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ABSTRACT 14 

We presented an innovative hydrogeophysical approach that allows numerical modeling of 15 

water flow in a variably saturated media. In our model, we approximated the subsurface by 16 

horizontally stratified porous media. The model output was a time varying water content 17 

profile. Then, we compared the water content provided by the model with the water content 18 

measurements carried out using the time-lapse Magnetic Resonance Sounding (MRS) method. 19 

Each MRS sounding provided a water content profile in the unsaturated zone down to twenty 20 

meters. The time shift between the profiles corresponded to the time lapse between individual 21 

MRS soundings. We minimized the discrepancy between the observed and the modeled MRS 22 

signals by varying hydraulic parameters of soil layers in the water flow model. For measuring 23 

and processing MRS data, we used NUMIS MRS instrument and SAMOVAR software. We 24 

carried out water flow modeling with HYDRUS-1D software. This paper reports our results 25 

and summarizes the limitations of the MRS method applied to water content measurements in 26 

the unsaturated zone.  27 
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INTRODUCTION 29 

Sustainable management of water resources, estimation of aquifers recharge and expansion of 30 

water protection measures require development of numerical models representing these 31 

hydrological processes. The classification of hydrological models is not exact, and many 32 

models may have overlapping features. For describing similar processes, different models can 33 

be appropriate (Jajarmizadeh et al., 2012; Sood and Smakhtin, 2015). The complexity of any 34 

hydrological model depends on the objectives of the modeling work, the complexity of the 35 

subsurface, and the experimental data. In each case, it is necessary to find a compromise 36 

between modeling accuracy and completeness of the data set. In all cases, the heterogeneity of 37 

the subsurface and consequent heterogeneity of soil hydraulic properties represent a major 38 

difficulty for accurate numerical modeling. For modeling, one needs to know these 39 

heterogeneities and the surface geophysical methods are often used (Rubin and Hubbard, 40 

2006; Binley et al., 2015). Among them, the Ground Penetrating Radar (GPR) and the 41 

Electrical Resistivity Tomography (ERT) are the most popular. These methods identify 42 

different geological patterns and exploit correlations between the electrical and hydraulic 43 

properties of the subsurface (e.g., Kemna et al., 2002; Kowalski et al., 2004; Camporese et al., 44 

2012; Carrière et al., 2013; Høyer et al., 2015; Vereecken et al., 2015; Carrière et al., 2016; 45 

Park et al., 2017; Jouen et al., 2018; Power et al., 2018; Saito et al., 2018; Ikard and Pease, 46 

2019). However, other physical properties of soils also affect electrical conductivity. The 47 

most common of them is the clay content. Thus, the electrical conductivity dependent on 48 

many factors, which can render uncertain interpretation of field measurements in terms of 49 

groundwater.  50 

The Magnetic Resonance Sounding (MRS) also known as the Surface Nuclear Magnetic 51 

Resonance (SNMR) is a geophysical method sensitive to liquids that contain hydrogen (oil, 52 

water). The phenomenon of nuclear magnetic resonance (NMR) is the physical basis of MRS 53 
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(e.g., Legchenko and Valla, 2002; Roy and Lubczynski, 2003; Lubczynski and Roy, 2004; 54 

Hertrich, 2008; Legchenko, 2013; Chevalier et al., 2014; Behroozmand et al., 2015; 55 

Garambois et al., 2016; Legchenko et al., 2017). At shallow depth, only water produces 56 

measurable MRS signal, and interpretation of MRS measurements in terms of water is 57 

unambiguous. It is a competitive advantage of this method. Under ideal theoretical conditions, 58 

the amplitude of the MRS signal is proportional to the quantity of water in the subsurface. 59 

However, the accuracy of the MRS method depends on the accuracy of MRS measurements 60 

and inversion. The complexity of soil structures may affect MRS measurements and 61 

calibration of MRS results using other metrological means can improve the accuracy. For 62 

example, an aquifer test by pumping can allow calibrating the MRS water content under 63 

saturation (Vouillamoz et al., 2013). The water content measured in a borehole (neutron log or 64 

NMR log, for example) or in a laboratory on rock samples allow calibration of the unsaturated 65 

water content. The principal application of MRS is the localization and characterization of 66 

aquifers (specific yield, hydraulic conductivity) (e.g., Legchenko et al., 2002; Lubczynski and 67 

Roy, 2003; Vouillamoz et al., 2005; 2008; 2012; Chalikakis et al., 2008; Boucher et al., 2009; 68 

Favreau et al., 2009; Müller-Petke et al., 2011; Nielsen et al., 2011; Vilhelmsen et al., 2014; 69 

Valois et al., 2018). Some papers report the use of MRS for constraining water flow modeling 70 

aiming to reduce uncertainty in the model parameters (Lubczynski and Gurwin, 2005; 71 

Boucher et al., 2009; 2012; Chaudhuri et al., 2013; Baroncini-Turricchia et al., 2014; Comte 72 

et al., 2018). The MRS can estimate the water content also in the unsaturated zone (Roy and 73 

Lubczynski, 2005; Costabel and Yaramanci, 2011; Walsh et al., 2014; Falzone and Keating, 74 

2016) and contribute to water content monitoring (Descloitres et al., 2008; Legchenko et al., 75 

2008; Herckenrath et al., 2012; Legchenko et al., 2014).  76 

In this paper, we presented results of a methodological study carried out with the goal to 77 

investigate the possibility of combining time-lapse MRS measurements with a water flow 78 
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modeling in variably saturated media. For developing the unsaturated water flow model, we 79 

used MRS time-lapse measurements of the water content in the unsaturated zone. MRS 80 

averages the water content over the volume investigated with the MRS loop thus defining the 81 

scale of the water flow modeling. We build a model using available software based on the 82 

Richards equation (HYDRUS-1D). This model aimed to reproduce time varying water 83 

content observed with the MRS. Because of the subsurface in the investigated area is 84 

heterogeneous the hydraulic parameters of the synthetic layers in our model may not 85 

correspond to the hydraulic parameters of the real subsurface and did not represent the target 86 

for the hydraulic modeling.  87 

BACKGROUND 88 

Numerical modeling of the water flow in variably saturated media  89 

For describing the one - dimensional vertical water flow, we used Richards equation  90 
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where h  is the negative of the matric potential, θ  is the volumetric water content, and K is 92 

the unsaturated hydraulic conductivity. For solving Richards equation, we represented the soil 93 

water retention function )(hθ  and the unsaturated hydraulic conductivity )(hK  in the 94 

functional form using a hydraulic property model (e.g., Campbell, 1974; van Genuchten, 95 

1980; Durner, 1994; Kosugi, 1994; Poulsen et al., 2002). All reported models are 96 

approximations that represent real soils with limited accuracy (Madi et al., 2018). Under field 97 

conditions, accuracy of in situ time-lapse measurements may be not sufficient for observation 98 

of small differences in the water retention functions of different patterns and any of these 99 
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models is suitable for our study. We used the log-normal distribution model allowing faster 100 

computing when using HYDRUS-1 software (Kosugi, 1996)  101 
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where 
e

S  is the effective water content, erfc is the complementary error function, 
0

h  is the 103 

median metric head, 0>σ  denotes the standard deviation of the log-transformed soil pore 104 

radius and characterizes the width of the pore-size distribution.  105 

The unsaturated hydraulic conductivity is (Mualem, 1976)  106 
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where 
s

K  is the saturated hydraulic conductivity and l  is the pore connectivity parameter. 108 

Both the water content and the hydraulic conductivity are scale dependent parameters.  109 

Magnetic Resonance Sounding 110 

MRS is a geophysical method designed for non-invasive measurements of water content in 111 

the subsurface (Legchenko, 2013). For measuring, we used a wire loop on the surface. In this 112 

loop, we generated a pulse of alternating current with the amplitude 
0

I  and duration τ . The 113 

frequency of the current was equal to the resonance frequency of proton spins in the Earth’s 114 
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magnetic field πω 2/
00

=f  (Larmor frequency). After we cut the current off, hydrogen 115 

protons in the liquid phase generate an electromagnetic field also oscillating at the Larmor 116 

frequency. The resonance behavior of protons in the Earth’s magnetic field renders the 117 

method sensitive to water in the subsurface. MRS measurements average the results over the 118 

volume defined by the size of the loop. The loop may cover the surface area of 2a×2a m2 119 

where a is the side length of a square loop (Legchenko et al., 1997). Typical loop sizes vary 120 

from 10×10 to 150×150 m2. Using a smaller loop (2×2 m2) one can improve the lateral 121 

resolution. However, it also reduces the depth of investigation (Lin et al., 2016; Grombacher 122 

et al., 2018). With any loop, the depth of investigation depends on the electrical conductivity 123 

of the subsurface (Legchenko et al., 1997).  124 

We computed the initial amplitude of the MRS signal using the following integral equation 125 

(Legchenko and Valla, 2002)  126 
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where 
00

Bγω = , γ  is the gyromagnetic ratio for protons, 
0

B  is the magnitude of the Earth’s 128 

magnetic field, 
0

M  is the equilibrium spin magnetization per unit volume, τ
0

Iq =  is the 129 

pulse moment, 
1

B  is the component of the transmitted magnetic field transverse to the 130 

Earth’s magnetic field and θ~  is the volumetric water.  131 

We got the electrical conductivity of the subsurface and the Larmor frequency using other 132 

than MRS geophysical measurements and considered the MRS inversion as a linear inverse 133 
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problem. For inversion, we assumed the subsurface horizontally stratified and approximated 134 

the integral equation (4) by a system of algebraic equations  135 

eθA =~
,       (5) 136 

where 
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θ   are the set of experimental 137 

data and the solution vector, Ii ,...,2,1=  is the number of pulse moments, and Jj ,...,2,1=  is the 138 

number of model layers in the solution vector. We computed the matrix A  by discretizing the 139 

Eq. 4. First, we estimated the maximum depth of investigation of the method 
max

z , which 140 

depends on the loop size and the measuring conditions (Legchenko et al., 1997). Then, we 141 

represented the subsurface by homogeneous horizontal layers of the thickness 
j

z~∆  so that 142 

1
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jj

zz  and 
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1

~∑
=

=∆
J

j
j

zz . So, each column of the matrix A  contained the amplitude of the 143 

magnetic resonance signal versus pulse moment computed considering the corresponding 144 

layer 
j

z~∆  (Legchenko and Shushakov, 1998).  145 

Different mathematical methods allow estimating the resolution of an inverse problem. The 146 

most common is the singular value decomposition (SVD) (Aster et al., 2012). Many studies 147 

have reported application of the of SVD to the MRS inversion (e.g., Weichman et al., 2002; 148 

Müller-Petke and Yaramanci, 2008; Legchenko and Pierrat, 2014). Other methods like 149 

Monte-Carlo simulations (Guillen and Legchenko, 2002a; Chevalier et al., 2014; Andersen et 150 

al., 2018), linear programming (Guillen and Legchenko, 2002b) and bootstrap statistics 151 

(Parsekian and Grombacher, 2015) also proved their efficiency. A joint use of different 152 

methods can improve the reliability of the results. For example, Legchenko et al. (2017) 153 

combined the SVD and the Monte-Carlo methods. For solving the Eq. 5, one may apply the 154 
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well-known algorithms (e.g., Guillen and Legchenko, 2002a; 2002b; Mohnke and Yaramanci, 155 

2002; Müller-Petke and Yaramanci, 2010; Behroozmand et al., 2012; Chevalier et al., 2014; 156 

Irons and Li, 2014). We use the Tikhonov regularization method (Legchenko and Shushakov, 157 

1998), which assumes a smoothness of the water content profile (Tikhonov and Arsenin, 158 

1977). Thus, the solution of the Eq. 6 approximates the solution of the Eq. 5 159 
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considering the Eq. 7 161 

ε≤−
2

~

L
eθA .      (7) 162 

where 
z

α  is the smoothing factor and ε  is an experimental error.  163 

The water contents 
j

θ~  and the thickness of model layers 
j

z~∆  allowed us estimating the 164 

equivalent water column 
w

H . 
w

H  is a more stable parameter than 
j

θ~  or 
j

z~∆  (Legchenko et 165 

al., 2004)  166 

∑ ∆=
j

jjw
zH ~~θ .      (8) 167 

Another important parameter of the magnetic resonance signal is relaxation times 
1

T , 
2

T  and 168 

2

*T  (Dunn et al., 2002). Measurements of the relaxation times in water saturated porous 169 

media allow estimating the mean pore size related to the hydraulic conductivity. However, the 170 

relaxation times are also sensitive to paramagnetic minerals in the subsurface that can disturb 171 



9 

 

the homogeneity of the Earth’s magnetic field. In the case of non-magnetic rocks and a 172 

homogeneous Earth’s magnetic field, 
1

T  and 
2

*T  are obtained. In this case, 
2

*

2
TT = . 173 

Magnetic materials render the Earth’s magnetic field heterogeneous and all three relaxation 174 

times (
1

T , 
2

*T  and 
2

T ) can be measured. In water saturated porous media, only the 175 

relaxation times 
1

T  (Seevers, 1966) or 
2

T  (Kenyon, 1997) allow reliable estimation of the 176 

saturated hydraulic conductivity. These estimates show good results also when applied with 177 

MRS (Schirov et al., 1991; Legchenko et al., 2004; Legchenko et al., 2010; Vouillamoz et al., 178 

2011). However, the unsaturated hydraulic conductivity is a non-linear function of the water 179 

content and the estimates developed for water saturated porous media provide acceptable 180 

results only when the unsaturated media is close to saturation.  181 

We used an instrument developed by IRIS Instruments in 1996 (NUMIS) and designed for 182 

detecting water in the subsurface with 30
2

* >T  ms. Recent MRS instruments allow measuring 183 

the MRS signals with 10
2

* >T  ms (Walsh, 2008), but measurements of a short signal are 184 

always difficult. Undetectable water causes an underestimation of the water content θ∆  185 

(Legchenko et al., 2004)  186 


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

∆≤=
∆>∆−=
θθifθ

θθifθθθ

0
~

~
.     (9) 187 

For example, in clay 30
2

* <T  ms and the water content estimated with MRS is close to zero (188 

0
~ =θ ). In coarse material (sand, gravel), 0→∆θ  and in bulk water 0=∆θ . Fig. 1 shows 189 

the capacity of MRS to detect water in different geological materials.  190 
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 191 

Figure 1. Schematic presentation of the MRS capacity to measure the water content in water 192 

saturated porous media. Examples of geological material that correspond to the increasing 193 

pore size.  194 

 195 

The threshold of 30
2

* =T  ms between a low permeable material (silt, clay) and a permeable 196 

material (fine sand) is not a constant. It depends on the magnetic susceptibility and the surface 197 

relaxivity rate of the geological formation. For example, we have two types of material with 198 

the same hydraulic properties and different magnetic susceptibilities and/or surface relaxivity 199 

rates. In the first material with higher magnetic susceptibility (and/or surface relaxivity rate), 200 

2

*T  is shorter than that in the second material and 30
2

* =T  ms can correspond to fine sand. 201 

The same value of 30
2

* =T  ms can correspond to tilt or clay in the second material. The 202 

volume of water producing the MRS signal with 30
2

* <T  ms depends on the material and 203 

hence, the threshold between detectable and undetectable with MRS water is not a constant. It 204 

renders the uncertainty θ∆  site dependent (Legchenko et al., 2004). However, the time-lapse 205 

procedure comprises measurements in the same material and hence, θ∆  is a systematic error. 206 

In many materials, 
r

θθ >∆ , which does not allow measuring with the MRS the initial part of 207 

the water retention function.  208 
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For each individual sounding, the Tikhonov regularization (Eq. 6) assumes a smoothness of 209 

the water content profile. When processing time-lapse measurements, we added the 210 

smoothness constraint versus time. Thus, the time-lapse MRS inversion required solving the 211 

following equation 212 

εαα <
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222~
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,    (10) 213 

where 
tz

αα ,  are the smoothing factors. The matrix A has KLI ×=  rows and 214 

KMJ ×=  columns, where K  is the number of time-lapse soundings ( Kk ,...,2,1= ), L  is 215 

the number of the pulse moments per sounding ( Ll ,...,2,1= ), and M  is the number of layers 216 

per sounding in the inverse model ( Mm ,...,2,1= ).  217 

Unsaturated water flow modeling using MRS data 218 

We calibrated the water flow model by minimizing the discrepancy between the theoretical 219 

and the experimental MRS signals  220 

ε<







−

2
min

L
eAθ

θ

,      (11) 221 

where e  is the measured amplitude of the MRS signal, θ  is the water content provided by the 222 

water flow model, and ε  is an experimental error. We estimated the discrepancy between the 223 

theoretical and experimental data with the root-mean-square error 224 

εθ ≤−= ∑∑
= =

− I

i

J

j ijji
eaIRMSE

1 1

2

,

1
)( . Fig. 2 shows the flowchart of the inverse modeling 225 

procedure.  226 
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 227 

Figure 2. The flowchart of the inverse modeling procedure.  228 

 229 

In the Fig. 2, the MRS data set comprised the measured amplitude of the MRS signal and the 230 

matrix A . Field measurements also provided an estimate of the experimental error. For 231 

computing the matrix A , we considered the measuring conditions (the Earth’s magnetic field 232 

and the resistivity of the subsurface) and the MRS setup (loop size, pulse moments). The 233 

time-lapse MRS inversion for water content suggested four soil layers with different hydraulic 234 

parameters. These layers represented the subsurface in the hydraulic model. The hydrological 235 

data set comprised the soil hydraulic property model, the soil hydraulic parameters, the upper 236 

and lower boundary conditions, and the variable boundary conditions. The first MRS 237 

sounding provided the initial water content profile )0,(
~

)0,( === tztz θθ . The geological 238 

formations suggested the first guess for the soil hydraulic parameters. We iteratively adjusted 239 

the water flow model aiming to minimize the discrepancy between measured and theoretical 240 

MRS signals (Eq. 11). For solving Eq. 11, we applied the Levenberg-Marquardt algorithm 241 

(Marquardt, 1963). Iterations stopped when the discrepancy become smaller than the 242 

experimental error. If the water flow model did not allow solving Eq. 11, then we revised the 243 

entire hydraulic model.  244 
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RESULTS 245 

Between 26 April 1999 and 15 March 2000 the Bureau de Recherches Géologiques et 246 

Minières (BRGM, France) performed a one-year monitoring of the water content in 247 

Villamblain test site (Fig. 3). We used these data to investigate the possibility of the 248 

unsaturated flow modeling using time-lapse MRS measurements. The data set comprised 34 249 

MRS soundings at 18 different dates (Boucher et al., 2003). With a few exceptions, we 250 

carried out two soundings per date aiming to avoid errors due to unexpected technical 251 

problems. We used the NUMIS instrument with a 75×75 m2 square loop and the maximum 252 

pulse moment of 12,500 A-ms. The Larmor frequency was 2011.3 Hz. The ambient 253 

electromagnetic noise varied between 150 and 300 nV being larger in spring. For interpreting 254 

MRS measurements, we used SAMOVAR software developed by the authors. We considered 255 

the local Earth’s magnetic field (47,214 nT; 63°N), and the resistivity of the subsurface 256 

provided by the electrical resistivity tomography (ERT) measurements (Jodry et al., 2018). 257 

For the unsaturated water flow modeling, we used HYDRUS-1D software (Šimůnek et al., 258 

2008a; 2008b).  259 

Fig. 3 shows the location map of the monitoring site. 260 

 261 
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Figure 3. Location map of the monitoring site. The distance between the MRS loop and the 262 

borehole 03622X0119/FP3-25 (WGS 84: Lat.-48,00683 m; Long.-1,59130 m) is 76 m.  263 

 264 

The Villamblain test site covers about 7 km2 in the western part of the Loire River sub-265 

catchment. This area is a part of the Beauce aquifer (9,000 km2) located south-west of Paris. 266 

The average altitude of the Beauce aquifer is 140 m and a regional hydraulic gradient of about 267 

0.1%. The mean annual recharge is 110 mm (Schnebelen et al., 1999). Developed agriculture 268 

with irrigation in summer is widespread in the area (Desprer and Megnien, 1975; Bruand et 269 

al., 1997; Creuzot et al., 1997; Michot et al., 2003). In Villamblain, calcareous soils and 270 

cryoturbated materials cover about 48% of the surface, Eutric Cambisols developed in loam 271 

and Haplic Calcisols composed of a loamy-clay layer represent 26% and about 20%. Soil 272 

thickness ranges from 0.3 to 1.5 m. The water column in these soils varies between 50 and 273 

180 mm. The limestone underlying the soil layer is heterogeneous with the variable fracturing 274 

and irregular karst development. Estimations of the specific yield of the limestone show 3 to 275 

13% (Bourennane et al., 1998; Chéry et al., 1999). All the studies show no-run-off in 276 

Villamblain.  277 

During our study, we measured the GWL in the borehole 03622X0119/FP3-25. The 278 

Villampuy weather station at 4 km from Villamblain (Lat.-48°02'18"N; Long.-1°29'30"E) 279 

provided the daily rainfall data. Figures 4a and 4b show the annual rainfall and the 280 

groundwater level (GWL) variations between 1995 and 2005. We calculated the effective 281 

rainfall (ERF) as a difference between the rainfall (RF) and the actual evapotranspiration 282 

(AET). We have no data for calculating AET, and we simplified the estimate using the 283 

Penman potential evapotranspiration (PET)  284 
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Fig. 4c shows the Penman potential evapotranspiration estimated by Meteo France for the 286 

Orleans weather station (Lat.-47°59'24"N; Long.-1°46'36"E). Fig. 4d shows the effective 287 

rainfall (left axis) and the GWL (right axis).  288 

 289 

Figure 4. a) The annual rainfall recorded in Villamblain between 1995 and 2006. b) The 290 

groundwater level variations. Gray rectangles show the time interval when the MRS 291 

monitoring was carried out. c) Daily records of the rainfall and the estimation of the Penman 292 

potential evapotranspiration during MRS monitoring. d) The cumulative effective rainfall (left 293 

axis) and the groundwater level (right axis).  294 

 295 

Fig. 5a shows measured amplitude of the MRS signal (color scale) versus time and pulse 296 

moment. Fig. 5b shows the theoretical signal computed after the MRS inverse model and Fig. 297 

5c shows the difference in-between.  298 
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 299 

Figure 5. a) Measured amplitude of the MRS signal (color scale) as a function of the pulse 300 

moment and time. b) Theoretical amplitude computed after the MRS inverse model. c) The 301 

difference between the measured and the theoretical amplitudes.  302 

 303 

Fig. 6 shows the results of a single MRS sounding (performed 13/08/1999). Figures 6b and 6c 304 

compare the water content and the relaxation time profiles with the lithological log of the 305 

borehole 03622X0119/FP3-25 (Fig. 6a). The distance between the borehole and the MRS 306 

loop located was 76 m. The resistivity profile was extracted from the ERT measurements.  307 

     308 
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Figure 6. a) The lithological log of the borehole 03622X0119/FP3-25 (Fig. 3). b,c) The water 309 

content and the relaxation time T2
* provided by the MRS inverse model. d) The electrical 310 

resistivity profile.  311 

 312 

The MRS log (Fig. 6b) showed a smooth increase of the water content from the surface to the 313 

GWL. Between 4 and 8 m, the MRS revealed a low water content, suggesting a clay layer 314 

observed at this depth in the borehole. However, a long relaxation time and a high resistivity 315 

(Figs. 6c and 6d) are typical for sand and do not confirm clay. Note that the observed low 316 

water content may also correspond to an unsaturated fractured limestone that does not contain 317 

much water. Because of the limited resolution, the MRS inversion did not identify the GWL 318 

at 17 m. Below 25 m, decreasing water content corresponds to a lowering specific yield of the 319 

saturated limestone. For this sounding, the average signal-to-noise ratio was high (S/N = 9.56) 320 

and the theoretical signal fitted well the measured one.  321 

The MRS time-lapse inversion showed two principal water storage zones between 0 and 2 m 322 

and below 10 m (Fig. 7a). The water content in limestone ranged between 0.04 and 0.08. 323 

These values are in good agreement with the specific yield in limestone reported between 0.03 324 

and 0.13 (Schnebelen et al., 1999). The MRS revealed less water between 2 and 10 m. This 325 

observation may have two plausible explanations. The first one suggests a low-permeable clay 326 

formation. The second explanation puts forward a permeable unsaturated material that does 327 

not store much water when unsaturated. MRS alone cannot distinguish between these two 328 

possibilities.  329 
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 330 

Figure 7. a) The water content provided by the MRS inversion. b) The water content 331 

computed with the HYDRUS-1D program. c) The difference between these two images shows 332 

a good correspondence in-between. The maximum difference is less than 0.04, and the 333 

discrepancy is RMSE = 0.0079.  334 

 335 

In the water flow model, the MRS water content allowed us to select four layers with different 336 

hydraulic parameters: at depths of 0-2 m, 2-12 m, 12-16 m and 16-20 m. We had no data 337 

about the heterogeneity in the subsurface, and we used a simplified hydraulic model assuming 338 

a horizontal stratification. The last layer below 16 m was almost saturated and, for this layer, 339 

the MRS provided the 
s

θ . For the layers above the GWL, 
s

θ  was a free parameter in 340 

inversion. Taking into account the same geological origin of the limestone, we assumed, as 341 

the first guess, 
s

θ  of these layers equal to that measured with MRS in the saturated limestone. 342 

Then, the inversion routine adjusted 
s

θ . We had no data about the value of 
r

θ . However, 343 

considering that MRS cannot see water with the water content close to 
r

θ , we set 344 

0001.0 ≈=
r

θ  for all four layers. Note that both 
s

θ  and 
r

θ  measured with MRS at a large 345 
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scale were different compared to that measured on soil samples at a local scale. The MRS 346 

sounding at time zero provided the initial water content for hydraulic modeling. We used the 347 

Kosugi hydraulic property model without hysteresis. As recommended for many soils 348 

(Mualem, 1976), we fixed the tortuosity parameter (l=0.5) in the conductivity function. Our 349 

hydraulic model aimed to reproduce the unsaturated water flow observed with the MRS in 350 

Villamblain and not to assess the hydraulic parameters of the subsurface. We assumed the 351 

atmospheric boundary conditions with a surface layer as the upper limit and a variable 352 

pressure head as the lower boundary condition. The meteorological data provided the daily 353 

precipitation and the potential evapotranspiration. The groundwater level depended on 354 

hydrological processes taking place at the watershed scale that is much larger compared to the 355 

scale of our study and we considered the GWL level as an input variable in the hydraulic 356 

model.  357 

The MRS inversion provided the water content (Fig. 7a) consistent with that computed with 358 

the hydraulic model (Fig. 7b). Fig. 7c shows the difference between these two images. The 359 

root-mean-square error between the two images, each of them containing N  values of the 360 

water content, was 21 )
~

( θθ −= −NRMSE = 0.0079. The amplitude of the MRS signal 361 

computed after the time-lapse MRS inverse model fitted the measured MRS amplitude with 362 

RMSE=10.3 nV and the theoretical signal computed after the water flow model with 363 

RMSE=10.9 nV. The mean experimental noise was 14.2 nV. Fig. 8 shows the amplitude 364 

versus pulse moment for all MRS soundings (red dots). A black line shows the amplitude 365 

computed using the water content provided by the unsaturated water flow model.  366 
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 367 

Figure 8. Measured amplitude of the MRS signal versus pulse moment for all soundings 368 

performed in Villamblain (red dots) and the theoretical amplitude computed after the water 369 

content provided by the unsaturated water flow model (black line). For each sounding, the 370 

pulse moment was normalized by the maximum pulse moment over all soundings.  371 

 372 

Table 1 and Fig. 9 present the soil hydraulic parameters in the water flow model.  373 

Depth interval 

(m) 
r

θ  
s

θ  σ  

(1/cm) 

n  
s

K  

(cm/day) 

l  

0 - 2 0.001 0.1 500 1.6 15 0.5 

2 - 12 0.001 0.15 250 0.8 3000 0.5 

12 - 16 0.001 0.11 450 1.6 6 0.5 

16 - 20 0.001 0.095 1000 2.2 1 0.5 

Table 1. The soil hydraulic parameters in Villamblain used in the unsaturated water flow 374 

model (the Kosugi hydraulic property model).  375 

 376 
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 377 

Figure 9. The soil hydraulic functions of the four synthetic layers corresponding to the 378 

hydraulic parameters shown in Table 1.  379 

 380 

Fig. 9 shows the soil hydraulic functions of the four synthetic layers used in the water flow 381 

model. One layer exhibited hydraulic parameters typical for a permeable material (coarse sand 382 

or fractured limestone). This layer had a high hydraulic conductivity and low water content 383 

when not saturated. The borehole identified argillaceous limestone at this depth and we 384 

interpreted the layer between 2 and 12 m as fractured limestone containing some clay in the 385 

matrix. The MRS cannot see water in clay and showed no water in the limestone matrix. 386 

Fracturing rendered this formation permeable when saturated.  387 

Fig. 10 shows the water column measured with the MRS in the depth interval between 0 and 388 

18 m (gray circles) and the water column provided by the water flow model (gray line). The 389 

black line shows the effective rainfall derived from the meteorological observations. These 390 

graphs show that in summer months (May-August), the water column diminished and water in 391 

the unsaturated zone contributed to the aquifers recharge. In September-December, the water 392 

column increased with the rate that followed the effective rainfall. Hence, the rainwater did 393 

not flow to the aquifer, but recharged the unsaturated zone. Since January, the water column 394 

was about constant and the effective rainfall recharged the aquifer.  395 
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 396 

Figure 10. The effective rainfall (black line, left vertical axis) versus time, and the water 397 

column in the depth interval between 0 and 18 m measured with MRS (gray circles, right 398 

vertical axis). The gray line shows the water column provided by the water flow modeling.  399 

 400 

Fig. 10 shows the cumulative effective rainfall (totally 413 mm). It was shared between the 401 

increase of the water column in the unsaturated zone (211 mm) and the actual 402 

evapotranspiration plus the aquifer recharge (202 mm). We had no data for estimating the 403 

AET, and hence we cannot quantify the aquifer recharge. However, taking into account the 404 

mean annual recharge of the Beauce aquifer (110 mm) (Schnebelen et al., 1999), we 405 

considered that our results were in a reasonable agreement with the existing data. Fig. 10 406 

shows that the water column increased with the rate that followed the cumulative effective 407 

rainfall. For comparison, the rise of GWL (Fig. 4d) showed a three-month delay relative to the 408 

effective rainfall. These observations confirm that MRS quantified water in the unsaturated 409 

zone and not in the aquifer.  410 
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Fig. 11a shows the cumulative water column versus depth at the very beginning and the very 411 

end of the monitoring time. The derivative of the cumulative water volume suggested the 412 

principal water storage zone between 10 and 16 m (Fig. 11b).  413 

 414 

Figure 11. The cumulative water column in the unsaturated zone versus depth measured with 415 

the MRS (solid lines) and that computed with the water flow model (dashed lines). We show 416 

the results corresponding to the first (t=0) and the last (t=332 d) days of monitoring. a) The 417 

cumulative water column. b) The water column versus depth computed with the step of 2 m.  418 

 419 

DISCUSSION 420 

Our results confirmed the possibility of developing an unsaturated water flow model using 421 

MRS time-lapse measurements. We did not aim to quantify the hydraulic parameters of the 422 

subsurface, but to reproduce the water content profile observed with MRS. The use of more 423 

geological, hydrological and meteorological data opens the way for improving the accuracy of 424 

the model.  425 

As with any other method, MRS has specific features to consider for practical applications.  426 
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• Soils and rocks of different geological origins may have different values of the 427 

magnetic susceptibility and of the surface relaxivity rate. It renders the error of the 428 

water content measurements with MRS ( θ∆ ) site dependent.  429 

• The insufficient accuracy of MRS measurements does not allow measuring the water 430 

content close to 
r

θ .  431 

• Soils and rocks containing paramagnetic inclusions disturb the homogeneity of the 432 

Earth’s magnetic field. It may bias the water content measurements with the MRS 433 

(Legchenko et al., 2010; Costablel et al., 2018). In the unsaturated zone, this effect is 434 

stronger than in an aquifer and the MRS can monitor the water content in the 435 

unsaturated zone only in materials with a low magnetic susceptibility (<10-5 SIU). For 436 

example, in limestone or chalk.  437 

• MRS provides the water content averaged over a large area. It limits the lateral 438 

resolution of the method. Application of 2-D (Hertrich et al., 2007) and 3-D 439 

(Legchenko et al., 2011) tomographic measurements can improve the lateral 440 

resolution. But the tomographic measurements are more time and labor consuming. 441 

Jiang et al. (2015) proposed a compromise between the resolution and the measuring 442 

time. It comprises the use of one large transmitting loop and a few smaller receiving 443 

loops.  444 

• One standard MRS sounding requires at least two to three hours of measuring. We 445 

assumed the water content in the subsurface to be invariable during this time. A long 446 

measuring time imposes a limitation on the rapidity of investigated hydrological 447 

processes. After our experience, the monitoring rate of one sounding per day is close 448 

to the limit of the method. Note that this limitation is not a physical but a technical 449 

one.  450 
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CONCLUSIONS 451 

Time lapse MRS measurements make it possible to quantify water content variations in the 452 

unsaturated media composed of materials with low magnetic susceptibility (chalk, limestone). 453 

It does not exist any other method that provides non-invasive measurements of the water 454 

content down to a few tens of meters. The MRS water content profile can contribute to 455 

unsaturated water flow modeling. However, one should keep in mind the particularity of the 456 

MRS measurements. The MRS averages the water content over a large volume defined by the 457 

loop size. The accuracy of the MRS results is site dependent. One sounding requires a few 458 

hours of measuring, which limits the MRS capacity to investigate rapid processes. It does not 459 

exist other methods that would allow a direct verification of the MRS results. It renders the 460 

MRS accuracy in terms of water content difficult to estimate. In this paper, we showed the 461 

possibility of performing water flow modeling using Richards equations. However, the MRS 462 

can contribute to any other hydraulic model.  463 

During our study, we approximated the unsaturated zone in Villamblain by a horizontally 464 

stratified subsurface. Despite simplicity, the model allowed us to reproduce the water content 465 

variations observed with MRS. We are looking forward to verifying our approach by 466 

performing a new monitoring at the same place. Such a monitoring will provide the water 467 

content profile with a 20-years shift relative to 2000. Then, we will use the parameters of the 468 

model established in 1999-2000 for predicting the water content observed in 2020-2021.  469 
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