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Abstract
The understanding of the dynamics of Lagrangian velocities is key for the understand-
ing and upscaling of solute transport in heterogeneous porous media. The prediction of
large scale particle motion in a stochastic framework implies identifying the relation be-
tween the Lagrangian velocity statistics and the statistical characteristics of the Eule-
rian flow field and the hydraulic medium properties. In this paper, we approach both
challenges from a numerical and theoretical point of view. Direct numerical simulations
of Darcy-scale flow and particle motion give detailed information on the evolution of the
statistics of particle velocities both as a function of travel time and distance along stream-
lines. Both statistics evolve from a given initial distribution to different steady state dis-
tributions, which are related to the Eulerian velocity PDF. Furthermore, we find that
Lagrangian velocities measured isochronally as a function of travel time show intermit-
tency dominated by low velocities, which is removed when measured equidistantly as a
function of travel distance. This observation gives insight into the stochastic dynamics
of the particle velocity series. As the equidistant particle velocities show a regular ran-
dom pattern that fluctuates on a characteristic length scale, it is represented by two sta-
tionary Markov processes, which are parametrized by the distribution of flow velocities
and a correlation distance. The velocity Markov models capture the evolution of the La-
grangian velocity statistics in terms of the Eulerian flow properties and a characteris-
tics length scale, and shed light on the role of the initial conditions and flow statistics
on large scale particle motion.

1 Introduction

The sound understanding of flow and transport processes in heterogeneous porous
media is a key requirement for a broad range of applications. This includes the geolog-
ical storage of nuclear waste [De Marsily et al., 1977; Poinssot and Geckeis, 2012], the
sequestration of carbon dioxide in deep saline aquifers [Niemi et al., 2017], aquifer re-
mediation and the management of groundwater resources [Freeze and Cherry , 1979; Domenico
and Schwartz , 1997], among others. Flow and transport in groundwater are dominated
by spatial heterogeneity in the hydraulic medium properties, which may vary in natu-
ral media over more than 12 orders of magnitude [Bear , 1972; Sanchez-Vila et al., 2006].
The impact of spatial variability in the hydraulic conductivity K(x) on the groundwa-
ter flow and transport properties have been quantified by stochastic modeling [Rubin,
2003]. In this framework, K(x) is modeled as a random space function [Dagan, 1989;
Gelhar , 1993]. The stochasticity of K(x) is mapped onto the flow field q(x) via the Darcy
equation [Bear , 1972]. Stochastic perturbation theory expresses the spatially variable
flow velocity as a linear functional of log-hydraulic conductivity Y (x) = lnK(x) and
upscales solute dispersion by the longitudinal macrodispersion coefficient [Gelhar and
Axness, 1983]

D∗L = σ2
Y λu. (1)

It is fully characterized by the correlation scale and variance of log-hydraulic conduc-
tivity, λ and σ2

Y , respectively, and the mean flow velocity u. This is a key result of stochas-
tic hydrology because it predicts a transport attribute, macrodispersion, based on in-
dependently measurable medium and flow properties. Its limitations are on one hand
the fact that it is based on first order perturbation theory in σ2

Y and on the other hand
that it is only valid at asymptotically long times, this means at times much larger than
the advection time scale τu = λ/u. The representation of the impact of velocity fluc-
tuations on large scale transport in terms of constant macrodispersion coefficients is called
the macrodispersion approach in the following.

In fact, field and laboratory experiments, direct numerical simulations and theo-
retical works [Rehfeldt et al., 1992; Zhang , 1997; Sidle et al., 1998; Levy and Berkowitz ,
2003; Fiori et al., 2003; de Dreuzy et al., 2007a; Beaudoin and de Dreuzy , 2013] have shown
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that asymptotic dispersion coefficients in highly heterogeneous media vary non-linearly
with σ2

Y . Moreover, preasymptotic transport cannot be described by macrodispersion
theory, this means in terms of the advection-dispersion equation characterized by the av-
erage flow velocity and constant macrodispersion coefficients. Signatures of pre-asymptotic
or non-Fickian transport observed in field and laboratory experiments are, for example,
the nonlinear temporal growth of solute dispersion and early and late solute arrivals. Non-
Fickian or anomalous behaviors have been modeled by a series of different approaches.
Stochastic averaging of the local scale advection-dispersion equation leads to spatio-temporally
non-local equations for the average concentration [Neuman and Zhang , 1990; Cushman
et al., 1994, 2002; Neuman and Tartakovsky , 2009]. These approaches require a closure
approximation for the space-time memory kernels. Space and time fractional advection-
dispersion equations [Benson et al., 2000; Cushman and Ginn, 2000; Schumer et al., 2003]
model the impact of heterogeneity on transport by memory kernels, which decays alge-
braically at long distances or at long times. Phenomenologically, these approaches ac-
count for strong spatial correlations (space-fractional) and long mass transfer times (time-
fractional). The latter is related to the multi-rate mass transfer Haggerty and Gorelick
[1995]; Carrera et al. [1998]; Schumer et al. [2003] and continuous time random walk (CTRW)
[Berkowitz and Scher , 1997; Berkowitz et al., 2006; Dentz and Berkowitz , 2003] and time-
domain random walk (TDRW) approaches [Painter and Cvetkovic, 2005; Cvetkovic et al.,
2014], which model anomalous transport through broad distribution of mass transfer times.

For advection-dominated scenarios as typically encountered in heterogeneous porous
media, transport can be understood by considering the statistical properties of the La-
grangian velocity [Dagan, 1989], which describes the flow velocity at the position of a
particle. In fact, the macrodispersion coefficient can be expressed in terms of the Lagrangian
velocity covariance function [Kubo et al., 1991; Dagan, 1989]. Classical random walk ap-
proaches model particle velocities as Markov processes in time [Pope, 2000]. The macrodis-
persion approach, for example, models the fluctuations of particle velocities as a Gaus-
sian noise with zero mean and variance proportional to D∗L. Thus, the result (1) can be
understood as the link between Lagrangian particle dynamics and medium and Eulerian
flow properties. Meyer and Tchelepi [2010] have shown that the evolution of Lagrangian
velocities may also be modeled as a Markov process in time whose evolution follows a
non-linear Langevin equation. The CTRW and TDRW frameworks model non-Fickian
solute transport through broad distributions of independent advective transition times
over given length scales intrinsic to the medium structure [Berkowitz and Scher , 1997;
Painter and Cvetkovic, 2005; Comolli and Dentz , 2017]. In this sense, these approaches
assume that particle velocities form Markov processes when sampled equidistantly along
trajectories [Cvetkovic et al., 1996; Benke and Painter , 2003; Fiori et al., 2006; Le Borgne
et al., 2007, 2008a], this means at time points that are spaced by the advective transi-
tion time over a given distance [Cvetkovic et al., 1996; Le Borgne et al., 2007]. It has been
shown for heterogeneous porous and fractured media [Painter and Cvetkovic, 2005; Fiori
et al., 2007; Le Borgne et al., 2008a; Kang et al., 2011; Edery et al., 2014; Kang et al.,
2017] that large scale particle motion can be modeled by CTRW and TDRW approaches.

For pore-scale particle motion, it has been shown that spatial persistence of flow
velocities leads to intermittent patterns in Lagrangian velocity time series [De Anna et al.,
2013; Kang et al., 2014; Morales et al., 2017]. This can be traced back to long residence
times in regions of low and fast crossing of regions of high flow velocity. We expect to
observe similar behaviors for particle velocities in Darcy scale heterogeneous porous me-
dia. Intermittency in particle velocities indicates strong correlation of low particle ve-
locities and thus long residence times, which is directly related to the occurrence of anoma-
lous or non-Fickian transport.

Furthermore, several authors [Cvetkovic et al., 1996; Demmy et al., 1999; Le Borgne
et al., 2007; Hyman et al., 2015; Dagan, 2017; Kang et al., 2017; Morales et al., 2017]
have observed for heterogeneous porous and fractured media, that the Lagrangian ve-
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locity statistics and transport characteristics such as breakthrough curves, the center of
mass velocity and dispersion of a solute plume are dependent on the distribution of ini-
tial particle velocities and thus injection conditions and heterogeneity distribution in the
injection region. Thus, a predictive model for particle motion in heterogeneous porous
media should be able to account for the impact of different injection conditions on the
evolution of particle velocities [Dentz et al., 2016].

The medium heterogeneity acts on the flow field, the flow field on the particle ve-
locities and the particle velocities determine the transport behavior. Thus, a key to un-
derstanding transport in heterogeneous media is the understanding of the dynamics of
particle velocities. As pointed out above, for weakly heterogeneous media and times much
larger than the advection time scale τu, velocity fluctuations may be characterized as a
white noise characterized by macrodispersion coefficients. In this spirit, the objectives
of this study are to identify the dynamics of Lagrangian velocities for strongly hetero-
geneous porous media, link them to the Eulerian flow statistics and ideally to the sta-
tistical medium properties, and quantify their evolution in terms of a predictive upscaled
model. To this end, we performed extensive numerical simulations of flow and particle
transport in highly heterogeneous porous media. We analyze Lagrangian velocity series
sampled both isochronally and equidistantly along streamlines and study the evolution
of their probability density functions for different injection conditions. These dynamics
are quantified in a predictive analytical Markov model for the equidistantly sampled par-
ticle velocities. We consider 2-dimensional heterogeneous porous media. However, the
fundamental features of the evolution of Lagrangian velocities are expected to be the same
for 3-dimensional media as detailed below.

The paper is organized as follows. Section 2 presents the flow and transport model,
defines the velocity statistics for streamwise isochrone and equidistant sampling and the
numerical methodology. Section 3 analyzes the evolution of the Lagrangian velocity statis-
tics both in time and streamline distance. Section 4 discusses two analytical Markov mod-
els to predict the evolution of equidistant Lagrangian velocities. Section 5 studies the
relation between the hydraulic conductivity and the velocity statistics.

2 Flow and transport in heterogeneous porous media

We first present the Darcy scale flow problem and its stochastic description for het-
erogeneous porous media. Then, we consider the equations of motion of particles in the
heterogeneous Darcy flow and formulate the evolution of the particle position in time
and in distance along streamlines. The latter is the basis for the definition of the statis-
tics of the velocity magnitude through isochrone and equidistant sampling and relating
the Eulerian and Lagrangian velocity statistics. The presented definitions, derivations
and relations are valid for 2- and 3-dimensional heterogeneous porous media. Finally we
provide details on the numerical simulation method, this means, generation of the hy-
draulic conductivity K(x) as a random space function with given statistical properties,
and the numerical solution of flow and particle motion via particle tracking.

2.1 Flow and Eulerian velocity distribution

Groundwater flow through porous media follows the Darcy equation [Darcy , 1856;
De Marsily , 1986]:

q (x) = −K (x)∇h(x), (2)

where q(x) is the Darcy velocity, x is a vector of space coordinates, h(x) is hydraulic head
and K(x) is the spatially variable hydraulic conductivity. We consider incompressibil-
ity of fluid and medium, this means ∇ · q(x) = 0. Hydraulic conductivity is modeled
as a random space function whose statistics are based on the stationary and ergodic multi-
Gaussian random field Y (x), which is fully characterized by its mean µY = 〈Y (x)〉 and
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covariance function CY (x−x′) = 〈Y ′(x)Y ′(x′)〉 with Y ′(x) = Y (x)−〈Y (x)〉. The an-
gular brackets denote the ensemble average over all realizations of Y (x). Since Y (x) is
ergodic, ensemble and spatial averages are equivalent. We consider here the exponen-
tial covariance model

CY (x) = σ2
Y exp(−|x|/λ), (3)

where σ2
Y is the variance of the log-hydraulic conductivity, and λ is the correlation length.

Hydraulic conductivity is obtain by the map K(x) = F [Y (x)]. For example, for F (y) =
exp(y), K(x) has a Lognormal point-wise probability density function (PDF) pK(k). Math-
eron [1967] showed that for a K field with Lognormal distribution, the effective hydraulic
conductivity Ke is equal to the geometric mean conductivity, Ke = KG. For natural
aquifers, the variance of Lognormal K fields has been found in the 0.1–5 range [Gelhar ,
1993]. For example Rehfeldt et al. [1992] report σ2

Y ≈ 4.5 for the Columbus aquifer. Vari-
ances as high as 10-15 were reported by Fogg [2010].

The Lognormal distribution of K has been challenged for heterogeneous sedimen-
tary formations [Painter , 1996; Sanchez-Vila et al., 2006; Haslauer et al., 2012]. More-
over, compared to other distributions, the Lognormal has the property that its mean and
variance can be adjusted independently. Thus, we consider in this paper a Lognormal
distribution of point-wise conductivity values and the truncated Gamma-distribution

pK(k) = N
βα

Γ(α)
kα−1 exp

(
− k

kc
− k0

k

)
, (4)

where the shape parameter α > 0, k0 is the lower and kc the upper cut-off, N is the
normalization constant. In the following, we will refer to the Lognormal-distributed con-
ductivity fields as Lognormal fields and the truncated Gamma-distributed as Gamma
fields.

In order to compare the degree of heterogeneity of these two distributions, we con-
sider in the following the variance of the logarithm f(x) = lnK(x) of the hydraulic con-
ductivity, which is denoted by σ2

f . The mean value of f(x) is denoted by µf . For the Log-
normal fields f(x) = Y (x). In the following, we consider values of σ2

f between 10−1 and
12.

The flow velocity q(x) may be characterized statistically by the Eulerian velocity
distribution. Local backward flow may occur due to contrasting adjacent K values, for
instance in very heterogeneous K fields, thus giving rise to negative streamwise flow com-
ponents. Here, we focus on the magnitude of Eulerian velocities, ve (x) = |q(x)|. In the
following, we refer to velocity magnitudes also in short as velocities. The PDF of Eu-
lerian velocities is defined through spatial sampling as

pe (v) = lim
V→∞

1

V

∫

Ω

dxδ[v − ve (x)], (5)

where Ω is the sampling domain and V is its volume. As outlined above, due to ergod-
icity, spatial and ensemble sampling are equivalent.

2.2 Particle motion and Lagrangian velocities

We consider purely advective transport. The trajectory x(t,a) of a particle start-
ing at x (t = 0,a) = a is described by the advection equation

dx (t,a)

dt
= vt (t,a) , (6)

where vt (t,a) = q[x (t,a)]/φ denotes the Lagrangian particle velocity, φ is porosity,
which here is assumed to be constant. In the following, we refer to vt(t,a) as t(ime)-Lagrangian
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velocity because it varies with travel time. Furthermore, we set φ = 1, which is equiv-
alent to rescaling time. The distribution of initial particle positions is denoted by ρ(a).

Taylor [1921] studied t-Lagrangian velocity series in order to quantify tracer dis-
persion by turbulent motion. Later, Lumley [1962] introduced a detailed analysis of Eu-
lerian and t-Lagrangian velocity statistics. In the context of porous media, Dagan [1984]
analyzed t-Lagrangian velocities for solute dispersion in groundwater flow. As shown in
Figure 1, for steady flows through heterogeneous media, the t-Lagrangian velocity se-
ries exhibit intermittent patterns characterized by long periods of low velocity and short
episodes of high velocities. This intermittent behavior can be traced back to the fact,
that particle velocities vary on a characteristic spatial scale rather than a temporal scale.
Thus, intermittency can be removed by equidistant insteady of isochronous velocity sam-
pling. Shapiro and Cvetkovic [1988] considered the statistics of Lagrangian velocities sam-
pled equidistantly along the mean flow direction. Later, Le Borgne et al. [2007] analyzed
the evolution of equidistant Lagrangian velocity statistics to characterize the flow field
organization. Gotovac et al. [2009] used equidistant statistics to characterize flow and
travel time statistics. Cvetkovic et al. [1991] analyzed isochronous and equidistant La-
grangian velocities in one-dimensional steady flow.

Here, we consider velocity series as a function of the streamwise distance. The dis-
tance s(t,a) traveled by a particle along a streamline is given by [Dentz et al., 2016]

ds (t,a)

dt
= vt (t,a) . (7)

where vt(t,a) = |v(t,a)| is the magnitude of the Lagrangian velocity. Applying the vari-
able transform t→ s based on (7), the equation of motion (6) transforms into the sys-
tem of equations

dx(s,a)

ds
=

vs(s,a)

vs(s,a)
,

dt(s,a)

ds
=

1

vs (s,a)
. (8)

where vs(s,a) = q[x(s,a)] is termed the s(pace)-Lagrangian velocity because it varies
with distance along the streamline. Its magnitude is denoted by vs(s,a) = |v(s,a)|. The
particle travel time at the distance s along the streamline is denoted by t(s,a). The par-
ticle velocity vt(t,a) is given in terms of vs(s,a) as vt(t,a) = vs[s(t,a),a]. Note that
the transformation t → s converts the streamline length s into an independent vari-
able just like time t in Eq. (6). Time t on the other hand, is converted into the depen-
dent Lagrangian variable t(s,a).

Figure 1 compares velocity series as a function of travel time and travel distance
along a streamline for particle motion in heterogeneous porous medium. The intermit-
tent behavior observed for vt(t,a) is removed for vs(s,a), which shows a regular random
pattern. Thus, instead of the more complex t-Lagrangian velocity series, we focus in Sec-
tion 4 on the modeling of the relatively simpler regular random pattern of vs(s,a) as a
Markov process. Note that the mechanisms causing intermittency are the same for 2-
and 3-dimensional porous media.

2.2.1 Lagrangian velocity distributions

We focus on the statistics of the magnitudes vt(t,a) and vs(s,a) of the t- and s-
Lagrangian velocities. The following definitions and relations are valid for flow and par-
ticle velocities in 2- and 3-dimensional porous media. The t-Lagrangian velocity PDF
is defined by isochronous sampling along a streamline as

pt (v,a) = lim
T→∞

1

T

T∫

0

dtδ[v − vt (t,a)]. (9)
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Figure 1: Lagrangian velocity time and space series along a particle trajectory for Darcy
flow field in a Gamma K field with α = 0.5.

Assuming Lagrangian ergodicity, the PDF is independent of the initial position and equal
to the PDF obtained by sampling particle velocities from an ensemble of particles de-
fined by their initial positions a,

pt (v) = lim
V0→∞

1

V0

∫

Ω0

daδ[v − vt (t,a)] (10)

where Ω0 is the injection domain and V0 its volume. Note that the distribution of ini-
tial particle positions is uniform. The s-Lagrangian PDF is defined accordingly by equidis-
tant sampling along a streamline as

ps (v,a) = lim
L→∞

1

L

L∫

0

dsδ[v − vs (s,a)]. (11)

Assuming ergodicity, the s-Lagrangian velocity distribution is independent of the initial
position and equals the ensemble s-Lagrangian PDF

ps (v) = lim
V0→∞

1

V0

∫

Ω0

da
v0(a)

〈ve〉
δ[v − vs (s,a)], (12)

where v0(a) = vs(s = 0,a) = vt(t = 0,a) is the initial particle velocity. Note that
here the initial particle distribution is flux-weighted, this means

ρ(a) =
1

V0

v0(a)

〈ve〉
. (13)

2.2.2 Relationships between Eulerian and Lagrangian velocity distribu-
tions

Volume conservation implies that the ensemble t-Lagrangian velocity PDF (10) and
Eulerian velocity PDF (5) are equal. This can be seen by using the variable transforma-
tion a→ x(t,a) in (10) and noting that volume conservation implies that the Jacobian
of the transformation is unity,

pt (v) = lim
V0→∞

1

V0

∫

Ω(t)

dxδ[v − ve (x)] = pe (v) . (14)

The relation between the s-Lagrangian and t-Lagranging PDFs can be obtained by the
variable transform s→ t(s) in (12), which gives

ps(v) = lim
L→∞

T (L)

L

1

T (L)

T (L)∫

0

dtvδ[v − vt (t,a)] =
v

〈ve〉
pt(v). (15)
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Field λ [m] Lx Ly ∆x, ∆y µf σ2
f α k0 [m/s] kc [m/s]

Lognormal
10

600λ 150λ
λ/10

0 0.1–7 - - -
Gamma 300λ 300λ -2.95 – -4.57 1.9–11.7 0.3–0.9 10−11 5

Table 1: Summary of the numerical setup, the discretization of the multi-Gaussian K
fields and parameter values for the Lognormal and Gamma fields considered in this study.

The s-Lagrangian and t-Lagrangian PDFs are related through flux-weighting. This can
be understood as follows. Isochrone sampling gives more weight on slow velocities than
on high velocities, while equidistant sampling gives the same weight to all velocities as
illustrated in Figure 1.

Relation (15) implies together with (14) that the s-Lagrangian PDF is related to
the Eulerian PDF through flux-weighting as [Dentz et al., 2016]

ps (v) =
v

〈ve〉
pe (v) . (16)

This is a key relationship because it relates the s-Lagrangian PDF, a transport attribute,
to the Eulerian PDF, a flow attribute, which can be measured independently of trans-
port. Equation (16) may be illustrated as follows. As low velocities occupy wider stream-
tubes than high velocities, spatial sampling results in higher frequencies of low veloci-
ties. Equidistant sampling along trajectory, however, gives equal weight to low and high
velocities. Note that this key result and its derivation are valid for 2- and 3-dimensional
porous media. Note that relations (14)-(16) hold under stationary conditions. This means,
the stationary t-Lagrangian distribution is equal to the Eulerian PDF and the station-
ary s-Lagrangian distribution is equal to the flux-weighted Eulerian PDF.

2.3 Numerical simulations

Stochastic simulations are based on the Monte-Carlo method. The groundwater
flow equation is solved for multiple realizations of K(x), which belong to an ensemble
characterized by the same statistical properties. Transport is solved by particle track-
ing. Flow and transport statistics and average behaviors are obtained by spatial sam-
pling and streamwise sampling in individual realization and by sampling between medium
realizations. We describe in the following the direct numerical simulations (DNS) of Darcy
flow and transport in heterogeneous porous media. We explain the methods used to gen-
erate hydraulic conductivity fields K(x) as spatial stochastic processes based on multi-
Gaussian random field Y (x), the hydraulic setting used for the flow simulations and the
particle tracking method used to simulate transport.

2.3.1 Field generation

Isotropic multi-Gaussian random fields Y (x) characterized by zero mean and the
exponential covariance function (3) are generated on a regular grid in two dimensions
using the Random Fields Package [Schlather et al., 2015] of the R software environment [R
Core Team, 2015]. Table 1 summarizes field dimensions, discretization and point distri-
bution details for K. We consider Lognormal and truncated Gamma distributions for
the marginal distribution pK(k) of K(x). The Lognormally distributed K(x) is obtained
from Y (x) from the pointwise map K(x) = exp[Y (x)]. The truncated Gamma distributed
K(x) is obtained by inverse transform sampling or Smirnov transform as

K(x) = P−1
K (Φ[Y (x)]) , (17)
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Figure 2: Realizations of the two types of K fields considered in this study. For the Log-
normal field σ2

Y = 7 and for the Gamma field α = 0.5.

where Φ(y) is the cumulative distribution function (CDF) of the Gaussian distribution
and P−1

K (u) is the inverse CDF of the truncated Gamma distribution. This robust method
can be used when the inverse CDF lacks a closed-form analytical solution, which is the
case for the truncated Gamma distribution (4). In short, this is a two step method: 1)
the random variable Y (x) is mapped onto a uniformly distributed random variable us-
ing the CDF Φ(y), and 2), the uniform random variable is mapped onto the target vari-
able K(x) through inverse sampling. The inverse transform sampling is implemented in
an in-house C++ code based on the binary search algorithm from the GNU Scientific
Library [Galassi et al., 2016]. The Monte-Carlo simulations use 100 realizations of each
random field.

Figure 2 illustrates the typical structure of the hydraulic conductivity field for the
Lognormal and truncated Gamma-distributed K fields. For both fields, the correlation
structure is exponential, which induces a sharp contrast for neighboring K values. The
heterogeneous distributions show different spatial organization. The Lognormal based
field presents typical areas of high and low K values. The structure of the Gamma based
K field is similar, but is characterized by sparse regions of extremely low K values.

2.3.2 Groundwater flow

Direct numerical simulations (DNS) of saturated Darcy flow are performed in steady-
state with a reference permeameter-like setting [Bellin et al., 1992; de Dreuzy et al., 2007b;
Gotovac et al., 2009]. Fixed pressure boundary conditions are applied to the upstream
(left) and downstream (right) boundaries with a unit head drop; no-flow conditions are
applied to the top and bottom boundaries. The groundwater flow equation

∇2h(x) +∇ · [Y (x)∇h(x)] = 0 (18)

based on finite volume [Eftekhari , 2015] with a discretization of λ/10. The inter-cell hy-
draulic conductivity is set equal to the harmonic mean. To ensure stationarity of the Eu-
lerian velocity statistics, we consider an inner sub-domain which is limited by a biased
belt of width 25 λ. Such a width is sufficient for the most heterogeneous fields with σ2

Y ≤
7 as discussed in Appendix A: . Flow is uniform in the mean and directed along the x1-
direction of the coordinate system. We verified the accuracy of the flow simulations by
comparing the variance of the Eulerian velocity component along the mean flow direc-
tion to reference simulations [de Dreuzy et al., 2007b; Gotovac et al., 2009]. The statis-
tics of our simulations (variance along the mean flow direction) agree very well with these
references, see Appendix A: .
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Figure 3: Map of the natural logarithm of the velocity magnitude corresponding to the
conductivity fields in Figure 2.

2.3.3 Particle tracking

Unlike classical particle tracking methods, which solve the equations of motion (6)
by discretization in time, our method is based on the equation of motion (8), which de-
scribes particle motion as a function of travel distance s along a streamline. The par-
ticle trajectory x(s,a) is obtained numerically from

xn+1 =
q[xn]∆s

|q(xn)| , tn+1 = tn +
∆s

q[xn]
, (19)

where we set xn = x(n∆s,a) and tn = t(n∆s,a). This method can be considered a
time-domain random walk [Noetinger et al., 2016]. It is of advantage in scenarios, which
are characterized by the presence of regions of very low velocities as it the case in this
study because the number of steps does not depend on the local velocity value as in time-
stepping methods. We choose the discretization ∆s = λ/103. The series of s-Lagrangian
velocities is given by vs(n∆s,a) = |q(xn)|. The series of t-Lagrangian velocities is given
by

vt(t,a) = vs(nt∆s,a), (20)

where nt = max(n|tn ≤ t). Flow velocities within the finite volume cells are obtained
using a bilinear interpolation of the velocities at cell faces [Pollock , 1988]:

qx(x) = Ax(x− xL) + qx(xL) (21)

qy(x) = Ay(y − yB) + qy(yB), (22)

where

Ax = [qx(xR)− qx(xL)]/dx (23)

Ay = [qy(yT )− qy(yB)]/dy (24)

where xL, xR, yB and yT are the positions of the left, right, bottom and top boundaries
of the cell, respectively and dx and dy are the cell sizes, which here are equal, dx = dy =
λ/10.

3 Lagrangian velocity statistics

In this section we study the evolution of the Lagrangian velocity statistics both in
terms of travel time and travel distance along streamlines and their relation to the Eu-
lerian velocity statistics discussed in Section 2.2.2. In Section 2.2.1, we have defined the
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Figure 4: Evolution of the space-Lagrangian velocity PDF from the Eulerian initial ve-
locity PDF (top, black circles) to the flux-weighted Eulerian velocity PDF (bottom, black
diamonds). The intermediate s-Lagrangian velocity PDFs are sampled at distances of
s = 2� (blue crosses) and s = 10� (red crosses).
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Figure 5: Evolution of the space-Lagrangian velocity mean for a uniform initial particle
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locity PDF (top, black circles) to the flux-weighted Eulerian velocity PDF (bottom, black
diamonds). The intermediate s-Lagrangian velocity PDFs are sampled at distances of
s = 2λ (blue crosses) and s = 10λ (red crosses).

ensemble t- and s-Lagrangian PDFs (10) and (12) for uniform and flux-weighted injec-
tion conditions, respectively. Under ergodic injection conditions, these initial conditions
correspond to the stationary distributions of the t- and s-Lagrangian statistics. We mean
by ergodic injection conditions that the injection domain is large enough such that the
initial velocity PDF is equal to the Eulerian velocity PDF,

1

V0

∫

Ω0

daδ[v − v0(a)] = pe(v), (25)

which for the stationary flow fields under consideration here is fulfilled by definition for
V0 →∞. We consider injections over line extensions ≥ 102λ.

Here, we will investigate the evolution of Lagrangian velocity statistics. Thus, we
define the transient t- and s-Lagrangian PDFs as

p̂t(v, t) =

∫
daρ(a)δ[v − vt(t,a)] (26)

p̂s(v, s) =

∫
daρ(a)δ[v − vs(s,a)], (27)

where ρ(a) is the distribution of initial particle positions. The initial velocity distribu-
tion is denoted by p0(v) = pt(v, t = 0) = ps(v, s = 0). It is related to the initial parti-
cle distribution ρ(a) as

p0(v) =

∫
daρ(a)δ[v − v0(a)]. (28)

Within a Lagrangian stochastic framework, the knowledge of the Lagrangian ve-
locity statistics is crucial for transport predictions, see Eq. (6)-(8). For the determina-
tion of the solute breakthrough curves, for example, it is more convenient to consider the
slowness w = 1/vs [Gotovac et al., 2009]. The statistics of w = 1/vs can be obtained
from the statistics of vs by variable transfrom. The PDF p̂w(w, s) of w(s) is given in terms
of p̂s(v, s) by

p̂w(w, s) =
1

w2
p̂s(1/w, s). (29)

11
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Figure 5: Evolution of the space-Lagrangian velocity mean for a uniform initial particle
distribution. The mean increases from the mean of the Eulerian velocity (lower dotted
line) to the mean of the flux-weighted Eulerian velocity (upper dashed dotted line).
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Figure 5: Evolution of the space-Lagrangian velocity mean for a uniform initial particle
distribution. The mean increases from the mean of the Eulerian velocity (lower dotted
line) to the mean of the flux-weighted Eulerian velocity (upper dashed dotted line).

Specifically, at steady state, we obtain through the flux-weighting relation (16) between
ps(v) and pe(v) for the steady state PDF pw(w) of slowness

pw(w) =
1

w3〈ve〉
pe(1/w). (30)

Hence, the slowness statistics is also fully determined by Eulerian statistics, this means
by a flow attribute.

In the following, we investigate the evolution of t- and s-Lagrangian velocities for
Lognormal and truncated-Gamma distributed hydraulic conductivity fields. For illus-
tration, we show the behaviors for two heterogeneous cases: σ2

Y = 7 for the Lognormal
field and α = 1/2 for the Gamma field. The behaviors for other parameter values are
qualitatively similar.

3.1 Evolution of s-Lagrangian velocities

As pointed out above, the space-Lagrangian velocity PDF evolves if solute parti-
cles are injected with a distribution different from its steady-state, the flux weighted Eu-
lerian velocity PDF (16). Figure 4 shows the evolution of the s-Lagrangian velocity PDF
for a uniform injection of particles in the two types of K fields under consideration. For
this injection mode, the main features of the evolution of the probabilities are a decrease
for low velocities and an increase for high velocities. These opposite evolutions reflect
the convergence towards the flux-weighted Eulerian velocity PDF in which high veloc-
ities are dominating. A cautious comparison of the two figures reveals a difference. For
the larger travel distance, s = 10λ, the velocity PDF does not completely coincide with
the steady-state velocity PDF for the Lognormal K field, while this overlap exists for
the Gamma field. This difference reflects that the correlation length of s-Lagrangian ve-
locities is greater in the Lognormal-field than in the Gamma-field. Since both fields have
a similar variance, this difference in correlation length relates to the heterogeneity in the
distribution of the hydraulic conductivity. We shall discuss this point further in Section 5.
Now, we focus our analysis on the evolution of the mean s-Lagrangian velocity,

〈vs(s)〉 =

∞∫

0

dvvp̂s(v, s). (31)

Figure 5 shows the evolution of the mean s-Lagrangian velocity for a uniform in-
jection. According to this injection mode, the mean of the initial s-Lagrangian velocity

12
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Figure 5: Evolution of the space-Lagrangian velocity mean for a uniform initial particle
distribution. The mean increases from the mean of the Eulerian velocity (lower dotted
line) to the mean of the flux-weighted Eulerian velocity (upper dashed dotted line).
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Figure 6: Evolution of the time-Lagrangian velocity PDF. The PDF evolves from the
flux-weighted Eulerian velocity PDF (bottom black diamonds) to the Eulerian velocity
PDF (top black circles). For the Lognormal-field, the two intermediate velocity PDFs are
at t = 20⌧u (blue crosses) and t = 200⌧u (red crosses); for the Gamma field, intermediate
times are: t = 5.5⌧u (blue crosses) and t = 33⌧u (red crosses).
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Figure 6: Evolution of the time-Lagrangian velocity PDF. The PDF evolves from the
flux-weighted Eulerian velocity PDF (bottom black diamonds) to the Eulerian velocity
PDF (top black circles). For the Lognormal-field, the two intermediate velocity PDFs are
at t = 20τu (blue crosses) and t = 200τu (red crosses); for the Gamma field, intermediate
times are: t = 5.5τu (blue crosses) and t = 33τu (red crosses).

PDF is the arithmetic mean of the Eulerian velocity PDF. Similar to the evolution of
the PDF, the mean of the s-Lagrangian velocity evolves between the Eulerian and flux-
weighted Eulerian mean at short and long distances respectively. When the injection dis-
tribution differs from the steady-state distribution, the mean of the s-Lagrangian veloc-
ity PDF is determined by the initial velocity distribution and converges toward the mean
of the steady-state s-Lagrangian velocity PDF.

3.2 Evolution of t-Lagrangian velocities

In Section 2.2.2 we saw that the steady-state t-Lagrangian velocity PDF is equal
to the Eulerian velocity PDF, see Eq. 14. Thus, if the initial t-Lagrangian velocity PDF
differs from the uniform injection, the t-Lagrangian velocity PDF shall converge to the
steady-state velocity PDF with time.

Figure 6 shows the temporal evolution of the t-Lagrangian velocity PDF to its steady-
state. The PDF evolves from an initial flux-weighted velocity PDF to the steady-state
Eulerian velocity PDF. According to this injection mode, particles are injected propor-
tional to the local flow. The initial (t = 0) velocity distributions have low and high prob-
abilities for the low and high velocities respectively. At intermediate times, probabili-
ties of low velocities persist close to their initial values. For high velocities, p̂t(v, t) is close
to the steady-state velocity PDF. This difference suggests that probabilities of high ve-
locities reach steady-state faster than the probabilities of low velocities. Indeed, parti-
cles persist long times at low velocities which give rise to strong correlation. As men-
tioned in the Introduction and in Section 2.2, long persistence times result in memory
effects and intermittency, see also Figure 1. At the later time, the convergence of prob-
abilities for very low velocities remains incomplete. This intermittent feature is complex
to model in time because it requires the characterization of the memory effects. Con-
versely, the space sampled velocities show no intermittency and require lower levels of
characterization. This is why we consider in the following the spatial framework.

4 Markov models for the evolution of Lagrangian velocities

As seen in Section 2.2 and the previous section, the s-Lagrangian velocity series fluc-
tuates on a characteristic length scale `c, and the s-Lagrangian velocity statistics evolve

13
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Figure 7: Evolution of the space-Lagrangian velocity mean for a uniform initial particle
distribution. The mean increases from the mean of the Eulerian velocity (lower dotted
line) to the mean of the flux-weighted Eulerian velocity (upper dashed dotted line). The
solid line denotes the Bernoulli model for (Lognormal) `c = 5.7� and (Gamma) `c = 3.1�.
The dashed line denotes the Ornstein-Uhlenbeck model for (Lognormal) `c = 3.5� and
(Gamma) `c = 2.1�.
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Figure 8: Evolution of the velocity PDF from (symbols) the DNS and (dashed lines)
prediction by (dashed) expression (36) for the Bernoulli model, and (dashed-dotted) the
Ornstein-Uhlenbeck model. The correlation lengths `c are the same as in Figure 7.
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Figure 7: Evolution of the space-Lagrangian velocity mean for a uniform initial particle
distribution. The mean increases from the mean of the Eulerian velocity (lower dotted
line) to the mean of the flux-weighted Eulerian velocity (upper dashed dotted line). The
solid line denotes the Bernoulli model for (Lognormal) `c = 5.7λ and (Gamma) `c = 3.1λ.
The dashed line denotes the Ornstein-Uhlenbeck model for (Lognormal) `c = 3.5λ and
(Gamma) `c = 2.1λ.

towards stationarity within a few `c. Due to the relative simplicity of the s-Lagrangian
velocity series compared to the intermittent t-Lagrangian velocities, here we focus on the
modeling of vs(s,a) as stationary Markov processes. This means, the velocity series vs(s,a)
of single particle is represented as a realization of a stochastic processes {vs(s)}. In this
framework, the particle time is evolving along the streamline as

dt(s)

ds
=

1

vs(s)
. (32)

The t-Lagrangian velocity is given by vt(t) = vs[s(t)] with s(t) = max[s|t(s) ≤ t].
The evolution of p̂(v, s) is described by the Chapman-Kolmogorov equation

p̂s(v, s+ ∆s) =

∞∫

0

dvr(v,∆s|v′)p̂s(v′, s), (33)

where r(v,∆s|v′) is the transition probability density, which characterizes the Markov
process. The t-Lagrangian PDF p̂t(v, t) can be expressed in terms of the s-Lagrangian
statistics as [Dentz et al., 2016]

p̂t(v, t) = v−1

∞∫

0

dsR(v, t, s), (34)

where R(v, t, s) is the joint PDF of finding a particle with velocity v and time t after a
streamwise distance s. The initial velocity distribution p̂s(v, s = 0) = p0(v) is given
by (28). Note that in this framework, the injection mode is acocunted for by the initial
particle velocity.

In the following, we quantify the evolution of the s-Lagrangian velocity by two stochas-
tic relaxation models, a Bernoulli velocity model and an Ornstein-Uhlenbeck model. These
models are compared to the direct numerical simulations (DNS) of flow and transport
in the Lognormal and Gamma-distributed hydraulic conductivity fields. For illustration,
we show the comparisons for the Lognormal model with σ2

Y = 7 and the Gamma model
with α = 1/2.
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Figure 8: Evolution of the velocity PDF from (symbols) the DNS and (dashed lines)
prediction by (dashed) expression (36) for the Bernoulli model, and (dashed-dotted) the
Ornstein-Uhlenbeck model. The correlation lengths `c are the same as in Figure 7.
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Figure 8: Evolution of the velocity PDF from (symbols) the DNS and (dashed lines)
prediction by (dashed) expression (36) for the Bernoulli model, and (dashed-dotted) the
Ornstein-Uhlenbeck model. The correlation lengths `c are the same as in Figure 7.

4.1 Bernoulli model

To quantify the evolution of the space-Lagrangian velocity distribution we follow
the approach based on the Bernoulli velocity model [Dentz et al., 2016]

vn+1 = vnξn + ηn(1− ξn), (35)

where vn = vs(n∆s). ξn is a Bernoulli process which takes the values ξn = 1 with prob-
ability exp(−∆s/`c) and 0 else. `c is the correlation length of velocities along the tra-
jectory and the velocity ηn is distributed according to the steady state PDF ps(v). Thus,
the evolution of p̂s(v, s) is given by the exponential relaxation model

p̂s (v, s) = ps (v) + exp (−s/`c) [p0 (v)− ps (v)]. (36)

The decay from the initial Lagrangian velocity distribution p0 (v) to the steady-state dis-
tribution ps (v) is exponential. The decay rate `−1

c is constant and thus velocity inde-
pendent. This independence sheds light on the nature of the evolution of s-Lagrangian
velocity PDF, which shall be discussed below.

The evolution of the mean velocity is obtained from Equation (36) as

〈vs (s)〉 = 〈vs〉+ exp (−s/`c) [〈v0〉 − 〈vs〉]. (37)

Figure 7 shows a comparison of the mean s-Lagrangian velocity obtained by the DNS
and expression (37), where we fitted the correlation length `c, the only free parameter
in this model. However, `c is related to the correlation length λ of Y (x) and the hetero-
geneity strength as discussed below. For both types of K fields, the Bernoulli model re-
produces the evolution obtained by DNS. This relaxation model quantifies the evolution
of the mean of the s-Lagrangian velocity PDFs. Since the mean velocity represents merely
the central tendency of the velocity distribution, it remains to be verified if the Bernoulli
model predicts the evolution of the entire PDF.

Figure 8 shows the evolution of p̂(v, s) given by the DNS and expression (36). The
evolution from the initial PDF p0(v) to the steady state ps(v) is captured by definition
of the model. At intermediate distances, (36) represents well the convergence rate at high
velocities, while it is too slow at low velocities. This result sheds light on the nature of
the relaxation process. Since in the Bernoulli model the convergence rate is constant,
the difference between model and DNS suggests that the convergence rate of the s-Lagrangian
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velocity PDF is velocity dependent. The Bernoulli model is not able to predict the evo-
lution of the s-Lagrangian velocity PDF at intermediate distances.

4.2 Ornstein-Uhlenbeck model

We consider now a more complex model to account for the velocity dependence in
the evolution of s-Lagrangian velocity PDF. Specifically, we consider the evolution of vs(s)
based on an Ornstein-Uhlenbeck process [Massoudieh et al., 2017; Morales et al., 2017].
The s-Lagrangian velocity here is obtained according to the bijective map

v(s) = F [w(s)] (38)

from the Gaussian process w(s). Note that w(s) is the normal score of v(s). The pro-
cess w(s) satisfies the Langevin equation [Gardiner , 1985]

dw(s)

ds
= −`−1

c w(s) +
√

2`cξ(s), (39)

where ξ(s) is a Gaussian white noise with zero mean and covariance 〈ξ(s)ξ(s′)〉 = δ(s−
s′). Thus, w(s) is modeled here as an Ornstein-Uhlenbeck process. The distribution p̂w(w, s)
of w(s) evolves according to the Smoluchowski equation

∂p̂w(w, s)

∂s
=

∂

∂w
`−1
c wp̂w(w, s) + `c

∂2

∂w2
p̂w(w, s). (40)

Its steady state distribution pw(w) is given by the Gaussian

pw(w) =
exp

(
−w2

2

)

√
2π

. (41)

Thus, the map F (w) reads as

F (w) = P−1
s [Φ(w)], (42)

where Φ(w) is the cumulative distribution function (CDF) of the Gaussian distribution
and P−1

s (u) is the inverse CDF of the steady state velocity distribution Ps(v). This map
guarantees that the velocity statistics converges to its steady state ps(v).

The evolution of wn = w(n∆s) in discrete steps ∆s is given by the discretized ver-
sion of (39),

wn+1 = wn(1− `−1
c ∆s) +

√
2`c∆sξn, (43)

where the ξn are independent identically distributed Gaussian random variables char-
acterized by 0 mean and unit variance. The initial values are given by w0 = F−1(v0),
where the initial velocities are distributed according to p0(v). The evolution of vn thus
is given by

vn+1 = F
[
F−1(vn)(1− `−1

c ∆s) +
√

2`c∆sξn

]
. (44)

As in the Bernoulli model, the only free parameter here is the correlation distance
`c, which, however, is related to the correlation length and heterogeneity strength of the
underlying random field Y (x) as discussed below. As here we do not have a closed form
analytical solution for the mean velocity 〈vs(s)〉, the correlation length is estimated from
the evolution of 〈w(s)〉 as outlined in Appendix B: .

Figure 7 shows the evolution of the mean velocity 〈vs(s)〉 based on the Ornstein-
Uhlenbeck process. The model provides a good description of the evolution of the mean
velocity from its initial to steady state values. Figure 8 shows the evolution of s-Lagrangian
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velocity PDF predicted by the Ornstein-Uhlenbeck model. It addresses the issue of the
Bernoulli model, which is not able to reproduce the evolution at low velocities. The sim-
ulated velocity PDF now agrees with the PDF obtained by DNS for both high and low
velocities. Note that the convergence rate `−1

c as well as the noise term in the Ornstein-
Uhlenbeck model (39) are state-independent. This is not the case for the evolution of
vs(s) described by (44). Both convergence rate and noise strength for the latter are in
general velocity dependent. This can be seen by Taylor expanding the right side of (44)
up to linear order in ∆s, which gives

vn+1 = vn −A(vn)`−1
c ∆s+B(vn)`c∆s+ C(vn)

√
2`c∆sξn, (45)

where we implicitly use the Ito interpretation of the stochastic integral [Gardiner , 1985],
and defined

A(v) =
dF [F−1(v)]

dw
F−1(v), B(v) =

d2F [F−1(v)]

dw2
, C(v) =

dF [F−1(v)]

dw
. (46)

4.3 Synthesis

We have modeled the s-Lagrangian velocities as a Markov process, which is fully
determined by the Eulerian velocity PDF, a flow attribute independent from transport,
and the correlation length, which depends on the medium properties. The Markov ap-
proach is predictive in the sense that it relates flow and medium properties with large
scale transport in terms of stochastic evolution equations for the s-Lagrangian veloci-
ties. Velocity transitions and thus the evolution of the the velocity statistics depend on
the specific Markov model under consideration. We have considered two Markov mod-
els of different complexity, a Bernoulli process for the velocity transitions and an Ornstein-
Uhlenbeck process for the transitions of the normal scores of velocity. While both mod-
els capture the evolution of the s-Lagrangian velocity statistics qualitatively, the Bernoulli
process does not predict accurately the preasymptotic velocity PDFs at small velocities.
The Ornstein-Uhlenbeck process in contrast provides an accurate quantitative predic-
tion of the evolution of p̂(v, s). Nevertheless, the Bernoulli process is appealing due to
its simplicity and analytical tractability [Dentz et al., 2016], which allows to obtain a closed
form expression for large scale dispersion. As it provides an accurate prediction of the
evolution of intermediate and high velocities and the asymptotic statistics, it may pro-
vide a robust model for certain transport aspects.

5 Hydraulic conductivity distribution and velocity statistics

In this section, we focus on the dependence of the correlation length `c on the vari-
ance σ2

f of the logarithm of K and the relation to λ, the correlation length of the un-
derlying multi-Gaussian Y (x) in both the Lognormal and Gamma fields, and the com-
parison of the pointwise K PDF and the pointwise PDF of the Eulerian velocity mag-
nitude.

5.1 Correlation length of s-Lagrangian velocities

We determine the correlation length `c estimated from the Bernoulli process from
expression (37) and from the Ornstein-Uhlenbeck model as outlined in Appendix B: as
a function of the heterogeneity of the K field measured in terms of the variance σ2

f of
the logarithm of K. Figure 9 reveals that for both the Lognormal and Gamma fields `c
is larger than the correlation length λ of Y (x), and increases with increasing variance
σ2
f . This is due to the fact that the tortuosity of the streamlines is larger than 1 and in-

creases with increasing heterogeneity. Similar observations have been made by Cvetkovic
et al. [1996] and Le Borgne et al. [2007]. The correlation length depends linearly on σ2

f .
For the Lognormal fields, we find

`c/λ = 0.181σ2
f + 2.221, (47)
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Figure 9: Correlation lengths for the (circles) Lognormal and (squares) Gamma fields
estimated from the Ornstein-Uhlenbeck process and (open circles) correlation lengths for
the Lognormal fields estimated from the Bernoulli model.

and for the Gamma fields,

`c/λ = 0.069σ2
f + 1.840. (48)

The correlation lengths for the Lognormal and Gamma fields are different for the same
values of σ2

f , which indicates a dependence of `c on the conductivity point distribution
because the correlation structure of the underlying multi-Gaussian field Y (x) is the same.
Changes of correlation structure, for instance high/low-K connected zones, is expected
to impact transport on the Lagrangian flow attributes [Le Borgne et al., 2008b]. Figure 9
also shows the correlation lengths for the Lognormal fields estimated from the Bernoulli
and Ornstein-Uhlenbeck models for the Lognormal fields. The correlation lengths for the
Ornstein-Uhlenbeck model are smaller than for the Bernoulli model, which demonstrates
the model dependence of `c.

5.2 Hydraulic conductivity and Eulerian velocity statistics

We discuss now the relationship between the PDFs of K and ve. Several studies
have found, or assume that the PDF of the magnitude of the flow velocity and the stream-
wise flow components may be proportional to the PDF of hydraulic conductivity values [Bellin
et al., 1992; Fiori et al., 2006, 2007; Cvetkovic et al., 2014; Edery et al., 2014; Tyukhova
et al., 2016] at least for values much smaller than the mean. The prediction of the low
velocity end of pe(v) is valuable because low velocities induce long travel times and thus
are at the origin of breakthrough curves tailing and anomalous transport in general. This
observation can be explained by considering the flow in a single isolated inclusion [Eames
and Bush, 1999; Fiori et al., 2006, 2007; Cvetkovic et al., 2014], which is given by

ui =
2umKi

Km +Ki
, (49)

where ui is the velocity in the inclusion, um the velocity in the surrounding matrix and
Ki and Km correspondingly. For Ki � Km, the velocity in the inclusion is ui ≈ 2umKi/Km
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Figure 10: Comparison between (dashed lines) pK(k) for (a) Lognormal with �2
f = 7 and

(b) Gamma distribution with ↵ = 0.5, (symbols) pe(v) sampled from the DNS, (blue line)
pe(v) given by (50) for the inclusion model with (a) um = 3 m/s and (b) um = 3.75 m/s.
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Figure 10: Comparison between (dashed lines) pK(k) for (a) Lognormal with σ2
f = 7 and

(b) Gamma distribution with α = 0.5, (symbols) pe(v) sampled from the DNS, (blue line)
pe(v) given by (50) for the inclusion model with (a) um = 3 m/s and (b) um = 3.75 m/s.

and thus proportional to the hydraulic conductivity. Fiori et al. [2006, 2007] general-
ized this reasoning for media consisting of random distributions of inclusions of variable
conductivity. Furthermore, one can argue that conductivity fields based on multi-Gaussian
random fields have a similar structure as media consisting of inclusions because the topol-
ogy of multi-Gaussian fields is characterized by islands of high and low values and con-
nected regions with conductivities around the mean. Mapping of the conductivity PDF
pK(k) onto pe(v) according to (49) gives

pe(v) =
2um

(2um − v)
2 pK [v/(2um − v)] . (50)

Figure 10 shows a comparison between the conductivity distribution pK(k) of the
Lognormal and Gamma distribution, the Eulerian velocity distribution pe(v) obtained
from the DNS for the Lognormal and Gamma fields, and the corresponding expression (50)
from the inclusion model. For the Lognormal field, we find that pe(v) and pK(k) actu-
ally compare relatively well over more than 2 orders of magnitude in the range of K =
10−2 − 1. The inclusion model performs relatively well for values K < 10−3. For the
Gamma field, the inclusion model performs relatively well for K < 10−7 over several
orders of magnitude. There is a certain correspondence between the conductivity PDF
and PDF of the Eulerian velocity magnitude. While an exact map between pe(v) and
pK(k) is still an open question, the inclusion model provides a good estimate for the be-
havior at small values of K while setting both PDFs simply equal provides relatively good
estimates for intermediate K values around the mean for the Lognormal and Gamma
fields.

6 Conclusions

We have conducted a thorough analysis of Lagrangian velocity statistics for steady
flow through Darcy-scale heterogeneous porous media with the aim of identifying and
quantifying the stochastic dynamics of particle velocities and thus large scale particle
motion. In order to understand the stochastic velocity dynamics, we consider two statis-
tics, which are defined in terms of the sampling strategy. The t-Lagrangian statistics are
obtained from the velocity series sampled isochrone along trajectories, the s-Lagrangian
statistics from equidistant sampling.
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t-Lagrangian velocity series exhibit intermittent patterns characterized by long pe-
riods of low velocities and short high frequency fluctuations of high velocities. Intermit-
tency is also reflected in the evolution of the t-Lagrangian velocity PDFs in that they
are characterized by slow convergence at the low velocity end of the PDF. Particles at
low velocities remain there for a long time, which is given by the advective travel time,
or, in other words, particles have long memory of low velocities. For particles to become
statistically equal, they all need to have access to the same statistics, This is possible
only for times larger than the largest memory scale, which in turn is related to the dis-
tribution of the smallest velocities. Thus, the temporal evolution of particle velocities
is characterized by history dependent dynamics.

This is different for the s-Lagrangian velocities, which do not display intermittent
behavior. They evolve on a characteristic correlation length scale. This implies that par-
ticles become statistically equal, this means (spatial) memory is wiped out at distances
larger than the correlation scale. We expect these behaviors to hold in 3-dimensional porous
media as well because the fundamental mechanism, namely the variability of particle ve-
locities on characteristics length scales imprinted in the medium, is the same. This is con-
firmed by preliminary results for 3-dimensional heterogeneous media. From a quantita-
tive viewpoint, we expect differences in the correlation length and streamline tortuos-
ity due to the additional spatial dimension, which may accelerate the convergence of the
s-Lagrangian statistics toward steady state.

Quantifying the relatively simpler dynamics of s-Lagrangian velocities allows to un-
derstand and quantify the more complex intermittent dynamics of the velocity time se-
ries. We model the evolution of the s-Lagrangian velocity series in terms of a station-
ary and ergodic Markov processes based on the existence of a single relaxation length
scale, the velocity correlation scale. The Markov process is parameterized in terms of the
steady state s-Lagrangian velocity PDF ps(v) and the characteristic length scale `c. A
key result relates the transport attribute ps(v) to the flow attribute pe(v), the Eulerian
velocity PDF, by flux-weighting. The Eulerian velocity PDF can be obtained by spatial
sampling, this means independently from a transport measurement. These results are
valid for 2- and 3-dimensional heterogeneous porous media. The Markov approach is able
to predict the evolution of particle velocities along streamlines for arbitrary initial con-
ditions and can be conditioned on the heterogeneity distribution at the injection point.
In this sense it is able to account for local scale information in a global upscaled model.

This Markov approach for the s-Lagrangian velocities places particle motion in the
framework of time-domain and continuous time random walks [Berkowitz et al., 2006;
Fiori et al., 2007] in that particles make transitions over a fixed spatial distances with
an associated variable transition time. Particle motion along the x-axis may be described
by

dx

ds
= χ−1,

dt

ds
=

1

vs(s)
, (51)

where χ is the advective tortuosity, which compares the average streamline length to the
linear distance. Tortuosity accounts for the fact that the streamlines length s is in gen-
eral larger than the linear distance. Note that in general, local tortuosity, this means the
ratio of streamline length to linear distance, is different for each streamline. However,
for ergodic media, we expect the average χ to be a good predictor for linear travel dis-
tances larger than `c. These points and the expression of χ in terms of the Eulerian flow
statistics along the lines of Koponen et al. [1996] is discussed in a forthcoming paper.

We discuss two Markov models for the s-Lagrangian velocity series of different com-
plexity. An Ornstein-Uhlenbeck process for the normal scores of velocity and a Bernoulli
process for vs(s). While the Ornstein-Uhlenbeck process provides accurate predictions
for the full evolution of the velocity statistics, the Bernoulli model captures the evolu-
tion only qualititatively. Still, the Bernoulli model is appealing due to its simplicity, which
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allows to obtain analytical expressions for large scale dispersion. Specifically, the asymp-
totic large scale dispersion coefficient reads as [Dentz et al., 2016],

D∗L =
〈ve〉2`c
χ2

∞∫

0

dvpe(v)
〈ve〉 − v
v〈ve〉

, (52)

if it exists. For the lognormal conductivity distribution it does exist. Note that for weak
heterogeneity, this means σ2

f < 1, pe(v) ∼ pK(k) follows also a lognormal distribution,
χ ≈ 1 and `c ≈ λ. In this case, expression (52) reduces to (1). Solute and particle trans-
port in this framework is studied in detail in a forthcoming paper.

The proposed s-Lagrangian Markov approach is predictive in that it can be param-
eterized by the Eulerian velocity PDF, a flow attribute, and the correlation length of sub-
sequent particle velocities. The latter is found to be model and heterogeneity dependent,
but in any case of the order of the correlation length of the hydraulic conductivity field.
We find that `c increases with increasing heterogeneity. In fact, it grows linearly with
the variance of the logarithm of K. Also, the Eulerian velocity PDF can be represented
over certain ranges by the PDF of hydraulic conductivity. However, further research is
needed to arrive at a more quantitative theoretical understanding of the relations be-
tween the hydraulic conductivity distribution and structure, and the velocity correlation
length and Eulerian flow statistics.
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A: Flow statistics in Lognormal hydraulic conductivity fields

The section provides details on the validation of the numerical flow simulations for
Lognormal hydraulic conductivity field against published results on the statistics of the
Eulerian velocity field.
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Figure A.1: Variance of Eulerian velocity for the Lognormal K field with �2
f = 7. The

vertical lines indicate the boundaries of the stationary domain used for particle tracking
simulations.

Figure A.2: Variance of the velocity component along the mean flow direction for Log-
normally distributed K fields. Our simulations (red diamond) agrees with references from
the literature: upward triangles from de Dreuzy et al. [2007b] and downward triangles
from Gotovac et al. [2009].

B: Parameter estimation in the Ornstein-Uhlenbeck process789

This section describes the procedure to estimate the velocity correlation param-790

eter `c of the Ornstein-Uhlenbeck (OU) model. This estimation uses the map of the evo-791

lution of the space-Lagrangian velocity process to the w process. On average, the mean792

s-Lagrangian velocity relaxes to the flux-weighted mean of the Eulerian velocity field.793

This flux-weighted Eulerian mean is mapped to steady-state mean of the w process, which794

is µ = 0. While the evolution of the mean velocity can be computed numerically, it is795

convenient to estimate the correlation value `c with the w process, because the latter can796

be described analytical. In short, we estimate the value of `c by fitting the analytical so-797

lution that describes the evolution of the mean of the Gaussian random variable w in798
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Figure A.1: Variance of Eulerian velocity for the Lognormal K field with σ2
f = 7. The

vertical lines indicate the boundaries of the stationary domain used for particle tracking
simulations.
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Figure B.1: Variance of the velocity component along the mean flow direction for Lognor-
mally distributed K fields. Our simulations (red diamond) agrees with references from the
literature: upward triangles from de Dreuzy et al. [2007b] and downward triangles from
Gotovac et al. [2009].

A.1 Sub-domain size determination

To compute flow statistics and perform particle tracking in flow fields with steady
statistics, it is required to estimate the width of a biased belt. Figure: A.1) shows the
evolution of the variance in the directions longitudinal and transverse to the mean flow
direction for the log-hydraulic conductivity field following a Lognormal distribution with
the highest variance considered in this study (σ2

f = 7). Steady statistics are obtained
in both directions within a belt of 20 correlation length. In a conservative way, this belt
width was used for all fields with lower variance.

A.2 Variance of the flow field

To assess the accuracy of our numerical simulations, we compared the dependence
of the variance of the velocity component longitudinal to the mean flow direction on the
increase of σ2

f to (1) first and second order perturbation theory and (2) numerical re-
sults from the literature [de Dreuzy et al., 2007b; Gotovac et al., 2009]. Figure B.1 shows
the variance of the Eulerian velocity along the mean flow direction as a function of σ2

f

as well as the first- and second order perturbation theory solutions. Our results are in
very good agreement with the references data from the literature, thus confirming the
accuracy of our flow simulations.

B: Parameter estimation in the Ornstein-Uhlenbeck process

This section describes the procedure to estimate the velocity correlation param-
eter `c of the Ornstein-Uhlenbeck (OU) model. This estimation uses the map of the evo-
lution of the space-Lagrangian velocity process to the w process. On average, the mean
s-Lagrangian velocity relaxes to the flux-weighted mean of the Eulerian velocity field.
This flux-weighted Eulerian mean is mapped to steady-state mean of the w process, which
is µ = 0. While the evolution of the mean velocity can be computed numerically, it is
convenient to estimate the correlation value `c with the w process, because the latter can
be described analytical. In short, we estimate the value of `c by fitting the analytical so-
lution that describes the evolution of the mean of the Gaussian random variable w in
the Ornstein-Uhlenbeck model.
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Figure B.1: Spatial evolution of the mean of the w process obtained by direct numerical
simulations (blue signs) and with the fitted analytical solution (red line). Left: point K
distribution is Lognormal, with �2

Y = 7. Right: point K distribution is the Gamma, with
�2

f = 4.9 (i.e. ↵ = 1/2). The fitted correlation lengths are `c = 3.5 and `c = 2.2 for the
Lognormal and Gamma K distributions respectively.

In the OU-model, the evolution of the mean for a unit Gaussian distribution is given800

by [Gardiner , 1985]801

hw(s)i = (hw0i � µ) exp(�s/`c) + hw1i, (B.1)802
803

where hw0i and hw1i are the initial and steady-state mean of w(s). Figure B.1 shows804

an example of the spatial evolution of the empirical ensemble mean w process (hwi) that805

stems from direct numerical simulations of transport in heterogeneous Lognormal and806

Gamma K fields. In addition, the figure shows the fitted analytical solution (Equation B.1)807

for mean value of the Gaussian variable in the OU process. The analytical solution gives808

satisfactory results and plots over the empirical data.809
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Figure B.2: Spatial evolution of the mean of the w process obtained by direct numerical
simulations (blue signs) and with the fitted analytical solution (red line). Left: point K
distribution is Lognormal, with σ2

Y = 7. Right: point K distribution is the Gamma, with
σ2
f = 4.9 (i.e. α = 1/2). The fitted correlation lengths are `c = 3.5 and `c = 2.2 for the

Lognormal and Gamma K distributions respectively.

In the OU-model, the evolution of the mean for a unit Gaussian distribution is given
by [Gardiner , 1985]

〈w(s)〉 = (〈w0〉 − µ) exp(−s/`c) + 〈w∞〉, (B.1)

where 〈w0〉 and 〈w∞〉 are the initial and steady-state mean of w(s). Figure B.2 shows
an example of the spatial evolution of the empirical ensemble mean w process (〈w〉) that
stems from direct numerical simulations of transport in heterogeneous Lognormal and
Gamma K fields. In addition, the figure shows the fitted analytical solution (Equation B.1)
for mean value of the Gaussian variable in the OU process. The analytical solution gives
satisfactory results and plots over the empirical data.
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