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Blind testing of shoreline evolution 
models
Jennifer Montaño1*, Giovanni Coco1, Jose A. A. Antolínez2, Tomas Beuzen   3, Karin R. Bryan4, 
Laura Cagigal   1,2, Bruno Castelle5, Mark A. Davidson6, Evan B. Goldstein   7,  
Raimundo Ibaceta   3, Déborah Idier8, Bonnie C. Ludka   9, Sina Masoud-Ansari1, 
Fernando J. Méndez2, A. Brad Murray10, Nathaniel G. Plant   11, Katherine M. Ratliff   10, 
Arthur Robinet   5,8, Ana Rueda2, Nadia Sénéchal5, Joshua A. Simmons3, Kristen D. Splinter   3,  
Scott Stephens12, Ian Townend   13, Sean Vitousek   14,15 & Kilian Vos   3

Beaches around the world continuously adjust to daily and seasonal changes in wave and tide 
conditions, which are themselves changing over longer time-scales. Different approaches to predict 
multi-year shoreline evolution have been implemented; however, robust and reliable predictions of 
shoreline evolution are still problematic even in short-term scenarios (shorter than decadal). Here we 
show results of a modelling competition, where 19 numerical models (a mix of established shoreline 
models and machine learning techniques) were tested using data collected for Tairua beach, New 
Zealand with 18 years of daily averaged alongshore shoreline position and beach rotation (orientation) 
data obtained from a camera system. In general, traditional shoreline models and machine learning 
techniques were able to reproduce shoreline changes during the calibration period (1999–2014) for 
normal conditions but some of the model struggled to predict extreme and fast oscillations. During the 
forecast period (unseen data, 2014–2017), both approaches showed a decrease in models’ capability to 
predict the shoreline position. This was more evident for some of the machine learning algorithms. A 
model ensemble performed better than individual models and enables assessment of uncertainties in 
model architecture. Research-coordinated approaches (e.g., modelling competitions) can fuel advances 
in predictive capabilities and provide a forum for the discussion about the advantages/disadvantages of 
available models.

Quantitative prediction of beach erosion and recovery is essential to planning resilient coastal communities with 
robust strategies to adapt to erosion hazards. Over the last decades, research efforts to understand and predict 
shoreline evolution have intensified as coastal erosion is likely to be exacerbated by climatic changes1–5. The social 
and economic burden of changes in shoreline position are vast, which has inspired development of a growing 
variety of models based on different approaches and techniques; yet current models can fail (e.g. predicting ero-
sion in accreting conditions). The challenge for shoreline models is, therefore, to provide reliable, robust and 
realistic predictions of change, with a reasonable computational cost, applicability to a broad variety of systems, 
and some quantifiable assessment of the uncertainties.
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Shoreline evolution occurs over temporal scales ranging from seconds (e.g., individual waves) to hours (e.g., 
storms), months (e.g., seasonal wave energy modulation) and decades (e.g., wave climate). Shoreline changes 
occurring over much larger timescales (decadal to centennial) can be the result of other factors like longshore 
sediment transport gradients, changes in sediment supply, tectonic processes, anthropogenic interventions, and 
sea level rise (SLR)6–8. Cross-shore sediment transport is generally considered to be the main control of shoreline 
evolution at seasonal and inter-annual time-scales9,10 whilst longshore processes (specifically on open coastlines) 
become more relevant over much longer timescales (decades-centuries)7,11.

To test and improve the ability of models to predict shoreline changes, we carried out a workshop/competition 
on shoreline evolution modelling, “Shoreshop”, with participants from 15 institutions worldwide. Modelers were 
asked to simulate shoreline evolution obtained using a camera system at Tairua beach (New Zealand, Fig. 1a,b) 
and submit the results of the simulations without prior knowledge of how the shoreline actually evolved for the 
last 3 years (2014–2017) of the total study period (1999–2017). Data in the grey shading (Fig. 1c–e) were not 
shown to the modelers to ensure that they were not tempted to adjust parameters of their model framework after 
exposure to the results.

This article summarizes the main outputs from a study where well-known models that have been broadly used 
in diverse study sites worldwide12–18 combined with new approaches were compared and evaluated objectively 
and with no possibility of parameter tuning during the last three years of the study. As all the models are tested 
with the same input dataset, there is no bias associated with data sources (regardless of any inherent uncer-
tainties in the data that was used) allowing us to objectively assess the predictive capability of the models. As 
shown in other disciplines19, modelling competitions are a powerful tool to promote advances since they favour 
research-coordinated approaches, and, importantly, encourage the community to share datasets to assess and 
compare models while ensuring reproducibility which allows for objective assessment.

Data and Models
In this study we concentrate on models that make use a set of cross-shore profiles or shorelines captured from 
aerial or oblique photography to relate changes in the shoreline position to the prevailing forcing conditions. 
Although 3D digital terrain models are now becoming available, there are few long-term (multi-year) data sets 
of this type. Figure 1 shows the entire dataset used in the study (1999–2017). Shoreline position as a function of 
alongshore location and time is shown in Fig. 1c. Changes in the shoreline orientation, here referred to as shore-
line rotation, evaluated as the slope of the trend-line fitted to the shoreline position before alongshore-averaging, 
are often observed (Fig. 1c,e). The average alongshore position (Fig. 1d) shows seasonality with progradation 
and retreat events generally occurring in summer and winter. The grey shading in Fig. 1c–e highlights the period 
hidden from modelers (2014–2017). Three hourly wave characteristics (wave height, peak period, and direction), 
obtained from a wave hindcast using the SWAN model forced with Wavewatch III model, are shown in Fig. 1f–h. 
More information about the study site characteristics and input data used during the study can be found in the 
Methods section.

We focus on daily shoreline predictions using a variety of modelling approaches (ranging from established 
shoreline models to Machine Learning algorithms), which, in the context of the 3 years of testing data (2014–
2017), we hereafter referred to as the “Shorecast”. A total of 19 models were used. Twelve models (indicated with 
HM) were built following various formulations of the well-established equilibrium concept, where the beach rate 
of change is governed by the difference between present and equilibrium conditions12,13. Some of these models 
were also used to predict shoreline rotation (indicated with R). Seven models were built using Machine Learning 
techniques (indicated with ML). Table 1 summarises the models used during the study. More information about 
the models can be found in the Methods section and the supporting information.

Results
Calibration period.  Fifteen years (1999–2014) were used for model calibration (Fig. 2), while the last three 
years (2014–2017) were used for the blind prediction, Shorecast (Fig. 3), in which modelers did not have access 
to the shoreline data. Both HM and ML approaches were able to reproduce seasonal cross-shore (alongshore 
averaged) shoreline behaviour during the calibration period. Figure 2 shows the models’ performance for three 
years (2001–2004) of the calibration period (1999–2014). Regardless of the modelling approach, oscillations of 
shoreline position with periods larger than 3 months were well captured. Some of the HM and almost all ML mod-
els were able to reproduce accretion periods (e.g. beginning of 2002, Fig. 2a,b). In general, HM predictions were 
smoother than ML predictions which reproduced faster oscillations (shorter than seasonal) and more extreme 
events in the shoreline position (Figs. 2b and 4b). For instance, almost all HM underestimate the erosion that 
occurred on August 2003 (Fig. 2a) except for the models that use data assimilation (Kalman filters, HM4, HM9). 
There were no major differences among HM that sought to define an equilibrium condition using: wave history 
(HM1, HM2, HM4 and HM8) or shoreline position (HM3, HM5, HM6, HM7, HM9 and HM10). HM models 
improved when Kalman filters were used (HM4 and HM9). Despite being diverse in approach and architecture, all 
ML models displayed very high performance during the calibration period compared with the Shorecast period.

Some of the HM (HM2-R1, HM8-R2, HM9-R3 and HM10-R4) and others specifically developed for shoreline 
rotation (R5, R6) were also used to predict beach rotation (evaluated as the slope of the trend-line fitted to the 
shoreline before alongshore-averaging), but no ML model was tested. Some of the rotation models essentially 
simulate multiple 1D cross-shore models which then require multiple calibration of cross-shore profiles along 
the embayment (see the Supporting Information). Almost all the models followed the rotation pattern (clockwise 
or anticlockwise) even during extreme rotation events. An exception is R1, which displayed a smooth behaviour 
(Fig. 2c and qq-plot Fig. 4c). Conversely, some models consistently over-estimate rotation (e.g., R4).

https://doi.org/10.1038/s41598-020-59018-y
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Shorecast (Three years of blind prediction).  During the Shorecast (last three years of unseen data, grey shading 
Fig. 1c–e), HM collectively displayed similar behaviour (Figs. 3a and 4d) and this was distinct from the ML mod-
els (Figs. 3b and 4e). Both types of models were able to predict the seasonal changes. Underestimation of extreme 

Figure 1.  Study site and input conditions. (a) Location of Tairua, New Zealand North Island (b) Detail of 
Tairua Beach. Pressure sensor (S4_N) location used for SWAN model validation (c) Alongshore shoreline 
position at Tairua beach. Red represents shoreline advance and blue shoreline retreat over time. (d) Daily 
alongshore-averaged position (e) Shoreline rotation (orientation) with positive values representing southward 
accretion (anti-clockwise rotation) and negative values representing northward accretion (clockwise rotation). 
(f) Significant wave height g) Peak period h) Wave direction. Grey shading show the data that was hidden from 
modelers (Shorecast period, 2014–2017).

https://doi.org/10.1038/s41598-020-59018-y
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erosion events by HM (models above dotted black line, Fig. 4d) and inability of reproducing faster scale oscilla-
tions (order of 30 days) were more evident during the Shorecast (for example, see the beginning of 2015, Fig. 3a). 
Some of the ML models captured extreme accretion-erosion events and faster scale oscillations not reproduced 
by HM. However, the models that better captured some localised large shoreline changes were also the ones that 
for other events produced the largest errors (Figs. 3b and 4e). Results from ML models changed more from the 
calibration to the testing phase compared to HM results (Figs. 3b and 4b,e), except for the HM that used Kalman 
filters which had a similar behaviour to the ML models. During the Shorecast period, the mean of the averaged 
alongshore shoreline position was slightly different to the mean for the calibration period (dashed grey lines in 
Fig. 4a–f). Models tend to follow the calibration period mean shoreline position during the Shorecast, suggest-
ing they are heavily dependent on the training dataset, which may indicate that they cannot predict/follow the 
long-term trend underlying the short term changes.

All models capture the general rotation patterns (shoreline orientation clockwise/anticlockwise) during the 
Shorecast, showing a better performance in terms of metrics than during the calibration period, except for the 
models that used data assimilation (Figs. 3d and 4). This may suggest that models have less skill for extreme 
rotation events since the Shorecast period showed fewer and smaller beach rotation events compared with the 
calibration period. At times, models were able to predict shoreline rotation but underestimated/overestimated 

Model name/ Technique Modeller

Hybrid Models (HM)

HM1 ShoreFor Kristen Splinter

HM2-R1 ShoreFor-LX Mark Davidson

HM3 Y09-HF Jennifer Montaño

HM4 ShoreFor + uKF Rai Ibaceta

HM5 Y09 Bonnie Ludka

HM6, HM7 [-] Ian Townend

HM8, R2 LX-Shore Arthur Robinet, Bruno Castelle, Deborah Idier

HM9, R3 CosMos-Coast Sean Vitousek

HM10, R4 COCOONED Jose A. A. Antolinez

R5, R6 [-] Karin Bryan

Machine Learning (ML) Models

kNN k- Nearest Neighbor Evan Goldstein

ANN-EI1, 2 Autoregressive NN with exogenous inputs Giovanni Coco

NeuFor Artificial NN Josh Simmons

LSTM Long-Short Term Memory Sina Masoud Anasari

RF Random Forest Tom Beuzen

BNN Bayesian N Nathaniel Plant

Table 1.  Models used during the “Shoreshop”.

Figure 2.  Three years of the entire calibration period (1999–2014). Examples of model outputs (see legend) 
compared to three years (2001–2004) of calibration data (black): (a) Hybrid models; (b) Machine Learning 
models; (c) Shoreline rotation models. See Methods section and Supporting Information for model details.

https://doi.org/10.1038/s41598-020-59018-y
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the shoreline position. Conversely, the shoreline rotation was poorly predicted at times when the erosion and 
accretion events were reasonably predicted. In fact shoreline advance or retreat is computed using the average 
alongshore shoreline position, while beach rotation (change in the shoreline orientation) considers all the along-
shore transects in the trend-line fit.

Model ensembles.  Uncertainties due to the model limitations have been addressed through multi-model 
ensembles20, such as, the global climate models21,22. An ensemble of the HM and ML models was created as a 
mean estimate of each type of model (HM and ML models, separately) to compare them (Fig. 3c).

ML models displayed comparable skill to HM, suggesting they might be useful in describing multi-year vari-
ability at shorelines not well simulated by HM. In general, HM predictions do not capture the extremes events in 
shoreline position that occur over short time-scales (~monthly) exhibited by the Tairua beach data. In contrast, 
ML reproduced these fast oscillations and the more extreme events in the shoreline position (Figs. 2b and 4b). 
Overall, it appears that these two classes of model tend to focus on different timescales, even though time-scale 
is not explicitly controlled in many of the models used. Therefore, ML models and HM may play complementary 
role in estimating cross-shore shoreline position, due to their different approaches (inductive versus deductive). 
A multi-model ensemble is generated as a mean estimate of all the models (Fig. 3d and dashed black line in 
Fig. 4d,e). The total multi-model ensemble Shorecast often overlaps the shoreline data, showing capacity to pre-
dict seasonality and some extreme events, for instance, accretion (end of 2015) and erosion (beginning of 2016). 
When all models reproduce the measured shoreline position correctly, the average of the models converges (low 
standard deviation), while when some of the models diverge from the measured shoreline, the ensemble cancels 
out the possibility of a large error. In general, ensembles (HM, ML and all models ensemble) showed better per-
formance than many individual models (Figs. 3c,d and 4 and Supporting Information-Table 1). Even though an 
ensemble approach may increase model complexity and might smooth the predictions, Fig. 4d,e show that the 
total model ensemble captured extreme events (erosion/accretion) better than almost all HM and some of the 
ML models. Therefore, the ensemble approach improves the reliability of the predictions, and in effect reduces 
model-related uncertainty (Fig. 3d,f).

Figure 3.  Shorecast predictions (2014–2017, blind test). Model outputs (see legends) compared to observations 
(black) (a) Hybrid models (b) Machine Learning models (c) HM and ML ensemble (d) Multi-model ensemble 
(e) Rotation models (f) Hybrid models ensemble for beach rotation. Dark shadows in the ensembles figures 
represent one standard deviation of the models prediction. Light shadows represent maxima/minima envelope 
of the models predictions. See Methods section and Supporting Information for model details.
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Discussion
Assessment of models performance.  We calculated different metrics to assess predictive model per-
formance (Fig. 4g–n and Supporting Information). We included a linear trend as a predictive model and, even 
though the linear trend does not follow the shoreline oscillations, metrics like R2, RMSE or Skill were better than 
for some of the models (Fig. 4 and Supporting Information Table 1).

Figure 4.  Models performance. Quantile-quantile plots of model behavior. Top 3 panels: Calibration period; 
middle 3 panels: Shorecast. Model prediction vs measured shoreline position for (a) and (d) HM; (b) and 
(e) ML; (c) and (f) model prediction vs measured shoreline rotation. Dashed grey line represent the average 
shoreline position during the calibration and the Shorecast period, respectively. R2, RMSE, skill and λ for 
shoreline prediction for; (g–j) averaged shoreline position; (k–n) shoreline rotation. See supporting material for 
more information about the metrics and individual models.
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The best metric for assessing model performance remains unclear and different model performance metrics 
favoured different models, highlighting the importance of considering multiple metrics and different approaches 
for a robust model evaluation. Model performance was also assessed in terms of quantile-quantile (predictions vs 
measurements) which provides information about extremes events, the direction of shoreline change (erosion/
accretion) and mean behaviour (Fig. 4a–f). In addition, we acknowledge that the usefulness of a model should 
not be expressed only in terms of metrics but also reproducibility and understanding that leads to scientific 
advancements.

In general, models showed a lower performance during the Shorecast period than during the calibration 
period, and lower performance compared to previous studies in different sites where the models were first pre-
sented and tested against a data set12–18. The exact reason is difficult to determine but it is evident that, despite data 
uncertainties, true predictions of unseen shoreline data remains a difficult task.

Uncertainty.  Uncertainties are a key component of any modelling study. During the Shorecast, uncertainty 
arises from both the shoreline position and wave characteristics. Wave characteristics have been obtained through 
a numerical model and so contain potential sources of error. This could affect models differently since some mod-
els only use wave height and others include also the wave period which in general is more difficult to reproduce. 
Despite the wave period being poorly reproduced when compared to reproducibility of the wave height (See 
Methods), this did not seem to affect models’ performance during the calibration. Due to the stochastic nature of 
waves, probabilistic approaches using synthetic hydrodynamic forcing may give more realistic shoreline predic-
tions that account for uncertainties, especially for long-term projections23,24. The shoreline positions we provided 
are likely to contain detection inaccuracies, although most of the errors occur over a scale shorter than a week25. 
Large shoreline changes, order of 30 days, were observed and these changes are only marginally affected by the 
faster-scale inaccuracies25. This is relevant since a number of models managed to reproduce instances of rapid and 
large shoreline retreat, but others completely missed the fast, order of 30 days, shoreline changes.

A different kind of uncertainly involves model structure and parameterizations. Such uncertainties in shore-
line models arise because we use simplified models that may ignore some of the physical processes; for example, 
HM used during the Shorecast lack processes including, for example, overwash, beach-dune and/or beach-cliff 
interactions, influence of bars, human interventions which may play an important role in shoreline evolution. 
Also, we use a variety of ML techniques to find hidden processes and relations among drivers and response since, 
a priori, it is uncertain which ML model works best for the dataset provided. There is also an uncertainty related 
to parameters. While some models used only a minimal number of parameters (e.g., equilibrium models), others 
included many more (e.g., ML models) which brings up questions about model generality. Our test indicates 
that, even when model structure is similar, results may differ because models are highly dependent on a range of 
parameters that the scientist chooses.

Long-term predictions.  Uncertainty in drivers (e.g., waves and SLR) and therefore shoreline response 
increases as longer time horizons are explored. During “Shoreshop”, we also attempted to predict Tairua shore-
line evolution until 2100. Results are not presented here because uncertainties in the future wave climate were 
deemed too large and the model outputs diverged drastically. However, the exercise was educational in two ways. 
First, it highlighted that shoreline evolution models require calibration and often fail when implemented outside 
of the regime of calibration. Secondly, the processes causing long-term shoreline change can differ from those 
that produce seasonal to multi-annual oscillations in shoreline position or plan-view shape (as addressed in the 
calibration and Shorecast periods). For an alongshore-restricted beach like Tairua, cross-shore processes related 
to SLR are likely to be the main cause of cumulative shoreline change. However, many of the models presented 
do not include the effects of SLR. We have thus far discussed creating ensembles for shoreline prediction, but 
ensembles are also needed for the drivers such as, SLR, wave conditions, storm surge where different scenarios 
are considered8,23,24.

Comparisons between multiple models on additional datasets (e.g. longshore vs cross-shore transport or 
seasonal vs storm dominance) are recommended to address issues in long term predictions that include (a) 
downscaling an appropriate future wave climate using a probabilistic approach that allows uncertainties to be 
accounted for, (b) assessing morphodynamic implications of different scenarios of SLR, and (c) dealing with the 
effect of out-of-calibration parameters. This will help better differentiate model performance, including trans-
portability to different wave climates and morphodynamic settings. We foresee an increase of this type of mod-
elling competition as a way to accelerate knowledge exchange and dissemination, as well as fostering community 
interaction.

Methods
Study site.  Tairua Beach is located in the Coromandel peninsula, on the east coast of the North Island of 
New Zealand (Fig. 1a,b). Tairua is a pocket beach of 1.2 km long, with medium to coarse sand that exhibits 
intermediate beach states25–27. The lower shoreface slope is approximately 0.02, whereas the upper beach slope is 
steep ≈ 0.228. The beach is located in a microtidal environment with a tidal range varying between 1.2 and 2 m. 
Eighteen years of daily shoreline evolution (1999–2017) were obtained using a camera system located on a hill 
(elevation about 60 m) at the north end of the beach. During daylight, six hundred images were averaged over a 
period of 15 min every hour. The time-averaged images were then georectified and used to extract the shoreline 
position. To limit the influence of the tides, daily shoreline images with tidal level between 0.45 and 0.55 m were 
selected. Errors in the shoreline detection due to the footprint of the georectified images, standard deviation of the 
water levels, the influence of the tides, the uncertainty in wave setup, and other noise have been shown to affect 
the daily timescale but not the shoreline signal over weekly (and longer) timescales25. The wave characteristics (at 
10 m water depth) were obtained using a hydrodynamic model (SWAN), validated with in situ measurements in 
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8 m water depth (indicated as S4_N in Fig. 1b). The comparison was good in terms of wave height (R2 = 0.80 and 
RMSE = 0.31 m) but the wave period was poorly reproduced (R2 = 0.22 and RMSE = 0.29 s). The instrument used 
did not record wave direction so that a direct comparison could not be made.

Model classification.  We have classified shoreline models as: process-based models (PBM), hybrid models 
(HM), and data-driven models (DDM). The PBM are simulation models or physics-based models, which include 
as many processes as practicable, and usually couple hydrodynamics, waves, sediment transport and morphology 
through mass and momentum conservation laws. In general, these models attempt to describe the faster (storm 
event) and smaller scale (<km) processes and there is no conclusive evidence they can be successfully applied 
over large spatio-temporal scales. Also, in many cases, these models require input data that were not available for 
the present study.

We use the term “hybrid” to characterize shoreline models based on general principles (e.g., that a system 
is drawn towards an equilibrium configuration) that do not use detailed conservation of mass and momentum 
equations, and rely heavily on a data-driven approach to find the free parameters of the model. HM often base the 
prediction of the cross-shore position on the equilibrium concept29, where the beach rate of change is governed by 
the difference between present and equilibrium conditions. Equilibrium conditions have been defined in terms of 
shoreline position10,12 or wave history13. These models and similar variants have been applied successfully when 
addressing seasonal to interannual variability at many sites14–17, however they may fail to simulate the shoreline 
evolution in environments where other processes such as alongshore sediment transport play an important role3.

Additionally, the equilibrium concept has also been successfully applied to predict shoreline18 and sandbar 
rotation27 at pocket beaches. Other longshore transport models11 have been applied to long term datasets but 
lacked the ability to reproduce cross-shore variations30. This issue was recently addressed31–33, where alongshore 
sediment transport formulae such as, CERC34,35 are combined with cross-shore equilibrium models. Table 1 pro-
vides a summary of the HM used during the Shoreshop.

Due to the surge of available measurements characterized by increasing spatial and temporal resolution from 
camera systems to satellite images36,37 and novel approaches to modelling, DDM have become more popular. 
Examples of these models range from simple autoregressive models to machine learning (ML) techniques such 
as artificial neural networks. The use of ML techniques in a variety of coastal problems and settings has rapidly 
increased over the past few years38, since ML algorithms can be highly effective predictors39,40, can be used as 
part of larger models41 and can provide physical insight42. Statistical models such as multiple linear regression 
or statistical downscaling43,44, also fall in the category of data-driven, but have not been tested in the Shorecast. 
One of the drawbacks of DDM is that their performance depends highly on the quantity and quality of the data 
available. The ML techniques used during the Shoreshop are listed in Table 1. Details on ML models are provided 
in the Supporting Information.

Data availability
All data provided to the participants of the “Shoreshop” is available at https://coastalhub.science/data. Other data 
that support the findings of this study are available from the indicated sources or from the corresponding author 
upon reasonable request.
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