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    Abstract 

Gold is traded in virtually every country around the world. Consequently, tracing gold provenance 

is a difficult but necessary task to ensure a responsible supply chain from deposit to consumer. 

Measuring the silver content is often the first step in characterizing gold to retrace its origin. In this 

study, laser-induced breakdown spectroscopy (LIBS) using a handheld instrument was evaluated 

as a fast and easy method to analyse the silver content in natural gold. Six commercial gold alloys 

and natural gold from French Guiana were used. Our results demonstrate that a handheld LIBS is 

relevant to gold traceability and is simple to use in the field. The micron-scale focused laser beam 

allows in-situ analyses of small gold grains with acceptable reproducibility. Univariate and 

multivariate regression modelling was performed to assess the best calibration model for 

quantification of the Ag content. The quadratic univariate model was selected for its good 

predictive ability, with a coefficient of determination R² of 0.99 and a mean average error of 0.36 

wt.% Ag for prediction. The LIBS analyses of natural gold were compared to the EPMA data using 

a statistical test that allow distinct gold populations to be discriminated (or matched) and the results 

indicate it would be suitable for identifying unknown samples. We were able to successfully trace 

the origin of our “unknown” samples, a promising first step in the goal of delivering a low-cost field-

based tool for responsible supply chain management. 
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1. Introduction48 

Gold is one of the most ancient and important metals worldwide. Considering its high 49 

economic importance, the ability to identify the provenance of gold is fundamental in the minerals 50 

industry. Traceability is particularly important for ensuring a responsible supply chain, especially in 51 

the European Union given the recent emphasis on due diligence for minerals from conflict-affected 52 

and high-risk areas (i.e. tin, tantalum, tungsten and gold) [1]. The best indicator mineral to trace 53 

gold sources is gold itself [2] because it is a dense mineral, chemically stable and easily found in 54 

the erosional products of gold systems (i.e. alluvial gold from placers). Indeed, drainage sediment 55 

sampling, often the first step in a gold exploration strategy, is used to characterise alluvial gold 56 

through its intrinsic features, such as its silver (Ag) content or its mineral inclusions, in order to 57 

establish a link between a secondary (placer) deposit and its potential primary deposit [3-10]. 58 

Currently, the Ag content of a gold population is analysed with an electron probe micro analyser 59 

(EPMA) and is generally displayed in cumulative percentile plots. This way of presenting the data 60 

provides an easy and visually graphic comparison of the statistical distribution of the Ag content of 61 

distinct gold populations and is helpful in understanding and constraining their origin [6, 9]. Whereas 62 

the EPMA-based method is highly accurate and a proven method to characterize gold, the 63 

approach is limited by both the cost of analyses and the time needed for laboratory preprocessing 64 

(e.g. instrument calibration). 65 

Hence, this study focusses on a fast and simple way to analyse the Ag content in natural 66 

gold in a field laboratory with direct application for exploration and traceability. Laser-induced 67 

breakdown spectroscopy (LIBS) was selected as the technology instead of X-Ray fluorescence 68 

spectroscopy (XRF) principally because the newer handheld devices generally have a focused 69 

laser beam less than 100 µm, whereas the analysed surface area (i.e. several mm) of a classical 70 

handheld XRF system is much larger than most natural gold grains, except rare gold nuggets. The 71 

LIBS method has already been applied to the accurate quantitative analysis of commercial gold 72 

alloys and jewelry in order to determine their fineness [11-16]. Recently, Harmon et al. [17] 73 

successfully used a handheld LIBS unit on natural gold nuggets from a museum collection to 74 

classify and distinguish distinct populations of gold grains, most of which came from the USA, but 75 
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their analyses was not quantitative. Finally, the LIBS method has also been used in the field on 76 

conflict-affected minerals (e.g. “coltan” ore [18]) and for the geochemical fingerprinting of 77 

geomaterials [19-20]. 78 

To assess the performance of handheld LIBS instrumentation in determining Ag content in 79 

gold grains, we analysed gold grains from five French Guiana gold populations. French Guiana 80 

was chosen for a case study because it is currently explored for gold and constitutes a high-risk 81 

area due to the presence of numerous illegal small-scale gold mines that represent a loss of 82 

revenue for the government and cause widespread mercury pollution. In such a region, developing 83 

an analytical method to determine the origin of gold to ensure its traceability has major health, 84 

environmental and economic issues. A pilot study on gold from French Guiana led by BRGM and 85 

WWF (World Wildlife Fund), has already developed a set of techniques for physicochemical 86 

traceability of gold [21]. However, these techniques require extensive and time-consuming 87 

laboratory preparation and analysis (e.g. EPMA, identification of mineral micro-inclusions, Pb-Ag-88 

Cu isotopic analyses). In this study, we propose that a handheld LIBS device can be used for rapid 89 

in situ analysis of gold, thereby serving as a field-based decision-making tool for protecting human 90 

health and the environment. 91 

92 

2. Materials and methods 93 

2.1 Standards and samples 94 

Six commercial gold alloys (18K5N, 18K4N, 18K3N, 18K2N, 18KPd13, 24K) from Cookson-95 

clal refinery (i.e. an affiliate of Heimerle + Meule GmbH) were used as standards for LIBS 96 

calibration. The Ag content of these six commercial standards (i.e. according to the refiner) range 97 

between 0.01 and 16 wt.%, comparable to the range of natural samples in French Guiana.  98 

Natural gold grains used for this study consist of 13 samples coming from five alluvial gold 99 

populations. The first one, Marc creek, were first studied by Augé et al. [21] as part of a project 100 

funded by the WWF to test the analytical traceability of gold from French Guiana. Three samples of 101 

gold grains were collected from this placer: the “B2”, “X2” and “A7” samples. Gold grains from the 102 

others populations were provided by the official French Guiana refiner (SAAMP): the “33”, “39”, 103 
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“43” samples from the “Petit Inini” river; the “30”, “46”, “47” samples from the “Serpent” creek; the 104 

“23”, “26”, “29” samples from the “Dimanche” creek and the “37” sample from the “Awa” creek. 105 

Each sample of gold grains consists of about 20-40 individual grains between 0.05 and 3 mm in 106 

size that were embedded in epoxy resin blocks and polished to expose grain cores. The dataset of 107 

13 samples were divided in training and testing samples, following a classical ratio of about 3:1. 108 

Among these 13 samples, four samples (“X2”, “43”, “46” and “29”) were randomly selected as 109 

testing samples and considered as “unknown” samples and the nine remaining samples were used 110 

for the characterisation of the five populations of gold grains. The analytical feasibility and 111 

effectiveness of the LIBS method was thus tested by comparing the results obtained on the training 112 

dataset to the four “unknown” samples. In addition, 10 individual gold grains from the “B2” sample 113 

were selected and analysed without any preparation (“raw” gold grains) for comparison with the 114 

polished gold grains. Standards and natural gold grains were analysed using Cameca SX-Five 115 

electron probe micro-analyser (EPMA) at the ISTO-BRGM facilities (Orléans, France) (see details 116 

in Table 1S, ESI). Five analyses for each standards and up to two analyses in the core of gold 117 

grains were performed for Ag using a 20 kV accelerating voltage, a beam current of 40 nA and a 118 

counting time of 30 s on peak. Whereas only the Ag content is of interest for our purpose, Au, Cu, 119 

Hg and Pd were also analysed to obtain a full suite of elements concentrations in the standards. 120 

121 

2.2 Instrumentation and measurement parameters 122 

The commercial SciAps © Z-200 C+ handheld LIBS analyser was used for this study. Its 123 

portability and broad spectral range (i.e. 190-625 nm) make it a suitable tool to perform real-time 124 

analyses in the field or measurements in a field laboratory[17, 22]. The LIBS unit uses a 1064 nm 125 

Nd:YAG pulsed laser with a 50 µm focused beam size to produce a plasma. This laser can deliver 126 

energy pulses of 5-6 mJ per pulse with a 1-2 ns pulse duration and a repetition rate of 50 Hz. The 127 

Z-200 C+ LIBS analyser displays multiple CCD based spectrometers covering a spectral range of 128 

190–625 nm. The handheld unit can be operated in ambient atmosphere, but is also capable of 129 

argon (Ar) purging that flows Ar directly to the focusing area on the sample surface at the location 130 

of laser-induced plasma for signal enhancement (i.e. 10-fold increase in emission intensity [23]). 131 
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Each analysis was performed under constant argon flow with a pressure of around 10 psi. 132 

Spectrometers are calibrated daily by ablating a piece of stainless steel inside the LIBS system in 133 

order to correct possible spectral shifts. Because the LIBS system requires that the sample to be 134 

held flush to the sampling window during acquisition and to prevent analytical bias, the LIBS unit 135 

was anchored on a support with a xyz linear stage. For each standard, data acquisition consists of 136 

11 single-shots for the calibration and 5-7 single-shots for the prediction. Each single-shot consists 137 

of 8 cleaning (laser) pulses in order to ensure tape breakthrough, followed by the collection of 32 138 

averaged spectra at the same location (Fig. 1a) in order to minimise the size of the affected 139 

surface on the gold grains (because of their small size) and to avoid striking mineral inclusions. 140 

Table 1 shows a summary of the acquisition parameters for the measure of the Ag content. 141 

142 

2.3 Post-processing and statistical analysis of LIBS spectra 143 

SciAps Profile Builder software was used to initially process all data prior to exporting. 144 

Microsoft Excel and its XLSTAT add-in were then used for additional data processing and for 145 

statistical analysis. The three single-shot spectra for each standard were collected (i.e. 15 spectra) 146 

by the LIBS units for the calibration of the Ag content. Before normalising the spectra, a polynomial 147 

fitting of the baseline is applied followed by a baseline subtraction (Fig. 1b), which increases the 148 

analytical performance [24]. For the calibration, the emission line at 546.58 nm was selected for Ag 149 

amongst the others possibilities (328.06, 338.31 and 520.92 nm) because it is the most intense 150 

line. Following recommendations from others studies [24-26] about the extraction method of raw LIBS 151 

spectra, normalisation modes and calibration model validation, the following approach was used to 152 

select the best calibration model: 153 

(1) All the raw LIBS data were divided by the signal intensity of the Au emission line at 154 

479.24 nm, representing the matrix-dominant element and the maximum signal 155 

intensity. The 11 single-shots of the six standards were averaged later (Fig. 1b); 156 

(2) Calibration models (Fig. 1c) were performed. The peak area of the emission line at 157 

546.58 nm is extracted for univariate regressions (linear and quadratic) and multivariate 158 

regressions (principal component (PCR) and partial least squares (PLSR) regressions) 159 
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were performed using a small portion of spectra comprised between 520 and 548 nm to 160 

overcome the overfitting; 161 

(3) The validity and predictive ability of calibration models were assessed through an 162 

internal cross-validation test—the “classic” leave-one-out (LOO)—as well as an external 163 

prediction dataset. The external dataset consisting of 35 spectra thus corresponds to 164 

five LIBS single-shot spectra of the 24K and 18K5N standards, six LIBS single-shot 165 

spectra of the 18K4N, 18K3N and 18KPd13 standards and seven LIBS single-shot 166 

spectra of the 18K2N standard.  167 

Table 1  
Summary of acquisition parameters during Ag 
measurement using LIBS on gold grains 

Number of locations 
Standards: 11 single-
shots for calibration and 
5 or 6 for prediction 
Unknown samples: up 
to 3 single-shots  

Cleaning shots per location 8 
Data shots per location 32 
Integration period 0 
Integration delay 30 
Argon flush (ms) 300 
Test rate (Hz) 50 
Clean rate (Hz) 50 
Number of shots to average 32 
Averaging method Linear 

168 

For the goodness of fit and the predictive model assessment, the R², LOO q², root mean squared 169 

error (RMSE), and mean absolute error (MAE) were used and are respectively defined in Eqs. (1), 170 

(2), (3), and (4): 171 

𝑅2 = 1 − ∑  (𝛾𝑖−𝛾�̂�)𝑛𝑖=1∑  (𝛾𝑖−�̅�)𝑛𝑖=1 = 1 − sum of squared residuals (SSR)total of sum of squares (TSS)  (1) 172 

𝐿𝑂𝑂 𝑞2 = leave-one-out cross-validated 𝑅² (2) 173 

𝑅𝑀𝑆𝐸 =  √1𝑛 ∑ (𝛾𝑖 − 𝛾�̂�)²𝑛𝑖=1  (3) 174 

where RMSECV and RMSEP relate to the RMSE of cross-validation and prediction, respectively. 175 

𝑀𝐴𝐸 = ∑ |𝛾�̂�−𝛾𝑖|𝑛𝑖=1 𝑛  (4) 176 

where MAECV and MAEP relate to the MAE of cross-validation and prediction, respectively. 177 
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178 

Fig. 1 Schema illustrating the LIBS analysis approach used in this study. (a) Experimental setup used for Ag calibration on commercial 179 

gold alloys with the handheld LIBS tool. (b) Post-processing approach of LIBS spectra for calibration with the description of each step. 180 

(c) Regression modelling method for the Ag calibration. 181 
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3. LIBS approach for quantifying silver in alluvial gold 182 

3.1 Regression modelling: univariate versus multivariate models 183 

The analytical reproducibility of all measurements on the standards, given by the relative 184 

standard error of the mean (SE) and the relative standard deviation (RSD), is largely satisfactory 185 

with values of 2.5 % and 8.2 %, respectively (see details in Table 2S, ESI). For the conventional 186 

univariate calibration (linear and quadratic), a simple ordinary least squares (OLS) regression 187 

method was applied to calibration standards. Indeed, LIBS intensity is supposed to be a linear 188 

function of the concentration of the chemical element of interest, even if curvatures can be 189 

observed because of the self-absorption effects [27-28]. In our experiment, the relationship between 190 

the Ag content and the intensity of the Ag emission line could be linear (Fig. 2) because of the 191 

good superposition of the linear and quadratic curves. However, a comparison of the figures of 192 

merit (Fig. 3a and Table 2) between the two univariate models displays difference of predictive 193 

ability between them. A cross-validation test is rarely applied to an OLS regression, but the cross-194 

validation test were also performed on the univariate models for comparison with multivariate 195 

models and to assess the best modelling. 196 

197 

Fig. 2 Linear and quadratic calibration curves using a classical OLS regression. The green line represents the quadratic 198 

regression while the dashed line represents the linear one. 199 

200 
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The quadratic model yields better results to the linear model with extremely low RMSE and 201 

MAE values of 0.05713 and 0.04453 wt.% Ag, respectively (0.20124 and 0.17110 wt.% Ag for the 202 

linear model). The coefficient of determination R² is also better for the quadratic regression with a 203 

value of 0.99991 compared to the value of 0.99888 for the linear regression (Fig. 3a and Table 2). 204 

The LOO q² is higher in the quadratic model than the linear one (0.99969 and 0.99693 205 

respectively), which indicates that the predictive power is more efficient for the quadratic 206 

regression. RMSECV and MAECV also show clearly that the quadratic model improve Ag 207 

calibration (Fig. 3a and Table 2). Finally, the quadratic model with the best RMSE and MAE of 208 

prediction (0.53320 and 0.36049 wt.% Ag, respectively) relative to linear model (i.e. 0.59573 wt.% 209 

Ag and 0.42835 wt.% Ag) is the best compromise to use as a univariate calibration model for 210 

quantifying Ag content in gold. 211 

212 

Fig. 3 Figure of merit used to assess univariate (a) and multivariate (b) quantitative models. Coefficient of determination 213 

of the training calibration dataset (R2) and of the prediction dataset (R2 prediction) and the leave-one-out cross-validated 214 

(LOO) q2 are displayed on the left. Root mean square error of calibration (RMSE), cross-validation (RMSECV) and 215 

prediction (RMSEP) and the mean absolute error of calibration (MAE), cross validation (MAECV) and prediction (MAEP) 216 

obtained for models displayed on the right. 217 
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For the multivariate calibration, the principal component regression (PCR) and the partial 218 

least square regression (PLSR) chemometric methods were used to quantify silver in gold. These 219 

methods are frequently used in LIBS quantification to overcome potential matrix effects in 220 

geological samples or to take into consideration the spectral interdependence between the lines of 221 

the considered elements and others elements [29]. Indeed, each line reflects varying degrees of 222 

information about the concentration of an element and potential correlations with others lines, 223 

increasing the number of independent variables and the complexity of the calibration. The PCR 224 

and the PLSR can extract relevant and hidden information in the LIBS spectra and then predict the 225 

concentration of the element of interest. PLSR is more complex than PCR because it takes into 226 

account all the variables (independent and dependent) and the signal noise. PLSR generally gives 227 

better results, although it has a general tendency of overfitting the training dataset.  228 

Table 2 

Results of the figures of merit obtained for univariate (linear and quadratic) and 
multivariate (PLSR and PCR) regression modelling 

Univariate models Multivariate models 

Linear Quadratic PSLR PCR 

Calibration 
(n = 66 spectra) R² 0.99888 0.99991 0.99979 0.99952 

RMSE 0.20124 0.05713 0.08627 0.13114 
MAE (wt %) 0.17110 0.04453 0.06039 0.09968 

LOO cross validation 
(repeated 6 times) LOO q² 0.99693 0.99969 -0.38727 0.99693 

RMSECV 0.33335 0.10538 7.08045 0.33332 
MAECV (wt %) 0.27631 0.08767 4.87009 0.30601 

Prediction 
(n = 35 spectra) R² 0.99055 0.99243 0.98442 0.99280 

RMSEP 0.59573 0.53320 0.76487 0.51996 
MAEP (wt %) 0.42835 0.36049 0.61748 0.35509 

229 

The coefficient of determination R² is high and associated with low RMSE and MAE for the 230 

PLSR (0.99979, 0.08627 wt.% Ag and 0.06039 wt.% Ag respectively) and the PCR (i.e. 0.99952, 231 

0.13114 wt.% Ag and 0.09968 wt.% Ag). However, the negative value of LOO q² and the large 232 

RMSECV and RMSEP (7.08045 wt.% Ag and 0.76487 wt.% Ag respectively) for the PLSR model 233 

compared to univariate models illustrate very well its poor predictive modelling ability (Fig. 3b and 234 

Table 2). At the opposite, the similar results of cross-validation and prediction for the PCR model 235 

compared to the univariate regressions, with a value of RMSECV of 0.33332 wt.% Ag and a value 236 
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of RMSEP of 0.51996 wt.% Ag, show that the PCR model has a good predictive power. However, 237 

the PCR model appears more sensitive to missing data compared to quadratic regression as 238 

highlighted by the slightly poorer cross-validation result (Fig. 3b and Table 2). In this study, 239 

multivariate models appear not more powerful in prediction than a simple univariate model, which 240 

is why we selected the quadratic univariate regression as the best calibration curve for quantifying 241 

the Ag content in alluvial gold. 242 

Table 3 

Summary of descriptive statistics of the Ag content of the French Guiana gold samples 

EPMA LIBS 

Descriptive statistics Descriptive statistics 
Min Max Median Mean Std Min Max Median Mean Std 

“Marc” creek [21]

B2 (n=16) 3.60 11.85 5.08 6.09 2.72 (n=56) 1.08 13.09 4.57 4.82 3.69 
B2 “raw” (n=12) 0.27 3.90 1.39 1.62 1.08 
X21 (n=18) 2.57 11.14 4.41 5.21 2.56 (n=32) 2.14 12.78 5.17 5.83 2.92 
A7 (n=15) 1.96 22.60 5.89 7.46 5.74 (n=15) 1.45 12.72 4.76 5.32 2.46 
“Petit Inini” river 
SP33 (n=20) 6.27 19.05 8.17 8.88 2.81 (n=22) 2.46 13.33 7.43 7.51 2.26 
SP39 (n=20) 2.58 12.55 7.24 7.51 2.25 (n=20) 2.25 12.12 7.07 7.24 2.17 

SP431 (n=19) 6.08 12.37 7.55 7.92 1.76 (n=24) 6.06 13.91 7.77 7.98 1.61 
“Serpent” creek 
SP30 (n=18) 1.10 2.37 1.66 1.71 0.35 (n=26) 0.34 3.16 1.55 1.60 0.65 

SP461 (n=21) 1.22 6.92 1.84 2.33 1.55 (n=21) 1.01 2.87 1.40 1.61 0.54 
SP47 (n=21) 1.23 2.67 1.69 1.80 0.39 (n=27) 1.10 2.79 1.63 1.71 0.46 
“Dimanche” creek 
SP23 (n=26) 1.88 8.51 2.83 3.50 1.66 (n=24) 1.41 6.36 2.51 3.02 1.33 
SP26 (n=22) 0.95 7.64 3.23 3.24 1.56 (n=25) 0.87 7.24 3.34 3.25 1.73 

SP291 (n=29) 1.02 7.58 3.53 3.58 1.32 (n=22) 0.87 7.22 3.21 3.04 1.44 
“Awa” creek 
SP37 (n=21) 5.17 16.77 6.76 7.76 2.84 (n=21) 4.78 8.09 6.61 6.64 0.86 
1 testing samples considered as "unknown" samples during this study in order to validate the methodology of traceability

243 

3.2 Quantifying silver in alluvial gold 244 

The LIBS analysis on alluvial gold grains was conducted in the same operating conditions 245 

as the gold alloy standards used in the calibration step (Table 1). The single-shot was performed 246 

on the core of each gold grain and the number of single-shots by grain depended on the grain size 247 

(e.g. only one single-shot for a small grain and up to three single-shots for larger grains). The 248 

depth of the laser ablation hole is about 4 µm, leading to a mass loss of about ~ 150 ng of gold and 249 
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making the LIBS technique barely destructive. The previously selected quadratic univariate 250 

regression was then applied to quantify the Ag content in alluvial gold grains (see previous 251 

section). Analyses of the Ag content obtained by the EPMA and LIBS methods are summarized in 252 

Table 3 (complete analyses in Tables 3S and 4S, ESI, respectively). Note that gold grains 253 

analysed with EPMA method are not necessarily the same as those analysed by the LIBS method. 254 

The distribution of the Ag content of the different samples of gold grains, obtained by LIBS, 255 

was compared to EPMA values using the non-parametric statistical test of Kolmogorov-Smirnov 256 

(Table 4). This test, also called the K-S two samples test, compares the cumulative distribution 257 

functions (CDFs) of two known samples [30-32]. It assesses the likelihood that two samples have the 258 

same distribution (i.e. the “null” hypothesis). The K-S test calculates the maximum distance D 259 

between two empirical CDFs. The more D increases, the more the distribution is different, meaning 260 

that they are two distinct populations. If the distance D is lower than the critical distance Dcritical and 261 

the p-value (i.e. value of probability) is higher than the level of significance α, then the “null” 262 

hypothesis cannot be rejected and the two subpopulations are considered as originating from the 263 

same population. The level of significance α of the statistical test used in this study is 0.05. This 264 

commonly used value gives a confidence degree of 1 − α (95 %). The critical distance is 265 

dependent on sample size and the level of significance [31]. In addition to K-S results, the CDFs of 266 

the Ag content (LIBS and EPMA) of each training sample (i.e. the nine samples used for the 267 

characterisation of the five populations of gold grains) are displayed in the Figure 4. Only the 268 

training samples are mentioned in the following subsections. 269 

- “Marc” creek population: the Ag contents of the gold grains from “B2” and “A7” samples 270 

share first-order similarities with those obtained by EPMA (Table 3 and Fig. 4a). Except 271 

for the maximum values of “A7” sample, which largely differ, the descriptive statistics 272 

are similar, as illustrated by the limited gap of the median Ag values (about 0.8 wt.% Ag 273 

for EPMA and for LIBS). When the EPMA and LIBS analyses of the gold grains from 274 

“B2” are compared (Fig. 4a), the K-S test shows that the two distributions are similar 275 

with a distance D of 0.286 lower than the critical distance (0.386) and a p-value of 0.262 276 

higher than the level of significance α (Table 4). The K-S test shows a similar result 277 

between the EPMA and LIBS analyses of the “A7” sample with a distance D of 0.333 278 
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lower than the critical distance (0.497) and a p-value of 0.375 higher than the level of 279 

significance α. The strong similarities between the two analytical methods (see the 280 

close proximity between the CDFs displayed in the Fig. 4a) provide a validation of the 281 

accuracy of Ag analysis in gold by handheld LIBS and a comparison between EPMA 282 

and LIBS datasets.  283 

Table 4 

Kolmogorov-Smirnov tests for the Ag content between the EPMA 
and the LIBS values from the studied French Guiana gold samples 

D D critical p-value1

“Marc” creek
B2 (LIBS) / B2 (EPMA) 0.286 0.386 0.262 
A7 (LIBS) / A7 (EPMA) 0.333 0.497 0.375 
B2 (LIBS) / A7 (LIBS) 0.315 0.395 0.190 

B2 (LIBS) / B2 “raw” (LIBS) 0.798 0.433 < 0.0001 

“Petit Inini” river 
33 (LIBS) / 33 (EPMA) 0.232 0.420 0.627 
39 (LIBS) / 39 (EPMA) 0.100 0.430 1.000 
33 (LIBS) / 39 (LIBS) 0.186 0.420 0.860 

“Serpent” creek 
30 (LIBS) / 30 (EPMA) 0.252 0.417 0.508 
47 (LIBS) / 47 (EPMA) 0.258 0.415 0.474 
30 (LIBS) / 47 (LIBS) 0.234 0.394 0.530 

“Dimanche” creek 
23 (LIBS) / 23 (EPMA) 0.199 0.385 0.708 
26 (LIBS) / 26 (EPMA) 0.190 0.408 0.817 
23 (LIBS) / 26 (LIBS) 0.268 0.389 0.341 

“Awa” creek
37 (LIBS) / 37 (EPMA) 0.238 0.420 0.591 
1 the level of significance is α = 0.05. 

284 

- “Petit Inini” river population: the Ag contents of the gold grains from “33” and “39” 285 

samples appear very similar to that obtained by EPMA and between them (Table 3 and 286 

Fig. 4b). Except for EPMA extremum values of “33” sample, the descriptive statistics are 287 

extremely close, as illustrated by the slight difference between the median Ag values 288 

and the mean values (0.19 wt.% Ag and 0.27 wt.% Ag, respectively). The CDFs and the 289 

K-S tests between the two samples (LIBS and EPMA analyses) clearly shows that their 290 
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distributions are almost identical. The best example is illustrated by the comparison 291 

between EPMA and LIBS values of “39” sample with a distance D of 0.100 lower than 292 

the critical distance (0.430) and a maximum p-value of 1 (Table 4), and by the 293 

superposition of the two CDFs (Fig. 4b). 294 

- “Serpent” creek population: such as the preceding gold populations, the Ag contents of 295 

the gold grains from “30” and “47” samples share several similarities between them and 296 

with those obtained by EPMA (Table 3 and Fig. 4c). The median and the mean values 297 

are very close and relatively low (~ 1.6 wt. % Ag and ~ 1.7 wt. % Ag, respectively). The 298 

Ag content of the “Serpent creek” population varies very little only with a standard 299 

deviation of 0.46, that is also well illustrated by the tight CDFs (Fig. 4c). The K-S tests 300 

also show that the distributions between LIBS and EPMA data are very similar with a p-301 

value of 0.508 for the “30” sample and 0.474 for the “47” sample (Table 4). Result is 302 

identical when comparing “30” and “47” samples with a distance D of 0.234 lower than 303 

the critical distance (0.394) and a p-value of 0.530 higher than the level of significance 304 

α. 305 

- “Dimanche” creek population: as shown in Table 3 and Figure 4d, the Ag content of the 306 

gold grains from the “Dimanche creek” population (i.e. “23” and “26” samples) appears 307 

comparable with those obtained by EPMA. The median and the mean values are close. 308 

For example, the mean values of the “26” sample are 3.24 wt. % Ag for EPMA and 3.25 309 

wt. % Ag for LIBS, giving a difference of only 0.01. Unsurprisingly, the K-S tests gave a 310 

result showing the close similarity between the CDFs (e.g. the p-value is 0.817 for the 311 

“26” sample). 312 

- “Awa” creek population: the Ag content of the gold grains from the “37” sample appears 313 

very similar to that obtained by EPMA (Table 3 and Fig. 4e). Except for maximum 314 

values, which largely differ, the descriptive statistics are relatively similar, as illustrated 315 

by the limited gap of the median Ag values (only 0.15 wt.% Ag). Furthermore, the major 316 

part of the CDFs is strictly superposed. The comparison between the EPMA and LIBS 317 

analyses of the gold grains by the K-S statistics shows that the two distributions are 318 
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similar with a distance D of 0.238 lower than the critical distance (0.420) and a p-value 319 

of 0.591 (Table 4). 320 

321 

Fig. 4 Plots of cumulative distribution functions (CDFs) of the Ag content in alluvial gold grains. (a) Comparison between 322 

the EPMA21 and LIBS analyses of the “B2” and “A7” samples from the “Marc” creek population. (b) Comparison between 323 

the EPMA and LIBS analyses of the “33” and “39” samples from the “Petit Inini” river population. (c) Comparison between 324 

the EPMA and LIBS analyses of the “30” and “47” samples from the “Serpent” creek population. (d) Comparison between 325 

the EPMA and LIBS analyses of the “23” and “26” samples from the “Dimanche” creek population. (e) Comparison 326 

between the EPMA and LIBS analyses of the “37” sample from the “Awa” creek population. 327 
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Concerning the “raw” gold grains from “B2” sample (“Marc” creek population), the Ag 328 

contents obtained by ablating the unpolished surface by LIBS are different when compared to the 329 

polished gold grains (Table 3), and appear very low with a mean and median value about 3.2 times 330 

lower than expected (Table 3). Furthermore, the K-S test indicate that the “raw” population is totally 331 

different from the “polished” population (Table 4). The main causes of this difference could be 332 

explained either by a poor laser-matrix interaction due to the surface roughness of a “raw” gold 333 

grain and/or because the Ag content of the rim of an alluvial gold grain is typically depleted 334 

compared to its core [21, 34-36]. This result implies that a minimum amount of sample preparation is 335 

needed to expose the core of the grain in order to perform LIBS analysis on alluvial gold. 336 

337 

4. Application to gold traceability 338 

4.1 Discriminating distinct populations of gold 339 

A handheld LIBS could be used for analysing the silver content of gold during mineral 340 

exploration in order to trace the primary sources of alluvial gold or for certifying the origin of gold 341 

for traceability purposes (e.g. comparing the data to a database of French Guiana gold). In the 342 

following subsections, the Ag content obtained by LIBS analyses are used to exhibit how an 343 

handheld LIBS device might be useful to help discriminating distinct populations of gold grains and 344 

tracing the golds grains origin. The nine training samples studied in the previous section have been 345 

compiled into the five populations of gold from French Guiana with “B2” and “A7” samples forming 346 

the “Marc” creek population, “33” and “39” samples forming the “Petit Inini” river population, “30” 347 

and “47” samples forming the “Serpent” creek population, “23” and “26” samples forming the 348 

“Dimanche” creek population and the “Awa” creek population which only consists of the “37” 349 

sample (see the CDFs on the Fig. 5). These five populations of gold grains were compared 350 

between them using the K-S test in order to check if we can discriminate distinct populations. 351 

Results are displayed in the Table 5. The K-S tests clearly highlighted that the five populations are 352 

statistically well distinct because the major part of results show a p-value lower than 0.0001, which 353 

indicates that distributions are different with a confidence of 95 % (i.e. 1 – α). Consequently, in this 354 
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study, the distribution of the Ag content of these five populations of gold grains is significantly 355 

discriminant to be a key feature of a given population of gold. 356 

Table 5 

Comparison of the Ag content between the five French Guiana gold 
populations using the Kolmogorov-Smirnov test 

D D critical p-value1

"Marc" creek / "Petit Inini" river 0.523 0.265 < 0.0001 
"Marc" creek / "Serpent" creek 0.798 0.254 < 0.0001 
"Marc" creek / "Dimanche" creek 0.475 0.253 < 0.0001 
"Marc" creek / "Awa" creek 0.539 0.338 0.0002 
"Petit Inini" river / "Serpent" creek 0.929 0.287 < 0.0001 
"Petit Inini" river / "Dimanche" creek 0.847 0.286 < 0.0001 
"Petit Inini" river / "Awa" creek 0.452 0.363 0.006 
"Serpent" creek / "Dimanche" creek 0.609 0.276 < 0.0001 
"Serpent" creek / "Awa" creek 1.000 0.356 < 0.0001 
"Dimanche" creek / "Awa" creek 0.878 0.355 < 0.0001 
1 the level of significance is α = 0.05. "Marc" creek correspond to "B2" and "A7" 
samples, "Petit Inini" river correspond to "33" and "39" samples, "Serpent" creek 
correspond to "30" and "47" samples,"Dimanche" creek correspond to "23" and "26" 
samples, "Awa" creek only correspond to "37" sample 

357 

4.2 Tracing gold provenance 358 

Because the previous subsection has demonstrated that the five population of gold studied 359 

were significantly distinct, this major feature can be used to match (or not) a potential “unknown” 360 

sample to a known populations of gold from a database (i.e. the nine samples in our study), a 361 

useful tool which could strongly help to retrace the provenance of gold. The CDFs of the Ag 362 

content obtained by LIBS for the five populations of gold and the four “unknown” samples set aside 363 

at the beginning of this study (i.e. the “X2”, the “43”, the “46” and the “29” samples) are displayed in 364 

the Figure 5. The CDF of the “X2” sample fits well with the CDF of the “Marc” creek population 365 

(Fig. 5a), suggesting that differences are not significant. Furthermore, the p-value (0.181), obtained 366 

from the K-S test on the LIBS analyses, indicates that the Ag contents follow a similar distribution 367 

function. The K-S tests between “X2” sample and others populations are displayed in the ESI 368 

(Table 5S) and show that “X2” only comes from the “Marc” creek population. Thereby, it can be 369 

statistically considered, with 95% confidence, as only one population of gold grains coming from 370 

the same location. The same reasoning can be applied to the three others “unknown” samples. 371 

The CDFs and results of the K-S tests (Table 5S, ESI) clearly demonstrate that the “43” sample fits 372 
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well with the “Petit Inini” river population (Fig. 5b), the “46” sample fits well with the “Serpent” creek 373 

population (Fig. 5c) and the “29” sample fits well with the “Dimanche” creek population (Fig. 5d). 374 

Thus, only with the distribution of the Ag content of gold grains, we are able to retrace the 375 

provenance of the four “unknown” samples among five populations of gold, making the handheld 376 

LIBS has a very useful tool for traceability purposes. 377 

378 

Fig. 5 Plots of cumulative distribution functions (CDFs) of the Ag content of the five gold grains populations from French 379 

Guiana and the four “unknown” samples split at the beginning of this study: the “X2” sample (a), the “43” sample (b), the 380 

“46” sample (c) and the “29” sample (d). 381 

382 

4.3 Technical discussion 383 

It should be noted, however, that a handheld LIBS is not a “magic” tool and has its limits. 384 

Our calibration has been only tested up to a content of 16 wt.% Ag, and further tests are needed 385 
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for gold grains with higher silver content. Furthermore, a large population database complicates 386 

discrimination (or a matching) and should be coupled with other key elements (e.g. mineral micro-387 

inclusions, trace elements composition or isotopic analyses) as proposed by Chapman et al. [6] and 388 

Augé et al. [21], which require more expensive and time-consuming techniques (e.g. EPMA, SEM) 389 

relative to handheld LIBS. A critical point to take into consideration is the need of sample 390 

preparation. Indeed, as for EPMA, the LIBS method requires a first step of polishing (see § 3.2). 391 

However, whereas EPMA analyses require a fine polishing and a finishing with a very small 392 

abrasive, which is achieved using diamond pastes of grades 1 μm and 0.25 μm, a coarse polishing 393 

with silicon carbide disks is enough for analyses by handheld LIBS. Indeed, the only key point to 394 

consider is to expose the grain core to the surface, a simple manual polishing of “raw” gold grain 395 

could be enough to expose the core. Consequently, the time of sample preparation is considerably 396 

reduced for LIBS relative to EPMA analyses. Furthermore, a handheld LIBS is easily transportable 397 

and allows field investigations which is not the case of the EPMA. Thus, our results using a 398 

handheld LIBS and the CDFs of the Ag content are very promising. This method could be a first 399 

step in establishing gold traceability and opens a new realm of possibilities for supply chain 400 

management. 401 

402 

5. Concluding remarks 403 

The main motivation of this preliminary study was to investigate a technique that can rapidly 404 

detect the Ag content in natural gold grains for tracing applications, thus reducing or avoiding more 405 

costly sample preparation and processing requirements. A handheld LIBS unit was selected to 406 

perform this test because it is compact and lightweight, making analysis an easy adaptation for a 407 

field laboratory. The methodology developed in this study demonstrated the relevance and 408 

usefulness of the LIBS technique. Univariate and multivariate models were developed from 409 

commercial gold alloys for the calibration of the Ag content. The best calibration model is the 410 

quadratic univariate model, providing an R² of 0.99991 and a good predictive power with RMSEP 411 

of 0.53320 wt.% Ag and MAEP of 0.36049 wt.% Ag. This quadratic model is easy to use and 412 

largely reduces the need for the classic but time-consuming multivariate model. The statistical 413 
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comparisons between the LIBS analyses of the five populations of gold (i.e. the nine training 414 

samples) and the four “unknown” sample from French Guiana have shown that it is possible to 415 

match two gold populations coming from the same location. Results have also shown that it is 416 

possible to discriminate distinct populations, which would constitute a major advance in gold 417 

traceability. The use of a handheld LIBS to trace the origin of gold from French Guiana gold 418 

districts appears to have been successful and could be applied to other French Guiana gold 419 

districts and other conflict-affected and high-risk areas afflicted by illegal mining, for example in 420 

Democratic Republic of Congo within the Great Lakes region. 421 

422 

Acknowledgements423 

We are very grateful to Quantum RX to provide us the Sci Aps Z-200 C+ instrument and to the 424 

SAAMP to provide us the major part of our gold samples from French Guiana. The authors thanks 425 

Guillaume Wille for EPMA analyses, Cécile Fabre for her advice about the LIBS system and Marc 426 

Dupayrat for its assistance with LIBS data. This work was supported by the CARNOT grant N° 17-427 

CARN-003-01. The editor H. Brewerton and two anonymous reviewers are thanked to help and 428 

greatly improve the manuscript. 429 

430 

20



Acc
ep

ted
 M

an
us

cri
pt

References 431 

1 OECD Due Diligence Guidance for Responsible Supply Chains of Minerals from Conflict-432 

Affected and High-Risk Areas, OECD, 2016. 433 

2 M. B. McClenaghan and L. J. Cabri, Geochemistry Explor. Environ. Anal., 2011, 11, 251–434 

263. 435 

3 G. A. Desborough, R. H. Heidel, W. H. Raymond and J. Tripp, Miner. Depos., 1971, 6, 436 

321–334. 437 

4 J. C. Antweiler and W. L. Campbell, Dev. Econ. Geol., 1977, 9, 17–29. 438 

5 R. C. Leake, R. J. Chapman, D. J. Bland, E. Condliffe and M. T. Styles, Trans. Inst. Min. 439 

Metall. (Section B Appl. Earth Sci., 1997, 106, B85-98. 440 

6 R. J. Chapman, R. C. Leake and N. R. Moles, J. Geochemical Explor., 2000, 71, 241–268. 441 

7 R. Chapman, B. Leake and M. Styles, Gold Bull., 2002, 35, 53–65. 442 

8 R. J. Chapman and J. K. Mortensen, J. Geochemical Explor., 2006, 91, 1–26. 443 

9 R. J. Chapman, M. M. Allan, J. K. Mortensen, T. M. Wrighton and M. R. Grimshaw, Miner. 444 

Depos., 2018, 53, 815–834. 445 

10 N. R. Moles and R. J. Chapman, Econ. Geol., 2019, 114, 207–232. 446 

11 J. Amador-Hernández, L. E. García-Ayuso, J. M. Fernández-Romero and M. D. Luque de 447 

Castro, J. Anal. At. Spectrom., 2000, 15, 587–593. 448 

12 L. Garcı́a-Ayuso, J. Amador-Hernández, J. . Fernández-Romero and M. . Luque de Castro, 449 

Anal. Chim. Acta, 2002, 457, 247–256. 450 

13 A. Jurado-López and M. D. L. De Castro, Appl. Spectrosc., 2003, 57, 349–352. 451 

14 G. Galbács, N. Jedlinszki, G. Cseh, Z. Galbács and L. Túri, Spectrochim. Acta Part B At. 452 

Spectrosc., 2008, 63, 591–597. 453 

15 S. Z. Shoursheini, B. Sajad and P. Parvin, Opt. Lasers Eng., 2010, 48, 89–95. 454 

16 N. Ahmed, R. Ahmed and M. A. Baig, Plasma Chem. Plasma Process., 2018, 38, 207–222. 455 

21



Acc
ep

ted
 M

an
us

cri
pt

17 R. S. Harmon, R. R. Hark, C. S. Throckmorton, E. C. Rankey, M. A. Wise, A. M. Somers 456 

and L. M. Collins, Geostand. Geoanalytical Res., 2017, 41, 563–584. 457 

18 R. S. Harmon, K. M. Shughrue, J. J. Remus, M. A. Wise, L. J. East and R. R. Hark, Anal. 458 

Bioanal. Chem., 2011, 400, 3377–3382. 459 

19 R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, J. L. Gottfried, F. C. 460 

DeLucia and A. W. Miziolek, Appl. Geochemistry, 2009, 24, 1125–1141. 461 

20 R. R. Hark and R. S. Harmon, Springer, Berlin, Heidelberg, 2014, pp. 309–348. 462 

21 T. Augé, L. Bailly, P. Bourbon, C. Guerrot, L. Viprey and P. Telouk, RP-64880-FR report, 463 

BRGM, 2015, 147 p. 464 

22 B. Connors, A. Somers and D. Day, Appl. Spectrosc., 2016, 70, 810–815. 465 

23 Y. Iida, Spectrochim. Acta Part B At. Spectrosc., 1990, 45, 1353–1367. 466 

24 V. Motto-Ros, D. Syvilay, L. Bassel, E. Negre, F. Trichard, F. Pelascini, J. El Haddad, A. 467 

Harhira, S. Moncayo, J. Picard, D. Devismes and B. Bousquet, Spectrochim. Acta Part B 468 

At. Spectrosc., 2018, 140, 54–64. 469 

25 J. El Haddad, L. Canioni and B. Bousquet, Spectrochim. Acta Part B At. Spectrosc., 2014, 470 

101, 171–182. 471 

26 J. P. Castro and E. R. Pereira-Filho, J. Anal. At. Spectrom., 2016, 31, 2005–2014.472 

27 J.-M. Mermet, Spectrochim. Acta Part B At. Spectrosc., 2010, 65, 509–523. 473 

28 D. W. Hahn and N. Omenetto, Appl. Spectrosc., 2012, 66, 347–419. 474 

29 T. Takahashi and B. Thornton, Spectrochim. Acta Part B At. Spectrosc., 2017, 138, 31–42. 475 

30 A. N. Kolmogorov, G. Inst. Ital. Attuari, 1933, 4, 83–91. 476 

31 N. V. Smirnov, Bull. Math. Univ. Moscou, 1939, 2, 3–14. 477 

32 F. J. Massey Jr, J. Am. Stat. Assoc., 1951, 46, 68–78. 478 

33 H. B. Mann and D. R. Whitney, Ann. Math. Stat., 1947, pp. 50–60. 479 

34 G. A. Desborough, Econ. Geol., 1970, 65, 304–311. 480 

35 J. C. Groen, J. R. Craig and J. D. Rimstidt, Can. Mineral., 1990, 28, 207–228. 481 

22



Acc
ep

ted
 M

an
us

cri
pt

36 J. B. Knight, J. K. Mortensen and S. R. Morison, Econ. Geol., 1999, 94, 649–664. 482 

483 

23


