslide has been documented
by Schlöger et al., [46] by using L-Band ALOS-PALSAR images with a traditional D-InSAR approach.
Another individual La Valette landslide (South French Alps) activity was first documented by
differential SAR-interferometry using ERS-1/2 [15] then using the same technique; the landslide
superficial displacement rate over nine years has been demonstrated by Squarzoni et al., [47]. The same
landslide also studied by Leprince et al., [48] using the subpixel correlation of SPOT-5 images and
by Raucoules et al., [49], using the image correlation of X-band SAR images. In all case studies,
the observed displacements are in agreement with the ground-truth measurements. Besides this,
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there are also high-resolution optical images analyzed for the landslide of the Tunnel du Chambon
in the French Alps by Desrues et al., [50] who have shown the potential landslide failure. Another
large-scale landslide of Harmaliere and new movements and slope deformations around it quantified
using aerial photography and image correlation [51,52] reported creeping behavior and transient
motion as well as a precursory pattern before failure for the Harmalière case study using freely
available Sentinel-2 optical images. The review paper by Delacourt et al. [2] provides the techniques of
image analysis to measure the displacement on the slopes with the case studies in French South Alps.
UAV-based (unmanned aerial vehicle) high-resolution remote-sensing technique was also carried out
for monitoring tempo-spatial dynamics of the mudslide in Super-Sauze in the French Alps [53].

3. Datasets and Methodology

3.1. InSAR Datasets

The Copernicus Sentinel-1 C-band SAR mission is a joint initiative of the European Commission
(EC) and the European Space Agency (ESA), who is operating the Sentinel-1A and -1B twin spaceborne
segments. The Sentinel-1 Terrain Observation with Progressive Scan (TOPS) mode represents an
important advantage when compared to other sensors’ modes as it provides wide area coverage and
short revisit time (6 days over Europe and 12 days globally). Sentinel-1 data are free and openly
accessible via various sources, in our case the Copernicus Open Access Hub. In the present study, we
processed two independent sets of Sentinel-1A/B imagery, acquired along descending and ascending
orbits (Track 88 [Asc] and 66 [Dsc]) to map the surface displacement field of slow-moving landslides in
the French Alpine slopes. We discarded data obtained during the snowing season from November to
April that reduces the detection capacity due to temporal decorrelation in high altitudes [40]. Hence,
this limitation severely reduced the amount of usable interferograms approximately by half. On the
ascending track 88, we computed 58 interferograms and on the descending track 66, we formed 50 pairs
(see Table 1 and Figure 2 for detail). We employed an individual set of interferograms for each track
with a sufficiently high phase coherence pattern over the study area even in the mountainous area and
discarded the ones that were affected by temporal decorrelation and/or atmospheric noise correlated
with topography, by visual inspection. Even so, due to the nature of the adapted data processing
technique, PSI is based on single master interferograms that are using amplitude and phase criterion
for persistent scatterer (PS) selection; it does not work optimally when coherence is low (temporal
and spatial decorrelation effects), leading to low PS density [54]. For this reason, we have different PS
density for the ascending and descending tracks as seen in Table 1 and Figure 4.

The results obtained from the InSAR time series are compared to the official landslide inventory
catalogue of the French Geological Services [BRGM] for the selected areas.

Table 1. Data coverage from each track used in this study.

Track Sensor Geometry Time
Interval

Incidence
Angle (◦)

Interferograms
Used

Density 2

(PS/km2)

T88 SENTINEL 1 Ascending 2016–2019 30.5~35.5 58 ~53
T66 SENTINEL 1 Descending 2015–2019 40.5~45.5 50 ~24

1 SENTINEL 1 A/B TOPS, 2 in the mountainous areas.
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Figure 2. Baseline configurations of single-master Interferograms. Baseline versus time plots for
Sentinel ascending track 88 (a) and for the descending track 66 (b) used in this study with black dots
donating the time of image acquisitions. The red dots indicate the master image used as a reference for
each track. Gray lines connect pairs (Interferograms). The snow covered season is indicated in the
blue zone.

3.2. Methodology of Landslide Mapping

For investigating the landslide distribution and geohazard activity mapping as well as
displacement monitoring using Sentinel-1 data over the selected study area, we followed the procedure
based on the estimation of the mean velocity and the time-series of deformation using the PSI approach
followed by the extraction of active deformation areas (ADAs) implementing certain basic statistical
criteria and a density-based clustering algorithm. Here, we integrated morphological and satellite
PSI data with the pre-existing landslide inventory. After estimating the PSI velocities, within a PSI
post-processing stage, density and the rate of the local ground deformations are assessed and the PS
displacements in LOS direction are projected along the direction of the steepest terrain slope. In the
third stage, the result of the velocity projection is used as an input for detecting the active deformation
areas by cluster analysis. Figure 3 shows the flowchart of the adopted methodology and outputs used
at each processing step. Finally, the results are integrated with the landslide inventory to generate
landslide activity map and its distribution with respect to morphological indices.
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3.3. PSI Processing Methodology

All interferograms were generated using the open source (GNU General Public License) InSAR
processing system called “Generic Mapping Tools Synthetic Aperture Radar (GMTSAR)” [55]. To correct
the topographic contribution to the radar phase, we used the Shuttle Radar Topography Mission (SRTM)
3-arcsecond digital elevation model [56]. All interferograms were computed based on a single master
network for PSI analysis. The choice of the master images minimizes the spatial and temporal baselines.
The single master stacks of interferograms were processed using the StaMPS software package [57,58].
StaMPS allows the identification of PS points, using both amplitude and phase information. In the
first step, the initial selection of PS points is performed based on their noise characteristics, using
amplitude analysis. The amplitude dispersion criterion is defined by DAmp = (σAmp/mAmp), where
σAmp and mAmp are the standard deviation and mean of the amplitude in time, respectively [59].
We selected a threshold value of 0.27 for DAmp, which minimizes the random amplitude variability
and eliminates highly decorrelated pixels in some areas covered with vegetation, agricultural fields,
or snow. Once stable PS targets have been selected based on amplitude analysis, the PS probability is
refined by phase analysis in a series of iterations. This process allows the detection of stable pixels
even with low amplitude. Once the final selection of PSs has been done, the residual topographic
component can be removed. Then, phase unwrapping is performed both spatially and temporally.
This analysis enables retrieval of the average Line-Of-Sight (LOS) surface deformation rate maps.

To remove atmospheric effects from interferograms, we used the freely available Toolbox for
Reducing Atmospheric InSAR Noise (TRAIN) [60]. This toolbox uses ERA-Interim (ERA-I, Europiean
Center for Medium-Range Weather Forecast) numerical weather model datasets [61].

3.4. InSAR-Derived Mean Velocity Maps

This study focused on a mountainous area of approximately 4000 km2 that covers a high density
of slow-moving landslides in the French Alps. Figure 4 shows the InSAR-derived mean line-of-sight
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velocity fields calculated from PSI time-series analysis for the selected areas characterized by a high
density of slow-moving landslides using ascending (track 88) and descending (track 66) orbits. As the
deformation is illustrated in LOS direction, positive velocities (cold colors) represent the motion of the
ground toward the satellite, and negative velocities (warm colors) represent the motion away from
the satellite.
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Figure 4. InSAR observations for the selected area over the French Alps. Mean line-of-sight (LOS)
velocity for the period 2015–2019, from Sentinel 1 A/B ascending track 88 (a) and descending track 66
(b) covering the selected area in the French Alps with high density slow-moving landslides. Positive
velocities (cold colors) represent the motion of the ground toward the satellite, and negative velocities
(warm colors) represent the motion away from the satellite. Blue dots show the location of landslide
events provided by BRGM (French Geological Survey). Black rectangles (a–f) in Figure 4a show that the
locations of suspected landslides are enlarged and superimposed on perspective Google Earth images
shown in Figure 11.

3.5. Limitation of PSI Technique in Landslide Detection

The PSI technique for mapping and monitoring of slope mass movements is capable of estimating
slow-moving movements with millimeter precision only over the available PSs. According to the
International Union of Geological Sciences Working Group on Landslides, landslide classification
by velocities consists of seven velocity classes ranging from an extremely slow moving class less
than 16 mm/year rate of movement, to extremely rapid slope movements over 5 m/s [62]. However,
in contrast to this landslide classification, the PSI technique can only provide the mean velocity over
several years long data in the LOS direction and is not capable of detecting the maximum velocity
during the moment of active sliding. Thus, the distribution of the detected active deformations areas in
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this study mostly focused on slow-moving phenomena such as extremely slow (velocity < 16 mm/yr)
and very slow landslides (16mm/yr < velocity < 1.6 m/year).

3.6. Projection from VLOS to VSLOPE

Figure 5 shows the geometry of satellite’s heading and azimuth look direction (ALD) for the
ascending satellite pass in right looking, as well as the projection of a 3D displacement vector D with
components DN, DE and DU in north, east and vertical up directions, respectively, onto the line-of-sight
direction [63]. LOS velocities represent the deformation in the one-dimensional projection onto the
satellite’s Line of Sight (LOS) of a target’s motion that actually occurs in all three dimensions. Thus,
LOS velocities can be computed as:

νLOS = νVertical + νNorth + νEast (1)
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As seen in Figure 5a, the azimuth look direction (ALD) comprises information about multiple
horizontal components (east-west & north-south motions) and is always perpendicular to the satellite
heading [64]. Assuming an incidence angle γ and satellite’s heading azimuth of α relative to north,
the component of the azimuth look direction (DALD) can be computed (Figure 5a) as:

DALD = DE· cos (γ) −DN· sin (γ)= DN· sin (180◦ + γ) −DE· sin (180◦ − γ) (2)

And the component in LOS direction can be computed as (Figure 5b):

DLOS = DU· cos (α) −DALD· sin (α) (3)

DLOS = DU· cos (α) −DN· cos (90◦ − α)· sin (180◦ − γ) −DE· cos (
270◦

2
− α)· sin (180◦ − γ) (4)

After calculating the direction cosines of LOS, we convert the projection of the LOS deformation
rate onto the maximum slope direction (VSLOPE) (Figure 6). As PS mean velocity measurements
represent the deformation in the one-dimensional projection onto the satellite’s LOS of a target’s motion
that actually occurs in all three dimensions, we partially overcome this limitation given by ground
geometry and satellite’s viewing geometry by converting LOS velocity vector (VLOS) into slope direction
(VSLOPE) [43,65–67]. Thus, this downslope projection facilitates the data interpretation and enriches
VLOS information. In translational type landslides, most of the ground-surface deformation occurs
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mainly along the direction of the steepest slope and, therefore, the most representative component of
the mass movements is considered to be parallel to this direction [37,68]. It is, therefore, the projection
that is based on the assumption that the sliding velocity is purely parallel to the steepest slope within
every single ADA cluster and is performed by using the following equations [45]:

νSLOPE =
νLOS

C
(5)

The coefficient C gives information about the portion (percentage) of “real” displacement (VSLOPE)
[70>69] and represents the sensitivity of the LOS vector against its projection on the slope direction,
which is a function of the satellite’s viewing geometry and most principal morphological indices: local
terrain aspect and local slope angles. The conversion factor C is calculated by:

C = N·(cos (S) · sin (A− 90◦)) + E ·(−1 ·(cos (S)· cos (A− 90◦)) + H ·(sin (S)) (6)

where A is the local terrain aspect with respect to North, and S is the local slope angle [45,69].
These parameters require a Digital Elevation Model (DEM) of the area of interest. For the selected
area in this paper, we used 30 m resolution ALOS (AW3D30) DEM. N, E, and H are the directional
cosines of the LOS vector, and are calculated from the incidence angle (γ) and line-of-sight azimuth (α)
in degrees by using the equations below as calculated in Equations (2)–(4):

N = cos (90◦ − α)· cos (180◦ − γ) (7)

E = cos (90◦ − α)· cos (270◦ − γ) (8)

H = cos( α) (9)

For certain areas with very low sensitivity for detecting any deformation in the line-of-sight
direction, C values approach zero and in this case the velocities in the slope direction tend to infinity.
In order to prevent such artificial exaggeration of the VSLOPE, C values fixed to −0.3 if −0.3 ≤ C < 0 and
to +0.3 if 0 ≤ C < +0.3 as proposed by Kalia [67].

3.7. Detection of Active Deformation Areas (ADA)

The first step in this procedure is to define a threshold value in order to identify active PS points
to be used for ADA selection. Standard deviation (σ) of the mean PS velocities is a measure of how
far the mean PS velocities fluctuate from the mean and provides information about the noise level
of the deformation velocity map. Therefore, it is considered as an indicator of general sensitivity
of the deformation map to identify the active deformation areas [37]. Through visual inspection,
we experimented with different multiplication factors between 1σ and 2σ of mean velocities. For the
selected areas, 2σ is defined as a stability threshold. As a second step, we created two velocity classes
by using the above-mentioned threshold; ‘Active’ as Class 1 and ‘Stable’ as Class 2. A PS point is
considered moving and hereby active if |v| > 2σvel, where |v| is the absolute value of the mean velocity
of each PS point. Thus, Active Deformation Areas belongs to Class 1. If the absolute LOS velocity is
smaller than the stability threshold, PS points are classified as ‘stable’ and belong to Class 2. Following
the selection of the moving active points, we used density-based clustering algorithm [70,71] to identify
distinctive deformation areas in the active (Class1) data. This algorithm is based on the idea that a
cluster (ADA) in the active PS data space (|v| > 2σvel) with a high point density is separated from
other similar clusters of low point density. By this way, we can cluster the data points into groups
and separate them from noise. It requires two parameters, eps (ε) and MinPts. Eps (ε) defines the
neighborhood around a data point. If the Cartesian distance between two points is lower or equal
to ‘eps’ then they are considered neighbors and they will belong to the same cluster. In our case, eps
parameter defines the radius of influence to consider the active PSs as members of an individual ADA
cluster. Through visual inspection, we experimented with different ‘eps’ values in the selected areas
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and a value of 30 m has been adopted. MinPtS defines the minimum number of active contiguous
data points (PS) within the eps radius to be an ADA. In this work, a value of 5 is adopted. Thus,
if the grouped PSs are less than five, they are considered as noise or outliers and cannot represent an
ADA cluster.

Finally, for each active deformation area (ADA), we estimated the number of aggregated active PSs;
their minimum, maximum and average velocities; as well as the local steepest slope and morphological
aspect angle (i.e., local directional mean).

Following the detection of the active deformation areas, we performed local terrain slope and
local terrain aspect analysis using the 30 m resolution ALOS Global Digital Surface Model data for the
study area. Local terrain slope, which can be regarded as the most basic and important topographic
parameter, not only describes the relief and morphology of the earth’s surface but is also widely used
for many types of environmental applications including landslide monitoring and analysis of mass
movements [72]. Local terrain aspect identifies the compass direction of the place with respect to north.
It can also be thought of as the slope direction. In this study, we used local terrain slope to classify
landslides and distinguish them from other subsidence related signals. Here, we set a threshold of
10◦ for the slope gradient based on terrain slopes of known inventoried landslides. The detected
ADA with slope angles less than 10 degrees are not considered as landslides in this case. We used the
parameter of local terrain aspect to compare landslide velocities with different slope orientations by
considering the geometric limitations of InSAR in the mountainous areas and geometric distortions due
to viewing geometry. These geometric limitations of monitoring landslides in the areas characterized
by steep terrain can be partially overcome by integrating multi-sensor or multi-track SAR data. For this
reason, in this study we used ascending and descending tracks over the study area to complement
detection capabilities on different slope orientations. This is because the same landslide signal will be
detected at different levels of activities (velocities) due to the orientation of the slope with respect to the
satellite acquisition geometry. Finally, by integrating these morphological parameters, we provided
the statistical distribution of the landslides in the study area.

In order to better illustrate the conversion from VLOS into VSLOPE and the various steps involved
for the extraction of the active deformation areas, we focused on a small area characterized by relatively
dense slow moving landslides (see Figure 7a).
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Figure 6. Conversion of line-of-sight (LOS) velocity vector (VLOS) into slope direction (VSLOPE) using
satellite’s viewing geometry and principal morphological indices: local terrain aspect and local slope
angles. (a) Local terrain slope and (b) local terrain aspect angles are estimated from 30 m resolution
ALOS DEM data for the study area. Aspect angle is represented by a continuous color range over
360 degrees of compass direction. North is represented with both blue and red colors. (c) Mean
line-of-sight velocity fields of slow-moving landslides for the selected test area from Sentinel 1 A/B
ascending track 88. (d) Projection of the LOS velocity field into slope direction. (e) A schematic diagram
showing the displacement rate along the LOS direction (VLOS) and (f) its projection onto the direction
of the slope (VSLOPE) modified from Béjar–Pizarro et al., [68].
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Figure 7. Extraction of active deformation areas (ADAs) for the selected test area and their classification
with respect to primary topographic parameters: slope and aspect. (a) Selected PS velocities that are
considered active based on the velocity threshold (|v| > 2σvel) extracted from the projection of the LOS
velocity field into slope direction as seen in Figure 6d. (b,c) Identification of distinctive deformation
areas using a density-based clustering algorithm using the clustering radius parameter (ε) as 30 m
and with a minimum of five active contiguous data points within this radius. Each colored point
represents a core cluster member. Small black points represent outliers. (d) Histogram of landslide
number calculated for each ADA cluster with respect to their velocities in the steepest slope direction.
Calculated maximum velocities of down-slope deformation for every single ADA cluster are plotted
against mean local terrain aspect (e) and mean local terrain slope (f) within these clusters.
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4. Discussion

Impact of the Satellite Sensor Viewing Geometry on Monitoring Down-Slope Movement

In order to show the limitations of the satellite sensor looking geometry and the impact of changing
morphological indices such as slope and aspect angles on the observed differences on LOS direction,
we simulated a translational slide with changing slope (fixed aspect) (Figure 8) and aspect (fixed slope)
(Figure 8) angles specified in terms of single unit vectors from ascending and descending geometries.
Spaceborn SAR systems are capable of measuring only the component of the deformation vector
projected on the radar line-of-sight; a favorable orientation of the slope is required [73], which makes
data interpretation challenging while adding ambiguity to the modeling process [74]. As depicted
in Figure 8, the component of the unit deformation vector is projected into the LOS for different
slope values higher than 10◦ (gray arrows); the true entity of the unit deformation vector can be fully
obtained when the slope moves exactly parallel to the sensor-target direction, whereas it is nearly
insensitive when the slope (thus the true displacement) is perpendicular to the LOS (azimuth direction).
Moreover, acquisitions in both ascending and descending orbits captured a larger portion of the actual
deformation of the slope moving either way from the sensor (hot colors), whereas only a small portion
of the real deformation for lower slopes have been captured when the slope faces to the sensor (cold
colors). That is also the reason why most of the downslope movements detected by both orbits are
more pronounced in terms of motion away from the sensors (negative velocities), as only a few targets
show motion towards the satellite. In addition, slope angle also affects the spatial resolution, not only
the sensitivity in terms of the percentage of the real movements. The satellite-facing site of the slope
will have a lower spatial resolution than the slope facing away from the satellite, which is known as
the foreshortening and layover effect.
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Figure 8. Effect of local terrain slope on the sensitivity of line-of-sight measurement along the downslope
movements. Geometry of ascending (a) and descending (b) satellite orbits. Colored arrows plotted in
the jet color map define the amount of deformation of the unit vector on different slopes that can be
detected on the direction of LOS for ascending (c) and descending (d) viewing geometries. The gray
arrows define the deformation of the unit vector. Negative values (hot colors) indicate an increase
in the distance from target to satellite, and positive values (cold colors) show the motion towards
satellite. The gray zone represents the unfavorable slope angles where the satellite sensor is insensible
to measure any deformation due to shadow and layover effect.
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Using a similar approach, this time we simulated translational slides with respect to a complete
cycle of aspect angle from ascending and descending viewing geometries. The simulated translational
slide vectors oriented evenly to all directions from the summit of an idealized cone-shaped synthetic
mountain. We examined the sensitivity of the projection of unit deformation vector onto the LOS
direction with changing aspect angle by choosing a uniform slope value in all directions (10◦) that can
be considered as a control parameter. We selected a low slope angle in order to show the sensitivity
of the motion with respect to satellite: towards the satellite and away from the satellite. As seen in
Figure 9, the component of the unit deformation vector is projected onto LOS for different aspect
angles ranging from 0 to 360◦; the true entity of the unit deformation vector can be fully detected when
the motion is parallel to the LOS direction, whereas it is nearly insensitive when the displacement is
perpendicular to the LOS direction. This limitation arises from the polar orbiting geometry of the
satellite. That is why InSAR method is not very sensitive to the motion in north–south direction,
and Figure 8c,d depicts this limitation very clearly.
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Figure 9. Effect of local terrain aspect on the sensitivity of line-of-sight measurement along the
downslope movements. Geometry of ascending (a) and descending (b) satellite orbits showing flight
and azimuth look directions. Colored arrows plotted in jet color map define the amount of deformation
of the unit vector on different aspect angles that can be detected on the direction of LOS for ascending
(c) and descending (d) viewing geometries. The gray arrows define the deformation of the unit
vector. Negative values (hot colors) indicate an increase in the distance from the target to the satellite,
and positive values (cold colors) show the motion towards the satellite.

In such an idealized topographical condition, integration of ascending and descending InSAR
measurements over the same region is necessary to resolve the ambiguity in data interpretation.
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5. Results

Landslide Identification Results

The landslide monitoring is performed through the comparision of two acquisition geometries
by applying the procedure discussed in Section 3. One-hundred-and-thirty-four ADA have been
extracted using ascending track 88, and 111 ADA have been detected using the descending track 66.
Figure 10a,b show the impact of local terrain slope on the sensitivity of the line-of-sight measurement
along the hill-slope movements; the majority of the landslides in both acquisition geometries are
detected in the direction away from the satellite and are mostly concentrated along the slope angles
parallel to the line-of-sight direction. These results are in agreement with the LOS-sensitivity analysis
obtained from the simulation of the unit deformation vector for different slope angles as depicted in
Figure 8c,d. When ADA slope direction velocities estimated from both orbits are plotted against local
slope orientation (Figure 10c,d), the results are in a good agreement with the LOS-sensitivity analysis
with respect to the aspect angle as seen in Figure 9c,d. The majority of the down-slope movements are
in the direction away from the sensor and are concentrated greatly in the azimuth look direction as the
simulation results showed. The estimated few landslides in the direction of the flight geometries are
arising from the imperfect DEM data and can be considerted as defects.Remote Sens. 2020, 03, x FOR PEER REVIEW 17 of 23 
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Figure 10. Plot of VSLOPE versus terrain slope and aspect angles. VSLOPE distribution for each ADA
with respect to local terrain slope for ascending orbit track 88 (a) and descending orbit 66 (b). VSLOPE

distribution with respect to slope orientation ascending orbit track 88 (c) and descending orbit track 66
(d). Histogram of the absolute values of slope velocities for ascending track 88 (e) and descending track
66 (f).
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We selected every landslides that shows both directions of motion. Hot colors are those moving
away from the satellite and cold colors are those approaching the sensor. The selected landslides in
Figure 4a are enlarged and superimposed on perspective Google Earth images shown in Figure 11.
From these figures, it can be found that the obvious features of landslides, their boundaries and
orientations of slidings can be seen clearly from 3D terrain data of Google Earth. Figure 11a–d show
unstable slopes moving in two opposite senses with respect to the sensor-target direction. For example,
among them, considereing the topography of the region of interest, the deformation pattern in
Figure 11b looks very much like the results obtained from the simulation of the unit deformation
vector around an idealized synthetic cone-shape mountain. The unstable slope on the left side of the
mountain moves toward a western direction and shows positive deformation values (cold colors);
on the other hand, another unstable down-slope motion on the right side of the mountain moves
towards an eastern direction and shows negative deformation values.
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Figure 11. Enlarged deformation rate maps of certain detected landslides superimposed on
3-Dimentional Google Earth Terrain models. Velocities are converted from Sentinel Ascending
track 88 LOS directions to steepest slope direction for each landslide. Graphs (a–f) correspond to the
area A to F marked in Figure 4a. Red and blue lines in each figure represent the approximate boundaries
of the suspected landslides.
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In order to confirm the detected slope instabilities within the study area, we compared them with
the published literature and inventory maps, but since the landslide archive of this region includes only
the cases in high velocities, none of the suspected landslides have been found in the relevant landslide
catalogues. In this sense, InSAR PSI technique provides an important contribution for updating the
inventory maps mostly in term of slow-moving slope instabilities in the French Alps.

6. Conclusions

In this work, mapping and monitoring of slow-moving landslides over an area of 4000 km2

located in the French Alps has been carried out using the PSI approach applied to Sentinel 1 TOPSAR
data in ascending and descending orbits. We presented a PSI post-processing procedure for the
identification of the suspected active landslides on a regional scale. The second aim of this study was
to investigate the effects of satellite observation geometry and local topography: slope angle and slope
orientation on the applicability of the SAR technique and down-slope motion detection sensibility on
the LOS direction.

A combination of the detected landslides from both orbits and their relationship with the local
morphology was investigated in order to better picture the capabilities and the abovementioned
limitaons of the InSAR for systematic detection and monitoring and failure forecast of alpine slope
movements. A comparison of the detected landslides velocitis with respect to the local morphological
parametres shows that the results are in accordiance with the sensitivity analysis performed herein,
showing the distribution of the slope and aspect angles for the detected landslides activities.

The various PSI post-processing methodologies including the projection of LOS velocity onto the
steepest slope and extraction of the active deformation areas (ADA) are explained. A total of 134 ADA
from the ascending and 111 ADA in the descending orbit have been detected over an area of 4000 km2

in a high Alpine environment. The significant majority of the ADA that have been detected from both
orbits are predominantly characterized by a slow down-slope motion (<1.6cm/yr)

This study confirms that regional scale InSAR is key in improving the active landslides catalogue.
In complement with in situ measurements and modeling, this tool could be further used for landslides
mechanical characterization. As a next step, in order to develop a full picture of the geohazard
activity in terms of landslides ranging from very slow to rapid in velocity and its potential for future
movements, additional studies will be needed. With this purpose, future plans include the processing
free and open Sentinel-1 SAR data for the whole of the Alpine region in France using both PSI and SBAS
approaches for systematically mapping the slope instabilities ranging from very slow to moderate in
velocities and “sub-pixel offset tracking” method for detecting fast landslides by using the amplitude
channel of SAR images. Besides, in order to better quantify and characterise the landslide and reveal
the underlying causes, the integration of InSAR-derived deformation time series with the continuous
in-situ monitorings such as seasonal variations in the water table level, water pressure conditions and
precipications need to be adressed. Finally, such results will be a key element for the identification and
mapping of vulnerable populated areas following the land use data integration.
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