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Abstract The sources of REY-Th-U and long-term mass balance were assessed in the gneissic tropical
forested Critical Zone Observatory of Mule Hole, India. The study relies on the characterization of the solid
compartments (bedrock, soils, streambed and suspended sediments), on batch leaching experiments of the
parent gneiss and on extractions of cation-exchangeable and iron-related pools of selected soil samples.
The REY-Th-U primary reservoir is controlled by monazite, xenotime, thorite, allanite, bastnesite, titanite,
apatite, and, to a lesser extent, by zircon. This accessory mineral assemblage was profoundly modified by
episodes of metamorphism and hydrothermal activity. Allanite, bastnesite, titanite, and apatite are prone to
break down at incipient weathering stage while monazite, xenotime and zircon are resistant minerals. On a
long-term basis, REY are roughly inert in the immature saprolite and depleted in the soil cover and are
strongly redistributed among secondary phases. LREE and HREY are mainly controlled by poorly crystallized
secondary iron oxides and oxyhydroxides, and, to a lesser extent, by secondary phosphates (e.g., rhabdo-
phane). Th, inert in the saprolite, is controlled by well-crystallized secondary iron oxides and oxyhydroxides
and likely by secondary thorianite (ThO2). REY and Th are not easily mobilized during surface processes
such as chelation by organic matter and uptake by plants. REY and Th are, by far, exported as suspended
sediments associated with iron oxides. The U export by groundwater and suspended sediments dominates
over those of streambed sediments and stream.

1. Introduction

The natural High Field Strength Elements (HFSE) actinides (U, Th) and Rare Earth Elements (REEs 1 Y 5 REY)
are widely used as geochemical tracers in the sedimentary cycle and, thus, to understand the evolution of
the Upper Continental Crust (Condie et al., 1995; Nesbitt & Markovics, 1997; Taylor & McLennan, 1985).
Based on their radioactive properties and dual behavior during weathering processes (i.e., U soluble as
UO21

2 in oxidizing conditions (Langmuir, 1978) and Th inert as ThO2, i.e., thorianite (Langmuir & Herman,
1980), U and Th are used as chronometer in closed regolith systems (e.g., pedogenic carbonates [Violette
et al., 2010b]) and as geochemical tracers for weathering processes in open regolith systems (Balan et al.,
2005; Chabaux et al., 2003; Dequincey et al., 2002; Ma et al., 2012; Taboada et al., 2006) and for sediment
provenance studies (Taylor & McLennan, 1985). Since, early 90s, the mobility, fractionation and redistribu-
tion of REY during in situ chemical weathering of silicate rocks and subsequent river transport are well
established. The processes are more efficient during warm and humid weathering conditions (Braun et al.,
1993; Ma et al., 2011; Thompson et al., 2013; Vazquez-Ortega et al., 2016; V�azquez-Ortega et al., 2015; Viers
& Wasserburg, 2004). Their use as geochemical tracer is recognized for interpreting soil genesis processes
(Laveuf & Cornu, 2009) as precipitation of secondary phases according to pH (e.g., phosphates, carbonates,
sulphates) either catalyzed by bacterial activity or not (Berger et al., 2014; Braun et al., 1990; Taunton et al.,
2000; Zaharescu, 2017), plant recycling (Brioschi et al., 2013; Stille et al., 2006; Tyler, 2004), organic and
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inorganic chelation and sorption processes (Davranche et al., 2004, 2011; Pourret et al., 2007a), redoximor-
phism through the evolution of Ce-anomalies and precipitation of CeO2 (Braun et al., 1990; Janots et al.,
2015), and plagioclase weathering through the evolution of the Eu-anomaly (Panahi et al., 2000).

In crystalline silicate rocks, REY, Th, and U often exist together as major elements in the same accessory min-
erals (Bea, 1996; Cherniak, 2010; Foerster, 1998a, 1998b), which have importance on the biogeochemical
budgets. In regolith and, subsequently, in sediments, the REY-Th-U abundance is thus linked to the weather-
ing susceptibility of the primary accessory mineral suite, the transportation of resistant bearing phases and
the ability of authigenic clay and clay minerals to retain those elements (Singh & Rajamani, 2001; Su et al.,
2017). Apart from their storage within the lattice of resistant heavy bearing minerals, several physicochemi-
cal conditions can act to decrease the HFSE mobility such as: (i) their specific adsorption and even occlusion
on/in secondary oxide and oxyhydroxide phases (Duff et al., 2002; Vazquez-Ortega et al., 2016), (ii) their pre-
cipitation as authigenic soil phases (Banfield & Eggleton, 1989; Braun et al., 1998a; Janots et al., 2015), and
(iii) their adsorption on the negatively-charged soil particles (e.g., clay minerals like kaolinite and smectite)
(Coppin et al., 2002). Reversely, the HFSE mobility is enhanced by the presence of organic ligands in the cir-
culating fluids and by the fluctuations of redox conditions (Davranche et al., 2011; Dupr�e et al., 1999; Gruau
et al., 2004; Grybos et al., 2007; Pourret et al., 2007a, 2007b; Viers et al., 1997). The REY-Th-U mobilization,
redistribution and fractionation depend also on the degree of weathering (Bao & Zhao, 2008; Sanematsu
et al., 2013, 2015). Therefore, unraveling the weathering and provenance using bulk REE composition is still
not straightforward. Thus, the REY-Th-U pathways from source to sink, i.e. from weathering/erosion to
hydraulic sorting, need to be further understood from a mineralogical and geochemical point of view (Su
et al., 2017). Moreover, the grade in REE deposits is a complex function of igneous source, magmatic crystal-
lization, hydrothermal modification, and supergene enrichment during weathering (Bern et al., 2017; Hei
Martin Li et al., 2017; Smith et al., 2016; Xu et al., 2017). One of the major consequences of the redistribution
process in weathering profiles developed on granito-gneissic rocks is the accumulation of exchangeable
REY, leading to the most important REY ores, namely ‘‘easily worked deposits,’’ especially in China for HREE
(Bao & Zhao, 2008; Simandl, 2014; Smith et al., 2016; Xu et al., 2017). Thus, finding models of how hydrother-
mal alteration and chemical weathering influence the accumulation of REY ion-adsorption on granito-
gneissic rocks is also an important topic of research (Bern et al., 2017).

In a companion paper (Braun et al., 2017), we explored the combined influence of chemical weathering (i.e.,
from heavy accessory bearing minerals breakdown), atmospheric dusts leaching and vegetation cycling on
the solute dynamics of REY-Th-U in the extensively studied tropical forested Mule Hole CZO, South India.
We showed that REE and Th, mainly from atmospheric dust leaching origin, are significantly recycled by
vegetation and exported by overland flow as organic complexes in the ephemeral stream while solute
export by groundwater is much more significant for U than for REE and Th.

In the present paper, we study the mobilization of REY-Th-U from the breakdown of accessory REY-Th-U
bearing primary and authigenic minerals, their fractionation, redistribution, and transfer in the granito-
gneiss-regolith-sediment system in order to clarify the source to sink behavior of REY-Th-U and to highlight
the link between the successive processes. The elemental sources were inferred from the geochemistry and
mineralogy of the parent gneiss, weathering profiles (ferralsol and vertisol), and streambed and suspended
sediments, with special emphasis to hydrothermal alteration prior to the onset of weathering. Moreover,
batch leaching experiments of the parent gneiss and extractions of cation-exchangeable and iron-related
pools of soils were also carried out to infer the potential initial and secondary REY-Th-U sources reactive to
weathering processes.

2. Settings

The Mule Hole CZO was established in 2003 as part of the Environmental Observatory BVET (Figure 1,
https://mtropics.obs-mip.fr/experimental-tropical-watersheds-2/) by the French ‘‘Drainage Basins Network’’
(R�eseau des Bassins Versants, RBV; http://rnbv.ipgp.fr/) and the ‘‘Infrastructure de Recherche’’ OZCAR
(Observatoire de la Zone Critique: Applications et Recherches). This 4.10 km2 watershed is located 118720N
and 768420E in the subhumid part of the climatic gradient of the Kabini river basin in the Southwest part of
Peninsular India.
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The regolith architecture and composition have been thoroughly investigated (Braun et al., 2009; Mar�echal
et al., 2009, 2011; Riotte et al., 2014a, 2014b, 2018; Ruiz et al., 2010; Violette et al., 2010a). The parent rocks
consist of Peninsular gneiss of the >2.8 Ga West Dharwar craton (Naqvi & Rogers, 1987) mainly composed
of quartz and Na-plagioclase as major minerals and amphibole, sericite, biotite, and epidote as minor miner-
als. The gneiss exhibits pronounced hydrothermal alteration features, as illustrated by numerous hydrother-
mal seams rich in calcite, epidote and albite. The alteration of the major phases is characterized by
sericitization of plagioclase and chloritization of biotite by the pervasive fluids. Epidote is widespread. The
dominant parent gneiss is intermingled with much less abundant mafic to ultramafic rocks, mostly amphib-
olite (Shadakshara Swamy et al., 1995). The amphibolite is composed of hornblende and anorthite as major
mineral and calcite, epidote, as minor minerals. At the watershed scale, the gneissic rocks cover 85% of the
whole area against 15% for the mafic to ultramafic rocks.

The saprolite has developed downward at the expense of the underlying fractured gneissic parent rock
from which it does retain the structure and the fabric (i.e., isovolumetric weathering). The saprolite is imma-
ture and still contains significant amount of unweathered primary minerals like plagioclase. At the water-
shed scale, the average regolith thickness is 17 m (Braun et al., 2009) of which 2 meters of soil cover is
present, on average. The latter is composed of (i) ferralsols on the hill slopes (66% of the whole watershed
area), (ii) vertisols either on flat valley bottoms on undifferentiated bedrocks and in the depressions on the
crest line on amphibolite-rich bedrock (12% of the whole watershed area), and (iii) saprolite outcrop topped
by thin ferralsol layers (22% of the whole watershed area) (Barbi�ero et al., 2007). The soil cover develops at
the expense of either saprolite (e.g., ferralsol) or colluviums/alluviums (e.g., vertisol) at the uppermost part
of the regolith where the perturbation brought by both physical and biological processes lead to (i) the dif-
ferentiation into horizons and (ii) the loss of the existing isovolumetric weathering features of the underly-
ing saprolite. The ferralsol cover depth varies from 1 to 2 m on the hill slopes while the vertisol cover
average depth is of 2 m on the lower part of the hill slopes and flat valley bottoms. Thicker black soils
(2.5 m) are also developed on amphibolite-rich bedrock located in the depressions on the crest line. An
assemblage of secondary clays and clay minerals dominated by kaolinite and goethite characterizes the fer-
ralsol mineralogy. Residual crystals of quartz, sericite, and, to a lesser extent, Na-plagioclase, are preserved
till the topsoil. The mineralogy of the gneiss-derived vertisols is dominated by smectite in the secondary

Figure 1. Location of sampling sites (boreholes, BH; soil pits, WP) and regolith features of the Mule Hole watershed
(adapted from Braun et al. [2009]).
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clay assemblage upon kaolinite and kaolinite-smectite interstratified. In the amphibolite-derived vertisol,
the mineralogy is dominated by smectite. The vertisol matrix contains pedogenic carbonates either dissemi-
nated tiny or as pluricentimetric botryoidal nodules witnesses of past dryer climatic conditions (Violette
et al., 2010b).

3. Materials and Methods

3.1. Sampling
The gneissic parent rock was collected either as cuttings in the borehole network or as blocks on outcrops.
The borehole samples (BH1, BH5, BH12) represent a composite sampling of the gneiss at the CZO scale
(Braun et al., 2009) including both leucratic and melanocratic zones. The dynamiting carried out next to the
outlet of the Mule Hole CZO (Soreda Halla bridge) enabled the collection of fresh samples of leucocratic
gneiss (GNMH) and crosscutting epidote-rich hydrothermal seams (GNENC). A melanocratic gneiss sample
(GNJJ) was also collected in a rivulet bed (Figure 1). The amphibolite samples correspond to the cuttings
collected from the BH6 borehole.

The gneiss saprolite samples were selected from BH1, BH12, and BH5 after chemical identification with
weathering indices (see procedure in Braun et al. [2009]). Three profiles of ferralsol (WP1, WP2, WP3) and
two of vertisol (WP4, WP5) were sampled. WP3 corresponds to the top part of the borehole BH5 at the
ridge-top and represents the top of a saprolite truncated by erosion, on which pedogenic processes have
led to the formation of a thin ferralsol. The other soil profiles belong to the T1 soil catena, close to the
stream (Barbi�ero et al., 2007). The down slope profiles WP1 (ferralsol) and WP5 (vertisol) represent more
evolved, deeper soils developed on saprolite (estimated at a depth of about 5–6 m), wherein the topmost
part (up to about 120–150 cm) is composed of proximal colluvial material fed by less weathered upslope
zones and/or biological activity of termites (Jouquet et al., 2016a, 2016b, 2016c).

About 10 kg of streambed sediment samples were collected (i) at the outlet of the Mule Hole brook and (ii)
in three other streambeds draining neighboring areas. The streambed sediment samples were sieved to col-
lect the fine sand size fraction (100–200 mm) for heavy liquid separation subsequently. The sandy streambed
sediment can be considered as a watershed integrative for the residual minerals from the erosion of the soil
cover.

Composite samples of suspended sediments from three floods of the year 2005 were collected by filtration
through 0.22 mm SartoriusVR cellulose acetate membranes at the outlet of the Mule Hole CZO. About 100 mg
of each were collected for bulk analysis.

3.2. Bulk Geochemical Analyses and Density Measurements
The analyses of REY-Th-U and selected elements (Zr, Ti, P, Fe, Ca, Na) from bulk parent rock samples (BH1,
BH5, BH12, BH6, GNJJ, GNMH, GNENC), saprolite (BH1, BH5, BH12), soils (WP1 to 5) and streambed and sus-
pended sediments were performed with ICPMS after LiBO2 fusion and HNO3 dissolution at SARM Nancy
(Centre de Recherches P�etrographiques et G�eochimiques-CNRS, Vandœuvre-lès-Nancy). Detection limits
and uncertainties are presented in supporting information Data sets S1 (Carignan et al., 2001).

The bulk and grain soil density measurements were performed at the Indo-French Cell for Water Sciences
(IFCWS, Bangalore, India) with a SartoriusVR density kit on a sample set of ten aggregates and on aliquots
crushed and dried at 1058C for 24 h using a pycnometer, respectively. The CaCO3 contents of bulk soil sam-
ples (WP1, WP5) and the grain size distribution were determined at the Laboratory of Soil Analyses, Arras,
France (LAS, INRA, https://www6.npc.inra.fr/las/).

3.3. Mass Balance Calculation
The mass balance equation set is based on the principle of mass conservation (Brimhall et al., 1991; Oh &
Richter, 2005). For a chemical element j:

Vwqw Cj;w

100
5

VpqpCj;p

100
1mj;flux

Where the subscripts p and w refer to the parent and weathered materials, respectively. V is volume in cm3,
q is bulk density in g/cm3, and Cj is chemical concentration of any element j in weight percent (wt%). The
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mj;flux represents the mass of an element j moving in or out of the system. The mj;flux is positive if the ele-
ment j is accumulated in the system and negative if j is leached from the system. The volumetric strain (E)
or volume change is calculated from the density ratios q and conservative element concentrations Cj in the
regolith by:

Ei;w5
qpCi;p

qw Ci;w
21

Positive values of Ei;w indicate expansion, negative values indicate collapse and values around zero, isovolu-
mic weathering.

The addition or subtraction of a chemical element j, either by solute migration or mechanical translocation,
is quantified by the open-system mass fraction transport function (sj;w ):

sj;w5
qw Cj;w

qpCj;p

 !
� Ei;w11
� �

21

Because the calculation of sj;w takes into account both residual enrichment and deformation, a positive
value for sj;w reflects a true mass gain in element j of the weathered rock compared to the parent rock and
a negative value indicates a mass loss. If sj;w 5 0, the element is immobile during weathering with respect
to the volume of regolith considered.

The mass balance equations were applied in selected profiles for ferralsol (WP1, WP3) and vertisol (WP5)
developed on gneiss and saprolite from BH1, BH5 and BH12 (from 4 to 20 m depth). Ti was used as inert ele-
ment in the calculations (see explanations in Braun et al. [2009] and Violette et al. [2010b]). The elemental
behavior is sorted out according to their mass transfer profiles: immobile, depletion, depletion-enrichment,
addition, and biogenic profiles (Brantley & Lebedeva, 2011).

3.4. Batch Leaching Experiments of Parent Gneiss: Extraction of Cation-Exchangeable and Iron-
Related Pools of Soils
Two leaching experiments were carried out to identify the REY-Th-U sources from the gneiss-forming miner-
als and from the soil types, according to the selected grain size fractions.

The first experiment was an acid leaching batch experiment carried out with the leucocratic gneiss
GNMH for 8 weeks according to the methodology of Erel et al. (2004). Four aliquots of 2 g of GNMH
gneiss powder, namely GN1, GN2, GN3, and GN4, were mixed each with 400 mL of HNO3 0.1 N (solid/
liquid ratio of 1/200) in pre-cleaned 500 mL SavillexVR digestion beakers. The vessels were constantly
stirred at 230 rpm at 258C in a rotate shaker. After 1 week, all the vessels were removed from the stirrer,
kept in a clean room over night with loosened lids to allow settling the gneiss powder and equilibrating
the acid leachate with atmosphere. Then the leachate was collected with syringe and was filtered using
0.2 mm acetate cellulose filters. Solutions were stored in precleaned polypropylene bottles for further
multielement analyses by ICP-MS (GET, Toulouse). Except for GN1, the vessels were refilled with 400 mL
of a new 0.1 N acid solution. For the other vessels, the procedure was applied so on and so forth at fixed
day and time: Three times for GN2 (weeks 1 to 3), 6 times for GN3 (weeks 1 to 6), and 8 times for GN4
(weeks 1 to 8). The stability of the pH in the leachate was checked regularly. At the end of the leaching
experiments, the remaining powder was dried up prior to XRD analysis. The weighing of the containers
at each step of the procedure allowed assessing the loss of matter during the filtration and sampling
steps.

The second experiment consisted in four extractions on ferralsol (profile WP1) and vertisol (profile WP5)
samples collected at 100–120 cm depth. These samples are representative of the material that can be
removed by erosion. Due to the experimental nature of extractions, the results indicate only trends of the
potential leaching in natural regolith system where a continuum in the leachable phases exists (Ma et al.,
2011). The extractions were performed on bulk soil and three grain size fractions (sand: 200–500 mm; silt 1

clay: <50 mm; clay: <1 mm). The first extraction was performed with ammonium acetate (NH4OAc) 1 M
(AFNOR NFX 31–108 norm), a usual procedure to recover the soil cation-exchangeable pool easily available
for plant uptake or for leaching by drainage. An aliquot of 2.5 g of powdered soil is stirred in 50 mL of
ammonium acetate (NH4OAc) 1 M at 258C for 20 min.
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The second and third acid extractions aimed at recovering elements potentially adsorbed or included in the
secondary Fe-Mn oxides and hydroxides phases that accumulate during soil genesis. As we focus on trace
elements, we adapted the protocol used for iron isotopes fractionation in weathering studies (Buss et al.,
2010; Chapman et al., 2009; Guelke et al., 2010; Wiederhold et al., 2007). The second extraction was carried
out with HCl 0.5 M in which the soil sample powders were stirred at 258C for 24 h with liquid to solid ratio
being 25. It enabled to dissolve exchangeable, adsorbed, organic-bound, and poorly crystalline Fe oxides
and oxyhydroxides. HCl-soluble minerals, such as carbonates and phosphates, might also be sensitive to
this treatment. However, in sequential extraction of phosphorus pools in soils, the dissolution of phosphate
minerals is usually achieved with a stronger acid, for example, HCl 1 M (Cross & Schlesinger, 1995; Hedley
et al., 1982). The third extraction was carried out with HCl 5 M. The soil powders were stirred at 258C for
24 h with liquid to solid ratio of 25 again. Usually, HCl 6 M is used in iron isotopes studies as it achieves a
complete dissolution of all crystalline iron oxide minerals such as goethite and hematite (Schwertmann &
Pfab, 1996). But this acid molarity is already too strong to prevent the partial dissolution of sensitive miner-
als as phyllosilicates.

3.5. Mineralogical Investigations and Analyses
The parent rock mineralogy and crystal chemistry were investigated in gneiss samples and in the Mule
Hole streambed sediment either on thin sections or resin mounted mineral separates. The REY-Th-U soil
mineralogy was only investigated on two ferralsol thin sections at two depths (100–120 and 300–320 cm).
The samples from the shallow depth correspond to the samples which were leached in the extraction
experiments.

The accessory and secondary minerals were systematically sought with Scanning Electron Microscopy (SEM
Jeol JSM 6360LV) in backscattered electron (BSE) mode coupled to an EDS analysis system ‘‘Silicon Drift
Detector’’ (SDS) PGT Sahara, at GET, Toulouse, France.

The chemical composition of some high content REY-Th-U bearing minerals was analyzed either by
electron microprobe analyzer (EPMA) with CAMECA SX50 (allanite, bastnesite) at Geoscience Environ-
nement Toulouse (GET, Toulouse) or with a CAMECA SX100 (monazite, xenotime, thorite) at the
National Centre of Excellence in Geoscience Research-Geological Survey of India (NCEGR-GSI),
Bangalore.

The in situ trace element analyses were carried out on thin sections (GNMH and GNJJ) and mineral sepa-
rates mounted in resin (GNMH and streambed sediments) at the G�eosciences Montpellier Laboratory (Uni-
versity of Montpellier) using a ThermoFinnigan ELEMENT XR high resolution (HR) ICP-MS, coupled with a
Geolas (Microlas) automated platform housing a 193 nm Compex 102 laser from LambdaPhysik. Ablation
experiments were conducted in an ablation cell of �30 cm3 in a He atmosphere, which enhances sensitivity
and reduces inter-element fractionation (G€unther & Heinrich, 1999). The helium gas and particles from the
sample were then mixed with Ar before entering the plasma. Data were acquired in the fast E-scan mode at
low resolution (M/DM 5 300), devoting 2 min for the blank and 1 min for measurement of the analytes. The
laser was fired using an energy density of 10 J/cm2 at a frequency of 5 Hz and using a spot size between 26
and 102 mm depending on the mineral content in REY-Th-U. Oxide level, measured using the ThO/Th ratio,
was below 0.8%. Depending on the minerals analyzed, 29Si or 43Ca was used as an internal standard and
analyte concentrations were calibrated against the NIST612 reference material, using the values given in
Pearce et al. (1997). Data were subsequently reduced using the GLITTER software (Van Achterberg et al.,
2001) by carefully inspecting the time-resolved analysis to check for lack of heterogeneities (inclusions or
fractures) in the analyzed volume.

4. Results

Table 1 displays the standard statistics for the contents of REY, Th, U, and selected elements (Zr, Ti, Fe, Ca,
Na, P) for parent rocks (gneiss and amphibolite), regolith (saprolite, ferralsol, vertisol) and streambed and
suspended sediments. The sums of Light Rare Earth Elements (LREE), Heavy Rare Earth Elements (HREE) and
Rare Earth Elements 1 yttrium (REY), the Upper Continental Crust (UCC) normalized ratios and anomalies
are indicated. The full data set is reported in supporting information Data sets S2 and S3 including, for the
soil cover, the measured bulk and grain densities and Chemical Index of Alteration.
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4.1. Parent Rocks
4.1.1. Gneiss and Amphibolite Whole Rock Composition
In the gneiss, average REY contents are of 200 mg/g (80% of LREE),
0.8 mg/g of U, 8.7 mg/g of Th, 170 mg/g of Zr, 2,200 mg/g of Ti, and
400 mg/g of P (Table 1). Overall, some good positive inter-
correlations (r2� 0.8) exist between Th, Zr, LREE, and U. The inter-
correlations decline with HREY, P, and Ti (r2� 0.6). The UCC-
normalized patterns of gneiss show a large variability (Figure 2). The
average pattern (GNAV) displays a slight enrichment in LREE (LREE/
HREEN 5 1.5) and a significant depletion in U. There is no Ce-
anomaly (Ce/Ce* 5 1) and Eu-anomaly (Eu/Eu*) ranges from 0.8 to
5.8. The leucocratic end-member of gneiss (GNMH) and the hydro-
thermal seam (GNENC) have the lowest REY contents (<80 mg/g) and
the highest positive Eu anomaly, 3.5 and 5.8, respectively (Figure 2).
The LREE, Th, U, and Zr contents of the average amphibolite are sys-
tematically lower than those of the average gneiss while the HREY
contents are of the same order of magnitude (Table 1). The amphib-
olite UCC-normalized pattern displays a strong negative LREE frac-
tionation (La/SmN 5 0.2), a slight HREE fractionation (Gd/YbN 5 0.8),
a significant positive anomaly (Eu/Eu* 5 1.6), and a strong depletion
in both Th and U (Figure 2). The Ti and P contents are higher than
those of gneiss with average of 7,000 and 1,200 mg/g, respectively.

Taking into account the relative areas of amphibolite and gneiss at the watershed scale (0.15/0.85), the
amphibolite accounts for only 6% of REY (3% of LREE, 16% of HREE, 19% of Y), 2% of U, 1% of Th, 7% of Zr
but 56% of Ti and 54% of P.
4.1.2. Gneiss Mineralogy and Mineral Chemistry
The accessory phases observed in the parent gneiss are allanite [(LREE, Ca)2(Al,FeIII/II)3(SiO4)3(OH)], bastne-
site (LREECO3F), titanite [(Ca,REE)(Ti,FeIII)SiO5], pyrite (FeS2), chalcopyrite (CuFeS2), zircon [(Zr,Hf,HREE,Y,P)-
SiO4], and apatite [Ca5(PO4)3(F,Cl,OH)]. Allanite appears as euhedral crystal invariably rimmed by epidote
(Figure 3a). Most of the allanite crystals are altered and replaced, sometimes completely, by LREE-
carbonate (bastnesite) and an alumino-silicate phase in the core zone (Figures 3a and 3b). The allanite
crystals in GNMH are more affected by the replacement of bastnesite than in GNJJ. Titanite occurs as sub-
euhedral crystal (Figure 3c) or, more commonly, as anhedral secondary inter-cleavage growth between
biotite lattice along with epidote, Fe oxides and Fe-Ti oxides (Figures 3d and 3e). Zircon occurs as pris-
matic to rounded crystal which varies in size from 10 to 500 mm in length, the larger one displaying zon-
ing (Figures 3f and 3h). Apatite crystals are euhedral to sub-euhedral, 50–500 mm wide without zoning
(Figure 3g). They sometimes contain tiny zircon inclusions (Figure 3h). The hydrothermal seam (GNENC) is
mainly composed of epidote, Na-plagioclase (albite), calcite and quartz. Albite is comparatively fresh. The
identified accessory minerals are pyrite and anhedral allanite crystals as inclusions in epidote. The lighter
grain size fraction of 100–200 mm (fine sand, d< 2.9 g/cm3) from the Mule Hole streambed sediment
(MHSS) is mainly composed of rounded quartz and highly weathered Na-plagioclase grains while the
heavier fraction (d> 2.9 g/cm3) contains subangular Fe-Ti oxides, amphibole, epidote, zircon, monazite
[(LREE,Th)PO4], and xenotime [(Y,HREE)PO4] crystals. The monazite grains, more or less weathered with
dissolution hollows, often contain xenotime, thorite (ThSiO4), and thorianite (ThO2) inclusions (Figures
4a–4d).

Table 2 lists the standard statistics for the composition of selected gneiss forming minerals in REY-Th-U.
The dominant mineral reservoirs for LREE, HREE, Y, Th, and U content (content> 1,000 mg/g, Table 3) are
in decreasing order: Monazite> allanite � bastnesite> titanite � xenotime � thorite for LREE, xenotime
� thorite>monazite> titanite � allanite>bastnesite for HREE and Y, thorite 	 monazite>bastnesite
	 xenotime for Th and thorite 	 xenotime>monazite for U. The UCC-normalized patterns show a
strong LREE enrichment in monazite, allanite, bastnesite, and Na-plagioclase (La/SmN from 2.0 to 4.5)
and a LREE depletion in epidote (0.2< La/SmN< 0.3), apatite (0.02< La/SmN < 0.12), titanite (La/SmN 5

0.05), and zircon (La/SmN 5 0.01) (Figure 5). The HREE fractionation is strongly positive in bastnesite
(110<Gd/YbN< 410) and allanite (Gd/YbN 5 35), negative in epidote (0.1<Gd/YbN< 0.5) and in zircon

Figure 2. UCC-normalized REY-Th-U patterns for average gneiss (GNAV) and
average amphibolite (AMAV). The rose and purple shaded areas represent the
envelope of REY-Th-U contents. The patterns for the leucocratic gneiss end-
member (GNMH), hydrothermalized enclave (GNENC), and melanocratic gneiss
(GNJJ) are also indicated.
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Figure 3. SEM-BSE images of REY-Th-U bearing minerals of the gneiss showing their petrographic relation in the rock. (a,
b) Partially or completely altered allanite crystals replaced by bastnesite and alumino-silicate phases and rimmed by epi-
dote crystals, (c) subhedral titanite crystal, (d) biotite having exsolution of titanite, (e) intergrowth of titanite with Fe-Ti
oxides, (f) oscillatory zoned zircon, (g) large elliptical apatite crystal, and (h) apatite-zircon association.
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(Gd/YbN 5 0.03), and not significant in apatite and titanite (Gd/YbN from 0.9 to 1.2). The Eu-anomaly is
strongly negative in monazite, xenotime, zircon, allanite and bastnesite (Eu/Eu* from 0.1 to 0.5) and less
significant in apatite and titanite with Eu/Eu* ranging from 0.8 to 1.3. The Eu-anomaly is positive in epi-
dote and biotite with Eu/Eu* ranging from 4 to 8 and strongly positive in Na-plagioclase with Eu/Eu* of
28. Except the strong positive Ce-anomaly in zircon (Ce/Ce* 5 19.6), the other minerals do not show any
Ce-anomaly.
4.1.3. Gneiss Leaching Experiments
The results of the batch leaching of the gneiss GNMH (leucocratic hydrothermalized end-member), free of
resistant monazite and xenotime, are reported in supporting information Data set S4. Mimicking the chemi-
cal weathering of the main reactive REY-Th-U bearing mineral assemblage, i.e., allanite, bastnesite, and
titanite as major ones and apatite and zircon as minor ones, the leaching experiments provide an overview
of the leaching sequence. In terms of evolution in the leachate, the GNMH-normalized elemental ratios for
HREE, LREE, U and Th (Figure 6a) show a huge increase at week 1 and then a progressive drop from weeks 2
to 8. In terms of the evolution of the GNMH-normalized specific ratios (Figure 6b), both Gd/YbN and La/SmN,
initially of 2.6 and 1.5 for the Upper Crust normalized parent rock, show a progressive rise up to week 2 and
then gently decrease until week 8. The Eu/Eu* anomaly, initially of 3.4 in the parent gneiss, shows a signifi-
cant drop to 0.26 at week 2 followed by a slight increase up to 0.45 at week 8, while the Ce/Ce* anomaly
remains stable around 1.

4.2. Composition of Gneiss-Derived Saprolite
The average contents (in mg/g) are of 191 for REY, 0.9 for U, 8.3 for Th, and 313 for P, respectively (Table 1).
The UCC-normalized patterns (Figure 7) exhibit a large variability with significant ranges of Ce-anomalies
(0.9<Ce/Ce*< 1.7), Eu-anomalies (0.9< Eu/Eu*< 1.7), La/SmN (0.4–1.8), and Gd/YbN (0.5–1.9). The range of
the saprolite UCC-patterns is similar to those of parent gneiss.

Figure 4. SEM-BSE microphotographs of rounded monazite crystals from stream sediments. (a, b) dissolution weathering
features of monazite (same crystal, different BSE brightness), (c, d) thorite inclusions within monazite (same crystal, differ-
ent BSE brightness).

Geochemistry, Geophysics, Geosystems 10.1029/2018GC007453

BRAUN ET AL. 1620



Ta
b

le
2

St
an

da
rd

St
at

is
tic

s
fo

r
th

e
Co

nt
en

ts
of

RE
Y-

Th
-U

an
d

Se
le

ct
ed

El
em

en
ts

(Z
r,

Ti
,F

e,
Ca

,N
a,

an
d

P)
fo

r
Se

le
ct

ed
G

ne
is

s
Fo

rm
in

g
M

in
er

al
s

Se
pa

ra
te

d
Fr

om
G

ne
is

s
(G

N
M

H
,G

N
JJ

)a
nd

St
re

am
Se

di
m

en
ts

(M
H

SS
)a

M
in

er
al

m
et

ho
d,

sa
m

pl
e

N
um

be
r

of
an

al
ys

es
La

(m
g/

g)
C

e
(m

g/
g)

Pr
(m

g/
g)

N
d

(m
g/

g)
Sm

(m
g/

g)
Eu

(m
g/

g)
G

d
(m

g/
g)

Tb
(m

g/
g)

D
y

(m
g/

g)
H

o
(m

g/
g)

Er
(m

g/
g)

Tm
(m

g/
g)

Yb
(m

g/
g)

Lu
(m

g/
g)

Y
(m

g/
g)

Th
(m

g/
g)

U
(m

g/
g)

P LR
EE

(m
g/

g)

P H
RE

E
(m

g/
g)

P RE
Y

(m
g/

g)
LR

EE
/

H
RE

E N

C
e/

C
e*

Eu
/

Eu
*

La
/

Sm
N

G
d/

Yb
N

Zi
rc

on
(Z

rn
)

LA
-IC

PM
S,

th
in

se
ct

io
n

G
N

M
H

7
A

ve
ra

ge
0.

22
6.

02
0.

20
2.

26
3.

09
0.

61
11

.0
7

4.
51

57
.7

9
21

.1
5

99
.8

8
24

.5
7

26
3.

65
40

.6
2

63
6.

64
55

.5
0

15
8.

87
12

.4
52

3.
2

1,
17

2.
3

0.
00

6
18

.3
9

0.
59

0.
01

0.
03

6
r

0.
33

1.
70

0.
21

1.
86

2.
29

0.
20

8.
05

3.
29

40
.2

7
13

.6
5

60
.1

0
14

.1
4

14
7.

21
22

.2
6

39
9.

15
45

.1
8

88
.5

8
4.

8
30

2.
8

70
2.

3
0.

01
0

15
.3

9
0.

20
0.

01
0.

03
M

in
0.

03
2.

84
0.

04
0.

60
1.

32
0.

35
4.

36
1.

00
8.

16
2.

33
10

.0
9

2.
40

26
.5

2
4.

21
71

.3
2

17
.1

1
55

.6
4

6.
6

59
.6

14
7.

5
0.

00
2

1.
65

0.
29

0.
00

0.
01

M
ax

0.
93

8.
40

0.
65

5.
18

7.
89

0.
91

27
.7

7
10

.9
6

13
1.

97
44

.0
2

19
0.

46
43

.5
1

43
3.

58
62

.6
7

1,
27

4.
07

14
2.

57
32

0.
88

20
.6

94
1.

5
2,

23
6.

1
0.

02
9

37
.0

6
0.

97
0.

04
0.

11
Ep

id
ot

e
(E

pd
)

LA
-IC

PM
S,

th
in

se
ct

io
n

G
N

M
H

6
A

ve
ra

ge
17

.3
7

39
.5

6
6.

43
33

.7
2

11
.3

2
14

.1
4

10
.1

3
1.

94
12

.4
4

2.
42

7.
34

1.
22

10
.4

6
1.

58
70

.8
6

0.
26

2.
84

12
2.

5
47

.5
24

0.
9

0.
20

0.
89

8.
16

0.
29

0.
64

6
r

26
.4

9
64

.8
6

11
.5

8
60

.7
3

16
.8

0
24

.5
9

11
.7

6
2.

05
12

.8
5

2.
58

8.
70

1.
68

15
.8

5
2.

47
85

.7
5

0.
37

5.
70

20
4.

1
56

.9
34

3.
8

0.
13

0.
08

5.
37

0.
23

0.
57

M
in

0.
06

0.
14

0.
02

0.
11

0.
05

0.
16

0.
07

0.
02

0.
12

0.
03

0.
13

0.
02

0.
24

0.
04

1.
09

0.
00

0.
01

0.
5

0.
7

2.
3

0.
07

0.
81

2.
35

0.
05

0.
17

M
ax

62
.3

4
15

2.
86

27
.0

0
14

1.
77

40
.5

8
57

.9
2

28
.8

4
4.

99
31

.2
8

6.
36

21
.6

4
4.

11
38

.2
1

5.
91

21
2.

98
0.

90
13

.0
3

48
2.

5
14

1.
3

83
6.

8
0.

36
1.

00
14

.9
4

0.
66

1.
62

LA
-IC

PM
S,

th
in

se
ct

io
n

G
N

JJ
3

A
ve

ra
ge

1.
85

2.
05

0.
65

2.
96

1.
14

3.
35

1.
18

0.
26

2.
80

0.
74

4.
24

1.
07

9.
42

1.
23

24
.7

6
0.

15
0.

19
12

.0
20

.9
57

.7
0.

08
0.

45
16

.4
5

0.
24

0.
09

6
r

1.
38

2.
04

0.
56

2.
75

0.
91

2.
10

1.
12

0.
11

1.
09

0.
37

2.
22

0.
64

5.
87

0.
74

12
.3

7
0.

11
0.

08
9.

0
11

.6
27

.6
0.

08
0.

18
10

.4
8

0.
09

0.
07

M
in

0.
36

0.
63

0.
17

0.
33

0.
33

0.
96

0.
40

0.
20

1.
56

0.
34

1.
81

0.
34

2.
66

0.
38

11
.1

1
0.

02
0.

09
2.

8
8.

0
31

.4
0.

01
0.

25
8.

60
0.

16
0.

02
M

ax
3.

08
4.

39
1.

26
5.

82
2.

12
4.

91
2.

46
0.

39
3.

61
1.

08
6.

18
1.

56
13

.3
2

1.
71

35
.2

2
0.

23
0.

24
20

.9
30

.3
86

.4
0.

16
0.

60
28

.3
5

0.
33

0.
15

N
a-

pl
ag

io
cl

as
e

(N
a-

Pl
g)

LA
-IC

PM
S

,t
hi

n
se

ct
io

n
G

N
M

H
6

A
ve

ra
ge

5.
90

8.
25

0.
71

2.
69

0.
53

3.
26

0.
90

0.
08

0.
47

0.
10

0.
38

0.
03

0.
23

0.
04

3.
30

0.
36

0.
09

21
.3

2.
2

26
.9

1.
94

0.
98

28
.4

9
2.

05
N

D

6
r

5.
05

6.
21

0.
56

2.
11

0.
39

2.
40

0.
53

0.
08

0.
43

0.
10

0.
31

0.
04

0.
23

0.
03

2.
55

0.
53

0.
09

16
.2

1.
6

19
.6

2.
44

0.
10

17
.0

4
1.

17
N

D
M

in
0.

68
1.

36
0.

11
0.

36
0.

04
0.

71
0.

18
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

30
0.

00
0.

00
3.

3
0.

2
4.

0
0.

29
0.

83
4.

60
0.

30
N

D
M

ax
13

.9
5

16
.5

7
1.

50
5.

54
1.

01
6.

61
1.

41
0.

19
1.

10
0.

25
0.

65
0.

09
0.

52
0.

08
6.

49
1.

32
0.

19
43

.5
4.

0
52

.7
6.

86
1.

14
56

.7
3

3.
60

N
D

Bi
ot

ite
(B

i)
LA

-IC
PM

S,
th

in
se

ct
io

n
G

N
M

H
9

A
ve

ra
ge

1.
70

3.
21

0.
44

1.
36

0.
98

4.
71

18
.5

8
0.

16
1.

45
0.

41
1.

23
0.

26
2.

58
0.

38
27

.0
7

0.
11

0.
14

12
.4

25
.0

64
.5

0.
06

0.
88

4.
17

0.
19

11
.3

9

6
r

1.
07

1.
36

0.
19

1.
06

0.
46

5.
31

17
.5

2
0.

14
1.

02
0.

31
1.

12
0.

32
2.

76
0.

40
17

.0
4

0.
15

0.
21

6.
0

14
.6

35
.8

0.
02

0.
17

3.
33

0.
09

17
.8

7
M

in
0.

34
0.

79
0.

25
0.

00
0.

00
0.

96
4.

39
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
13

.2
5

0.
00

0.
00

4.
0

12
.8

30
.1

0.
03

0.
62

2.
11

0.
08

0.
33

M
ax

3.
92

4.
77

0.
87

3.
24

1.
45

16
.5

1
57

.8
1

0.
39

3.
40

0.
90

3.
06

0.
87

7.
79

1.
10

66
.4

9
0.

45
0.

58
22

.0
59

.5
14

4.
7

0.
10

1.
12

11
.5

4
0.

36
52

.8
5

A
lla

ni
te

(A
ln

),
LA

-IC
PM

S,
th

in
se

ct
io

n
G

N
M

H
17

A
ve

ra
ge

44
,6

68
92

,2
72

9,
43

0
32

,5
71

3,
48

6
26

8
3,

63
5

15
3

37
5

44
15

6
8

48
5

1,
00

9
73

1
17

0
18

7,
93

5
4,

42
5

19
3,

37
0

4.
38

1.
00

0.
37

2.
15

46
.0

4

EP
M

A
,t

hi
n

se
ct

io
n

G
N

M
H

5
6

r
30

,3
91

53
,7

09
4,

98
2

15
,0

77
1,

63
5

15
0

2,
01

2
70

17
7

22
75

4
26

3
48

7
1,

01
7

14
5

11
8,

08
1

2,
35

5
12

0,
77

5
0.

88
0.

04
0.

19
0.

90
14

.8
6

M
in

10
,3

26
23

,9
35

3,
23

0
14

,0
01

1,
26

7
78

1,
64

9
60

79
10

68
2

13
2

26
1

24
45

55
,3

33
1,

95
4

58
,6

09
2.

36
0.

94
0.

18
0.

59
22

.4
8

M
ax

14
3,

41
9

25
7,

20
0

23
,9

42
74

,5
39

7,
29

0
63

5
8,

94
9

32
6

79
8

97
35

3
18

10
7

12
2,

13
1

3,
22

5
55

9
50

6,
70

1
10

,6
60

51
9,

49
3

5.
74

1.
08

0.
92

3.
74

95
.9

2
LA

-IC
PM

S,
th

in
se

ct
io

n
G

N
JJ

1
A

ve
ra

ge
30

,5
73

65
,9

40
7,

50
0

29
,5

02
2,

92
9

23
9

59
4

49
17

1
22

50
4

25
3

60
2

27
5

45
17

,7
93

91
9

19
,3

14
2.

03
0.

99
1.

50
0.

49
13

.8
2

EP
M

A
,t

hi
n

se
ct

io
n

G
N

JJ
10

6
r

7,
32

1
15

,8
32

2,
75

1
7,

78
2

1,
20

7
N

D
N

D
N

D
N

D
N

D
N

D
N

D
N

D
N

D
N

D
N

D
N

D
N

D
N

D
N

D
N

D
0.

14
N

D
N

D
N

D
M

in
12

,6
21

25
,4

67
2,

07
4

10
,9

42
1,

53
0

N
D

N
D

N
D

N
D

N
D

N
D

N
D

N
D

N
D

N
D

N
D

N
D

N
D

N
D

N
D

N
D

0.
84

N
D

N
D

N
D

M
ax

38
,3

62
79

,4
93

11
,3

36
39

,6
55

5,
65

7
N

D
N

D
N

D
N

D
N

D
N

D
N

D
N

D
N

D
N

D
N

D
N

D
N

D
N

D
N

D
N

D
1.

31
N

D
N

D
N

D
Ba

st
ne

si
te

(B
st

)
LA

-IC
PM

S,
th

in
se

ct
io

n
G

N
M

H
1

6,
87

4
11

,6
26

1,
13

9
3,

84
7

22
9

8
38

5
8

4
0.

40
10

0.
05

0.
41

0.
05

9
12

7
3

23
,7

24
40

8
24

,1
41

6.
10

0.
95

0.
13

4.
51

54
9.

81

LA
-IC

PM
S,

th
in

se
ct

io
n

G
N

JJ
2

58
,9

51
76

,5
65

10
,2

72
37

,8
07

4,
10

4
30

4
3,

12
0

11
8

24
1

22
86

2
13

1
62

8
32

,3
30

72
18

8,
00

2
3,

60
3

19
2,

23
2

5.
47

0.
71

0.
40

2.
15

13
9.

49

50
,2

12
63

,9
08

8,
47

9
29

,2
93

3,
01

4
23

4
2,

31
4

82
14

1
13

63
1

8
1

35
4

28
,5

55
42

15
5,

14
1

2,
62

3
15

8,
11

7
6.

20
0.

71
0.

42
2.

50
16

5.
81

Ti
ta

ni
te

(T
tn

)
LA

-IC
PM

S,
th

in
se

ct
io

n
G

N
JJ

5
A

ve
ra

ge
51

7
2,

69
1

63
3

4,
11

4
1,

57
3

39
0

1,
30

4
21

3
1,

27
1

23
2

64
9

98
64

5
73

6,
70

6
58

27
8

9,
91

8
4,

48
5

21
,1

08
0.

24
1.

07
1.

33
0.

05
1.

15

6
r

97
51

3
12

3
88

4
44

5
57

42
0

70
40

5
67

17
9

24
13

7
13

1,
73

9
19

45
1,

97
2

1,
31

3
4,

84
6

0.
03

0.
01

0.
28

0.
01

0.
12

M
in

40
6

2,
11

5
50

5
3,

34
4

1,
27

6
31

5
1,

01
1

16
5

98
9

18
3

51
5

78
53

8
64

5,
46

9
38

22
4

8,
08

6
3,

60
3

17
,3

49
0.

20
1.

06
1.

00
0.

04
1.

03
M

ax
59

4
3,

14
4

78
3

5,
42

4
2,

32
0

46
1

2,
01

8
33

3
1,

96
7

34
7

95
6

13
9

88
2

96
9,

72
0

78
32

1
12

,7
09

6,
73

8
29

,1
67

0.
28

1.
08

1.
67

0.
07

1.
32

A
pa

tit
e

(A
pt

)
LA

-IC
PM

S,
th

in
se

ct
io

n
G

N
JJ

1
11

4
36

6
70

44
7

15
2

71
15

4
21

11
7

23
64

9
55

9
73

2
5

18
1,

21
9

45
1

2,
40

2
0.

94
2.

18
0.

11
1.

61

LA
-IC

PM
S,

th
in

se
ct

io
n

G
N

M
H

14
A

ve
ra

ge
15

.6
8

92
.1

3
25

.1
8

20
0.

51
91

.2
2

19
.4

8
11

0.
34

18
.3

7
11

1.
00

21
.6

5
56

.5
8

6.
84

39
.0

7
5.

43
61

1.
18

0.
08

10
.1

7
44

4.
2

36
9.

3
1,

42
4.

7
0.

13
1.

07
0.

97
0.

02
1.

69

6
r

19
.8

5
96

.9
5

22
.7

3
14

5.
96

39
.3

1
8.

90
37

.6
3

6.
39

39
.8

3
7.

67
19

.5
1

2.
32

13
.1

6
1.

76
21

3.
30

0.
16

5.
27

32
6.

3
16

3.
1

59
8.

3
0.

08
0.

08
0.

47
0.

03
0.

59

Geochemistry, Geophysics, Geosystems 10.1029/2018GC007453

BRAUN ET AL. 1621



Ta
b

le
2.

(c
on

tin
ue

d)

M
in

er
al

m
et

ho
d,

sa
m

pl
e

N
um

be
r

of
an

al
ys

es
La

(m
g/

g)
C

e
(m

g/
g)

Pr
(m

g/
g)

N
d

(m
g/

g)
Sm

(m
g/

g)
Eu

(m
g/

g)
G

d
(m

g/
g)

Tb
(m

g/
g)

D
y

(m
g/

g)
H

o
(m

g/
g)

Er
(m

g/
g)

Tm
(m

g/
g)

Yb
(m

g/
g)

Lu
(m

g/
g)

Y
(m

g/
g)

Th
(m

g/
g)

U
(m

g/
g)

P LR
EE

(m
g/

g)

P H
RE

E
(m

g/
g)

P RE
Y

(m
g/

g)
LR

EE
/

H
RE

E N

C
e/

C
e*

Eu
/

Eu
*

La
/

Sm
N

G
d/

Yb
N

M
in

1.
08

6.
03

1.
90

22
.3

5
26

.8
4

6.
93

63
.9

1
9.

97
57

.6
5

11
.2

1
29

.6
2

3.
74

21
.7

8
3.

25
32

4.
11

0.
00

3.
48

70
.1

20
1.

2
76

8.
9

0.
03

0.
96

0.
53

0.
00

1.
29

M
ax

75
.1

2
31

3.
59

73
.1

7
48

6.
18

15
5.

96
37

.8
2

16
7.

80
31

.2
0

19
7.

19
37

.9
1

96
.3

1
11

.1
7

59
.8

7
8.

17
1,

05
4.

91
0.

62
22

.1
3

1,
07

0.
4

60
9.

2
2,

04
7.

7
0.

27
1.

16
1.

85
0.

08
3.

01
M

on
az

ite
(M

nz
)

EP
M

A
,s

tr
ea

m
be

d
se

di
m

en
t

60
A

ve
ra

ge
12

1,
86

7
24

9,
08

4
26

,8
61

86
,2

62
15

,0
70

<
D

L
29

,5
41

<
D

L
<

D
L

<
D

L
<

D
L

<
D

L
<

D
L

<
D

L
6,

63
4

46
,8

94
1,

53
8

49
9,

14
4
<

D
L

<
D

L
N

D
N

D
N

D
N

D
N

D

6
r

16
,5

08
18

,5
93

2,
97

1
11

,9
42

4,
94

5
<

D
L

4,
49

5
<

D
L

<
D

L
<

D
L

<
D

L
<

D
L

<
D

L
<

D
L

3,
89

6
20

,3
05

1,
05

6
26

,8
86

<
D

L
<

D
L

N
D

N
D

N
D

N
D

N
D

M
in

87
,7

40
20

7,
80

6
20

,0
80

60
,1

00
9,

12
9

<
D

L
19

,7
81

<
D

L
<

D
L

<
D

L
<

D
L

<
D

L
<

D
L

<
D

L
39

4
10

,6
33

0
41

9,
32

3
<

D
L

<
D

L
N

D
N

D
N

D
N

D
N

D
M

ax
15

4,
76

1
28

9,
08

4
35

,4
60

12
1,

82
9

28
,7

42
<

D
L

44
,0

73
<

D
L

<
D

L
<

D
L

<
D

L
<

D
L

<
D

L
<

D
L

24
,9

62
13

9,
72

7
5,

02
4

55
8,

09
3
<

D
L

<
D

L
N

D
N

D
N

D
N

D
N

D
LA

-IC
PM

S,
st

re
am

be
d

se
di

m
en

t
25

A
ve

ra
ge

13
6,

26
7

23
7,

47
0

25
,4

28
95

,4
57

16
,1

72
58

1
11

,5
53

1,
22

8
4,

58
2

60
5

1,
05

3
79

32
6

27
14

,1
01

45
,2

24
1,

15
7

51
1,

37
6

19
,4

53
54

4,
93

1
3.

50
0.

92
0.

21
1.

51
34

.3
8

6
r

13
,8

81
2,

08
6

16
,6

84
6,

71
4

56
9

5,
73

7
74

1
2,

96
7

41
3

71
7

59
24

4
21

9,
27

3
24

,0
17

99
5

17
,1

85
10

,5
13

35
,1

00
1.

76
0.

03
0.

20
0.

70
29

.4
4

M
in

11
1,

26
9

22
,6

24
75

,5
27

7,
55

6
10

4
4,

89
2

34
8

1,
05

2
13

4
26

5
13

47
3

3,
17

7
7,

83
4

74
49

1,
18

7
6,

80
0

51
1,

12
7

1.
21

0.
87

0.
03

0.
52

10
.4

4
M

ax
15

8,
15

9
31

,0
46

14
3,

15
7

34
,4

19
2,

64
7

27
,9

25
3,

30
4

12
,6

84
1,

59
0

2,
52

8
18

5
75

7
58

35
4,

86
11

1,
68

5
3,

47
0

56
7,

61
6

49
,0

31
65

2,
13

3
7.

73
0.

99
1.

12
3.

14
12

0.
24

Xe
no

tim
e

(X
nt

)
LA

-IC
PM

S,
st

re
am

be
d

se
di

m
en

t
8

A
ve

ra
ge

11
0

93
0

34
3

3,
92

1
5,

33
4

54
2

16
,3

86
5,

06
8

41
,8

79
10

,4
96

31
,9

78
4,

57
6

30
,5

54
3,

90
3

30
9,

62
1

3,
12

9
2,

84
4

11
,1

80
14

4,
84

1
46

5,
64

2
0.

00
8

1.
09

0.
27

0.
00

0.
32

6
r

20
12

5
37

32
8

45
9

29
7

70
2

26
0

2,
01

6
26

9
1,

25
1

44
6

4,
09

7
59

2
0

1,
40

6
71

8
1,

02
4

7,
50

7
8,

19
1

0.
00

1
0.

04
0.

14
0.

00
0.

05
M

in
75

68
0

26
9

3,
25

1
4,

59
3

19
6

14
,9

48
4,

66
1

37
,9

66
9,

89
7

29
,9

64
3,

75
1

25
,0

35
3,

03
1

30
9,

62
1

1,
49

9
1,

94
2

9,
20

5
13

3,
30

0
45

3,
50

9
0.

00
7

1.
07

0.
10

0.
00

0.
27

M
ax

14
2

1,
12

9
40

3
4,

44
5

6,
06

1
93

9
17

,5
57

5,
51

3
44

,3
06

10
,7

22
33

,4
68

5,
05

8
36

,0
91

4,
39

0
30

9,
62

1
5,

91
9

3,
85

0
12

,4
42

15
4,

31
1

47
5,

64
5

0.
00

9
1.

18
0.

44
0.

00
0.

38
Th

or
ite

(T
hr

)
EP

M
A

,s
tr

ea
m

be
d

se
di

m
en

t
3

A
ve

ra
ge

4,
77

5
11

,1
56

4,
35

8
9,

54
5

7,
23

1
1,

13
1

6,
01

5
<

D
L

6,
62

2
<

D
L

<
D

L
<

D
L

<
D

L
<

D
L

11
2,

13
1

55
6,

87
0

16
,1

31
32

,5
03

10
,4

30
15

5,
06

3
N

D
N

D
N

D
N

D
N

D

6
r

96
8

2,
40

3
<

D
L

5,
00

2
76

7
64

4,
66

0
<

D
L

1,
60

2
<

D
L

<
D

L
<

D
L

<
D

L
<

D
L

22
,5

90
31

,5
65

15
,3

45
13

,6
53

8,
44

3
50

3
N

D
N

D
N

D
N

D
N

D
M

in
4,

09
3

8,
62

3
<

D
L

3,
77

2
6,

68
8

1,
08

6
69

4
<

D
L

5,
48

9
<

D
L

<
D

L
<

D
L

<
D

L
<

D
L

98
,1

93
53

4,
75

4
7,

14
0

16
,7

44
69

4
15

4,
67

9
N

D
N

D
N

D
N

D
N

D
M

ax
5,

88
3

13
,4

04
<

D
L

12
,6

03
7,

77
3

1,
17

6
9,

37
0

<
D

L
7,

75
5

<
D

L
<

D
L

<
D

L
<

D
L

<
D

L
13

8,
19

5
59

3,
01

8
33

,8
49

40
,7

49
15

,7
36

15
5,

63
3

N
D

N
D

N
D

N
D

N
D

a Th
e

U
C

C
-n

or
m

al
iz

ed
ra

tio
s

an
d

an
om

al
ie

s
ar

e
al

so
re

po
rt

ed
.

Geochemistry, Geophysics, Geosystems 10.1029/2018GC007453

BRAUN ET AL. 1622



4.3. Ferralsol and Vertisol
4.3.1. Soil Composition
The UCC-normalized patterns are displayed in Figure 8. In the ferralsol and vertisol profiles, the average ele-
mental contents (in mg/g) are similar with 155 and 124 of REY, 1.2 and 1.1 of U, 9.1 and 6.9 of Th, and 147
and 120 of P, respectively (Table 1). The UCC-normalized patterns for the soil profiles (Figure 8) show vari-
able and significant ranges of Ce-anomalies from positive to negative (0.3<Ce/Ce*< 3.0) and Gd/YbN (0.5–
1.2) and slight for Eu-anomalies (0.9< Eu/Eu*< 1.2) and La/SmN (0.6–1.1).
4.3.2. Soil Mineralogy
The ferralsol matrix is composed of clay minerals (mainly kaolinite), iron oxides, and oxyhydroxides (mainly
goethite) with abundant primary resistant crystals of amphibole, Na-plagioclase, K-feldspars, epidote, and
quartz (Braun et al., 2009). At 100–120 cm depth, the brighter crystals in BSE encompass tiny grains (less
than 10 mm) of sulphides (Fe, Pb), sulphates (Ba), oxides (Fe, Ti, Cr, Zr), and carbonates (Pb). Crystals of sec-
ondary rhabdophane (LREEPO4.nH2O) and residual zircon (ZrSiO4) between 1 and 5 mm in length were
observed. In the deeper horizon (300–320 cm), the same minerals with similar grain sizes are also found. In
addition, authigenic LREE carbonates and cerianite (CeO2) are also present along with resistant xenotime
(YPO4).
4.3.3. Soil Elemental Extractions
The results of the soil extraction experiments including the elemental contents (REY, U-Th, Zr-Ti, and Fe-Ca-
Na-P) for bulk sample analyses (fusion for both bulk and sand size fraction and acid digestion for silt 1 clay
and clay size fractions) and leaching experiments (NH4Ac 1 M, HCl 0.5 M, and HCl 5 M), are listed in support-
ing information Data set S5.

The estimates of cumulative per cent of recovery (PER) and the residual part (REL) for both bulk and grain
size fractions are also reported. The ferralsol WP1 100–120 cm and vertisol WP5 100–120 cm are composed
of 34% and 26% of sand, 15% and 25% of silt, and 51% and 49% of clays, respectively. The bar graphs of
Figure 9 display the respective PERs and REL for the bulk soil samples and the different grain size fractions
for ferralsol and vertisol, respectively.

The Fe reservoir is mostly located in the silt 1 clay size fraction. In both bulk soil samples, Fe reservoir is
allocated by decreasing order within the well-crystallized oxides and oxyhydroxides (PERFe-HCl5M-ferral. �
PERFe-HCl5M-vert. 5 62–63%), the poorly crystallized oxides and oxyhydroxides (PERFe-HCl0.5M-ferral. 5 35%;
PERFe-HCl0.5M-vert. 5 18%) and the residual pool (RELFe-ferral. 5 3%; RELFe-vert. 5 19%). In both bulk soil samples,
the Ca reservoir is mostly distributed between the cation exchangeable pool (PERCa-NH4Ac-ferral. 5 51%;
PERCa-NH4Ac-vert. 5 38%) and in the residual pool (RELCa-ferral. 5 34%; RELCa-vert. 5 49%) attesting the presence
of residual plagioclase and amphibole crystals. The P and Na reservoirs are both slightly recovered from the
HCl 5 N extraction, the larger parts remaining in the residual pool (plagioclase crystals for Na). The Zr and Ti
reservoirs essentially remain in the residue and hence are kept in resistant insoluble minerals (e.g., zircon,
TiO2).

Table 3
LREE, HREE, Y, U, and Th Abundances in the Different Gneiss-Forming Accessory Mineralsa

P
LREE mg/g

P
HREE mg/g Y mg/g Th mg/g U mg/g

Mnz 505,000 Xnt 145,000 Xnt 305,000 Thr 560,000 Thr 16,100
Bst 170,000 Thr 116,000 Thr 114,000 Mnz 46,000 Xnt 2,800
Aln 190,000 Mnz 19,500 Mnz 14,100 Bst 30,000 Mnz 1,300
Xnt 11,200 Ttn 4,500 Ttn 6,700 Xnt 3,100 Ttn 300
Ttn 10,000 Aln 4,400 Aln 1,000 Aln 730 Aln 170
Thr 9,000 Bst 3,000 Zrn 700 Ttn 60 Zrn 160
Apt 450 Zrn 520 Apt 600 Zrn 60 Bst 50
Epd 50 Apt 370 Bst 500 Na-Plg 0.40 Apt 10
Na-Plg 20 Epd 35 Epd 50 Epd 0.20 Epd 0.25
Zrn 12 Bit 25 Bit 25 Bit 0.10 Bit 0.15
Bi 12 Na-Plg 2 Na-Plg 3 Apt 0.10 Na-Plg 0.10

aThe mineral abbreviations are used in the table as follows: Mzn 5 monazite, Xtn 5 xenotime, Thr 5 thorite, Zrn 5 zir-
con, Apt 5 apatite, Epd 5 epidote, Na-Plg 5 Na-plagioclase, Bi 5 biotite, Aln 5 allanite, Bst 5 bastnesite, and
Ttn 5 titanite.
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Both LREE-Ce (i.e., LREE minus Ce) reservoirs are accumulated in the silt 1 clay size fractions while Ce
is in the sand size fraction associated with Na. In both soils, the LREE-Ce reservoirs are mostly accu-
mulated within the poorly crystalized iron oxides and oxy-hydroxides (PERLREE-Ce-HCl0.5M-ferral. 5 75%;
PERLREE-Ce-HCl0.5M-vert. 5 59%) rather than the well-crystallized ones (PERLREE-Ce-HCl5M-ferral. 5 24%;
PERLREE-Ce-HCl5M-vert. 5 26%). The LREE-Ce reservoir linked to ion-exchangeable pool is very low
(PERLREE-Ce-NH4Ac-1M � 1%). The allocation of HREE is similar to that of LREE-Ce with most of the res-
ervoir in the poorly crystalized iron oxides and oxy-hydroxides. However, both PERHREE-HCl5M and
PERHREE-HCl0.5M decrease as the HREE atomic numbers increase. Correspondingly, the residual parts
increase toward the heaviest HREE (RELHREE-ferral. 5 11%; RELHREE-vert. 5 28%). The allocation of Y is
similar to those of HREE (Tb-Dy).

Most of the Th reservoir is located in the silt 1 clay size fraction. About one third of Th remains in the resid-
ual pool (RELTh-ferral. 5 31% and RELTh-vert. 5 34%). Th is mostly extracted by HCl 5 M (well-crystallized oxides
and oxy-hydroxides). The main U reservoir is located in the silt 1 clay size fraction. A large fraction remains

Figure 5. UCC-normalized REY-Th-U patterns of accessory minerals: (a) xenotime, thorite and zircon, (b) titanite and
apatite, (c) allanite and bastnesite, (d) monazite and major minerals, (e) epidote, Na-plagioclase and biotite from gneissic
samples (GNMH, MHSS). The shadowed areas represent the variability. The UCC-normalized REY-Th-U pattern for average
gneiss (GNAV) and its variability are added.
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in the residual part (RELU-ferral. 5 52% and RELU-vert. 5 75%). U is mostly
extracted by HCl 0.5 N (poorly crystallized oxides and oxy-hydroxides).

4.4. Streambed and Suspended Sediments Composition
The statistics for the streambed and suspended sediment REY-Th-U
contents are reported in Table 1 and the UCC-normalized patterns in
Figure 10. The suspended sediment composition is constant irrespec-
tive of the sampling period of the year. The average contents (in mg/g)
are of 135 6 7 for

P
REY, 7.5 6 0.3 for Th and 1.4 6 0.2 for U. Their

UCC-normalized patterns show a slight depletion in LREE, Th and U
close to those of the clay 1 silt size fraction of both vertisol and ferral-
sol. However, there is a discrepancy with respect to the Ce anomaly.
The suspended sediment patterns do not show any Ce-anomaly while
the clay 1 silt size fraction of ferralsol displays a positive Ce-anomaly
and vertisol show a negative Ce-anomaly. Compared to bulk soils and
suspended sediments, the streambed sediment REY-Th-U contents
are very low with average (in mg/g) of 28 6 4 for

P
REY, 0.3 6 0.1 for U

and 1.3 6 0.5 for Th. The UCC-normalized pattern of streambed sedi-
ments is similar to those of the fine sand grain size fraction of both
vertisol and ferralsol however, in contrast, has a stronger positive Ce-
anomaly.

5. Discussion

5.1. REY-Th-U Bearing Mineral Assemblage in Gneiss, Elemental
Contribution, and Sensitivity to Chemical Weathering
5.1.1. Effect of Hydrothermal Fluids on the Paragenesis of the
REY-Th-U Bearing Accessory Suite
The presence of detrital, rounded monazite and xenotime grains in

the streambed sediments clearly points out that both minerals do exist in unidentified gneissic domains at
the watershed scale. Though, we neither observe any of these minerals in thin sections nor in parent gneiss
mineral separates, we can reasonably argue that magmatic monazite crystals may have been incompletely
replaced into allanite and apatite during hydrothermalism event. Numerous studies reported that the
replacement of magmatic monazite by allanite and apatite is a common feature. For instance, partial
replacement of accessory magmatic monazite by allanite-apatite-epidote paragenesis was observed in per-

aluminous granite metamorphosed under amphibolite facies condi-
tions (Finger et al., 1998). Electron microprobe analyses suggest that
P, REY, Th and U released from monazite breakdown were redistrib-
uted in the newly formed allanite, apatite and epidote, thus support-
ing the hypothesis that these trace elements were highly immobile
during metamorphism. Finger et al. (1998) also showed that the mon-
azite stability strongly depends on the armoring of the crystals by
minerals with low intracrystalline diffusion coefficient. Late low-
temperature alteration also affects the stability of monazite (Berger
et al., 2008; Poitrasson et al., 2000; Seydoux-Guillaume et al., 2012).
Berger et al. (2008) thoroughly described late low-temperature alter-
ation of monazite and allanite in magmatic and metamorphic rocks of
Madagascar associated with micro-fissures predominantly affecting
the accessory minerals. They found that monazite and thorite were
replaced by thorogummite (Th,U)[(SiO)4(OH)4) and rhabdophane
(LREEPO4H2O), respectively, and allanite was replaced by bastnesite
(LREECO3F). Furthermore, Th-rich minerals (monazite, thorite) were
more affected by alteration than Th-poor phases, probably due to the
effect of metamictization. In the hydrothermally altered Soultz mon-
zogranite, Middleton et al. (2013) also reported the conditions for

Figure 6. Evolution of the composition of leucocratic gneiss (GNMH) acid
leaching experiments normalized to GNMH: (a) LREE, HREE, Th, and U, (b)
La/Sm, Gd/Yb, Ce/Ce*, and Eu/Eu*.

Figure 7. UCC-normalized REY-Th-U patterns for the average saprolite and
parent gneiss. The shadowed areas (rose for saprolite and purple for gneiss)
represent the variability.
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accessory mineral destabilization and the complexity of secondary assemblages. Allanite crystals were also
later affected by CO3-F rich pervasive hydrothermal fluids and replaced by bastnesite and an amorphous
alumina-silicate phase, the bastnesite crystals being enriched in Th as compared to allanite. Phosphates or
fluoro-carbonates dominate the alteration products of titanite. It is thus germane to argue that both meta-
morphism and hydrothermal activity profoundly modified the REY-Th-U accessory assemblage at the Mule
Hole watershed scale with various intensities and timings.
5.1.2. Control of REY-Th-U Reservoir by Primary Bearing Minerals and Their Breakdown Aptitude
In order to quantitatively establish which are the minerals controlling the availability of the REY-Th-U reser-
voir to chemical weathering at the watershed scale, we estimate the modal abundances of the REY-Th-U
bearing minerals (monazite, xenotime, allanite, bastnesite, titanite, and apatite; see Table 3) with a linear
inverse method using least squares criterion (Tarantola & Valette, 1982). The solution and error are given by
equations (47) and (48) in Tarantola & Valette (1982):

x̂5 AT � C21
y0y0
� A

� �21
� C21

y0y0
� y0

Cx̂ x 5 AT � C21
y0y0
� A

� �21

Where y0 is the chemical composition vector of the rock, A is the matrix of the mineral compositions and x̂
is the a posteriori solution (modal abundance vector), C21

y0y0
is the inverse of the covariance matrix and Cx̂ x is

the a posteriori error covariance of the solution. The residuals are calculated by y02ŷ , where ŷ 5 Ax̂ .

From the observation that streambed sediments only contain monazite and xenotime grains as resistant REY-
Th-U bearing minerals, it can be deduced that weathering processes completely breakdown allanite, bastnesite,

Figure 8. UCC-normalized REY-Th-U patterns for the soil cover with ferralsol (WP1) between (a) 0 and 120 cm and (b) 120 and 360 cm and vertisol (WP5) between
(c) 0 and 120 cm and (d) 120 and 220 cm. The average parent gneiss pattern is also indicated (red line).
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titanite, and apatite in the regolith. Assuming that the REY-Th-U contained in monazite and xenotime crystals at
the watershed scale is not affected by weathering processes (Sengupta & Gosen, 2016), this latter has to be
deduced from the available pool. Hence, the matrix y�0 of the elemental contents ( E½ 
Mnz1Xnt) with E5LREE; HRE
E; Y; U; Th related to these resistant minerals in the average gneiss (GNAV) is determined by:

E½ 
Mnz1Xnt5
qsoil average � E½ 
stream sed

qGNAV � E½ 
GNAV

Figure 9. Cumulative bar graphs for the extraction experiments for ferralsol (WP1 100–120 cm) and vertisol (WP5 100–
120 cm): (a, b) bulk soil, (c, d) fine sand size fraction, (e, f) silt 1 clay size fraction, and (g, h) clay size fraction. The graphs
display the elemental proportions recovered from the exchangeable pool (light green), the well (orange) and poorly (red)
crystallized oxides and oxyhydroxides pools and the residual pool (black).
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where E½ 
GNAV and E½ 
stream sed are the average contents of LREE, HREE,
Y, U, and Th (in mg/g) in the parent gneiss (GNAV) and in the bulk
stream sediment (SSAV) and qGNAV and qsoil average the densities of the
gneiss and of the bulk soil cover, respectively. We assume that the
streambed sediments are derived only from the erosion of the first
2 m of regolith at the watershed scale. Estimated modal abundances
of monazite and xenotime at the watershed scale are very low with
values of 3.3 3 1023 vol% and 2.6 3 1024 vol%, respectively (Table 4).

We then corrected the values y02y�0
� �

from parent gneiss to estimate
the modal abundances of the other minerals: allanite, bastnesite, titanite
and apatite (matrix A�). Table 4 sums up the bulk compositions and stan-
dard deviations (GNAV, SSAV), calculated modal abundances and their
errors, estimated bulk compositions (ŷ ) and associated residuals, and the
contributions from each mineral to the whole rock. The control of zircon
on elemental reservoirs is insignificant and is not reported in the Table 4.

Both resistant monazite and xenotime account for about 10% of the
LREE and HREE reservoir, about 14% of the Th and Y reservoir but only
7% of the U reservoir. Both minerals are prone to relative accumula-
tion within the weathering profile leading to potential accumulation

of REY-Th-U. The reactive accessory minerals, broken down during the first stage of weathering, are then
able to release 86% of Th and Y, 90% of REE (except Eu) and 93% of U (Table 4). Allanite dominates for LREE
(51%), titanite for HREE (66%), Y (77%) and U (78%) and bastnesite for Th (81%). Apatite controls only 12%
of the whole REY-Th-U reservoir. Moreover, an estimate based on the gneiss modal abundance of Na-
plagioclase (38 6 11%vol; Braun et al., 2009) indicates that this mineral accounts for about 60% of the Eu
reservoir (low Eu concentration but elevated modal abundance). Therefore, the Na-plagioclase breakdown
will have an impact on Eu mobility and transfer, inferred from the magnitude of the Eu-anomaly in the flu-
ids. The leaching experiments of the hydrothermalized leucocratic gneiss end-member (GNMH), free of

Figure 10. UCC-normalized REY-Th-U patterns for the suspended and stream-
bed sediments compared to the patterns of soil grain size fractions (silt 1 clays
and fine sand) from ferralsol and vertisol at 100–120 cm depth.

Table 4
REY-Th-U Average Composition of the Gneiss, Stream Sediments, and Modal Abundances and Contribution to the Whole
Rock of Main REY-Th-U Bearing Accessory Minerals at the Watershed Scale

n Density (g/cm3)
P

LREE (mg/g)
P

HREE (mg/g) Y (mg/g) U (mg/g) Th (mg/g)

Average gneiss (y0) 33 2.74 161.0 16.9 23.6 0.8 8.7
6r 0.05 107.4 16.3 22.7 0.5 6.2
Average stream sediments 4 1.77 22.4 2.3 3.3 0.3 1.3
6r 0.21 3.8 0.6 1.0 0.1 0.5
y* 14.48 1.48 2.13 0.17 0.84
Estimate 14.53 1.57 2.58 0.05 1.30
Residual 0.11 0.09 0.45 20.12 0.46
y02y* 146.5 15.4 21.5 0.6 7.8
Estimate 145.3 12.8 15.7 0.7 7.9
Residuals 21.2 22.6 25.8 0.1 0.0

Mode
6r

Mineral contribution to the whole rock
composition (%)

% LREE HREE Y U Th

Aln 0.04 0.06 51 13 2 10 3
Bst 0.02 0.02 27 6 1 2 81
Ttn 0.23 0.16 13 66 77 78 1
Apt 0.17 0.06 0 4 6 2 0
Mnz 3.3E-03 2.0E-06 9 4 2 4 14
Xnt 2.6E-04 2.9E-06 0 7 12 3 0
% of REY-Th-U prone to

chemical weathering
91 89 86 93 86

(Aln 1 Bst 1 Ttn 1 Apt)
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resistant monazite and xenotime, show, in the first step, a quick breakdown of the accessory minerals with
significant negative Eu-anomalies (0.1< Eu/Eu*< 0.4), likely allanite and bastnesite. The increase of the Eu/
Eu* at the end of the experiment indicates the slight dissolution of Na-plagioclase (Eu/Eu* 5 28).

5.2. Long-Term Fractionation and Redistribution of REY-Th-U
In order to discuss the fractionation and redistribution of REY-Th-U in the regolith on a long-term basis, we
combined open-system mass fraction transport function sj;w based on bulk analyses with the results of
both mineralogical investigations and soil leaching experiments. Figure 11 displays the elemental loss/gain
depth profiles.

Figure 11. Calculated s for LREE-Ce (LREE minus Ce), Ce, HREE, Y, Th, U, and selected major elements (Fe, Ca, Na, P)
referenced to Ti in (a) the thin ferralsol/saprolite depth profile of ridge top (WP3), (b,c) thick ferralsol/saprolite and
vertisol/saprolite depth profiles from downslope (WP1 and WP5), and (d) the saprolite of BH1, BH12, and BH5.
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5.2.1. Rare Earth Elements
In the ridgetop saprolite (Figures 11a and 11d), the LREE-Ce (LREE minus Ce), Ce, HREE, and Y elemental
loss/gain depth profiles are erratic with spikes. The significant variation on the open-system mass fraction
transport functions (sj;Ti) is due to the heterogeneity in the accessory mineral distribution within the parent
gneiss. Overall, the REY losses are not significant in the saprolite and fall mostly in the 620% error range
attested by the very low exports of LREE and HREE by the groundwater at the weathering front (Braun et al.,
2017).

In the ferralsol profile WP1 (downslope) and vertisol profile WP5 (valley), the depth profiles for LREE-Ce,
HREE, and Y are rather uniform with losses of around 240% and 250% on an average (Figures 11b and
11c). For the vertisol profile WP5, the depletion sj;w profiles were already presented in Violette et al. (2010b).
Compared to the previous calculations, the displayed sj;w values slightly differ due to the re-evaluation of
the Ti content of the average gneiss (2,377 mg/g instead of 2,018 mg/g in the former calculation, leading to
a shift of 115%, within the limits of the error bars of 20% for the mass balance). By contrast, within the
eroded ridgetop profile WP3, the LREE-Ce, HREE, and Y loss/gain depth profiles are erratic with spikes alike
in the underlying saprolite (BH5). The soil profiles are, on average, depleted in LREE-Ce and HREY with sig-
nificant average losses (sLREE2Ce;Ti 5 249% 6 7) and (sHREY;Ti 5 243% 6 5), respectively. Irrespective of the
soil profile, the sCe;Ti depth profiles display significant peaks corresponding to positive Ce-anomalies related
to the accumulation of cerianite (Braun et al., 1998a), with the most pronounced Ce/Ce* reaches 3.0 (WP3).
These losses are of the same magnitude for redox-sensitive Ce (sCe;Ti 5 253% 6 9).

In the soil cover, the LREE-Ce reservoir is controlled by poorly crystallized secondary Fe oxides and oxyhydr-
oxides, pH-dependent secondary phosphate minerals, and climate-sensitive pedogenic carbonates (Violette
et al., 2010b). The residual LREE pool (i.e., resistant monazite) does not control a significant amount of LREE,
which is, however, more important for vertisol (10%), than for ferralsol (< 1%). The poorly crystallized sec-
ondary Fe oxides and oxyhydroxides similarly control HREY (Figure 9) while the resistant phases, likely xeno-
time, control about 30% of HREY in vertisol against only 10% in ferralsol.

For LREE-Ce, even if the presence of rhabdophane is observed, aluminous phosphates of the alunite super-
group, crandallite subgroup can also be foreseen (e.g., La-florencite [(La)Al3(PO4)2(OH)6]; Braun et al., 1990,
1998a). The contribution of pedogenic carbonates to the LREE-Ce reservoir can be assessed by taking into
account the average CaCO3 contents in the bulk soil samples. In the soil profiles, the CaCO3 contents range
from below the detection limit (<1 g/kg) to maximum values of 1.2 g/kg in the ferralsol (WP1) and 15.5 g/
kg in the vertisol (WP5). The average LREE-Ce content of 1 g of CaCO3 is about of 320 6 280 mg/g (Violette
et al., 2010b). Assuming an average CaCO3 content of 1 g/kg within vertisol and ferralsol profiles, the LREE-
Ce reservoir contained in pedogenic carbonates is about 1%, meaning that these authigenic minerals do
not exert a significant control on LREE-Ce dynamic in the soil cover. Subsequently, simplified calculation car-
ried out to allocate the LREE-Ce reservoir between the iron phases and phosphate minerals assuming that
(i) all P is in rhabdophane [(La)PO4�(H2O), Molecular Weight 5 252 g, 12.3% of P and 55.1% of La], (ii) an
average P content of 140 6 30 mg/g (0.032% of P2O5; Violette et al., 2010a, Appendix A) in soil, and (iii) an
average La content of 26 6 9 mg/g in soil, tell that a maximum of roughly 25% of La (less if we take into
account La-florencite) is likely incorporated in rhabdophane and the remaining 75% are likely to be
adsorbed/occluded on/in poorly crystallized iron oxides and oxyhydroxides. These secondary phases can
incorporate Ce(III) as the other LREE. Ce(IV) can also be controlled by minerals such as Mn–Ba oxides as psi-
lomelane or todorokite in vertisol (Violette et al., 2010b) and cerianite (Ce(IV)O2) in ferralsol (this study).
Coatings of cerianite on framework mineral surfaces (e.g., quartz and plagioclase grains) can explain the
positive Ce-anomaly of the sand size fraction systematically found in WP1 and WP5 (supporting information
Data set S5). Precipitation as secondary phosphates and/or adsorption on clays in the saprolite delays the
LREE leaching in the saprolite and then from soil horizons. Moreover, REE are not available from the
exchangeable pool and would not be easily available for the plant uptake by ion exchange. The plagioclase
breakdown can be foreseen in groundwater by both the magnitude of the average Eu-anomaly (Eu/Eu* 5 5;
Braun et al., 2017) and the significant Na fluxes in the different piezometers (Riotte et al., 2014b).
5.2.2. Thorium
The noteworthy Th accumulation spikes are attributed to the initial heterogeneous distribution of the acces-
sory minerals in the parent material. The loss of Th in ferralsol and vertisol profiles is moderate
(sTh;Ti 5 233% 6 17). The soil reservoir is mostly controlled by the well-crystallized authigenic oxides and
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oxyhydroxides pool (60%) and by the residual pool (30%). The solute export of Th by the groundwater is
extremely low (Braun et al., 2017). Thus, we can hypothesize that Th from the breakdown of bastnesite is
precipitated as pH-dependent thorianite, occluded in iron oxides and oxyhydroxides. A significant fraction
is still preserved and relatively accumulated in resistant minerals (i.e., monazite). As for REE, Th is not avail-
able from the exchangeable pool.
5.2.3. Uranium
Uranium is the only element gained in the soil profiles (sU;Ti 5 119% 6 16). The most important U pools
are the residual phases (50% in ferralsol and 75% in vertisol) and, to a lesser extent, the poorly crystal-
lized iron oxides and oxyhydroxides. U is also not available from the exchangeable pool in soils. Previ-
ous studies have shown that, as for LREE-Ce, U is also enriched in pedogenic carbonates (Violette et al.,
2010b) but with an estimate control less than 1% of the U reservoir. The U fraction associated with
poorly crystallized iron oxides can be adsorbed or occluded in their lattice (Duff et al., 2002). If we con-
sider now the residual part, for instance, in the ferralsol, average U content of 1 mg/g, of which 50% are
in the residual part and assuming that monazite controls this reservoir, then the abundance of monazite
in the soil would be 10 times than that of those of the average parent gneiss (3.3 3 1023% of monazite
accounts for 0.05 mg/g of U, see estimate above). We can also consider that a large part of the U pool
mobilized from the breakdown of titanite (78% of the parent gneiss U reservoir) is leached in the
groundwater at the weathering front prior to the formation of the soil horizons. The significant ground-
water solute U flux, which is 25 times more than for the stream, supports this assumption (Braun et al.,
2017).

5.3. Hydrological Sorting: Solid Vs. Solute Exports and Shape of the REY-U-Th Normalized Patterns of
Suspended and Streambed Sediments
At the watershed scale, the hydrological sorting of sediments by the ephemeral Mule Hole stream is
driven by the intensity of the rainfall events and the turbulent flood flow. While the vegetation on slopes
and valleys tends to slow down the erosion processes, the intensity of overland flow and the instability of
the stream banks, on the opposite, increase them. As a result, the eroded sediments are a mixture of
weathering products (e.g., kaolinite, smectite, iron oxides, and oxyhydroxides), framework minerals
(quartz, plagioclase, amphibole), resistant minerals (e.g., zircon, monazite, xenotime, Ti-oxides), and vege-
tation debris. During the flood events, the turbulent flow mostly exports silt and clays as suspended sedi-
ments. The fine and coarse sandy sediments are deposited in the channel and are moved by rolling,
sliding, and saltation.

In 2005, the suspended sediment export at the Mule Hole was 94 t/km2/yr (620%). The streambed trans-
port is generally thought to be 10% of the total sediment load in a stream (Summerfield, 1991), giving an
estimate of the streambed sediment export of 10 t/km2/yr (620%). Both values allow us to evaluate the
solid fluxes of REY-Th-U. They are reported in Figure 12 along with the solute fluxes from Braun et al.
(2017).

The hydrological sorting affects the distribution of REY-Th-U in different ways. The exports of LREE, HREY,
and Th are, by far, dominated by the suspended sediment fluxes, which represent often more than 96% of
the total exports. This solid export is mainly driven by iron oxides and oxyhydroxides (adsorption/occlusion).
One striking point is that the suspended sediments do not show any Ce-anomaly although both negative
and positive Ce-anomalies are present in soil horizons, especially in the fine sand grain size fractions. To
explain the absence of Ce-anomaly in the suspended sediments, we argue that cerianite (CeO2) is essen-
tially present as nanometric crystal coatings embedding the framework minerals of sandy grain size (i.e.,
quartz and plagioclase grains) (Braun et al., 1998b). When these grains are transported by the draining
water, the fine CeO2 coating can be easily removed and the tiny particles of cerianite are admixed with the
suspended load. The result of the mixing is the smoothing of the UCC-normalized patterns toward Ce/
Ce* 5 1 (Figure 10). Hence the significant and widespread REE fractionation occurring during weathering
processes is canceled by the hydrological sorting of sediments, which confirms the conclusions of Su et al.
(2017).

Conversely, most of the U export is shared between groundwater and suspended sediment (177 and 542
mmol/km2/yr, respectively) (Figure 10). The export by the stream sediments is dominated by adsorption/
occlusion with iron oxides and oxyhydroxides.
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6. Conclusion

The integrated study of the REY-Th-U reservoirs in the Mule Hole CZO allows us to draw the following
hints:

� The main REY-Th-U bearing minerals are allanite, bastnesite, titanite, monazite, xenotime, thorite and apa-
tite. Allanite dominates for LREE (51%), titanite for HREE (66%), Y (77%), and U (78%) and bastnesite for
Th (81%), Plagioclase controls about 60% of the Eu reservoir. Metamorphism and hydrothermal activity
profoundly modified this assemblage over time with various intensities at the watershed scale. The circu-
lation of low-temperature hydrothermal fluids induced the replacement of monazite by allanite and apa-
tite, and allanite by bastnesite.

� The mineralogical control on the REY-Th-U reservoir strongly influences the elemental redistribution
within the regolith and the potential exports of these elements in the draining waters. Reactive acces-
sory minerals (allanite, bastnesite, titanite, and apatite) are broken down in the initial stages of weath-
ering, at the weathering front, allowing 86% (Th, Y) to 93% (U) of the elements to be mobilized and
redistributed among authigenic phases (e.g., phosphates, carbonates, oxides as CeO2 and ThO2),
adsorbed by clays and/or exported by groundwater.

� Monazite and xenotime crystals are generally preserved in the regolith and relatively accumulate before
being exported in streambed sediments.

� Plagioclase breakdown has an impact on the Eu mobility and transfer, which can be inferred from the
magnitude of the Eu-anomaly.

� Though somewhat preserved in the saprolite, about 50% of REY and 30% of Th are lost in the soil cover.
The remaining REY-Th are mostly trapped in secondary iron-related phases (poorly crystallized for REY
and well-crystallized for Th) and, to a lesser extent, in resistant minerals. They are not significantly
linked to the soil exchangeable pool, which indicates that the soil reservoir of REY-Th may not be easily
available for plant uptake by ion exchange. In the stream, the LREE, HREY, and Th exports are mainly
exported as suspended sediments (silt and clays) rather than streambed sediments (in resistant miner-
als) and solutes.

Figure 12. Schematic view of the REY-Th-U fractionation and redistribution from primary bearing to authigenic phases in
the Mule Hole regolith and related solid exports (this study) and solute exports in the stream and groundwater (from
Braun et al., 2017). The mineral abbreviations are: Mzn, monazite; Xtn, xenotime; Aln, allanite; Bst, bastnesite; Ttn, titanite;
Ox-Fe, iron oxides and oxyhydroxides which can adsorb or occlude REY-Th-U; Nm, not measured.
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� The REE fractionation by weathering with either positive or negative Ce/Ce* anomalies is smoothed in
the stream suspended sediments (Ce/Ce* tends toward 1) due to hydrological sorting of silty and clayey
particles.

� Most of the primary U source, located in titanite, is exported by groundwater (U flux is 25 times more
than for the stream). The remaining pool in regolith is either in primary resistant minerals or associated
with iron oxides and oxyhydroxides.
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